- 1 Assessing the accuracy of density-independent demographic models for predicting
- 2 <u>species ranges</u>
- 3
- 4 Keywords: demographic distribution model, density-dependence, invasion risk map, matrix
- 5 population model, range dynamics, range shifts, species distribution model

6 Abstract:

7	Accurately predicting species ranges is a primary goal of ecology. Demographic distribution	
8	models (DDMs), which correlate underlying vital rates (e.g. survival and reproduction) with	
9	environmental conditions, can potentially predict species ranges through time and space.	
10	However, tests of DDM accuracy across wide ranges of species' life histories are surprisingly	
11	lacking. Using simulations of 1.5 million hypothetical species' range dynamics, we evaluated	
12	when \underline{DDM} s accurately predicted future ranges ₁ to provide clear guidelines for the use of this	
13	emerging approach. We limited our study to deterministic demographic models ignoring density	
14	dependence, since these models are the most commonly used in the literature. We found that	
15	density-independent DDMs overpredicted extinction if populations were near carrying capacity	\leq
16	in the locations where demographic data were available. However, DDMs accurately predicted	
17	species ranges if demographic data were limited to, sites with mean initial abundance less than	
18	one half of carrying capacity. Additionally, the DDMs required demographic data from at least	
19	25 sites, over a short time-interval (<10 time-steps), as populations initially below carrying	
20	capacity can saturate in long-term studies. For species with demographic data from many low	
21	density sites, DDMs predicted occurrence more accurately than correlative species distribution	1
22	models (SDMs) in locations where the species eventually persisted, but not where the species	4
23	went extinct These results were insensitive to differences in simulated dispersal, levels of	V
24	environmental stochasticity, the effects of the environmental variables, and the functional forms	
25	of density dependence, Our findings suggest that deterministic, density-independent DDMs are	/
26	appropriate for applications where locating all possible sites the species might occur in is	
27	prioritized over reducing false presence predictions in absent sites. This makes DDMs a	

Deleted: demographic distribution models

Deleted: that ignore density dependence (1) accurately predict range dynamics for small, fast-growing populations, but (2) overpredict extinction for slow-growing populations, and (3) overpredict

Deleted: a collection of

Deleted: 2-5

Deleted: as

Deleted: locally
Deleted: in absent sites, more accurately

Deleted: 2as

Deleted: . For fast-growing populations, demographic distribution models accurately predict occurrence as long as the population is at <65% of carrying capacity in the sites where the demographic data are collected. For slow-growing populations, DDMs greatly overpredict extinction

Deleted: more

Deleted: where
Deleted: all possible future locations of a species

Deleted:

Deleted: minimizing

Deleted: a future

Deleteu: a luture

Deleted: identifying present sites is more important than absent sites, where demographic data from small populations are available

53 promising tool for mapping invasion risk, However, demographic data are often collected at sites

54 where <u>a</u> species is abundant. <u>Density-independent DDMs</u> are inappropriate in this case,

Deleted: and predicting ranges of quickly recovering threatened species

Deleted: many species are either slow-growing or their **Deleted:**

Deleted: emographic distribution model

Deleted: ese settings

61 Introduction

62	Spatial projections of species occurrence and persistence are essential for developing ecological	
63	theory and improving environmental management (Guisan et al. 2013, Meyer et al. 2015,	
64	Briscoe et al. 2019). While scientists and environmental agencies commonly correlate static	
65	presence/absence data with environmental variables to project species ranges (Elith and	
66	Leathwick 2009, Guisan et al. 2013, Hijmans et al. 2017), the accuracy and utility of these	
67	projections have been criticized, especially when projecting distributions in time or to novel	
68	environments (Pearson and Dawson 2003, Thuiller et al. 2014, Zurell et al. 2016, Cabral et al.	
69	2017, Briscoe et al. 2019). Unfortunately, due to current, rapid, environmental change,	
70	projections in time and to novel environments are urgently needed (Ackerly et al. 2010).	
71	Demographic distribution models (DDMs), which model vital rates, such as survival,	
72	development, and reproduction, as functions of environmental variables, have been proposed as a	
73	promising alternative for generating these projections (Merow et al. 2014, 2017, Zurell et al.	
74	2016, Briscoe et al. 2019). DDMs are promising because they model the underlying mechanisms	
75	that drive occurrence (Normand et al. 2014, Cabral et al. 2017), mechanisms which may continue	
76	to hold in new environments. Yet the accuracy and limitations of DDMs are poorly understood.	
77	The first step to building a DDM is regressing vital rates against environmental factors to	
78	determine trajectories of population size through time, which then may be projected into the	
79	future to predict species occurrence and abundance (Villellas et al. 2015, Ehrlén et al. 2016,	
80	Cabral et al. 2017, Csergő et al. 2017). This explicit focus on capturing how environmental	Formattee
81	variables on vital rates differs from other approaches using demographic models to to project	
82	species' ranges. For example, coupled niche-population models use stochastic demographic	
83	models to project range dynamics, but vital rates are typically fixed, with environmental effects	

Formatted: Highlight

84	captured by constraining potential habitat and carrying capacity based on modelled habidtat	
85	suitability (Keith et al. 2008, Fordham et al. 2013, 2018) , Such approaches allow one to	
86	explicitly project range dynamics with limited demographic data accross sites, but their reliance	
87	on occurance data to model environmental cosntraints means that they cab suffer from many of	
88	the same drawbacks as correlative SDMs (Briscoe et al. 2019). Unfortunately, DDMs also have	
89	important drawbacks. Even the simplest DDMs require population abundance data through time	
90	(Buckley et al. 2010), or detailed demographic data tracking many individuals and their offspring	
91	within a field season (Merow et al. 2014). In both cases, these data must be collected at multiple,	
92	geographically, and climatically dissimilar sites, and classified by age, and/or size of	
93	development (Caswell 2001, Needham et al. 2018). This requirement of spatial and temporal	
94	replication is challenging in its own right. Therefore, DDMs typically ignore the effect of	
95	intraspecific competition on survival or reproduction, despite tools for incorporating density-	
96	dependence effects in demographic models (Cushing et al. 2002, Dahlgren et al. 2014, Teller et	
97	al. 2016). To our knowledge, the vast majority of DDMs, parameterized with field data, to	
98	project species ranges, ignore density-dependent effects (Buckley et al. 2010, Barbraud et al.	
99	2011, Merow et al. 2014, 2017, Sheth and Angert 2018, Needham et al. 2018) but see (Pagel et	
100	al. 2020) for an exception. Such density-independent DDMs predict occupancy by linking	
101	environmental variables to long-term population growth rate, λ , through the variables' effects on	
102	vital rates in matrix-population or integral-projection models (Buckley et al. 2010, Merow et al.	
103	2014, 2017). The implicit logic is that if $\lambda > 1$, the local population is predicted to persist; if $\lambda < 1$,	
104	the population is predicted to go locally extinct in the long-term.	
105	However, estimates of λ from density-independent demographic models do not	
106	necessarily reflect long-term persistence if the population experiences density-dependent	

Formatted: Highlight Formatted: Highlight

Deleted: such models
Formatted: Highlight

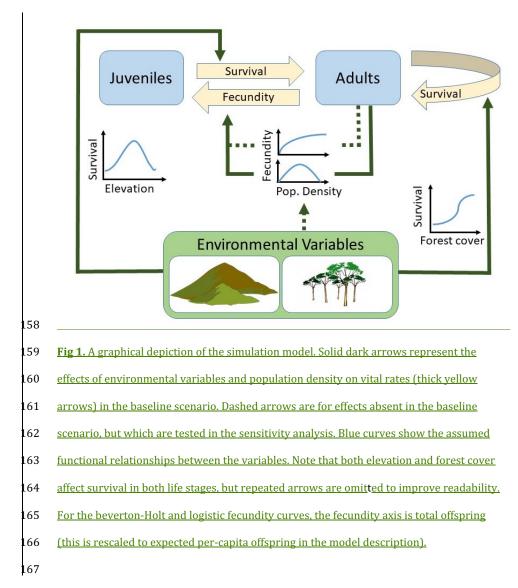
108	survival, development, and/or fecundity. If fecundity or survival are lower at high population
109	densities due to, for example, competition for resources, populations can approach a long-term
110	equilibrium abundance – which we will refer to as carrying capacity. It is likely that
111	demographers often collect data where populations are abundant, <i>i.e.</i> close to carrying capacity
112	(Quintana-Ascencio et al. 2018, Fournier et al. 2019). This is because large populations are
113	easier to find and researchers often go where healthy populations are known to exist, not to
114	fringe populations, likely to produce small datasets. However, in healthy populations near
115	carrying capacity, there may be limited population growth, even if the site is highly suitable.
116	Demographic models fit to data from these sites should produce $\lambda \sim 1$, and therefore, an estimate
117	of $\lambda < 1$ could simply reflect measurement error, disturbance, or temporary declines after
118	populations exhausted their resources. In short, if demographic data are collected in field sites
119	where the species is abundant, a density-independent DDM using these data could erroneously
120	map prime habitat as uninhabitable. Therefore, it is no surprise that empirical studies often find
121	estimates of λ uncorrelated or even negatively correlated with habitat suitability or species
122	occurrence (Diez et al. 2014, Thuiller et al. 2014, Csergő et al. 2017). In contrast, there are at
123	least two cases of density-independent DDMs built from demographic data restricted to sites
124	with small populations (e.g. an invasive species and species experiencing high levels
125	disturbance). In these cases, λ successfully predicted species occurrence (Merow et al. 2014,
126	2017).
127	Given the mixed success of initial attempts to predict species ranges using density-
128	independent demographic models, we set out to determine general guidelines for when these
129	models can predict species occupancy accurately. We achieved this by simulating range dynamic

