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ABSTRACT
Understanding the transport of energetic cosmic rays belongs to the most challenging topics in astrophysics. Diffusion due
to scattering by electromagnetic fluctuations is a key process in cosmic ray transport. The transition from a ballistic to a
diffusive-propagation regime is presented in direct numerical calculations of diffusion coefficients for homogeneous magnetic
field lines subject to turbulent perturbations. Simulation results are compared with theoretical derivations of the parallel diffusion
coefficient’s dependences on the energy and the fluctuation amplitudes in the limit of weak turbulence. The present study shows
that the widely used extrapolation of the energy scaling for the parallel diffusion coefficient to high turbulence levels predicted
by quasi-linear theory does not provide a universally accurate description in the resonant-scattering regime. It is highlighted
here that the numerically calculated diffusion coefficients can be polluted for low energies due to missing resonant interaction
possibilities of the particles with the turbulence. Five reduced-rigidity regimes are established, which are separated by analytical
boundaries derived in this work. Consequently, a proper description of cosmic ray propagation can only be achieved by using a
turbulence-level-dependent diffusion coefficient and can contribute to solving the Galactic cosmic ray gradient problem.
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1 INTRODUCTION

Cosmic rays and their radiative emissions are virtually ubiquitous in
star-forming galaxies and active galactic nuclei (Grenier, Black &
Strong 2015; Gaggero et al. 2015, 2017). Interpreting the observa-
tions to unveil the origins of cosmic rays, their quantitative properties,
how they exchange energy and momentum with their environments,
and what these properties reveal about the magnetic fields that confine
them requires a thorough understanding of how they propagate.
While there are a number of theoretical frameworks for propagation
theory (see Schlickeiser 2015; Zweibel 2017 for reviews), due to
the prevalence of turbulence in astrophysical magnetic fields, under-
standing spatial transport in the presence of magnetic turbulence is
a key part of all of them (Becker Tjus and Merten 2020). In general,
this requires a statistical description, usually in terms of a diffusion
tensor.

The trajectories of cosmic rays through turbulent magnetic fields
are controlled by the Lorentz force. The transport is therefore
conceptually simple. The fluctuations b of the magnetic field due
to plasma waves, however, enable scattering processes of the cosmic
rays that lead to a random walk. Complexity therefore arises from
the chaotic nature of the turbulent magnetic field through which the
charged particles propagate. This necessitates a statistical description
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of transport. The evolution of the cosmic ray distribution can
often be modelled by a diffusive process in the limit of large
times.1

The spatial diffusion tensor appears in the diffusion equation and
characterizes the spatial evolution of cosmic rays in a turbulent
magnetic field. By choosing the right reference frame, the diffusion
tensor can generally be expressed in block-diagonal form, where
off-diagonal elements describe curvature and gradient drifts (Jokipii,
Levy & Hubbard 1977). When, however, the turbulence is isotropic,
the diffusion tensor becomes diagonal, which allows one to split the
diffusion tensor into components parallel and perpendicular to the
background magnetic field.

The diagonal elements of the diffusion tensor yield, for a point
source, κii = lim

t→∞
κii(t), where the running diffusion coefficient is

defined as

κii(t) =
〈
(xi(t) − xi(0))2

〉
2t

, (1)

where the particle’s position xi is specified in Cartesian coordinates.
Here, the notation 〈...〉 refers to averaging over all particles. For

1The model of the magnetic field (with an isotropic Kolmogorov-type
turbulence spectrum) used within this study only leads to ballistic and
diffusive propagation. In general, particle propagation in turbulence offers the
possibility of subdiffusive and superdiffusive transport, in which the running
diffusion coefficient decreases or increases, respectively.
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isotropic fluctuations without a homogeneous background field, the
diagonal elements of the diffusion tensor are identical.

The mean-square displacement can alternatively be expressed,
following the Taylor–Green–Kubo (TGK) formalism (Kubo 1957),
as the mean square of the time-integrated particle velocity (in one
direction vi):

〈
(�xi)

2
〉

(t) =
〈⎛
⎝ t∫

0

dτ vi(τ )

⎞
⎠

2〉
. (2)

The underlying time invariance, together with the transformation of
coordinates, allows for the determination of the running diffusion
coefficient as (Shalchi 2009)

κij (t) =
t∫

0

dτ
〈
vi(τ )vj (0)

〉
. (3)

In the limit of large times, the running diffusion coefficient converges
towards a value that is defined as the diffusion coefficient. The
running momentum diffusion coefficient Dij(t) for this approach
reads

Dij (t) =
t∫

0

dτ

〈
dvi

dτ
(τ )

dvj

dτ
(0)

〉
. (4)

The diagonal elements of the momentum diffusion tensor exhibit a
fundamental relation with the spatial diffusion coefficient (Berezin-
skii et al. 1990; Schlickeiser 2002; Subedi et al. 2017):

κii = v4

6Dii

. (5)

This relation is especially useful because the calculation of Dii

simplifies significantly for high-energy particles, constituting an
efficient way of deriving spatial diffusion coefficients for high
reduced rigidities (Plotnikov, Pelletier & Lemoine 2011; Snodin et al.
2016)

ρ ≡ rg/lc, (6)

where lc denotes the correlation length (see also the definition in
Section 2.1). The gyroradius rg = v/ωc has been introduced, defined
with respect to the background magnetic field and the relativistic
gyrofrequency. It proves useful to introduce the reduced rigidity
as this quantity takes into account the energy of the particles, the
length-scale over which the fluctuations are correlated, and the
magnetic field strength. For highly relativistic particles, as considered
in this study, scalings between energy and reduced rigidity apply as
described in Appendix B.

Depending on the reduced rigidity, particles can be divided into
magnetized (ρ � 1) and non-magnetized (ρ 	 1) (Istomin & Kiselev
2018). Magnetized particles have a small reduced rigidity, and their
treatment is more complicated than that of non-magnetized particles.

Cosmic ray diffusion is believed to be the dominant process for
the transport of cosmic rays in many astrophysical environments
(Strong & Moskalenko 1998; Evoli et al. 2008; Kissmann 2014).
In particular, the leaky-box model of the Milky Way predicts that
the cosmic ray energy spectrum observed at Earth is steepened
by diffusion: the spectrum is composed of the ratio of the source
spectrum Q(E) ∝ E−α and the diffusion coefficient κ(E) ∝ Eγ ,
i.e. N(E) ∝ E−α − γ (Berezinskii et al. 1990). These arguments are
based on quasi-linear theory (QLT), where an assumed form of the
turbulence spectrum

G(k) ∝ k−α, (7)

with k being the wavenumber, leads to a parallel-diffusion-coefficient
dependence2 κ� ∝ E2 − α for highly relativistic particles as described
in Section 2.1.

Several studies have investigated the diffusion coefficient tensor
via numerical simulations in pure turbulence B = 0 (Parizot 2004;
Globus, Allard & Parizot 2008; Fatuzzo et al. 2010; Plotnikov et al.
2011; Harari, Mollerach & Roulet 2014, 2015; Subedi et al. 2017;
Giacinti, Kachelriess & Semikoz 2018) or with a non-vanishing
background field B for varying ratios of b/B (Giacalone & Jokipii
1999; Casse, Lemoine & Pelletier 2002; Parizot 2004; DeMarco,
Blasi & Stanev 2007; Fatuzzo et al. 2010; Plotnikov et al. 2011;
Harari et al. 2014, 2015; Snodin et al. 2016; Subedi et al. 2017;
Giacinti et al. 2018). Most of these results were interpreted in such
a way that the numerically calculated diffusion coefficient depen-
dences were consistent with the predictions of QLT, independent
of the turbulence level b/B. Minnie et al. (2007), however, pointed
out for the case of a composite of slab and two-dimensional (2D)
fluctuations that turbulence-level dependence is expected and that the
QLT result is only recovered for small turbulence levels. In addition,
recent studies (e.g. Snodin et al. 2016) state that the range of energies
considered for determining the diffusion coefficient dependences
is important. In the present study, the resonant scattering range is
further constrained by introducing a lower limit based on physical
considerations, which is more restrictive than in previous numerical
work. This improvement makes it possible to study the turbulence-
dependent slopes of the diffusion coefficients and subsequently to
quantify the findings from Minnie et al. (2007) for Kolmogorov-
type turbulence. One of the goals of this paper is to introduce a
new propagation regime that exists below the energy range of the
resonant scattering regime and above the non-resonant scattering
regime.

This paper is organized as follows. Section 2 presents theoretical
diffusion-coefficient dependences for both the weak- and the strong-
turbulence limit. Section 3 provides a recipe for the calculation of
diffusion coefficients and introduces a physical lower limit of the
resonant scattering regime. Section 4 applies the physical constrains
of the resonant scattering regime regarding the reduced-rigidity range
and quantifies the turbulence-dependent spectral behaviour of the
diffusion coefficients.

2 SUMMARY OF PREVIOUS RESULTS FOR
THE SPATIAL DIFFUSION COEFFICIENT
DEPENDENCES

2.1 Diffusion coefficients for small reduced rigidities

A common approach for the calculation of diffusion coefficients
for magnetized particles in turbulence is QLT, proposed by Jokipii
(1966), and its generalizations, see Matthaeus et al. (2003), Shalchi
(2009), and Shalchi et al. (2009). Within QLT, the particle motion is
assumed to be a superposition of the gyromotion of the particle and
stochastic motion of the guiding centre along magnetic field lines.
The motion of the particle is modelled by the unperturbed trajectory.
This simplification can, however, only be justified in the limit of
b � B.

