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Abstract:  6	

Accurately predicting species ranges is a primary goal of ecology. Demographic distribution 7	

models (DDMs), which correlate underlying vital rates (e.g. survival and reproduction) with 8	

environmental conditions, can potentially predict species ranges through time and space. 9	

However, tests of DDM accuracy across wide ranges of species’ life histories are surprisingly 10	

lacking. Using simulations of 1.5 million hypothetical species’ range dynamics, we evaluated 11	

when DDMs accurately predicted future ranges, to provide clear guidelines for the use of this 12	

emerging approach. We limited our study to deterministic demographic models ignoring density 13	

dependence, since these models are the most commonly used in the literature. We found that 14	

density-independent DDMs overpredicted extinction if populations were near carrying capacity 15	

in the locations where demographic data were available. However, DDMs accurately predicted 16	

species ranges if demographic data were limited to sites with mean initial abundance less than 17	

one half of carrying capacity. Additionally, the DDMs required demographic data from at least 18	

25 sites, over a short time-interval (<10 time-steps), as populations initially below carrying 19	

capacity can saturate in long-term studies. For species with demographic data from many low 20	

density sites, DDMs predicted occurrence more accurately than correlative species distribution 21	

models (SDMs) in locations where the species eventually persisted, but not where the species 22	

went extinct. These results were insensitive to differences in simulated dispersal, levels of 23	

environmental stochasticity, the effects of the environmental variables, and the functional forms 24	

of density dependence.	Our findings suggest that deterministic, density-independent DDMs are 25	

appropriate for applications where locating all possible sites the species might occur in is 26	

prioritized over reducing false presence predictions in absent sites. This makes DDMs a 27	
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promising tool for mapping invasion risk. However, demographic data are often collected at sites 53	

where a species is abundant. Density-independent DDMs are inappropriate in this case.  54	
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Introduction 61	

Spatial projections of species occurrence and persistence are essential for developing ecological 62	

theory and improving environmental management (Guisan et al. 2013, Meyer et al. 2015, 63	

Briscoe et al. 2019). While scientists and environmental agencies commonly correlate static 64	

presence/absence data with environmental variables to project species ranges (Elith and 65	

Leathwick 2009, Guisan et al. 2013, Hijmans et al. 2017), the accuracy and utility of these 66	

projections have been criticized, especially when projecting distributions in time or to novel 67	

environments (Pearson and Dawson 2003, Thuiller et al. 2014, Zurell et al. 2016, Cabral et al. 68	

2017, Briscoe et al. 2019). Unfortunately, due to current, rapid, environmental change, 69	

projections in time and to novel environments are urgently needed (Ackerly et al. 2010). 70	

Demographic distribution models (DDMs), which model vital rates, such as survival, 71	

development, and reproduction, as functions of environmental variables, have been proposed as a 72	

promising alternative for generating these projections (Merow et al. 2014, 2017, Zurell et al. 73	

2016, Briscoe et al. 2019). DDMs are promising because they model the underlying mechanisms 74	

that drive occurrence (Normand et al. 2014, Cabral et al. 2017), mechanisms which may continue 75	

to hold in new environments. Yet the accuracy and limitations of DDMs are poorly understood.  76	

The first step to building a DDM is regressing vital rates against environmental factors to 77	

determine trajectories of population size through time, which then may be projected into the 78	

future to predict species occurrence and abundance (Villellas et al. 2015, Ehrlén et al. 2016, 79	

Cabral et al. 2017, Csergő et al. 2017). This explicit focus on capturing how environmental 80	

variables on vital rates differs from other approaches using demographic models to to project 81	

species’ ranges. For example, coupled niche-population models use stochastic demographic 82	

models to project range dynamics, but vital rates are typically fixed, with environmental effects 83	
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captured by constraining potential habitat and carrying capacity based on modelled habidtat 84	

suitability (Keith et al. 2008, Fordham et al. 2013, 2018). Such approaches allow one to 85	

explicitly project range dynamics with limited demographic data accross sites, but their reliance 86	

on occurance data to model environmental cosntraints means that they cab suffer from many of 87	

the same drawbacks as correlative SDMs (Briscoe et al. 2019). Unfortunately, DDMs also have 88	

important drawbacks. Even the simplest DDMs require population abundance data through time 89	