130 data, and observers sampling the data to build DDMs. We then compared DDM predictions

- 131 against long term occupancy, assessed DDM accuracy, and correlated DDM accuracy with
- 132 various species and population characteristics. Finally, we compared DDM predictions to
- predictions from standard correlative species distribution models (SDMs). In face of limited data
- 34 available to validate predictions of species range dynamics, our simulated approach provides a
- tool for assessing DDM accuracy. Our computational framework has many advantages over
- 136 traditional validation and sensitivity analyses using real-world data, including: increased
- 137 repeatability, transparency, sample sizes, and control over environmental and historical factors
- (Zurell et al. 2010) all of which help improve the generality of the results.

139 Material and methods

140	Our study involved three separate processes: (1) simulating population dynamics for hypothetical	Deleted: stochastic, negative density-dependent, spatially- explicit,
141	species using a stochastic, negative density-dependent, spatially-explicit, stage-structured	
142	population model with two life stages (juvenile, adult) and juvenile dispersal (see Fig 1 for a	
143	graphical description of the model); (2) simulating sampling by field workers conducting	
144	demographic surveys across a subset of the species' habitat; and (3) fitting demographic	
145	distribution models, computed from the sampled field data. To determine the characteristics of	
146	species that can successfully be modeled using demographic distribution models, we simulated	
147	the range dynamics of <u>1.5 million</u> hypothetical species that differed in their maximum survival	(Deleted: 100,000
147 148	the range dynamics of <u>1.5 million</u> hypothetical species that differed in their maximum survival rates at each life stage, maximum fecundity at low densities, maximum carrying capacity,	(Deleted: 100,000
		(Deleted: 100,000
148	rates at each life stage, maximum fecundity at low densities, maximum carrying capacity,	(Deleted: 100,000
148 149	rates at each life stage, maximum fecundity at low densities, maximum carrying capacity, response to environmental variables, stochastic variability in survival, <u>initial population</u>	(Deleted: 100,000
148 149 150	rates at each life stage, maximum fecundity at low densities, maximum carrying capacity, response to environmental variables, stochastic variability in survival, <u>initial population</u> <u>densities</u> , and proportion of the population that disperses at each time step. We then determined	(Deleted: 100,000



186

169 Simulated population dynamics - survival

170 We simulated population dynamics using a simple stochastic model. The probability of survival 171 for an individual in life stage *s* and site *i*, $\varphi(i, s)$, was a function of life stage, and environmental 172 conditions,

$$\varphi(i,s) = \frac{\psi_s e^{u(i,s)}}{1 + e^{u(i,s)'}}$$
 (eqn. 1)

$$u(i,s) = \sum_{r=1}^{n_e} (\alpha_{1,s,j} x_{i,j} + \alpha_{2,s,j} x_{i,j}^2) + \alpha_0 + \epsilon_{i,s,t}.$$
 (eqn. 2)

173	In the above equations, $x_{i,j}$ is the value of environmental variable <i>j</i> in site <i>i</i> , (<i>j</i> = 1,, n_e), where
174	n_e is the number of environmental variables. The parameter ψ_s is the maximum expected
175	survival probability in life stage s. The functional form in (eqn. 1) maps linear and quadratic
176	combinations of the environmental variables, u , to survival, so that survival is always bounded
177	between 0 and ψ_s . The coefficient $\alpha_{1,s,j}$, is the linear trend between the link to survival, of life
178	stage s, and the environmental variable j, whereas $\alpha_{2,s,j}$ is the quadratic trend. If the quadratic
179	coefficient is negative, $\alpha_{2,s,j} < 0$, survival is maximized at intermediate values of environmental
180	variable <i>j</i> , along its gradient, to resemble first principles of the Hutchinsonian niche concept
181	(Holt 2009). Whereas, if $\alpha_{1,s,j} > 0$, and $\alpha_{2,s,j} = 0$, then increases in environmental variable j
182	strictly increase survival. Spatial and temporal variation in survival during life stage s, not
183	attributable to the environmental variables, $x_{i,j}$ is given by, $\epsilon_{i,s,t}$, a random variable with zero
184	expectation. The intercept, α_0 , is set to zero throughout the paper with no loss of generality.
185	

(Deleted: The
(Deleted: allows for maximum
(Deleted: positions along an environmental gradient
·····	Formatted: Font: Italic
(Deleted:
~(Formatted: Font: Italic

Simulated population dynamics - fecundity

191	As standard in ecological modeling and environmental management (Quinn II and Deriso 1999),	
192	we incorporated density-dependence in simulated fecundity. We considered two of the most	
193	widely used types of negative density-dependence in the literature. The first was logistic	
194	fecundity, where the expected number of juvenile offspring was determined by the logistic model	
195	(May 1974). This represented scramble competition, where population sizes above carrying	
196	capacity cause declines in total viable offspring. The second was Beverton-Holt (aka. reciprocal	
197	yield) density dependence (Shinozaki and Kira 1956, Beverton and Holt 2012). This represented	
198	contest competition, decreasing per-capita fecundity, but increasing total fecundity, with respect	
199	to population size. Both of these fecundity functions were parameterized with the variables f_{max}	Deleted: r
 200	and k_i , per capita fecundity at low adult abundance and adult carrying capacity in site i ,	
201	respectively. We refer to the fecundity function in site <i>i</i> as $f_i(n)$, where <i>n</i> is the number of adults	
202	in the given site and time. Note, however, that we did not consider Allee effects and use density-	
203	dependence synonymously with strict negative density dependence. For details on the functional	
204	forms and parameterization of these standard ecological models, see appendix A.	
205		
206	Simulation algorithm	
207	We considered a population with two life stages, juvenile ($s = 0$) and adult ($s = 1$), and assumed	
208	juveniles became adults after one time step or died in that period of time. Therefore, $\varphi(i, 0)$ was	Deleted: -
 209	the probability of a juvenile in site <i>i</i> transitioning to an adult and, $1 - \varphi(i, 0)$ was the associated	
210	mortality probability. The unit of each time step was one iteration of the demographic model,	Deleted: -
211	often thought of as one year (Salguero-Gómez et al. 2016). However, for generality, we do not	
 212	specify the time unit since the species are hypothetical.	