An additional assumption is the gyroresonance condition, which
implies that particles only interact resonantly with fluctuations at a

2For non-relativistic particles, QLT predicts κ� ∝ E3/2 − α/2 (see Giacalone &
Jokipii 1999 for details).
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Cosmic ray parallel diffusion 5053

fixed wavelength l that is determined via

|μ| = l

2πrg
, (8)

where μ = cos �0 is defined as the cosine of the pitch angle �0. The
pitch angle is defined as the angle between the particle velocity and
the background magnetic field.

There is, however, the well-known problem that interactions with
μ = 0 are prohibited due to the resonance condition stated above
(Tautz, Shalchi & Schlickeiser 2008). Non-linear transport theories
have been proposed to solve this problem by replacing the sharp
resonance between waves and particles with a resonance-broadening
function (Jones, Kaiser & Birmingham 1973; Völk 1973; Goldstein
1976; Shalchi et al. 2004; Yan & Lazarian 2008; Mertsch 2019) or
by taking into account fluctuations in the electric field (Schlickeiser
1989).

Despite these problems, agreement of numerical simulations with
the dependences of the diffusion coefficient derived within the QLT
formulation was found in several studies. In this section, the expected
dependences in the formalism of QLT are presented.

In QLT, κ� is inversely proportional to the scattering rate νs

(Berezinskii et al. 1990; Schlickeiser 2002), as per

κ‖ = v2

4

1∫
0

dμ
1 − μ2

νs
∝ v2ν−1

‖ . (9)

The scattering rate can be approximated within the formulation of
QLT as (Kulsrud & Pearce 1969; Berezinskii et al. 1990; Zweibel
2013)

ν‖ ≈ 2π2 |ωB | kres ε(kres)

B2
, (10)

where ωB denotes the synchrotron frequency, which is proportional to
the resonant wavenumber kres. The wave energy at wavenumber kres is
kres ε(kres) (Zweibel 2013). Isotropic turbulence with a Kolmogorov
spectrum in the inertial range is considered, assuming that energy
is injected at lmax and dissipated at lmin after a cascade from large
to small wavelengths without energy loss. Under these assumptions,
the turbulent spectrum G(k) follows a power law with the spectral
index α = 5/3 in one dimension,

G(k) = b2

8π
k−α (α − 1) kα−1

min

1 − (kmax/kmin)α−1
, (11)

which is expected to be applicable for various astrophysical envi-
ronments such as jets (Casse et al. 2002). For a one-dimensional
Kolmogorov spectrum with α = 5/3, in the limit lmin � lmax the
correlation length3 approximately yields (Harari et al. 2014)

lc = lmax

2

α − 1

α

1 − (lmin/lmax)α

1 − (lmin/lmax)α−1
≈ lmax

5
. (12)

These expressions can be inserted back into equation (9), yielding

κ‖ ≈ 2πv

kc

(
kres

kc

)α−2
B2

b2
= vlc ρ2−α B2

b2
, (13)

3This definition differs from another definition of the correlation
length that is frequently used in the literature (Monin & Ia-
glom 1975): lc = ∫ ∞

0 drR(r)/R(0) = π/2
∫ ∞

0 dk G(k)k−1/
∫ ∞

0 dk G(k) ≈
lmax/10 in the limit lmin � lmax. All subsequent given correlation lengths are
calculated according to lc = lmax/5 or converted to it if they are quoted from
other papers that have chosen a different definition (see for example overview
Table 3).

where the correlation wavenumber kc is connected to the correlation
length via lc = 2π /kc. This equation reproduces the parallel diffusion
coefficient of QLT in the limit of b � B.

In the limit b 	 B, the particle orbits are not close to the unper-
turbed trajectories anymore. Recent developments have improved
the understanding of the parallel-diffusion-coefficient dependences
in this particular limit (Casse et al. 2002; Shalchi 2009; Harari et al.
2014; Snodin et al. 2016; Subedi et al. 2017). In the strong-scattering
limit within non-linear diffusion theory (Shalchi 2009), the modified
Bohm limit yields (Hussein & Shalchi 2014; Srinivasan & Shalchi
2014)

λ‖ = rg

2

B

b
. (14)

Like the original Bohm limit, the modified Bohm limit describes
the proportionality between the mean-free path λ� = 3κ�/c and the
gyroradius; however, it corrects for the influence of the turbulence.
The resulting parallel diffusion coefficient is independent of the mean
magnetic field and reads

κ‖ = E

6qb
, (15)

where q denotes the charge of the particle and E its energy.
Consequently, the parallel-diffusion-coefficient dependences can
be derived in both the quasi-linear limit and the Bohm limit for
relativistic particles with speed v = c and expressed as functions of
the reduced rigidity and the ratio b/B,

κ‖ =
{

clc ρ2−αB2/b2 for b � B

c lcρB/(6b) for b 	 B
. (16)

The weakly non-linear theory in the small-gyroradius limit (see
Shalchi et al. 2004 for details) was developed to describe the diffusion
coefficient dependences between these b/B limits.

While some studies (Casse et al. 2002; Fatuzzo et al. 2010; Giacinti
et al. 2018) have found agreement of their simulation results with the
predictions of QLT even for strong turbulence, i.e. no agreement with
the predictions of Bohm-like diffusion according to equation (14),
Snodin et al. (2016) have found Bohm-like diffusion of particles
for a large energy range. In the latter work, linear energy scaling
of the parallel diffusion coefficients was observed for particles with
low reduced rigidities. An overview of the results of previous papers
can be found in Table 3. In Section 4, they are contrasted with the
present results, whose energy behaviour also agrees with the Bohm-
like diffusion prediction for strong turbulence levels.

2.2 Diffusion coefficients for large reduced rigidities

For particles with gyroradii that substantially exceed the correlation
length of the turbulence, their direction is expected to change only
slightly over a correlation length. In the limit of ρ 	 1, the relative
magnitude of this change can be approximated by 1/ρ. In Plotnikov
et al. (2011), diffusion-coefficient dependences are derived using
a Markovian description of the trajectories. As an alternative, the
dependences of the diffusion coefficient for turbulence without a
background field are derived in Subedi et al. (2017) using the
connection between velocity-space diffusion and spatial diffusion.
The change of momentum is described by the Lorentz force

dv
dt

= q

mγ (v)
(v × (b + B)), (17)

with mass m, speed v, Lorentz factor γ (v), and charge q of the
particle. Inserting the Lorentz force into the momentum diffusion

MNRAS 498, 5051–5064 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5051/5895351 by U
niversity of W

isconsin-M
adison Libraries user on 05 August 2021



5054 P. Reichherzer et al.

coefficient in equation (4) within the TGK formalism for large times
results in the expression

Dij =
(

q

mγ (v)

)2

lim
t→∞

t∫
0

dτ εiαβεjγ η

·
〈
vα(0)vγ (τ )

(
b + B

)
β
(0)

(
b + B

)
η
[x(τ )]

〉
. (18)

Following the argumentation of Matthaeus et al. (2003) and Subedi
et al. (2017), the local particle velocity is uncorrelated from the
local magnetic field vector only when there is an isotropic particle
distribution and when the turbulence is statistically homogeneous.
The arguments are based on the Corrsin approximation (see Tautz &
Shalchi (2010)), which is essentially a random-phase approximation.
These conditions are fulfilled for statistically isotropic turbulence in
three dimensions without a background field. The velocity correlation
yields 〈vα(0)vγ (t)〉= vαvγ . The remaining integral can be interpreted
as the squared magnitude of the fluctuations divided by the speed of
light times the correlation length lc, which is defined for particles
with large reduced rigidities as

lc = c

b2

∞∫
0

dt 〈bi(x(t))bi(x(0))〉 , (19)

where bi are the turbulent fluctuations in the Cartesian coordinate
system. Using equation (5), the diagonal elements of the diffusion
tensor are determined to be

κii = 1

2
ρ2c lc, (20)

where rg ∝ 1/b is utilized due to the missing background field. For
the case of an additional background magnetic field, particles are
only isotropically distributed within the plane perpendicular to the
background magnetic field vector. The parallel momentum diffusion
coefficient in equation (18) only takes into account the perpendicular
velocity components, while the perpendicular momentum diffusion
coefficient is based on the parallel and the perpendicular particle
velocity distributions. Consequently, the abovementioned condition
is only fulfilled for the parallel component of the momentum
diffusion coefficient, which yields

D‖ =
(

q

mγ (v)

)2

lim
t→∞

t∫
0

dτ ε3αβε3γ η

· 〈vα(0)vγ (τ )
〉 〈

bβ (0)bη[x(τ )]
〉
. (21)

The velocity correlation is proportional to the perpendicular velocity
v⊥ of the particles as long as their trajectories can be treated as
unperturbed. Combining these assumptions and using the relation
between the spatial and momentum diffusion coefficient results in

κ‖ ∝
(

B

b

)2

ρ2c lc, (22)

which is in agreement with the result of derivation using a Markovian
description (Plotnikov et al. 2011).