(Buckley et al. 2010), or detailed demographic data tracking many individuals and their offspring 90	

within a field season (Merow et al. 2014). In both cases, these data must be collected at multiple, 91	

geographically, and climatically dissimilar sites, and classified by age, and/or size of 92	

development (Caswell 2001, Needham et al. 2018). This requirement of spatial and temporal 93	

replication is challenging in its own right. Therefore, DDMs typically ignore the effect of 94	

intraspecific competition on survival or reproduction, despite tools for incorporating density-95	

dependence effects in demographic models (Cushing et al. 2002, Dahlgren et al. 2014, Teller et 96	

al. 2016). To our knowledge, the vast majority of DDMs, parameterized with field data, to 97	

project species ranges, ignore density-dependent effects (Buckley et al. 2010, Barbraud et al. 98	

2011, Merow et al. 2014, 2017, Sheth and Angert 2018, Needham et al. 2018) but see (Pagel et 99	

al. 2020) for an exception. Such density-independent DDMs predict occupancy by linking 100	

environmental variables to long-term population growth rate, λ, through the variables’ effects on 101	

vital rates in matrix-population or integral-projection models (Buckley et al. 2010, Merow et al. 102	

2014, 2017). The implicit logic is that if λ>1, the local population is predicted to persist; if λ<1, 103	

the population is predicted to go locally extinct in the long-term. 104	

However, estimates of λ from density-independent demographic models do not 105	

necessarily reflect long-term persistence if the population experiences density-dependent 106	
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survival, development, and/or fecundity. If fecundity or survival are lower at high population 108	

densities due to, for example, competition for resources, populations can approach a long-term 109	

equilibrium abundance – which we will refer to as carrying capacity. It is likely that 110	

demographers often collect data where populations are abundant, i.e. close to carrying capacity 111	

(Quintana-Ascencio et al. 2018, Fournier et al. 2019). This is because large populations are 112	

easier to find and researchers often go where healthy populations are known to exist, not to 113	

fringe populations, likely to produce small datasets. However, in healthy populations near 114	

carrying capacity, there may be limited population growth, even if the site is highly suitable. 115	

Demographic models fit to data from these sites should produce λ ~1, and therefore, an estimate 116	

of λ<1 could simply reflect measurement error, disturbance, or temporary declines after 117	

populations exhausted their resources. In short, if demographic data are collected in field sites 118	

where the species is abundant, a density-independent DDM using these data could erroneously 119	

map prime habitat as uninhabitable. Therefore, it is no surprise that empirical studies often find 120	

estimates of λ uncorrelated or even negatively correlated with habitat suitability or species 121	

occurrence (Diez et al. 2014, Thuiller et al. 2014, Csergő et al. 2017). In contrast, there are at 122	

least two cases of density-independent DDMs built from demographic data restricted to sites 123	

with small populations (e.g. an invasive species and species experiencing high levels 124	

disturbance). In these cases, λ successfully predicted species occurrence (Merow et al. 2014, 125	

2017).  126	

 Given the mixed success of initial attempts to predict species ranges using density-127	

independent demographic models, we set out to determine general guidelines for when these 128	

models can predict species occupancy accurately. We achieved this by simulating range dynamic 129	

data, and observers sampling the data to build DDMs. We then compared DDM predictions 130	
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against long term occupancy, assessed DDM accuracy, and correlated DDM accuracy with 131	

various species and population characteristics. Finally, we compared DDM predictions to 132	

predictions from standard correlative species distribution models (SDMs). In face of limited data 133	

available to validate predictions of species range dynamics, our simulated approach provides a 134	

tool for assessing DDM accuracy. Our computational framework has many advantages over 135	

traditional validation and sensitivity analyses using real-world data, including: increased 136	

repeatability, transparency, sample sizes, and control over environmental and historical factors 137	

(Zurell et al. 2010) – all of which help improve the generality of the results.  138	
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Material and methods 139	

Our study involved three separate processes: (1) simulating population dynamics for hypothetical 140	

species using a stochastic, negative density-dependent, spatially-explicit, stage-structured 141	

population model with two life stages (juvenile, adult) and juvenile dispersal (see Fig 1 for a 142	

graphical description of the model); (2) simulating sampling by field workers conducting 143	

demographic surveys across a subset of the species’ habitat; and (3) fitting demographic 144	

distribution models, computed from the sampled field data. To determine the characteristics of 145	

species that can successfully be modeled using demographic distribution models, we simulated 146	

the range dynamics of 1.5 million hypothetical species that differed in their maximum survival 147	

rates at each life stage, maximum fecundity at low densities, maximum carrying capacity, 148	

response to environmental variables, stochastic variability in survival, initial population 149	

densities, and proportion of the population that disperses at each time step. We then determined 150	

if we could draw general conclusions about the species for which DDMs made accurate vs. 151	

inaccurate predictions of species occurrence. 152	

  153	
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 157	

 158	

Fig	1.	A	graphical	depiction	of	the	simulation	model.	Solid	dark	arrows	represent	the	159	

effects	of	environmental	variables	and	population	density	on	vital	rates	(thick	yellow	160	

arrows)	in	the	baseline	scenario.	Dashed	arrows	are	for	effects	absent	in	the	baseline	161	

scenario,	but	which	are	tested	in	the	sensitivity	analysis.	Blue	curves	show	the	assumed	162	

functional	relationships	between	the	variables.	Note	that	both	elevation	and	forest	cover	163	

affect	survival	in	both	life	stages,	but	repeated	arrows	are	omitted	to	improve	readability.	164	