Note that a deterministic version of this simulation, without dispersal, is equivalent to
simulating a standard matrix population model governed by the density-dependent Lefkovitch
matrix (Caswell 2001),

$$\begin{bmatrix} 0 & f_{1}(n) \\ \varphi(t, 0) & \varphi(t, 1) \end{bmatrix}$$
(eqn. 3)
(eqn. 3)
(eqn. 3)
(eqn. 4)
(eqn. 5)
Deleted:
(eqn. 5)
(eqn. 5)
(eqn. 5)
(eqn. 5)
(eqn. 5)
(eqn. 5)
(eqn. 6)
(eqn. 5)
(eqn. 6)

236	1.	Drew the number of surviving juveniles that became adults in the next time step, in each
237		site, from a binomial distribution with the number of trials equal to the number of
238		juveniles in the previous time step and probability of survival, $\varphi(i, 0)$;
239	2.	Drew the number of surviving adults in each site, from a binomial distribution with the
240		number of trials equal to the number of adults in the previous time step and probability
241		of survival, $\varphi(i, 1)$;
242	3.	Drew the number of new juveniles from a Poisson distribution with expectation $f_i(n)n$
243		[See Appendix A for details about the fecundity function $f_i(n)$]
244	4.	Randomly selected a fraction of new juveniles (offspring in step 3), p_d , to disperse,
245		where each dispersing individual has an equal probability of landing in each site.
246	5.	Updated the total number of adults to equal the surviving adults plus the surviving
247		juveniles (new adults), and updated the total number of juveniles as the new juveniles
248		from reproduction, accounting for offspring entering and exiting the site, due to
249		dispersal.
250		
251	Simul	ation scenarios
252		The main goal of the study was to test how different species varying in survival rates,
253	fecuno	lity, dispersal, responses to environmental variables, stochasticity, and initial abundance
254	affect	the accuracy of demographic distribution model (DDM) predictions. We first calculated
255	DDM	performance for a baseline scenario, with logistic fecundity, and parameters set to values
256	in Tab	le 1. We then performed a sensitivity analysis, where we simulated the population
257	dynan	nics and fit distribution models under 1,000 random combinations of parameter values,
258	each u	nder the two different density-dependent fecundity functions, three correlation structures

259	between fecundity and survival, and three different ways of distributing initial population density
260	in space, each containing approximately 50 different density distributions. This created 1.5
261	million experiments, each over 4,915 sites and two age-classes (over 145-billion time series).
 262	In both the baseline and the sensitivity analysis, we simulated population dynamics of
263	hypothetical species over 4,195, 10 km ² , sites in Switzerland, affected by elevation, $x_{i,1}$, and
264	forest cover, $x_{i,2}$ (Fig. S1ab), standardized to zero mean and unit standard deviation (Kéry et al.
265	2017). We let $\epsilon_{i,s,t}$ be independently, identically, normally distributed with mean 0 and standard
266	deviation, σ . Site-specific carrying capacity, k_i , was set to maximum abundance, k_{max} , times the
267	proportion of the site covered by forest. In sites with $k_i < 5$, we set carrying capacity to zero, to
268	represent too little habitat for a persistent, long-term population. We set initial abundances in
269	sites where the species would persist in the absence of stochasticity (sites with $\lambda_i > 1$) to
270	specified proportions of carrying capacity. We randomly selected 5% of sites where forest cover
271	was high enough to yield carrying capacity above 10 individuals, but where survival was too low
272	to maintain a long term viable population (sites with $\lambda_i < 1$) and set their initial adult
273	abundances to 10 individuals, to represent invaded sink populations. There were 200 time-steps
274	in the simulations.
275	For the sensitivity analysis (see Table 1), maximum adult and juvenile survival, ψ_1
276	and ψ_0 , were assigned random values uniformly drawn between 0.01 and 0.99. This wide range
1 277	includes slow-growing, long-lived species and fast-growing, short-lived species. The linear
278	effect of forest cover on survival, $\alpha_{1,s,1}$, was randomly drawn from <u>a uniform distribution from</u> 0
1 279	to 3. To produce ecologically sensible, yet wide ranges for the effect of elevation on survival, we
280	drew the quadratic elevation effect, $\alpha_{2,s,1}$, from a uniform distribution from -3 to 0, and then also
281	drew a preferred elevation, v , uniformly over the entire elevation range in the data, and chose the

 Deleted: initial abundances in sites where the population was expected to persist (sites with $\chi_i > 1$).

 Deleted: 100,000

 Deleted: nearly

 Deleted: five

287	linear elevation effect to maximize survival at this preferred elevation, namely, $\alpha_{1,s,1} =$	
288	$-2\nu\alpha_{2,s,1}$. A quadratic factor of zero represented species that could survive across all observed	
289	elevations equally, whereas -3 was for species that could only tolerate a narrow range of	
290	elevations.	
291	We considered three scenarios for maximum viable offspring at low population densities,	Deleted
292	f_{max} , (1) positively correlated with survival, (2) negatively correlated with survival, and (3) fixed	Deleted
293	across sites. For the fixed case, in each of the 1,000 parameter sets, fmax was randomly drawn	
294	from a uniform distribution ranging between the lowest possible number such that the species	
l 295	would be expected to persist in at least 5% of sites (i.e. $\tilde{\lambda}_i > 1$), and the largest possible number	
296	for which carrying capacity was guaranteed to be a stable equilibrium at the most favorable site,	
297	given ψ_1, ψ_0 , and the effects of environmental variables (which were drawn first). The last	
298	constraint simply eliminated the possibility of chaotic and unstable, periodic dynamics, and was	
299	determined through standard linear stability analysis (Strogatz 1994) techniques (see Appendix	
300	B). In the correlated case, f_{max} , was different at each site according to the environmental variables	
301	at that site. This was achieved by drawing a number between the maximum and minimum values	
302	for f_{max} described above, for each site, using a beta distribution, with beta distribution parameters	
303	as a function of environmental variables. This made f_{max} more likely to be high in sites with high	
304	survival, and low in sites with low survival (see the section "environmentally driven fecundity	
305	scenarios" in Appendix B for details). The negatively correlated scenario was achieved similarly	
306	(Appendix B).	
l 307	The standard deviations of environmental stochasticity and the dispersal proportion were	
308	uniformly randomly generated on (0, 0.5) and (0, 0.05), respectively, to represent wide ranges for	
309	the types of species an ecologist would consider fitting a deterministic demographic model	

Deleted: Maximum

r

312	without dispersal. Maximum carrying capacity across all sites, kmax, was also uniformly	
313	distributed.	
314	We considered three different scenarios for how initial population sizes were distributed	
315	through space: (1) fixed initial abundances at all sites where the species was expected to persist	
316	were varied factorially with each parameter combination, using 51 values between 5% and 135%	
317	of local carrying capacity; (2) initial abundance set at 25, 50 and 75% of the carrying capacity in	
318	a fixed proportion of sites and carrying capacity in the other sites (varied across all possible	
319	proportions); and (3) uniformly distributed abundance, with 46 mean values [from 52.5%,	Deleted: ,
320	corresponding to a lower bound of 5%, to 100% of carrying capacity].	
321		

324 Table 1. A list of parameters used in the species range dynamics baseline simulations (third

325 column), which are perturbed in the sensitivity analysis (fourth column) to test the generality of

326 results for different types of hypothetical species.

Parameter	Description	Baseline Value	Range tested
ψ_0	Maximum juvenile survival	0.5	0.01 - 0.99
ψ_1	Maximum adult survival	0.5	0.01 - 0.99
$\alpha_{1,s,1}$	Linear forest cover effect of stage <i>s</i> survival	0.5	0-3
$\alpha_{1,s,2}$	Linear elevation effect on stage <i>s</i> survival	0.5	-5-23*
$\alpha_{2,s,2}$	Quadratic elevation effect on stage <i>s</i>	-0.5	-3 - 0
	survival		
p_d	Dispersal proportion per time step	0.01	0-0.05
σ	Standard deviation of environmental	0.25	0-0.5
	stochastic effect on survival		
<u>f</u> max	Fecundity at zero density, i.e. maximum	4	0.1 - 250
	fecundity [surviving offspring / adult]		
<i>k</i> _{max}	Maximum carrying capacity (at a site with	1,000	500 - 1,000
	100% forest cover) [number of adults]		

327

*chosen to maximize survival at a uniform randomly chosen preferred elevation, over all

328 possible elevations in the data, given a random quadratic elevation effect, drawn from the range

329 in the row below.

332 Simulated field sampling

333	We assumed that simulated population dynamics represented the true population, and sampled
334	from this population by simulating a demographer using common field-sampling methods
335	(Zurell et al. 2010). Sampling occurred for ten time-steps from the start of the simulation with
336	dispersal turned off, to simplify the analysis and mimic a situation where the researcher can
337	account for the origin of individuals in the site. The virtual ecologist randomly chose n_s sites
338	where the species was present at the beginning of the simulation and then counted the number of
339	surviving juveniles (new adults), surviving adults, and new juveniles, at each sampled site, over
340	ten time-steps. While this is a standard approach (Lavine et al. 2002), an alternative, but more
341	laborious and computationally expensive, approach, would model individual organisms, and
342	track a sampled subset of these individuals. Tracking individuals is advantageous if one wants to
343	quantify individual variability in demographic processes, but this was not a focus of our study.
344	Also, considering we were analyzing nearly five-billion time series, computational efficiency
345	was required to make sure results were general across species. We set $n_s = 200$ sites, representing
346	a highly optimistic, but realistic sample size. For example, previously, DDMs have used 138
347	sites (Merow et al. 2014). We selected a high value because the purpose of the study was to
348	identify species for which DDMs could generate useful predictions given high-quality data, b <u>ut</u>
349	we also tested DDM accuracy for scenarios with 50, 30, 25 and 20 sampled sites. We set the
350	length of demographic surveys to two years, but we also tested survey lengths of three, five, 10
351	and 20 years.