3 CONSIDERATIONS IN NUMERICAL
SIMULATIONS OF DIFFUSION

The main challenge in investigating the diffusion coefficient’s
parametric dependences numerically arises from the necessity for
simulating a large range of particle energies. It is difficult to preserve
the numerical convergence of the simulated diffusion coefficients

over the entire range of particle energies, given that the particle
energy determines the range of plasma wavelengths with which the
particles can resonantly interact, i.e. l = |μ|2πrg.

As a consequence, the range of wavelengths l of the fluctuations
b has to extend well below the gyroradius of the lowest energy
particle and up to the gyroradius of the highest energy particle. In
order to cope with this large range of scales, simulations generally
employ a synthetic random magnetic field, either composed of a
superposition of static plane waves in Fourier representation (Snodin
et al. 2016; Giacinti et al. 2018) or specified on a discrete mesh
(Giacalone & Jokipii 1999; DeMarco et al. 2007; Giacinti et al.
2012). Both methods correspond to different ways of specifying the
same model with different shortcomings, especially for low reduced
rigidities. Whereas with the second method the resolution of the
magnetic field is limited by the available memory, the required
computing time-scales with the number of modes taken into account
for the superposition in the first method.

The relation between the simulation parameters and the resulting
diffusion coefficient is multilayered and highly entangled. Subtle
details of the magnetic field structure, such as the magnetic mode
density (Snodin et al. 2016), together with the range of wavenumbers
involved, influence the simulated diffusion coefficient, as will be
demonstrated here.

3.1 Test-particle simulation set-up

Test-particle simulations were performed within the CRPropa
framework,4 which is a publicly available tool for simulations of
cosmic ray transport and its secondaries (Alves Batista et al. 2016).
The numerical framework employed here restricts our analyses to the
highly relativistic limit, but many conclusions apply to the general
case, as well. Specifically, we have replaced v by c in relating the
diffusion coefficient κ to the pitch angle scattering coefficient ν and
in defining the gyroradius rg. Note that the Lorentz force equation
depends on particle charge q, rest mass m, and Lorentz factor γ in
the combination q/(mγ ), so our results can easily be generalized in
this respect as well.

Our simulation framework is based on a modular architecture
and provides various interaction, observer, deflection, and boundary
modules. The Boris push method (Qin et al. 2013; Winkel, Speck &
Ruprecht 2015) is used for propagating mono-energetic charged
particles within a magnetic field. This method resolves the velocity
dependence in the equations of motion, stated by the Lorentz force.
Due to its fast computation and long-term precision, it is widely
used for advancing a charged particle within a magnetic field (Qin
et al. 2013; Winkel et al. 2015). In Section 3.3.2, the convergence
properties of this method are investigated.

The diffusion time of relativistic charged particles interacting
with hydromagnetic waves is much shorter than the time-scale of
acceleration effects (Fatuzzo et al. 2010). As a consequence, electric
fields are neglected, and magnetic fields are set to be stationary.
The regular field B is chosen to be aligned with the x3-axis, i.e.
B = B e3, with B = |B| = 1 μG. The synthetic random magnetic
field is specified on a discrete mesh, and the complex turbulent
magnetic field vectors b(k) are first defined on a regular grid in
three-dimensional wavenumber space as

b(k) = χ (k)G(k)1/2

·[e1(k) cos(�(k)) + e2(k) sin(�(k))] exp(i�(k)), (23)

4The specific version used for the simulations is CRPropa 3.1-f6f818d36a64.
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Table 1. Methods for the numerical evaluation of the diffusion coefficient.

Method Calculation Equation

TGK formalism κii = ∑t/(�t)
n=0 〈vi (n�t)�xi (0)〉 (28)

Diffusion equation κ ii = σ /(2t) (29)
Second moment κii = lim

t→∞〈(�x)2〉/(2t) (30)

where e1(k) and e2(k) are orthonormal vectors confined to the plane
perpendicular to the wavevector k. The orientation of the vectors
e1(k) and e2(k) is defined by the random phase �(k), and the random
variable �(k) determines the real and imaginary proportion. In
addition, χ (k) is introduced to guarantee the mean of b(k) to be
zero.5 The normal base kn/kn, e1, e2 ensures that ∇ · b = 0. The
turbulent magnetic field on a regular, three-dimensional Cartesian
grid is generated using the inverse Fourier transform of equation (23)
and is afterwards re-adjusted to the specified root-mean-square value
for the turbulent component.

Discrete storage of the turbulent magnetic field b on a regular
grid with N3

grid grid points and isotropic spacing sspacing constrains
the possible plasma waves that can fit into the box, subject to the
conditions

lmin ≥ 2 sspacing, (24)

lmax ≤ Ngrid sspacing/2 ≤ Ngridlmin/4, (25)

where lmin is defined as the smallest numerically resolved wavelength,
and lmax represents the largest wavelength of the plasma waves
that are allowed by the simulation. However, in order to ensure
isotropic turbulence even at large wavelengths, averaging over many
simulations with different realizations using the same parameters
is necessary. The magnetic field at an arbitrary trajectory position
between grid points is obtained by linear interpolation. Numerical
interpolation effects are briefly discussed in Section 3.3.2. With those
constraints on the possible range of plasma wavelengths, the energy
spectrum G(k) for wavenumber k = 2π /l is given by

G(k) ∝
⎧⎨
⎩

0 if k < kmin,

(k/kmin)−α if kmin ≤ k ≤ kmax

0 if kmax < k

, (26)

where α is the spectral index.
The gyroradius rg in numerical simulations is defined as 2

rg = E

cqB
, (27)

in accordance with Candia & Roulet (2004) and DeMarco et al.
(2007).

3.2 Temporal convergence of the running diffusion coefficient

The running diffusion coefficient can be calculated with different
methods as summarized in Table 1. For diffusive transport, the
running diffusion coefficient converges to the diffusion coefficient
for t → ∞. The diffusive regime starts as soon as the particles
are completely decorrelated from their initial condition, caused by
chaotic fluctuations. In the following, the second moment method is
applied for the calculation of diffusion coefficients.

5While there is growing evidence that MHD turbulence is anisotropic (see for
example Sridhar & Goldreich 1994), we defer consideration of this hypothesis
to future work.

Figure 1. Normalized diffusion coefficients (parallel are dashed and per-
pendicular are solid) as functions of the number of gyrations at a proton
energy of 105 TeV. The running diffusion coefficient converges to the final
diffusion coefficient for large times. Once this plateau is reached, it is a
diffusive process. Prior to this, the gyration motion of the individual particles
dominates the transport due to the background field and leads to temporally
proportional and inversely proportional behaviour of the parallel and the
perpendicular diffusion coefficient, respectively. Different turbulence levels
demonstrate the influence of this quantity on the time-scales and the diffusive
transport. Simulated with lmin = 1.7 pc, lmax = 82.5 pc, sspacing = 0.17 pc,
Ngrid = 1024, B = 1μG, and one magnetic field realization each.

Fig. 1 presents both components of the normalized diffusion coeffi-
cients as functions of the number of gyrations for different turbulence
levels b/B. The plateau of the running diffusion coefficient can be
identified with the diffusion coefficient and does not appear before
the chaotic character of the trajectories dominates the gyromotion
due to the background field. Consequently, the running diffusion
coefficient can be classified into two temporal regimes:

(i) Weakly perturbed propagation regime: At early times t, the
parallel running diffusion coefficient yields

κ‖(t) = 〈(�x3)2〉
2t

∝ t, (28)

resulting in the linear increase of the running diffusion coefficient
seen for the dashed lines in Fig. 1. The turbulent magnetic field,
however, causes a slight displacement of the particle after each
gyration, such that the running perpendicular diffusion coefficient
is not vanishing at its local minima after each gyration, even for high
temporal resolution. This wiggling effect is observed in Fig. 1 for the
solid lines for the first gyrations until the plateau is reached. While
in Fig. 1, one may conclude that the perpendicular running diffusion
coefficient is subdiffusive, this effect is actually due to the gyration
motion. Since the transport is initially dominated by the background
field, the perpendicular spatial expansion remains constant, so that
the resulting diffusion coefficient exhibits the characteristic inversely
proportional decrease in time

κ⊥(t) ≈ 〈(�x1)2 + (�x2)2〉
2t

∝ 1

t
. (29)

(ii) Diffusive-propagation regime: For large times, the trajec-
tories are mainly influenced by the turbulent magnetic field and
therefore best characterized by chaotic movement. In this limit, the
running diffusion coefficients are constant for both the parallel as
well as the perpendicular component. The distance travelled before
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5056 P. Reichherzer et al.

Figure 2. Running diffusion coefficient for simulations with different num-
bers of grid points and particles with E = 105 TeV. Running diffusion coef-
ficients that are computed with more than 100 particles converge to a stable
plateau. Simulated with lmin = 1.7 pc, lmax = 82.5 pc, sspacing = 0.17 pc,
Ngrid = 1024, b = 0.1μG, B = 1μG, and one magnetic field realization.

diffusion starts is approximately one mean free path:

λ‖ = 3κ‖
c

, (30)

which refers to the distance between two scatterings off magnetic
perturbations. After a distance λ�, the direction of the particle is
statistically decorrelated from the initial direction.