For	the	beverton-Holt	and	logistic	fecundity	curves,	the	fecundity	axis	is	total	offspring	165	

(this	is	rescaled	to	expected	per-capita	offspring	in	the	model	description).	166	

  167	
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 168	

Simulated population dynamics - survival 169	

We simulated population dynamics using a simple stochastic model. The probability of survival 170	

for an individual in life stage s and site i, 𝜑(i, s), was a function of life stage, and environmental 171	

conditions, 172	

𝜑(𝑖, 𝑠) =
𝜓!𝑒"($,!)

1 + 𝑒"($,!)
, (eqn. 1) 

𝑢(𝑖, 𝑠) =-.𝛼',!,(𝑥$,( + 𝛼),!,(𝑥$,(
)
1

*!

(+'

+ 𝛼, + 𝜖$,!,- . (eqn. 2) 

In the above equations, xi, j is the value of environmental variable j in site i, (j = 1, …, ne), where 173	

ne is the number of environmental variables. The parameter 𝜓! is the maximum expected 174	

survival probability in life stage s. The functional form in (eqn. 1) maps linear and quadratic 175	

combinations of the environmental variables, u, to survival, so that survival is always bounded 176	

between 0 and 𝜓!.	The coefficient 𝛼',!,(, is the linear trend between the link to survival, of life 177	

stage s, and the environmental variable j, whereas 𝛼),!,( is the quadratic trend. If the quadratic 178	

coefficient is negative, 𝛼),!,( < 0, survival is maximized at intermediate values of environmental 179	

variable j, along its gradient, to resemble first principles of the Hutchinsonian niche concept 180	

(Holt 2009). Whereas, if 𝛼',!,( > 0, and 𝛼),!,( = 0,	then increases in environmental variable j 181	

strictly increase survival. Spatial and temporal variation in survival during life stage s, not 182	

attributable to the environmental variables, xi,j is given by, 𝜖$,!,-, a random variable with zero 183	

expectation. The intercept, 𝛼,, is set to zero throughout the paper with no loss of generality. 184	

  185	

Simulated population dynamics - fecundity 186	
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As standard in ecological modeling and environmental management (Quinn II and Deriso 1999), 191	

we incorporated density-dependence in simulated fecundity. We considered two of the most 192	

widely used types of negative density-dependence in the literature. The first was logistic 193	

fecundity, where the expected number of juvenile offspring was determined by the logistic model 194	

(May 1974). This represented scramble competition, where population sizes above carrying 195	

capacity cause declines in total viable offspring. The second was Beverton-Holt (aka. reciprocal 196	

yield) density dependence (Shinozaki and Kira 1956, Beverton and Holt 2012). This represented 197	

contest competition, decreasing per-capita fecundity, but increasing total fecundity, with respect 198	

to population size. Both of these fecundity functions were parameterized with the variables fmax 199	

and ki, per capita fecundity at low adult abundance and adult carrying capacity in site i, 200	

respectively. We refer to the fecundity function in site i as fi(n), where n is the number of adults 201	

in the given site and time. Note, however, that we did not consider Allee effects and use density-202	

dependence synonymously with strict negative density dependence. For details on the functional 203	

forms and parameterization of these standard ecological models, see appendix A. 204	

 205	

Simulation algorithm 206	

We considered a population with two life stages, juvenile (s = 0) and adult (s = 1), and assumed 207	

juveniles became adults after one time step or died in that period of time. Therefore, 𝜑(𝑖, 0) was 208	

the probability of a juvenile in site i transitioning to an adult and, 1 − 𝜑(𝑖, 0) was the associated 209	

mortality probability. The unit of each time step was one iteration of the demographic model, 210	

often thought of as one year (Salguero-Gómez et al. 2016). However, for generality, we do not 211	

specify the time unit since the species are hypothetical.  212	
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Note that a deterministic version of this simulation, without dispersal, is equivalent to 216	

simulating a standard matrix population model governed by the density-dependent Lefkovitch 217	

matrix (Caswell 2001), 218	

9
0 𝑓$(𝑛)