- 352
- 353 Distribution models

Deleted: was

The demographic distribution model (DDM) assumed that the population dynamics in site *i* <u>were</u> governed by a two-stage matrix population model. While a variety of density-independent demographic models have been used to build DDMs in the literature, including integral projection models (Merow et al. 2014, 2017) and matrix population models (Buckley et al. 2010), we chose a matrix approach for both the simulation and fitted DDM because it is the simplest and most computationally efficient model that maintains the essential demographic features of structured population dynamics. The fitted model was,

$$\vec{N}_{i,t+1} = A_i \vec{N}_{i,t};$$

(eqn. 6)

$$\boldsymbol{A}_{i} = \begin{bmatrix} 0 & f(x_{i,1}, x_{i,2}) \\ \phi_{0}(x_{i,1}, x_{i,2}) & \phi_{1}(x_{i,1}, x_{i,2}) \end{bmatrix},$$

361 where A_i is a transition matrix for site *i*, and $f(x_{i,1}, x_{i,2})$, $\phi_0(x_{i,1}, x_{i,2})$, and $\phi_1(x_{i,1}, x_{i,2})$ are the 362 estimated fecundity, juvenile and adult survival in site i, respectively. Note these are functions of 363 the two environmental variables in site *i*, $x_{i,1}$, and $x_{i,2}$. The estimation of $f(x_{i,1}, x_{i,2})$, $\phi_0(x_{i,1}, x_{i,2})$, and $\phi_1(x_{i,1}, x_{i,2})$ was performed using a statistical model. From the simulated field 364 365 sampling of demographic data, we computed the observed per-capita fecundity, number of 366 surviving adults and juveniles over the sampling period. These quantities were uniquely 367 determined because we turned off dispersal during the period of demographic sampling. This 368 procedure created a vector of observed juveniles survived, adults survived, and fecundity, each 369 with the number of entries equal to the number of sites. The functions ϕ_0, ϕ_1 , and f, were then \$70 estimated using generalized additive models, function 'gam' in R (Wood 2017). The generalized

ſ	Deleted: survival proportion,
-([Deleted: juvenile survival proportion
	Deleted: by tracking the number of new juveniles, new dults and surviving adults
	Deleted: survival
-(C	Deleted: survival
~ (C	Deleted: data
<u>(</u>	Deleted: (
(Deleted:)
(C	Deleted: with Gaussian errors
`(F	formatted: Highlight

382	additive models assumed binomially distributed counts of surviving adults and juveniles and		
383	Poisson, distributed total offspring, with a rate parameter equal to an estimated parameter, based	~~~~	Deleted: normally
384	on environmental predictors, times the number of adults at the site, The estimated parameter was		Deleted: fecundity
			Deleted: offspring Deleted: proportional to
385	therefore expected per-capita fecundity. We restricted total offspring predictions to the range of		Deleted: , and logit transformations for ϕ_0 , and ϕ
386	observed values to avoid issues extrapolating beyond the data, as is common in distribution		Deleted: (Wood 2017)
387	modelling (Stohlgren et al. 2011, Owens et al. 2013),		Deleted: Survival data was coerced between 0.00 0.9999 instead of zero and one to prevent division by taking the log of zero in the logit transformation
388	The DDMs predicted a unique matrix, A_i , for every site based on the environmental		Formatted: Highlight
389	variables at that site. We used the predicted A_i to calculate the long-term population growth rate,	Ì	Formatted: Highlight
390	λ_i , by computing A_i 's leading eigenvalue. Following standard practice for DDMs (Merow et al.		
391	2014, 2017), we interpreted λ_i as a measure of persistence, where $\lambda_i < 1$ predicted eventual		
392	extinction and $\lambda_i > 1$ predicted long-term persistence at a given site. We then compared the		
393	predicted λ_i values to the presence of the species, 200-time steps after demographic sampling, to		
394	determine whether DDM predictions of persistence were correlated with long-term persistence at		
395	a site. Note that, throughout the paper, we refer to λ_i as long-term population growth rate from		
396	the fitted DDM, whereas λ_i is the expected population growth rate from a deterministic version		
397	of the true model used to simulate the data.		
398	We also compared how accurately the DDMs predicted occupancy in comparison to		
399	correlative species distribution models (SDMs). SDMs were generalized additive models,		Deleted: linear
 400	predicting the probability of species' presence given presence/absence data and environmental		
401	variable values, at the n_s sampled sites, at the end of demographic sampling, In cases where the		Deleted:)
			Deleted: The
402	generalized additive models did not converge (less than 0.1 percent of scenarios), for both the		
403	DDM and SDM, we used generalized linear models with similarly distributed error, To calculate		Deleted: a
			Deleted: model withSDMs assumed a binomially distributed response andwith a logit link function

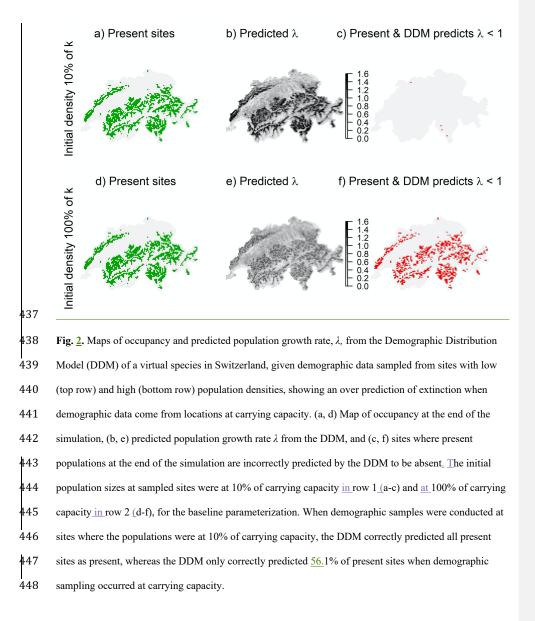
Deleted: normally
Deleted: fecundity
Deleted: offspring
Deleted: proportional to
Deleted: ,, and logit transformations for ϕ_0 , and ϕ_1
Deleted: (Wood 2017)
Deleted: Survival data was coerced between 0.0001 and 0.9999 instead of zero and one to prevent division by zero or taking the log of zero in the logit transformation
Formatted: Highlight
Formatted: Highlight

- the prediction accuracy of the SDM we considered sites to be predicted present when the
- 420 modeled probability of presence was greater than 0.5.

422 Results

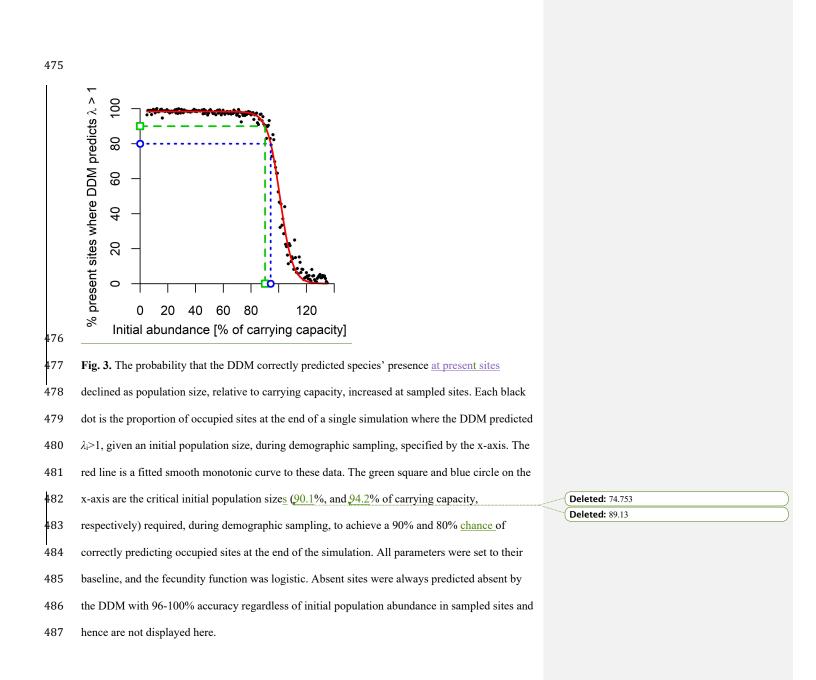
423 For the baseline scenario, with all parameters set to intermediate values, and initial population 424 sizes in each site set to 10% of local carrying capacity, the DDM performed well. For <u>95.1</u>% of 425 the 3,5<u>18</u> sites where the population went extinct (light grey in Fig. 2a), the DDM predicted $\lambda_i < 1$ 426 (Fig. 2b). For the 1,397 sites where the species was present at the end of the simulation (green in 427 Fig. 2a), the DDM predicted $\lambda_i > 1$ in 99.7% of these sites. The lack of red pixels in Fig. 2c 428 denotes the 0.3% of present sites where the DDM incorrectly predicted $\lambda_i < 1$. 429 In the same baseline scenario, but with initial populations at carrying capacity during the 430 start of demographic sampling, the DDM over-predicted extinction (Fig. 2 d-f). For the 1,415 431 sites where the species was present at the end of the simulation, the DDM predicted $\lambda_i > 1$ at only 432 <u>39.0%</u> of the sites. On the other hand, out of the 3,500 sites where the population went extinct 433 (light grey in Fig. 2d), the DDM correctly predicted $\lambda_i < 1, \frac{97.3}{3}\%$ of the time (Fig. 2d). This 434 means the DDM predicted the status of absent sites well regardless of population density at 435 demographically sampled sites.