An insufficient number of particles may either prevent the running
diffusion coefficient from reaching a plateau or add artificial quasi-
chaotic movement. In addition, the analysis of too few particles
may introduce subdiffusive or superdiffusive regimes, instead of
the appropriate diffusive behaviour. In Fig. 2, the running parallel
diffusion coefficients are presented as functions of the number
of completed gyrations, for different numbers of particles. The
quasi-chaotic movement of the running diffusion coefficient for few
particles in the diffusive-propagation regime is due to an insufficient
number of particles. An increased number of particles does not only
stabilize the plateau but also help to find the transition between an
increasing running diffusion coefficient and its plateau.

3.3 Convergence of the diffusion coefficient

As demonstrated above, in order to reach a stable plateau of running
diffusion coefficients, the trajectory length must be sufficiently long
and the number of particles sufficiently high. However, finding a
plateau for certain simulation parameters, such as the box size and
the step length, does not guarantee that the plateau is numerically
converged. To ensure that the time-converged running diffusion
corresponds to the numerical converged final diffusion coefficient,
further conditions are required to be fulfilled. The diffusion coeffi-
cient is only expected to recover the physical result if its value is
numerically converged, which means that its value remains essen-
tially unchanged upon increase of numerical resolution or particle
number.

Before these numerical parameters are discussed in Section 3.3.2,
the different diffusion ranges are discussed in the following, since
these can be directly influenced by some simulation parameters. The
calculated diffusion coefficients are only physically meaningful in
the context of the following regimes.

Figure 3. Upper panel: Schematic plot of parallel diffusion coefficients as
functions of the reduced rigidity. The different regimes result from the portion
of the pitch angle with which particles of a certain ρ can scatter resonantly
at the plasma waves. Middle panel: The graph illustrates the percentage of
the range of �μ that is accessible for resonantly interacting particles. μtot

denotes the range of all possible values −1 ≤ μ ≤ 1. Lower panel: Illustration
of the gyroresonance condition, which is fulfilled only in the blue dotted area.
The blue dashed area indicates parameter combinations that can be reached
via scattering by particles within the blue dotted area through scattering with
�μ ≈ b/B. The parameters are lmin = 1.7 pc, lmax = 82.5 pc, and b/B = 0.1.

3.3.1 Resonant scattering

Particles with pitch angle μ and gyroradius rg interact according to
the resonance criterion with fluctuations of size l = 2π |μ|rg, with
a resultant change in pitch angle δμ of order δμ ≈ b/B (Kulsrud &
Pearce 1969). Treating continuous scattering as a random walk
requires a sufficient density of waves such that a particle can jump
from one wave to another. Any particle will run out of resonant
waves when its |μ| is small enough that the resonant wavenumber
is greater than kmax. Then, mirroring can take over if b/B is large
enough. The fluctuations that form the mirror will generally be of
longer wavelength, as they have larger amplitude and also maintain
the adiabatic invariance of the magnetic moment.

The establishment of different reduced-rigidity regimes is based
on physical considerations and requires the detailed investigation of
the possible resonant scattering interactions of the particles given
a certain range of fluctuation wavelengths. The parallel diffusion
coefficient within the resonant scattering regime (RSR) is presented
in the upper panel of Fig. 3 as a solid blue line. This is the only
regime where QLT predictions are applicable. A slope of 1/3 for
this blue line is expected in the limit b � B. The two main limiting
assumptions of QLT, namely the need for weak turbulence levels b
� B and the gyroresonance condition, lead to strong limitations of
the parameters for which QLT predictions are valid. As illustrated in
the upper panel of this figure, there exist further regimes. The first
systematic investigation of all reduced-rigidity regimes is presented
in the following.
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Cosmic ray parallel diffusion 5057

Figure 4. Diffusion coefficients as functions of the reduced rigidity for
different ranges of fluctuation scales l. The black dash-dotted line represents
the upper boundary of the RSR (see Table 2), while the coloured dash–dotted
lines indicate the boundaries between NRSR and MR for a given set of scales.
Simulated with a turbulent field together with a background field. Simulated
with sspacing = 0.17 pc, Ngrid = 1024, b = 0.1 μG, B = 1 μG, and lc = 1.2 pc.

Fig. 3 shows, in the lower two panels, the parameter combinations
of μ and ρ for a fixed lmin and lmax for which resonant scattering
is possible. The grey area indicates the parameter combinations that
prohibit resonant scattering. The middle panel of Fig. 3 presents the
resonant scattering range as apercentage of the total range −1 ≤
μ ≤ 1. These considerations contribute to answering the following
fundamental question: what is the influence of these (physical or
numerical) fluctuation boundaries on the propagation of cosmic rays,
and in particular on the diffusion coefficient? Based on the reduced
rigidity of the particle, it can be classified as falling into one of the
following regimes:

(i) Non-resonant-scattering regime (NRSR): For
ρ � lmin/(2π lc), the gyroresonance criterion reveals that particles
cannot scatter resonantly, independently of μ. Thus, the NRSR is
defined as the range in ρ for which resonant scattering is prohibited.
As scattering is prohibited for the complete pitch-angle spectrum,
mirroring occurs instead (Cesarsky & Kulsrud 1973; Felice &
Kulsrud 2001; Lange et al. 2013; Seta et al. 2018). Figs 4 (B > 0)
and 5 (B = 0) present simulated diffusion coefficients as functions
of reduced rigidity. The different fluctuation ranges demonstrate the
dependence of the upper boundary of the NRSR on lmin, indicated
by the vertical dash–dotted coloured lines.
For a weak turbulence level: Without resonant scattering, particles
follow magnetic field lines that are dominated by the strong back-
ground field. Particles can only reverse direction when encountering
magnetic traps formed by the field lines. The transport is determined
by the field-line geometry. The study of the influence of traps on the
diffusion coefficient will be deferred to future work.
For a strong turbulence level: The diffusion coefficients remain
approximately constant in Fig. 5 in the NRSR for strong turbulence
levels due to the energy-independent field-line random walk (FLRW)
that dominates without resonant scatterings.

(ii) Mirroring regime (MR): At values lmin/(2π lc) � ρ �
lmin/(π lc(b/B)), the range of pitch angles that can scatter resonantly
decreases towards lower reduced rigidities until the NRSR is reached.
Similarly, as described in the NRSR, the behaviour for weak and
strong turbulence levels is different.

Figure 5. Diffusion coefficients as functions of the reduced rigidity for
different ranges of fluctuation scales l. The black dash-dotted line represents
the upper boundary of the RSR, while the coloured lines indicate the
boundaries between NRSR and MR. Simulated with a purely turbulent
field without a background field. The MR and RSR coincide for the case
of a vanishing background magnetic field. The energy independent FLRW
dominates the transport of low energetic particles. The deviation from this
behaviour for the green triangles is caused by the interpolation routine,
which generates an artificial background magnetic field between grid points.
Simulated with sspacing = 0.17 pc, Ngrid = 1024, b = 0.1 μG, B = 0, lc =
20 pc.

For a weak turbulence level: At values lmin/(2π lc) � ρ �
lmin/(π lc (b/B)), particles scatter resonantly given appropriate pitch
angles. As scattering is prohibited for parts of the pitch-angle spec-
trum, mirroring occurs instead around μ ≈ 0. Two effects oppositely
affect the diffusion coefficient with reduced rigidity: the reduced
range of allowed pitch angles enhances diffusion, while mirroring
reduces parallel diffusion. Thus, the diffusion coefficient decreases
somewhat above the boundary ρ ∼ rg/lmin but then increases towards
the upper end of the MR because the range of pitch angles that can
scatter resonantly is widening until the resonant scattering regime is
reached.
For a strong turbulence level: In the case of a weak or even absent
background field, the direction of the magnetic field automatically
provides for a changing μ along the particle’s path due to the
magnetic field’s chaotic nature. Thus, the effect of missing resonant
interactions towards low reduced rigidities is significantly attenuated
and is only pronounced at gyroradii smaller than lmin/(2π ) for B =
0. In addition, magnetic mirroring is not a dominant effect, since the
magnetic moment is not conserved sufficiently long. Even though
the μ ≈ 0 problem is absent for b 	 B, the frequency of resonant
interactions decreases towards low reduced rigidities, and particles
follow field lines as in the NRSR. This effect is demonstrated in
Fig. 5, where the diffusion coefficients are presented as functions of
the reduced rigidity ρ for different fluctuation ranges.
Interpolation introduces a guide field even for b 	 B on scales of
the order of the grid spacing: The linear interpolation algorithm
of the magnetic field between grid points locally removes the
turbulent character and therefore effectively introduces a guide field
at scales of the order of the spacing of the grid points. If fluctuations
extend towards these scales such that low-rigidity particles still
scatter resonantly, the transport behaviour is similar to that for weak
turbulence levels. This is demonstrated by the green triangles in
Fig. 5.

(iii) Resonant scattering regime (RSR): Particles within the
range lmin/(lcπ (b/B)) � ρ � 5/(2π ) can scatter resonantly over
the complete range of the pitch angle as derived in the following.
Individual particles scatter on average by δμ/μ ≈ b/B (Kulsrud &
Pearce 1969). This effect is depicted in the two lower panels of Fig. 3
in the light blue area with white stripes, which represents the area into

MNRAS 498, 5051–5064 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5051/5895351 by U
niversity of W

isconsin-M
adison Libraries user on 05 August 2021



5058 P. Reichherzer et al.

Table 2. Definitions and ranges of the different scattering regimes and predicted parallel-diffusion-coefficient dependences, as illustrated in Fig. 3.