Deleted: 6



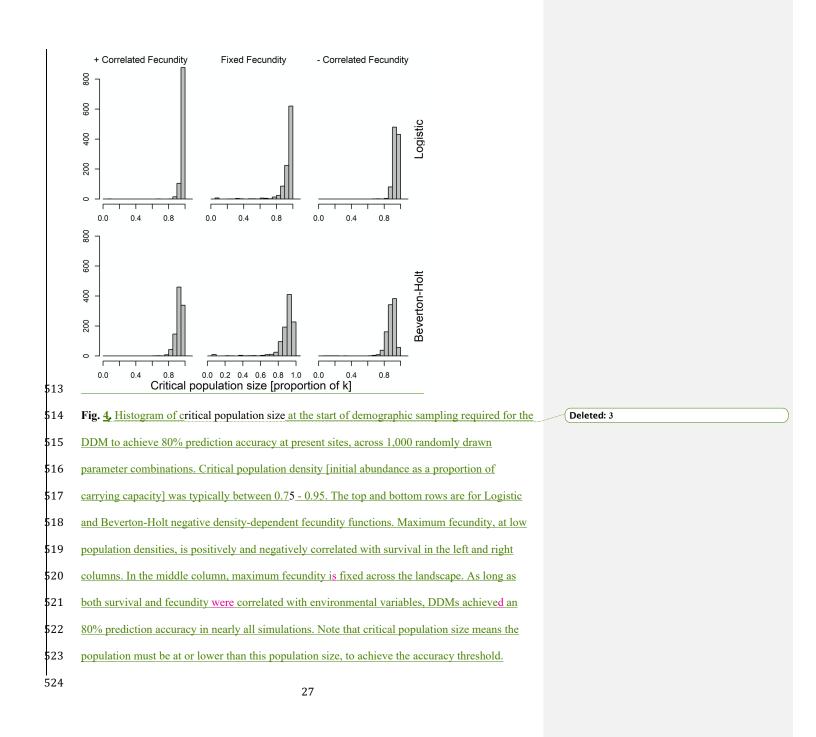
449	To summarize, in the baseline scenario, DDMs predicted present sites accurately if initial		
450	density during sampling was close to zero, and inaccurately for initial density at carrying		
451	capacity. However, for what initial density in sampled sites, between 10% and 100% of carrying		
452	capacity, do predictions cease to be accurate at present sites? To identify the critical population		
453	density to achieve a specified target percentage of correctly predicted present sites, we ran the		
454	above simulation with initial densities of 5% to 135% of carrying capacity (Fig. 3) and computed	(Deleted: 2
455	the proportion of present sites where the DDM predicted $\lambda_i > 1$ for each initial density (black dots		
456	in Fig. 3). The black dots in Fig. 3 formed a clear monotonic decreasing pattern, and we fit a	< (Deleted: 2
457	smooth curve to these data (curve in Fig. 3, see Appendix C for details on curve fitting methods).	~((Deleted: 2 Deleted: 2
458	We then computed the critical population abundance as the intersection of this curve with the		
459	specified target prediction accuracy (Fig. <u>3</u>). A critical initial population size of <u>94.2</u> % of	<	Deleted: 2
460	carrying capacity was required to achieve a prediction accuracy of 80% in present sites (circle in	(Deleted: 89.1
461	Fig. 3). The critical population abundance needed to correctly predict 90% of present sites was		Deleted: 2
462	90.1% of carrying capacity (square in Fig. 3). Unlike true presence predictions, correctly	< (Deleted: 74.7
463	predicting absent sites was not strongly related to population density, which we discuss further in	(Deleted: 2

the results of the sensitivity analysis.



490	To demonstrate that Fig. 3 was not an artefact of the baseline parameterization chosen, we		Deleted: ure
491	then proceeded to calculate the critical population abundance, as in Fig. 3_{10} for every parameter		Deleted:
491	then proceeded to calculate the critical population abundance, as in Fig. 3, 101 CVCIV parameter	~	Deleted: 2
492	combination, fecundity function, and correlation scenario in the sensitivity analysis. We set the		Deleted: each
			Deleted: (see Fig. 2, and Fig. S2 for the first 6 curves in
493	true presence accuracy threshold equal to 80% accuracy, a round number close to the 79%		the sensitivity analysis)
494	prediction accuracy reported from past empirical DDMs (Merow et al. 2014). A histogram of		
495	critical population abundances across all parameter combinations tested, under both fecundity		
495	critical population abundances across an parameter combinations rested, under both recundity		
496	functions and all three correlation scenarios, shows that high critical initial population sizes (80-		Deleted: 75
497	95% of carrying capacity) at demographically sampled sites were the most common (Fig. 4).		
498	This means that DDMs predicted presence accurately even when abundances at sampled sites		
499	were intermediate rather than small. However, in the fixed fecundity scenario, when maximum		
500	fecundity was not spatially correlated with survival, the DDMs did not accurately predict		Deleted: , for a few parameter combinations
501	occupancy at present sites for a few parameter combinations, even when sites had small		Deleted: s
502	population sizes during sampling (small leftmost bar in the middle column of Fig. 4).		

|

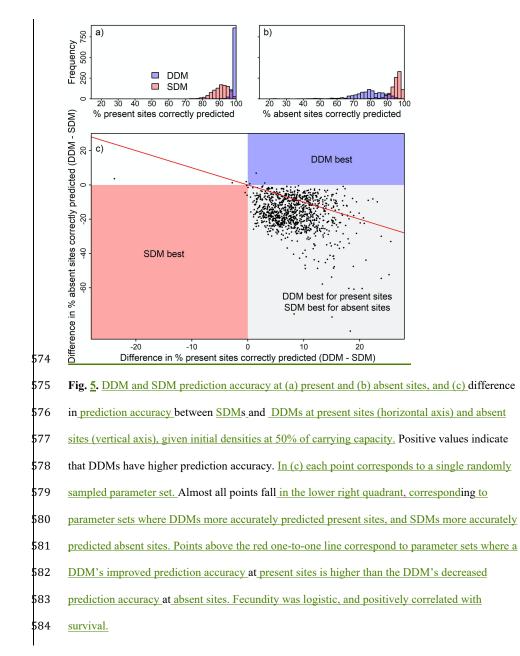


526	In the case where populations were at 50% of carrying capacity at the start of
527	demographic sampling DDMs had higher prediction accuracy at present sites than correlative
528	species distribution models (SDMs) in both the correlated (Fig. 5a) and negatively correlated
529	(Fig. S2a) fecundity scenarios. However, SDMs predicted locations where the population was
530	absent more accurately (Fig. 5b and S2b). The trade-off in improved accuracy at present and
531	absent sites for DDMs and SDMs, respectively, occurred in over 98 percent of the simulations
532	(points in the lower-right, grey region in Fig 5c and S2c). SDMs improved total accuracy over
533	DDMs more frequently if survival was correlated with fecundity (more points below the 1-1 line
534	in Fig 5c). However, the DDM improved overall accuracy if survival and fecundity were
535	negatively correlated (more points above the 1-1 line in Fig S2c). In the negatively correlated
536	fecundity scenario, the accuracy of both methods declined compared to the correlated scenario
537	(see more left bars in the histograms in Figs S2ab than 5ab). However, the relative improvement
538	of DDMs over SDMs was due to major decreases in SDM accuracy at present sites under
539	negatively correlated fecundity (see the leftward shift of pink bars in Fig S2a compared to Fig
540	<u>5a).</u>
1 541	

correlated with the long-term population growth rate of the species at low densities, λ_i , in sites where the species occurred. In Fig. 3cd, critical population abundance was usually 65-95% of carrying capacity, as long as the median of λ_i in present sites was greater than 1.15 (Fig. 3cd). For slow-growing species, median λ_i less than 1.1, DDMs were likely to over-predict extinction, even if demographic data was sampled at sites well below carrying capacity (left-most points in Fig. 3cd). No other parameters in the simulation strongly correlated with the critical population abundance at sampled sites (Fig. S3). These results were robust to the length of demographic sampling (see Fig. S4 – S9) but were even more pronounced when reducing the sampling period from 10 to six timesteps (Fig. S4-S6).[¶] SDMs accurately predicted occupancy, and there was no strong trend between SDM prediction accuracy and population growth rate (first column in Fig. 4). Instead, SDM prediction accuracy, at present sites, was influenced by the number of present sites at the end of the simulation (shading in Fig. 4a). The two outliers (light, lower-left points in Fig. 4a), were the only two simulation runs where the species persisted in less than 5% of sites.[¶] Alternatively, DDM presence prediction accuracy was much more strongly correlated with population growth rate. DDMs over-predicted extinction for slow-growing populations, even when the initial density was at 5% of carrying capacity in sampled sites (Fig. 4b). For fast growing populations, the

Deleted: DDM prediction accuracy at present sites was

more strongly correlated with population growth rate. DDMs over-predicted extinction for slow-growing populations, even when the initial density was at 5% of carrying capacity in sampled sites (Fig. 4b). For fast growing-populations, the DDM more frequently over-predicted presence at absent sites (Fig. 4d). For the SDM, the opposite was true, there was a slight tendency to over-predict absence at present sites for faster-growing species.



585	All of the results discussed thus far assumed that populations were at a specified density,
586	relative to carrying capacity, at all sites used to build the DDM. If only a portion of sites started
587	at a specified density, perturbed below carrying capacity, while others started at carrying
588	capacity, predictions worsened (Fig \$3, \$4). For example, if fecundity was logistic, 25 – 61
589	percent of sites supplying demographic data needed to be perturbed from carrying capacity in
590	order to achieve 80 percent prediction accuracy in 90 percent of the simulations (Fig S3) across
591	the three fecundity correlation structures and three perturbation magnitudes tested. The results
592	were qualitatively similar for Beverton-Holt fecundity, but with a higher proportion of sites that
593	needed to be perturbed (34-75% of sites) to achieve the same accuracy (Compare Fig S3a-c to
594	Figs. S4a-c). In the case where initial population size was uniformly distributed at each site, 80
595	percent prediction accuracy was achieved if mean initial densities exceeded 71% of carrying
596	capacity, across all scenarios (Fig S4).
597	In general, given 200 sampled sites, across all scenarios, if mean initial abundance,
598	averaged across sites, was 70% of carrying capacity or less, a density-independent DDM
599	predicted present sites with at least 80% accuracy, in at least 90% of the simulations (Fig \$3-S6
600	and 6a). However, demographic data from fewer than 200 sites, meant more sites had to be
601	perturbed below carrying capacity during demographic sampling to achieve a desired DDM
602	prediction accuracy. For example, for logistic fecundity, positively correlated with survival, and
603	populations at 50% of carrying capacity in perturbed sites, the DDM required 25, 61, and 87% of
604	sites to be perturbed below carrying capacity, given 200, 50, and 30 sampled sites, respectively
605	(Fig. 6a-c). Even if all populations were at 50% of carrying capacity during the start of
606	demographic sampling, it was impossible to guarantee 80% accuracy in 90% of the simulations,
607	if there were 25 sampled sites or fewer (Fig. 6de). Additionally, DDMs built with long-term
I	

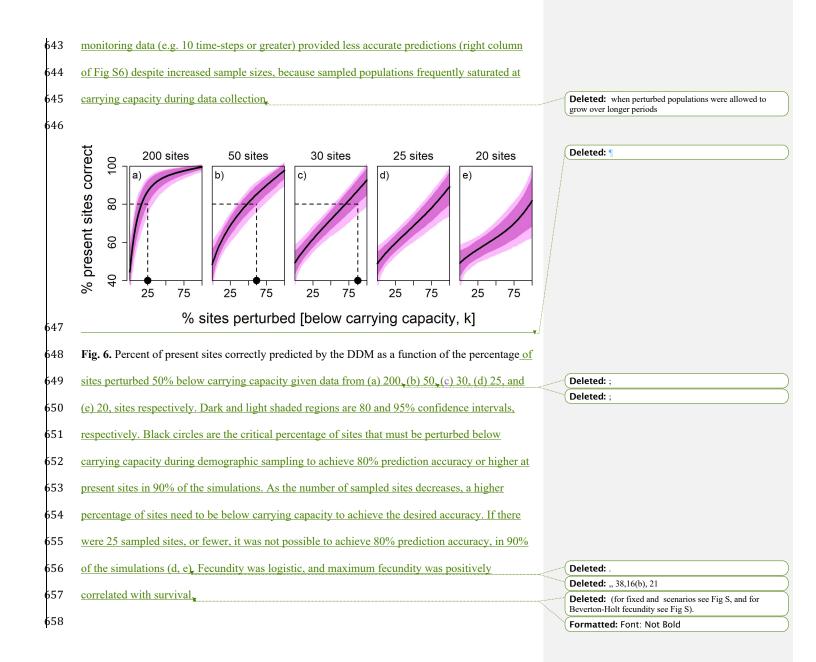
Deleted: 6

Deleted: if perturbed population density was 25 percent of carrying capacity, then 16

Deleted: 6a

	Deleted: For intermediate and small perturbed population sizes of 50% and 75% of carrying capacity, 21 and 38 percent of sites needed to be perturbed, respectively (Fig 6bc)
	Deleted: all combinations of density dependent fecundity functions, and correlation scenarios (Figs. S3 and S4). However,
) (Deleted: led to
$\langle \rangle$	Deleted: below carrying capacity, 20, 35, and 80
$\langle \rangle$	Deleted: percent of sites
	Deleted: and in the 25%, 50%, and 75% of carrying capacity scenarios, respectively
) (Deleted: 4
)(Deleted: 6 and
/(Deleted: 3
	Deleted: across Beverton-Holt and fixed correlation scenarios, only for
(Deleted: close
(Deleted: to
()(Deleted: 5
)(Deleted: 0
(Deleted: for all distributions of initial abundance tested,
(Deleted: was at
	Deleted: 50
	Deleted: , averaged across all demographically sampled sites,
(Deleted: 6 and
(Deleted: 5

Deleted: This held true as long as there were several sites with available demographic data (>20, Fig S6), and the sampling interval was short (2-5 time steps, see Fig S7).



668	Discussion		
669	Using 1.5 million simulations of hypothetical species' range-dynamics, we evaluated when		Deleted: of thousands
670	deterministic, density-independent, demographic distribution models (DDMs) accurately		
671	predicted species' distributions. W <u>hile</u> DDM predictions were biased towards species absence in		
672	simulations where data used to build the DDM came from sites with populations near carrying		
673	capacity, our comprehensive simulations support the following generality: if mean initial	~~~	Deleted: , or if populations grew slowly.
674	population size is less than 50% of carrying capacity, averaged across >25 sites, where		Deleted: rule of thumb. I Deleted: 0
675	demographic data is available, a density-independent DDM will predict present sites accurately.		
676	When this condition was satisfied, DDMs outperformed correlative species distribution models		Deleted: even
677	(SDMs) at accurately predicting present sites, but, not absent sites. Our results suggest that		
678	density-independent DDMs may be useful for predicting species ranges for some taxa and	<u> </u>	Deleted: a
679	applications (Briscoe et al. 2019), despite obvious limitations (Ellner et al. 2016). Often species'		Deleted: tool Deleted: a broad range of
680	have multiple locations available for sampling with populations well below carrying capacity		Deleted: their
681	(Haak 2000, Williams et al. 2011), and there are <u>11 species of plants and animals with matrix</u>		Deleted: 16
682	population models built from data at ≥ 25 sites, already available in the global, open-access		Deleted: 0
683	databases COMPADRE and COMADRE (Salguero-Gómez et al. 2015, 2016).		Field Code Changed
684	One particularly important application of density-independent DDMs is invasive species		
685	risk mapping (Merow et al. 2017), an application where traditional SDM approaches have been		
686	criticized (Liu et al. 2020). Our work confirms that this is potentially an appropriate use of		
 687	DDMs because invasive species, at the start of an invasion, are typically well below carrying		
688	capacity, (Ramula et al. 2008, Davis 2009, Burns et al. 2013). Additionally, because successful		Deleted: , and also usually grow quickly
 689	invaders often invade multiple locations across wide geographic ranges, they are also species for		
690	which demographic data replicated across geographically distant and climatically dissimilar sites		