Regime lmin/(2πrg) lmax/(2πrg) ρ b � B b 	 B

NRSR >1 ≥1 0 − lmin/(2π lc) − −
MR �≈ 0 and ≤ 1 ≥1 lmin/(2π lc) − lmin/(π lc(b/B)) − −
RSR ≈0 ≥1 lmin/(π lc(b/B)) − 5/(2π ) κ‖ ∝ ρ2−αc lcB

2/b2 κ� ∝ clcρB/(6b)
TR ≈0 <1 5/(2π ) − 25/π − −
QBR ≈0 �1 25/π − ∞ κ‖ ∝ (B/b)2ρ2c lc κ‖ ∝ (B/b)ρ2c lc

which particles are able to scatter on average. As soon as particles
can, statistically, scatter across the gap around μ ≈ 0, they are not
trapped anymore and mainly interact as described within QLT for
b � B. The condition for particles to jump over the gap around μ

≈ 0 reads δμ ≈ b/B ≥ 2μmin = lmin/(πrg). Consequently, the lower
boundary of the RSR is determined by the minimal gyroradius

ρmin = rg,min/lc = lmin

lcπ (b/B)
, (31)

for which the above condition still holds. Only within the RSR are the
parallel-diffusion-coefficient dependences expected to follow QLT,
because the effective coverage of μ coincides with the total possible
range �μ/μtot = 1. In addition, in order for particles to be influenced
by fluctuations at certain mode numbers, the mode density must be
sufficiently high (Mace, Dalena & Matthaeus 2012; Snodin et al.
2016).

(iv) Transition regime (TR): As soon as some particles cannot
interact resonantly with fluctuations due to their value of μ, the
transition towards the quasi-ballistic regime begins. The lower
boundary of this transition regime follows from the gyroresonance
condition and yields ρ = lmax/(2π lc) ≈ 5/(2π ), independent of lmin.
With growing ρ, thepercentage of particles that can still resonantly
scatter decreases. Globus et al. (2008) estimates the range of this
regime to be approximately one order of magnitude, 5/(2π ) � ρ �
25/π .

(v) Quasi-ballistic regime (QBR): For particles with gyroradii
25/π � ρ that substantially exceed the correlation length of the
turbulence, the transport behaviour converges towards ballistic
propagation. This regime is called quasi-ballistic regime, because
interactions of the particles around μ ≈ 0 are still possible ac-
cording to the gyroresonance condition as illustrated in the two
lower panels of Fig. 3. The parallel-diffusion-coefficient depen-
dence yields κ� ∝ (B/b)2ρ2clc, as derived in Section 2.2. In
numerical simulations, it is important to consider the following:
In the limit ρ 	 1, the step size s has to be chosen such that
the magnetic field is still correlated at two subsequent particle
positions: s � lc. Otherwise, the reduced-rigidity dependence of
the diffusion coefficient κ� ∝ (B/b)2rgc is polluted as derived in
Appendix A.

The above five regimes with different diffusion coefficient depen-
dences are summarized in Table 2 and illustrated in Fig. 3. The upper
panel of the figure schematically presents the expected dependences
of the parallel diffusion coefficient on reduced rigidity for a fixed
range of fluctuations and turbulence levels b/B.

A key result to emerge from these considerations can be phrased
as follows: The parallel diffusion coefficient greatly depends on
the lower boundary lmin of the fluctuations, because this quan-
tity determines the classification at a given ρ for an otherwise
fixed set of parameters. As soon as the diffusion coefficient is
governed by the MR or NRSR instead of the RSR, its value
increases.

Fig. 4 illustrates the latter argument by presenting parallel diffusion
coefficients as functions of the reduced rigidity for different values
of lmin. The upper fluctuation boundaries lmax are adjusted as lmin is
changed in such a way that the correlation length always has the same
value lc ≈ 20 pc, so that all curves coincide based on the theoretical
considerations presented in Section 2. The diffusion coefficient for
low reduced rigidities and for a given set of parameters converges
towards its final, unpolluted value for decreasing lmin. Consequently,
an improperly high choice of lmin may result in artificially too
high diffusion coefficients and subsequently in an artificially weak
reduced-rigidity dependence. Thus, the diffusion coefficient may
only converge to the value predicted within QLT6 for small ratios
b/B and values of lmin � πρ lcb/B.

Although the short-wavelength cut-off is dictated by numerical
considerations for the present case, in many astrophysical plasmas a
similar threshold may exist due to strong damping processes at short
wavelengths.

3.3.2 Consequences for numerical settings

As demonstrated before, the diffusion coefficient converges towards
its predicted value within QLT only if lmin is chosen sufficiently
small. The required lmin depends on the turbulence level according to
equation (31). However, to test QLT with numerical simulations not
only requires one to resolve resonant scattering over the complete
range of μ, but also to fulfil additional conditions7:

(i) Box size: Fig. 6 presents the final diffusion coefficient as a
function of the box size. The colour indicates the CPU simulation
time in arbitrary units. It shows that the grid must exceed a certain
size before κ� converges. Considering both requirements, small lmin

and a large grid volume, a small lower limit of the fluctuation lmin

is accompanied by a small spacing sspacing, in order to resolve of all
fluctuations. For a large grid volume, the number of grid points has to
be chosen correspondingly large, governed by Ngrid ≥ 2lmax/sspacing.

(ii) Step size: Fig. 7 presents the parallel diffusion coefficient
as a function of the step size divided by the gyroradius. The
final diffusion coefficient converges once the gyration motion is
resolved sufficiently well. Since the Boris push is almost one order
of magnitude faster than the Cash–Karp algorithm with the same
precision, the Boris push is used for all subsequent simulations in

6Schlickeiser (1989) showed that the singularity in the quasi-linear diffusion
coefficient can be removed if the finite-frequency effect is retained. That
is, the resonance condition is ω − kμ = ±�; in this paper, ω is neglected
implicitly, which may only be applicable for vA/c � μ, with vA being the
Alfvén speed (Kulsrud & Pearce 1969).
7These conditions are valid for regular grids. Whether they also have to be
considered when using nested grids for the turbulence generation cannot be
determined here. The box size and interpolation conditions are not required for
the grid-free method that uses the superposition of plane waves for generating
the fluctuations.
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Figure 6. The parallel diffusion coefficient for different values of the product
of the number of grid points with the spacing, which represents a measure
of the grid size. Simulated with lmin = 1.7 pc, lmax = 82.5 pc, b = 0.1 μG,
and B = 1 μG. With more grid points, the generation of the turbulent field
on the grid points takes longer. However, the CPU time of the magnetic field
generation is only a small amount of the complete CPU simulation time in
relation to the remaining CPU propagation time. Consequently, the number
of grid points has no significant influence on the CPU simulation time.

Figure 7. Comparison of both propagation methods – the Cash–Karp
algorithm and the Boris push – with respect to the value of the diffusion
coefficient as a function of the step length. Too large a step size cannot
resolve the particle motion with sufficient accuracy and will therefore pollute
the diffusion coefficient. The numerically converged diffusion coefficient is
only obtained when the step size is chosen small enough so that the gyration
motion can be resolved. Simulated with lmin = 1.7 pc, lmax = 82.5 pc, E =
8900 TeV, Ngrid = 1024, b = 0.1 μG, and B = 1 μG.

this paper. A step size s = rg/10 is applied in all further simulations
to guarantee high accuracy.

(iii) Interpolation: In trying to reproduce the QLT prediction
in numerical simulation, it is vital to obey, for a sufficiently large
RSR, lmin ≤ rg π (b/B). In addition, it is helpful to increase sspacing

to increase the box size. While it seems reasonable to decrease
lmin/sspacing as much as possible (lmin/sspacing = 2) to increase the
energy range of the RSR, in Schlegel et al. (2020) it is demonstrated
that this also increases the magnetic field interpolation error. The
turbulence spectrum in the inertial range is artificially steepened
because of the interpolation of the magnetic field between grid
points. A ratio of lmin/sspacing = 10 comprises a good compromise of
minimizing the interpolation error and still allowing for a sufficient
extension of the RSR.

(iv) Magnetic field realizations: The numerical calculation of
turbulence using the grid method inevitably generates anisotropies
due to the limited grid resolution. Instead of relying on only one
of these randomly generated magnetic fields, simulations should be
repeated for other field realizations. Therefore, to obtain isotropic tur-
bulence that can serve as a realistic numerical set-up for comparison

with theoretical predictions, averaging over many simulations with
different random-phase realizations of the Kolmogorov turbulence
using the same parameters is necessary (Giacalone & Jokipii 1999;
Snodin et al. 2016).