703	can be collected (Marshall 2016). Our simulations suggest more than 25 such sites are required	 Deleted: -
704	for accurate predictions. While this will be feasible for many invasive species (Merow et al.	Deleted: But
704	for accurate predictions. while this will be reasible for many invasive species (Merow et al.	
705	2017), DDMs will not be useful for mapping invasion risk for species already abundant	Deleted: invasion risk maps are likely
-		Deleted: less
706	throughout their entire invaded ranges or those whose populations start small but quickly saturate	Deleted: the many
707	to carrying capacity during demographic data collection.	Deleted: are
107	to earlying capacity during demographic data concerton.	Deleted: in
708	DDMs may also be appropriate for predicting threatened species ranges, because	 Deleted: range expansions of quickly recovering
		 Deleted: after their threats have been abated. This is
709	threatened populations are often at low densities (IUCN 2012), Since DDMs tie these predictions	 Deleted: species
710	to mechanisms of decline and growth, they may provide insight into which management actions	 Deleted: and reducing threats via conservation actions, such as habitat restoration (Garnett et al. 2019), removal of invasive predators or competitors (Legge et al. 2011,
711	will maximize species persistence (Briscoe et al. 2019). However, our results identify a key	Kanowski et al. 2018, Prior et al. 2018), and harvest bans (Belcher and Jr. 2002, Fukuda et al. 2011), have led to high
712	limitation of using DDMs for threatened species management. While DDMs accurately predicted	population growth rates during the recovery of several threatened populations
713	presence at sites where the species persisted, correlative species distribution models SDMs	
714	outperformed DDMs at sites where the species was absent in over 95 percent of the simulations.	
715	Therefore, our results suggest that DDMs may be more appropriate for applications where	
716	identifying present sites correctly is more important than identifying absent sites. For example, in	
717	invasion risking mapping, predicting a local invasion at a site where an invasion fails to occur is	
718	a more tolerable error than missing the location of a future invasion. In this case, present site	
719	predictions are more important and a DDM will be appropriate, if demographic data from low	
720	density sites are available. In contrast, a manager looking for a site to release a threatened	
721	species, to establish a new population (often called a species "translocation"), would not want to	 Deleted: seed
722	select a site where the species will go extinct. Therefore, when identifying translocation sites,	
723	predicting absences accurately is very important, and DDMs may be inappropriate. Our DDMs	 Formatted: Highlight
724	possibly overpredicted presence in sites where the species went extinct because they were	
725	deterministic and therefore did not predict extinctions caused by demographic stochasticity.	

744	Applications for which correct predictions in unsuitable habitat are more important than				
745	predictions in suitable habitat, therefore, require a stochastic DDM, or a coupled niche-				
746	population model, to account for demographic stochasticity explicitly (Keith et al. 2008,				
747	Fordham et al. 2013), or an SDM, which can account for extinctions from demographic				
748	stochasticity implicitly.				
749	Perhaps the biggest obstacle for wide-scale use of density-independent DDMs is that, for				
750	many species, demographic data are sampled primarily at sites where the species is already				
751	abundant (Quintana-Ascencio et al. 2018, Fournier et al. 2019). Field ecologists do not typically				
752	risk designing randomized, labor-intensive, demographic studies at sites where populations are				
753	so small that the ecologists may not even find individuals to sample. However, there is a small				
754	subset of the demography literature focused on populations at the edge of species ranges, where				
755	population density is often small (Sexton et al. 2009, Eckhart et al. 2011, Pironon et al. 2017).				
756	5 Our results show that demographic data from such low-density sites are highly valuable for				
757	building accurate density-independent DDMs.				
758	There are three major caveats behind our approach to identifying guidelines for when to				
759	use density-independent DDMs. First, we simulated range dynamics using a simple model with				
760	several underlying assumptions, such as common pool dispersal, random/fixed initial population				
761	densities across sites, density dependence in fecundity, and demographic rates influenced by life				
l 762	stages rather than continuous traits (Easterling et al. 2000). Second, we assumed no systematic				
763	environmental change (e.g. climate change or deforestation). Lastly, the DDM used a model that				
764	closely matched the stochastic model employed to simulate the data. Some of these choices may				
765	have affected the relative performance of DDMs vs. SDMs. For example, DDM performance				
766	may have improved, relative to SDMs, if we included systematic, environmental change,				

Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight

Deleted: This is the exact opposite case .F at a site a error the location of a futureThis provides another reason why DDMs are a promising tool for invasion risk mapping.

770	allowing estimated vital rates to change through time with environmental drivers (Evans et al.		
771	2016). And the relative accuracy of DDMs might have declined if the DDM model did not		
772	closely match the simulation model. However, the main result of our paper, that density-	<	Deleted: two
 773	independent DDMs will only be useful when demographic data are collected from areas where		Deleted: s
774	populations are below carrying capacity is likely robust to all of these caveats.		Deleted: , or when species grow quickly, are
775	For modelers who wish to predict species ranges using process-explicit models for		Deleted: project
776	species with data collected from populations near carrying capacity, one option is to model	(Deleted: slow-growing species, or
 777	density dependence explicitly. Simulation studies have found that models including carrying-		Deleted: explicitly
778	capacity (Pagel and Schurr 2012, Schurr et al. 2012) can outperform density-independent		
779	methods when predicting species occurrence (Zurell et al. 2016). And there are a few examples		
780	of empirically_driven density-dependent demographic models (Vanderwel et al. 2013, García-		
781	Callejas et al. 2016, Pagel et al. 2020). These models, which incorporate density dependence		
782	explicitly are likely required to predict transient dynamics and project species abundances (rather		
783	than just presence absence). Unfortunately, fitting density-dependent models requires, not only		
784	data at multiple sites, across multiple environmental conditions, and tracking multiple life stages,		
785	but also requires replication across populations at different densities. This may be impractical to		
786	obtain in many scenarios. Here, we have demonstrated that ignoring density dependence when		
787	predicting species ranges from demographic models is a practical first step and likely appropriate		Deleted: projecting
788	in several situations.		
l 789			

797 References

- 798 Ackerly, D. D. et al. 2010. The geography of climate change: implications for conservation
- biogeography. Divers. Distrib. 16: 476–487.
- 800 Barbraud, C. et al. 2011. Contrasted demographic responses facing future climate change in
- 801 Southern Ocean seabirds. J. Anim. Ecol. 80: 89–100.
- 802 Beverton, R. J. H. and Holt, S. J. 2012. On the Dynamics of Exploited Fish Populations.
- 803 Briscoe, N. J. et al. 2019. Forecasting species range dynamics with process-explicit models:
- 804 matching methods to applications. Ecol. Lett. 22: 1940–1956.
- Buckley, L. B. et al. 2010. Can mechanism inform species' distribution models? Ecol. Lett. 13:
 1041–1054.
- Burns, J. H. et al. 2013. Greater sexual reproduction contributes to differences in demography of
 invasive plants and their noninvasive relatives. Ecology 94: 995–1004.
- 809 Cabral, J. S. et al. 2017. Mechanistic simulation models in macroecology and biogeography:
- 810 state-of-art and prospects. Ecography (Cop.). 40: 267–280.
- 811 Caswell, H. 2001. Matrix population models : construction, analysis, and interpretation. Sinauer
- 812 Associates.
- 813 Csergő, A. M. et al. 2017. Less favourable climates constrain demographic strategies in plants (J
- 814 Gurevitch, Ed.). Ecol. Lett. 20: 969–980.
- 815 Cushing, J. M. et al. 2002. Chaos in ecology : experimental nonlinear dynamics. Academic
 816 Pres.
- 817 Dahlgren, J. P. et al. 2014. Local environment and density-dependent feedbacks determine
- 818 population growth in a forest herb. Oecologia 176: 1023–1032.
- 819 Davis, M. A. 2009. Invasion Biology. Oxford University Press.

- 820 Diez, J. M. et al. 2014. Probabilistic and spatially variable niches inferred from demography (E
- 821 Jongejans, Ed.). J. Ecol. 102: 544–554.
- Easterling, M. R. et al. 2000. Size-Specific Sensitivity: Applying a New Sructured Population
 Model. Ecology 81: 694–708.
- Eckhart, V. M. et al. 2011. The geography of demography: long-term demographic studies and
- 825 species distribution models reveal a species border limited by adaptation. Am. Nat. 178
- 826 Suppl 1: S26-43.
- 827 Ehrlén, J. et al. 2016. Advancing environmentally explicit structured population models of plants
- 828 (A Griffith, Ed.). J. Ecol. 104: 292–305.
- Elith, J. and Leathwick, J. R. 2009. Species Distribution Models: Ecological Explanation and
 Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40: 677–697.
- 831 Ellner, S. P. et al. 2016. Density Dependence. In: Data-driven Modelling of Structured
- 832 Populations. Springer, Cham, pp. 111–138.
- Evans, M. E. K. et al. 2016. Towards Process-based Range Modeling of Many Species. Trends
 Ecol. Evol. 31: 860–871.
- 835 Fordham, D. A. et al. 2013. Tools for integrating range change, extinction risk and climate
- 836 change information into conservation management. Ecography (Cop.). 36: 956–964.
- 837 Fordham, D. A. et al. 2018. How complex should models be? Comparing correlative and
- 838 mechanistic range dynamics models. Glob. Chang. Biol. 24: 1357–1370.
- Fournier, A. M. V. et al. 2019. Site-selection bias and apparent population declines in long-term
 studies. Conserv. Biol. 33: 1370–1379.
- 841 García-Callejas, D. et al. 2016. Projecting the distribution and abundance of Mediterranean tree
- species under climate change: a demographic approach. J. Plant Ecol. 10: rtw081.

- 843 Guisan, A. et al. 2013. Predicting species distributions for conservation decisions (H Arita, Ed.).
- Ecol. Lett. 16: 1424–1435.
- 845 Haak, C. 2000. The concept of equilibrium in population ecology.
- 846 Hijmans, R. J. et al. 2017. dismo: Species distribution modeling.: 1-68.
- 847 Holt, R. D. 2009. Bringing the Hutchinsonian niche into the 21st century: ecological and
- 848 evolutionary perspectives. Proc. Natl. Acad. Sci. U. S. A. 106 Suppl 2: 19659–65.
- 849 IUCN 2012. IUCN Red List Categories and Criteria. IUCN.
- 850 Keith, D. A. et al. 2008. Predicting extinction risks under climate change: coupling stochastic
- 851 population models with dynamic bioclimatic habitat models. Biol. Lett. 4: 560–563.
- 852 Kéry, M. et al. 2017. AHMbook: Functions and Data for the Book "Applied Hierarchical
- 853 Modeling in Ecology."
- Lavine, M. et al. 2002. Statistical modeling of seedling mortality. J. Agric. Biol. Environ. Stat.
 7: 21–41.
- 856 Liu, C. et al. 2020. Species distribution models have limited spatial transferability for invasive
- 857 species (C Bertelsmeier, Ed.). Ecol. Lett.: ele.13577.
- Marshall, G. 2016. Individual performance and population dynamics of Plantago lanceolata in
 Southeast Queensland.
- 860 May, R. M. 1974. Biological Populations with Nonoverlapping Generations: Stable Points,
- 861 Stable Cycles, and Chaos. Science (80-.). 186: 645–647.
- 862 Merow, C. et al. 2014. On using integral projection models to generate demographically driven
- 863 predictions of species' distributions: development and validation using sparse data. -
- 864 Ecography (Cop.). 37: 1167–1183.
- 865 Merow, C. et al. 2017. Climate change both facilitates and inhibits invasive plant ranges in New

- 866 England. Proc. Natl. Acad. Sci. U. S. A.: 201609633.
- 867 Meyer, C. et al. 2015. Global priorities for an effective information basis of biodiversity
- distributions. Nat. Commun. 6: 8221.
- 869 Needham, J. et al. 2018. Inferring forest fate from demographic data: from vital rates to
- 870 population dynamic models. Proc. R. Soc. B Biol. Sci. 285: 20172050.
- 871 Normand, S. et al. 2014. Demography as the basis for understanding and predicting range
- 872 dynamics. Ecography (Cop.). 37: 1149–1154.
- 873 Owens, H. L. et al. 2013. Constraints on interpretation of ecological niche models by limited
- 874 environmental ranges on calibration areas. Ecol. Modell. in press.
- Pagel, J. and Schurr, F. M. 2012. Forecasting species ranges by statistical estimation of
 ecological niches and spatial population dynamics. Glob. Ecol. Biogeogr. 21: 293–304.
- 877 Pagel, J. et al. 2020. Mismatches between demographic niches and geographic distributions are
- strongest in poorly dispersed and highly persistent plant species. Proc. Natl. Acad. Sci. U.
 S. A. 117: 3663–3669.
- 880 Pearson, R. G. and Dawson, T. P. 2003. Predicting the impacts of climate change on the
- 881
 distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12:
- 882 361–371.
- 883 Pironon, S. et al. 2017. Geographic variation in genetic and demographic performance: new
- insights from an old biogeographical paradigm. Biol. Rev. 92: 1877–1909.
- 885 Quinn II, T. J. and Deriso, R. B. 1999. Quantitative fish dynamics. Oxford University Press.
- 886 Quintana-Ascencio, P. F. et al. 2018. Predicting landscape-level distribution and abundance:
- 887 Integrating demography, fire, elevation and landscape habitat configuration (S Zhou, Ed.). -
- 888 J. Ecol. 106: 2395–2408.

- 889 Ramula, S. et al. 2008. General guidelines for invasive plant management based on comparative
- demography of invasive and native plant populations. J. Appl. Ecol. 45: 1124–1133.
- 891 Salguero-Gómez, R. et al. 2015. The compadre Plant Matrix Database: An open online
- repository for plant demography. J. Ecol. 103: 202–218.
- Salguero-Gómez, R. et al. 2016. COMADRE: A global data base of animal demography. J.
 Anim. Ecol. 85: 371–384.
- Schurr, F. M. et al. 2012. How to understand species' niches and range dynamics: a demographic
 research agenda for biogeography. J. Biogeogr. 39: 2146–2162.
- 897 Sexton, J. P. et al. 2009. Evolution and Ecology of Species Range Limits. Annu. Rev. Ecol.
- 898 Evol. Syst. 40: 415–436.
- Sheth, S. N. and Angert, A. L. 2018. Demographic compensation does not rescue populations at
 a trailing range edge. Proc. Natl. Acad. Sci. U. S. A. 115: 2413–2418.
- 901 Shinozaki, K. and Kira, T. 1956. Intraspecific competition among higher plants. VII. Logistic
- 902 theory of the C-D effect. J. Inst. Polytech. Osaka Cy.: 35–72.
- 903 Stohlgren, T. J. et al. 2011. Bounding species distribution models. Curr. Zool. 57
- 904 Strogatz, S. H. 1994. Nonlinear Dynamics and Chaos. CRC press.
- 905 Teller, B. J. et al. 2016. Linking demography with drivers: climate and competition (J Metcalf,
- 906 Ed.). Methods Ecol. Evol. 7: 171–183.
- 907 Thuiller, W. et al. 2014. Does probability of occurrence relate to population dynamics? -
- 908 Ecography (Cop.). 37: 1155–1166.
- 909 Vanderwel, M. C. et al. 2013. Climate-related variation in mortality and recruitment determine
- 910 regional forest-type distributions. Glob. Ecol. Biogeogr. 22: 1192–1203.
- 911 Villellas, J. et al. 2015. Demographic compensation among populations: what is it, how does it

- 912 arise and what are its implications? (J Hille Ris Lambers, Ed.). Ecol. Lett. 18: 1139–1152.
- 913 Williams, J. L. et al. 2011. Distance to stable stage distribution in plant populations and
- 914 implications for near-term population projections. J. Ecol. 99: 1171–1178.
- Wood, S. N. 2017. Generalized additive models: An introduction with R, second edition. CRC
 Press.
- 917 Zurell, D. et al. 2010. The virtual ecologist approach: simulating data and observers. Oikos 119:
- 918 622–635.
- 919 Zurell, D. et al. 2016. Benchmarking novel approaches for modelling species' range dynamics. -
- 920 Glob. Chang. Biol. 22: 2651–2664.