Table 3 summarizes key parameters used in previous studies,
focussing on the ranges of different ratios b/B and rg/lc. Listed are the
range of wavenumbers along with the magnetic mode density. The
mode density per decade for simulations based on the wave model
is defined as Nm/log 10(kmax/kmin) due to the logarithmically spaced
wavevectors, while 10 (Ngrid/2)3/(kmax/kmin) is the definition of the
mode density per decade for the grid-based turbulence method with
linearly spaced wavevectors. Btot = √

B2 + b2 takes both magnetic
field components into account. The gyroradii are calculated with
respect to the background field unless stated otherwise. The ranges
of reduced rigidities of the simulations are listed. The energy ranges
can be rescaled as demonstrated in Appendix B. The upper boundary
of the RSR is ρmax = 5/(2π ). As discussed in Section 3.3.2, the
numerical influence of the interpolation of the magnetic field on the
diffusion coefficients depends on the ratio lmin/sspacing. Instead of this
ratio, the quantity lminNgrid/(4lmax) is presented, since the spacing
between the grid points is not mentioned in most publications. For
the turbulence generated on a grid, this value represents how well
the generated waves fit into the grid, while averaging over many
simulations with different realizations improves the effective isotropy
of the field. A large ratio reduces the numerical effect introduced by
interpolation Schlegel et al. (2020). The different power-law indices
γ of the energy dependence of the diffusion coeffcient κ� ∝ Eγ are
provided, as well.

The simulation data between previous papers and this study differ
only slightly and are consistent with each other. The difference in the
resulting energy dependence is largely due to our restriction of the
RSR according to the formalism established in this paper and the fact
that we fit our simulation data, whereas in most previous papers only
a match with QLT is indicated using a drawn line with slope 1/3 at
energies below the RSR. We expect that interpreting previous studies
in light of the findings of this paper will result in similar values for γ

and consequently a turbulence-level-dependent energy scaling of κ .

4 COMPARISON OF REDUCED-RIGIDITY
DEPENDENCES BETWEEN SIMULATIONS AND
QLT

This section utilizes the systematic developed in Section 3 to evaluate
the dependences of the diffusion coefficients in the RSR numerically.
We have applied our simulation results only to highly relativistic
protons, but the presented data can be re-scaled to other contexts.
Fig. 8 presents diffusion coefficients calculated using 5000 particles
in each simulation for 14 different ratios of b/B, where B = 1μG
was kept constant (the strength of B is set for scaling purposes only
and is not meant to correspond to a particular physical system). For
each of these ratios, up to 21 different energies are simulated. Each
data point is composed of 20 statistically independent simulations
with the same parameters but different random-phase realizations
of the Kolmogorov turbulence. The mean values are shown as
functions of the reduced rigidity in Fig. 8 together with their statistical
uncertainties, which are, however, only a few per cent and therefore
too small to be visible.

The turbulence-level-dependent energy scaling of the diffusion
coefficients is fitted to the data in the RSR. In addition to the physical
boundaries of the RSR, the interpolation effect is considered for
constraining the reduced-rigidity range of the fits: As pointed out in
Section 3.3.2, the numerical error of the magnetic field interpolation
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Table 3. Review of the physical and numerical input parameters used here and in previous studies. The different power-law indices γ from the energy
dependence of the diffusion coefficient κ� ∝ Eγ are listed for different ratios of b/B as stated in each paper for Kolmogorov fluctuations. If agreement of the
simulation results with QLT is found in the paper (even if no explicit fit is shown), a value of 1/3 is listed in the last column (2/3 for non-relativistic particles;
Giacalone & Jokipii 1999). Publications use either a superposition of plane waves for generating the fluctuations or a discrete cubic grid. All models are based
on isotropic turbulence. Key parameters of the simulations are quoted, such as the maximum fluctuation, the extent of the fluctuations kmax/kmin, and the number
of modes Nm (wave model) or grid points Ngrid along one direction (grid model). The maximum fluctuations lmax are quoted from the individual papers while,
for reasons of comparability, the correlation lengths are uniformly computed according to the formula lc = lmax/5 (see equation 12). It is important to note,
however, that lc in some papers, marked with ∗, are calculated differently in the respective publications.

b
B

√
B2 + b2

(μG)
lmax

(pc)
lc

(pc) kmax
kmin

lmin
lmax

Nm/grid
4

Mode
density Nm/grid ρ

Turbulence
model γ

This paper 1.49 1.79 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.987 ± 0.009
This paper 1.17 1.54 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 1.002 ± 0.005
This paper 0.92 1.36 82.5 17 48.5 5.3 2.8 × 10 1024 0.02−7.87 Grid 0.990 ± 0.010
This paper 0.73 1.24 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.966 ± 0.012
This paper 0.57 1.15 82.5 17 48.5 5.3 2.8 ×107 1024 0.02−7.87 Grid 0.934 ± 0.011
This paper 0.45 1.10 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.882 ± 0.011
This paper 0.36 1.06 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.848 ± 0.014
This paper 0.28 1.04 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.815 ± 0.015
This paper 0.22 1.02 82.5 17 48.5 5.3 2.8 × 10 1024 0.02−7.87 Grid 0.770 ± 0.012
This paper 0.17 1.02 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.739 ± 0.014
This paper 0.14 1.01 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grd 0.712 ± 0.011
This paper 0.11 1.01 82.5 17 48.5 5.3 2.8 × 10 1024 0.02−7.87 Grid 0.671 ± 0.013
This paper 0.09 1.00 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.645 ± 0.011
This paper 0.07 1.00 82.5 17 48.5 5.3 2.8 × 107 1024 0.02−7.87 Grid 0.616 ± 0.016

Giacinti et al. (2018) ∞ 1 100 20 64a 1 3.3 × 105 256 0.054−5.405c Grid 1/3

Giacinti et al. (2018) 4 1 100 20 64
a

1 3.3 × 105 256 0.054−5.405c Grid 1/3
Giacinti et al. (2018) 2 1 100 20 64a 1 3.3 × 105 256 0.054−5.405c Grid 1/3
Giacinti et al. (2018) 1 1 100 20 64a 1 3.3 × 105 256 0.054−5.405c Grid 1/3
Giacinti et al. (2018) 0.5 1 100 20 64a 1 3.3 × 105 256 0.054−5.405c Grid 1/3
Giacinti et al. (2018) 0.1 1 100 20 64a 1 3.3 × 105 256 0.054−5.405c Grid 1/3

Subedi et al. (2017) ∞ 1 − −b − − − 1024 0.001−20c Grid 1/3

Snodin et al. (2016) ∞ − −d −b 384 / 256 1/ 0.5 1.2 × 107 / 213 1536 / 512 0.01−2.5c Grid /waves 1
Snodin et al. (2016) 9.95 − −d −b 200 1.3 445 1024 0.01−2.5c Waves 1/3
Snodin et al. (2016) 3 − d −b 200 1.3 445 1024 0.01−2.5c Waves 1/3
Snodin et al. (2016) 1 − d −b 200 1.3 445 1024 0.01−2.5c Waves 1/3
Snodin et al. (2016) 0.33 − −d −b 200 1.3 445 1024 0.01−2.5c Waves 1/3

Harari et al. (2014) ∞ 0.01 106 2 × 105 ≥50 − − − 0.0054−54c Waves 1/3

Fatuzzo et al. (2010) ∞ 10 1 0.2b 104 / 105 3 × 10−4−2.5 × 10−3 25 100 / 125 0.0005−0.5 Waves 1/3
Fatuzzo et al. (2010) 0.92 14.14 1 0.2b 104 / 105 3 × 10−4 − 2.5 × 10−3 25 100 / 125 0.0005−0.5 Waves 1/3

Globus et al. (2008) ∞ 0.01 106 2 × 105 − − − − 0.0054−54c Waves 1/3

DeMarco et al. (2007) ∞ 100 100 20 64a 1 3.3 × 105 256 0.054−5.405 Grid −
DeMarco et al. (2007) 2 2.236 100 20 64a 1 3.3 × 105 256 0.054−5.405 Grid 1/3
DeMarco et al. (2007) 1 1.414 100 20 64a 1 3.3 × 105 256 0.054−5.405 Grid 1/3
DeMarco et al. (2007) 0.5 1.118 100 20 64a 1 3.3 × 105 256 0.054−5.405 Grid 1/3

Candia & Roulet (2004) 10 10.05 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 7.07 7.14 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 5.48 5.57 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 3.16 3.31 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 2.24 2.45 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 1.73 2.00 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 1 1.41 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 0.71 1.23 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 0.55 1.14 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3
Candia & Roulet (2004) 0.32 1.05 100 20 10−103 0.025−2.5 33−100 100 0.05−5 Waves 1/3

Parizot (2004) ∞ 0.01 106 2 × 105 102 / 104 2.5 100 200 / 400 0.0054 / 54c Waves 1/3

Casse et al. (2002) ∞ − −d −b 64a 1 3.3 × 105 256 8 × 10−5−5c Grid 1
Casse et al. (2002) 9.95 − −d −b 64a 1 3.3 × 105 256 0.006−5c Grid 1/3
Casse et al. (2002) 0.92 − −d −b 64a 1 3.3 × 105 256 0.006−5c Grid 1/3
Casse et al. (2002) 0.52 − −d −b 64a 1 3.3 × 105 256 0.006−5c Grid 1/3
Casse et al. (2002) 0.33 − −d −b 64a 1 3.3 × 105 256 0.006−5c Grid 1/3

Giacalone & Jokipii (1999) 1 70.71 2.4 × 10−7 0.5 × 10−8b 104 − − − 0.001−0.04 Waves 2/3

aThese parameters are converted according to the definitions in this paper (see for example equations 25 and 26).
bThe correlation length is defined differently in the cited paper. Here, the correlation length is uniformly calculated according to lc = lmax/5 (see equation 19) to ensure comparability of the different simulations.
The range of reduced rigidity in the table is determined based on this uniformly defined correlation length and may therefore deviate from the values presented in the papers.
cThis reduced-rigidity range is based on the definition rg ∝ 1/

√
B2 + b2, which is used in the quoted paper.

dEven if the concrete values for these parameters are missing, the boundaries of the regimes can be calculated according to the formulas mentioned in Section 3.3.1 and especially in Fig. 3, taking into account the
relation lc ≈ lmax/5 so that for example the upper NRSR boundary reads ρ ≈ rg/lc ≈ 5 rg/lmax. The lack of this information, however, prevents the calculation of the minimum fluctuation wavelength and thus
the ratio of lmin/sspacing, which is an indicator of the interpolation effect (see Section 3.3.2).

increases towards low energies. Due to the high statistical accuracy
of each individual data point, only a few points are necessary for each
fit. A cut at ρ � 0.3 guarantees a sufficiently low influence of the

interpolation routine, while accounting for a large enough range in
energy to demonstrate linear behaviour in the log–log representation
with low uncertainties. The deviation from a power-law energy
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Figure 8. Parallel diffusion coefficients as functions of ρ and E for different
turbulence levels. Only simulation results above the lower boundary of the
RSR ρ � lmin/(π (b/B)lc) (light blue dashed line), above ρ � 0.3 (grey dash–
dotted line), where there is no noticeable effect of interpolation, and below
the upper boundary of the RSR ρ � 5/(2π ) are considered for determining the
energy scaling of κ� within RSR. Fits of the equation from the QLT prediction
κ� = aργ are performed to these simulated diffusion coefficients, where a
is the proportional constant and γ the power-law index. The parameters are
lmin = 1.7 pc, lmax = 82.5 pc, s = 0.17 pc, Ngrid = 1024. Each presented data
point is the mean of 20 diffusion coefficients, each simulated with the same
parameters but with a different turbulent field realization. The decreasing
range of the RSR for smaller b/B leads to an increasing error in the slopes of
the fits.

scaling of κ� towards low energies below the interpolation-effect
cut-off is mainly caused by the magnetic field interpolation. As
demonstrated in Schlegel et al. (2020), the interpolated spectrum
steepens (larger slope α) towards small scales that are important
for resonant scatterings with low-energy particles. This flattens the
energy scaling of the diffusion coefficient according to κ� ∝ E2 − α ,
assuming an energy scaling consistent with QLT.

Given the small error bars and the good quality of the fit, it
can be inferred that at least locally in ρ, a power-law dependence
clearly exists, and one may conjecture that under the right conditions,
this dependence will extend over a much larger range. However, a
physical situation where the RSR spans multiple orders of magnitude
will require a presently unfeasibly costly numerical effort to resolve.
Only once significantly more computing power is available will a
direct test be possible whether this slope is representative of a greatly
expanded RSR.

One of the limitations of the theoretical predictions for the
diffusion coefficient dependences is that they were derived for the
limit b � B or B = 0. The expected values of γ that are predicted
from theoretical considerations are indicated with horizontal dashed
lines in Fig. 9, where γ is defined as the exponent of the power law

κ ∝ ργ . (32)

Fig. 9 shows the γ that results from the fits presented in Fig. 8 as
a function of the turbulence level. Even though the presented ratios
of b/B are still not small enough to agree with QLT predictions, a
clear trend is visible: decreasing b/B decreases the slope, and the
trend appears to be consistent with a value of 1/3 for infinitesimal
b/B, although the limit b � B required for the QLT has not yet
been reached in Fig. 9. In particular, our simulations reach down
to turbulence levels b/B ∼ 0.05, where the index is γ ∼ 0.6 and
thus still far from the value expected in QLT for highly relativistic
particles. Thus, we can quantify three conclusions: (1) the limit of

Figure 9. Turbulence-level-dependent spectral index of the diffusion coeffi-
cient in the RSR with (near-invisibly small) statistical errors. The simulated
diffusion coefficients are fitted for each ratio of b/B as shown in Fig. 8,
with the slopes γ shown here. The simulation parameters are lmin = 1.7 pc,
lmax = 82.5 pc, s = 0.17 pc, Ngrid = 1024. The markers were chosen so that
they correspond directly to those in Fig. 8.

QLT is only valid for turbulence levels b/B < 0.05; (2) a turbulence-
dependent diffusion coefficient is needed for the description of the
parallel transport; (3) for the Bohm limit (dominating turbulence)
the parallel diffusion coefficient converges towards a slope of one,
as expected from equation (16).

5 DISCUSSION AND OUTLOOK

We have investigated, by means of direct numerical simulations, how
cosmic rays of different energies diffuse in turbulent magnetic fields.
The two key findings of this work are as follows:

(i) The energy range for numerical simulations of diffusive propa-
gation is highly constrained. In a situation, where a simulation covers
the entire wavevector spectrum with a physical kmin and kmax , the five
regimes we present are physical and need to be considered in cosmic
ray propagation. It should be noted that our interpretation of the
regions below and above the resonant scattering regime can change if
we avoid sharp cut-offs in the wavevector spectrum (equation 26). In
particular, in the mirroring regime, more waves for scattering will be
available and the effect in the MR will be reduced and only become
more prominent towards the boundary of the NRSR. Conclusions
about the RSR, NRSR, and QBR remain unchanged. In particular,
our results pertaining to the diffusion coefficient are unaffected.

(ii) By selecting an appropriate range for the fits to the energy
dependence of the particles, we quantitatively show for the first time
that QLT is not valid at turbulence levels b/B > 0.05 for Kolmogorov
turbulence as can be seen in Fig. 9. Around b/B ≈ 1, the Bohm
diffusion limit κ ∝ ρ is reached. Qualitatively, the steeper energy
dependence of the diffusion coefficient at larger b/B occurs because
higher energy particles ‘see’ the larger-amplitude turbulence first and
start transitioning to the Bohm regime before lower-energy particles
do. A more quantitative explanation of this effect is beyond the scope
of this paper and will be addressed in future work. Although this work
has focused on the energy range in this context, for other applications
one may base analyses on the more fundamental reduced rigidity.

These results can be put into an astrophysical context, specifically
diffuse gamma-ray emission from the Milky Way. A radial gradient
exists in the proton spectral index observed in the Galaxy (Acero
et al. 2016) – the cosmic ray spectrum in the central molecular zone,
i.e. the inner 200 pc, is very flat, with dN/dE ∝ E−2.3. At a radius
of 0.2−1.5 kpc from the Galactic Centre, the spectrum becomes
extremely steep, E−3.1, then reflattening to about E−2.6 − E−2.7 up to
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8 kpc. In the outskirts of the Galaxy at >8 kpc, the spectrum becomes
steeper again with E−2.8 − E−2.9; compare Yang, Aharonian & Evoli
(2016).

Cosmic ray self-confinement via the streaming instability (Kul-
srud & Pearce 1969) has an influence on the spectrum. However,
this requires cosmic ray energies below which the cosmic ray flux,
which excites the instability, is large enough to overcome damping
by the thermal background. It has long been recognized that above
this critical energy, there must be a transition to confinement by
turbulence from another source. Estimates for this critical energy are
in the 100 − 300 GV range, depending on the damping mechanism
(Cesarsky & Kulsrud 1973; Farmer & Goldreich 2004; Blasi,
Amato & Serpico 2012). This could produce a spectral break as
observed in cosmic ray data (Blasi et al. 2012; Evoli, Aloisio & Blasi
2019). It is unclear, however, if the instability can be maintained
up to energies as high as 100 GV (Schlickeiser, Caglar & Lazarian
2016). It is also beyond the scope of this work to tie this to a trend
with Galactocentric radius, and we simply point out that such an
influence needs to be taken into account for a full simulation of
Galactic propagation.

Galactocentric effects that could cause the steepening in the
spectrum can be divided into data reduction problems and transport-
related phenomena. We provide a list and argue that our present
findings support argument number 5:

(i) Unresolved point sources could play a role. While Pothast et al.
(2018) argues that this contribution should be negligible, its role is
not fully understood (Grenier, private communication).

(ii) A limited understanding of the gas distribution, and with it
a possible systematic error in the data, cannot be excluded. This is
particularly true for the central volume with r < 1 kpc (Acero et al.
2016), which could have steeper cosmic ray spectra. However, data
at TeV energies exist indicating that the local spectrum is quite flat
(HESS Collaboration 2016).

(iii) A Galactic wind keeps the spectral behaviour of observed
cosmic rays constant at the level of injection. This would explain
the observed flat component in the central molecular zone, assuming
dominance of the wind in the Galactic Center region (Gaggero et al.
2017; Pothast et al. 2018).

(iv) A geometric effect of different orientations of the total
magnetic field along the Galactocentric radius (Gaggero et al. 2015)
could contribute to the gradient.

(v) Deviations from Kolmogorov-type diffusion in QLT have been
discussed (Gaggero et al. 2015). A radial dependence of the spectral
index of the diffusion coefficient in the Galaxy has been proposed to
explain the spectral softening towards the outer parts of the Galaxy
(Gaggero et al. 2017), i.e. α = B + Ar.

This last effect, which has commonly been employed as a
phenomenological explanation (Gaggero et al. 2015, 2017), can
now be supported by fundamental arguments: The turbulence level
increases towards the outer parts of the Galaxy (Jansson & Farrar
2012; Kleimann et al. 2019; Shukurov et al. 2019). With the increase
of the diffusion spectral index towards higher turbulence levels, we
expect the spectrum towards large Galactocentric radii to become
steeper. Our results indicate that the scenario of a diffusion-driven
change in the spectral index needs to be taken into account when
trying to explain the cosmic ray gradient problem in the Galaxy.
Future work on detailed simulations of Galactic transport, including
the b/B dependence as derived here, in comparison with state-of-the-
art observations will help to discriminate the different scenarios.
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APPENDIX A: DECORRELATED PARTICLE
TRAJECTORIES

For numerical simulations, the step size needs to resolve the gyromo-
tion and the scale of the magnetic fluctuations. The latter condition
requires many steps per gyration for high-energy particles and thus

long simulation times. In the case of step sizes that are larger than
the scale of the fluctuations, the turbulent magnetic field vectors
can be assumed to be decorrelated between two subsequent particle
positions along the particle trajectory. Without the assumption of
correlated turbulence, the turbulent magnetic field b at an arbitrary
position points into a random direction, so that bi is also arbitrary:
−b ≤ bi ≤ b. The key aspect is, however, that the root-mean-square
value of bi is proportional to the root-mean-square value of b. It is
now possible to pull the magnetic field from equation (18) in front
of the integral as shown below:

D33(v) = b2

(
q

mγ

)2 t∫
0

dτ
1

2π

2π∫
0

dθ (v1(0, θ)v1(τ, θ ) +

v2(0, θ)v2(τ, θ ) − v2(0, θ)v1(τ, θ ) − v1(0, θ)v2(τ, θ )).

(A1)

Here, the parallel component of the diffusion tensor is considered.
For small ratios b/B, particles follow a helical trajectory caused by

the background magnetic field in the x3-direction. This motion can
be separated into the motion of the gyrocenter with a position X and
the circular motion along the trajectory s

s =
⎛
⎝ sin(θ )

− cos(θ)
0

⎞
⎠ ; X =

⎛
⎝ 0

0
v‖(0)τ

⎞
⎠ , (A2)

which orders out drift velocities. The velocity v of a gyrating particle
can therefore be parametrized together with its positions as

v =
⎛
⎝v⊥ cos(θ )

v⊥ sin(θ )
v‖

⎞
⎠ = v‖e3 + v⊥c(θ ) ; c =

⎛
⎝cos(θ)

sin(θ )
0

⎞
⎠ . (A3)

Figure A1. Parallel diffusion coefficient as functions of the ratio EB/b2.
The presented fit confirms the predicted dependence of the parallel diffusion
coefficient κ� ∝ EB/b2 (see equation A6) for simulations with step sizes l � s
that are of the order of the magnetic fluctuations. The shown data points meet
this condition, because the step sizes for 200 PeV are already 1.3 lc. The step
size scales linearly with the particle energy according to s = rg/10. The slope
of the presented fit reads 0.975 ± 0.004.

MNRAS 498, 5051–5064 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5051/5895351 by U
niversity of W

isconsin-M
adison Libraries user on 05 August 2021

http://dx.doi.org/10.1088/0004-637X/757/1/14
http://dx.doi.org/10.1086/148912
http://dx.doi.org/10.1086/155218
http://dx.doi.org/10.1016/j.astropartphys.2014.02.002
http://dx.doi.org/10.3847/1538-4357/ab1913
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1086/149981
http://dx.doi.org/10.1051/0004-6361/201220804
http://dx.doi.org/10.1063/1.3693379
http://dx.doi.org/10.1086/376613
http://dx.doi.org/10.1016/j.nuclphysbps.2004.10.034
http://dx.doi.org/10.1051/0004-6361/201117182
http://dx.doi.org/10.1088/1475-7516/2018/10/045
http://dx.doi.org/10.1063/1.4818428
http://dx.doi.org/10.3847/1538-4357/ab643b
http://dx.doi.org/10.1086/167009
http://dx.doi.org/10.1063/1.4928940
http://dx.doi.org/10.3847/0004-637X/824/2/89
http://dx.doi.org/10.1093/mnras/stx2606
http://dx.doi.org/10.1086/424839
http://dx.doi.org/10.1051/0004-6361/200912755
http://dx.doi.org/10.1051/0004-6361/201834642
http://dx.doi.org/10.1093/mnras/stw217
http://dx.doi.org/10.1086/174600
http://dx.doi.org/10.1007/s10509-013-1705-x
http://dx.doi.org/10.1086/306470
http://dx.doi.org/10.1063/1.3530185
http://dx.doi.org/10.1086/592498
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1007/BF00649186
http://dx.doi.org/10.1002/pamm.201510333
http://dx.doi.org/10.1086/524771
http://dx.doi.org/10.1103/PhysRevD.93.123007
http://dx.doi.org/10.1029/96JA01275
http://dx.doi.org/10.1063/1.4807033
http://dx.doi.org/10.1063/1.4984017


5064 P. Reichherzer et al.

Using this parametrization for the particle velocity results in

D33(v) =
(

qbv⊥
mγ

)2 t∫
0

dτ

(
cos

(
v⊥
rg

τ

)
− sin

(
v⊥
rg

τ

))

1

2π

2π∫
0

dθ (cos2 θ + sin2 θ ),

=
(

qbv⊥
mγ

)2 t∫
0

dτ

(
cos

(
v⊥
rg

τ

)
− sin

(
v⊥
rg

τ

))
.

(A4)

Substituting τ̂ = τv⊥/rg together with dτ = rg/v⊥ dτ̂ results in

D33(v) ∝
(

qbv⊥
mγ

)2
rg

v⊥

t ′∫
0

dτ̂ (cos τ̂ − sin τ̂ ). (A5)

With this parallel momentum diffusion coefficient, it is possible to
derive the parallel spatial diffusion coefficient based on equation (5)
as

κ‖ ∝
(

mγv2

qbv⊥

)2
v⊥
rg

∝ m2γ 2v4

b2v⊥rg
∝ B

b2

E

q
∝

(
B

b

)2

rgc. (A6)

Agreement between simulated data for high-energy particles and
this relation can be seen in Fig. A1, where the parallel diffu-
sion coefficient is shown as a function of the right-hand side of
equation (A6).

APPENDIX B: SCALING OF THE RESULTS
WITH REDUCED RIGIDITY

Given the prediction of QLT, κ� = clc(rg/lc)γ (B/b)2 makes the
problem rescalable for a different range of energies E, magnetic
field properties b, B, lc, and the particle’s electric charge q:

κ‖ = 9.494 × 1027cm2 s−1 × 0.9251−γ+1/3 ×
(

b

0.1μG

)−2

(
B

μG

)2−γ (
E

10 PeV

)−2 (
lc

10 pc

)−2 (q

e

)−2
. (B1)

The boundaries of the RSR derived within this study can be
rescaled analogously as follows. Combining the expressions for the
gyroradius of highly relativistic particles and the definition of the
lower boundary of the RSR,

rg = E

cqB
= lmin

π (b/B)
,

results in the lower-limit energy of the RSR

Emin = 294.5 PeV

(
b

μG

)−1 (
B

μG

)2 (
lmin

pc

)(q

e

)
. (B2)

The maximum energy of particles in the RSR yields

Emax = 14.72 PeV

(
B

μG

)(
lmax

pc

)(q

e

)
. (B3)

The diffusion process of particles is consequently not limited
to a certain range of energies, but can be rescaled accordingly,
assuming that (a) the power-law behaviour can be extended to the
entire range of the turbulence spectrum (lmin, lmax) and (b) assuming
that the (b/B)-dependence is as expected in equation (B1). We
find evidence in our simulations that the (b/B)−2 − dependence
holds (Reichherzer et al., in preparation). Therefore, scaling can
be considered applicable in several astrophysical environments
as demonstrated with two examples of cosmic ray propagation
sites:

(i) Heliosphere: Typical magnetic field parameters at 1 au in the
heliosphere are b/B ≈ 0.4−1 (Bruno & Carbone 2013), B ∼ 5 nT
(Giacalone & Jokipii 1999; Adhikari et al. 2017) as well as
lmin ∼ 0.1 au and lmax ∼ 30 au (Zank, Matthaeus & Smith 1996).
Here, the RSR for protons lies within 3–7 GeV � E � 107 TeV.
Care must be taken with this lower limit, since the protons around
Emin can hardly be treated as highly relativistic, a property that
is used in the calculations in this paper to make the analysis
feasible.

(ii) Galaxy: The magnetic waves of the turbulence range between
the dissipation scale lmin ∼ 1 au and the maximum scale lmax ∼
150 pc in the halo and lmax ∼ 20 pc in the disc (Iacobelli et al.
2013). Assuming B ∼ μG and b ∼ 0.1μG constrains the RSR
within 14 GeV � Ehalo � 22 PeV and 14 GeV � Edisc � 3 PeV for
protons.
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