𝜑(𝑖, 0) 𝜑(𝑖, 1)<
, (eqn. 3) 

 219	

 220	

where, 𝑓$(𝑛) is per-capita adult fecundity, and with survival probabilities 𝜑(𝑖, 0) and	𝜑(𝑖, 1), 221	

determined by eqn 1. Therefore, one can predict the persistence of the population (in an 222	

analogous deterministic scenario) by the leading eigenvalue of the linearized system at the 223	

extinction equilibrium, e.g. the eigenvalue of, 224	

9
0 𝑓./0

𝜑(𝑖, 0) 𝜑(𝑖, 1)<
, (eqn. 4) 

 225	

which yields an expected long-term population growth rate, at low population densities, in site, i,  226	

 227	

𝜆̅$ =
1
2 @𝜑(𝑖, 1) + A𝜑(𝑖, 1)

) + 4𝑓./0𝜑(𝑖, 0)C. 
(eqn. 5) 

 228	

If 𝜆̅$ < 1, a population in site i will eventually go extinct without dispersal from other sites or a 229	

series of random favorable years; similarly, if 𝜆̅$ > 1, the population will persist in the absence 230	

of random fluctuations. 231	

 232	

The full stochastic simulation, including dispersal, involved four steps. We: 233	
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1. Drew the number of surviving juveniles that became adults in the next time step, in each 236	

site, from a binomial distribution with the number of trials equal to the number of 237	

juveniles in the previous time step and probability of survival, 𝜑(𝑖, 0); 238	

2. Drew the number of surviving adults in each site, from a binomial distribution with the 239	

number of trials equal to the number of adults in the previous time step and probability 240	

of survival, 𝜑(𝑖, 1); 241	

3. Drew the number of new juveniles from a Poisson distribution with expectation 𝑓$(𝑛)𝑛 242	

[See Appendix A for details about the fecundity function 𝑓$(𝑛)] 243	

4. Randomly selected a fraction of new juveniles (offspring in step 3), pd, to disperse, 244	

where each dispersing individual has an equal probability of landing in each site. 245	

5. Updated the total number of adults to equal the surviving adults plus the surviving 246	

juveniles (new adults), and updated the total number of juveniles as the new juveniles 247	

from reproduction, accounting for offspring entering and exiting the site, due to 248	

dispersal. 249	

 250	

Simulation scenarios 251	

The main goal of the study was to test how different species varying in survival rates, 252	

fecundity, dispersal, responses to environmental variables, stochasticity, and initial abundance 253	

affect the accuracy of demographic distribution model (DDM) predictions. We first calculated 254	

DDM performance for a baseline scenario, with logistic fecundity, and parameters set to values 255	

in Table 1. We then performed a sensitivity analysis, where we simulated the population 256	

dynamics and fit distribution models under 1,000 random combinations of parameter values, 257	

each under the two different density-dependent fecundity functions, three correlation structures 258	
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between fecundity and survival, and three different ways of distributing initial population density 259	

in space, each containing approximately 50 different density distributions. This created 1.5 260	

million experiments, each over 4,915 sites and two age-classes (over 145-billion time series).  261	

In both the baseline and the sensitivity analysis, we simulated population dynamics of 262	

hypothetical species over 4,195, 10 km2, sites in Switzerland, affected by elevation, xi,1, and 263	

forest cover, xi,2 (Fig. S1ab), standardized to zero mean and unit standard deviation (Kéry et al. 264	

2017). We let 𝜖$,!,- be independently, identically, normally distributed with mean 0 and standard 265	

deviation, σ. Site-specific carrying capacity, ki, was set to maximum abundance, kmax, times the 266	

proportion of the site covered by forest. In sites with ki<5, we set carrying capacity to zero, to 267	

represent too little habitat for a persistent, long-term population. We set initial abundances in 268	

sites where the species would persist in the absence of stochasticity (sites with 𝜆̅$ > 1) to 269	

specified proportions of carrying capacity. We randomly selected 5% of sites where forest cover 270	

was high enough to yield carrying capacity above 10 individuals, but where survival was too low 271	

to maintain a long term viable population (sites with 𝜆̅$ < 1) and set their initial adult 272	

abundances to 10 individuals, to represent invaded sink populations. There were 200 time-steps 273	

in the simulations.  274	

 For the sensitivity analysis (see Table 1), maximum adult and juvenile survival, 𝜓' 275	

and	𝜓,, were assigned random values uniformly drawn between 0.01 and 0.99. This wide range 276	

includes slow-growing, long-lived species and fast-growing, short-lived species. The linear 277	

effect of forest cover on survival,	𝛼',!,', was randomly drawn from a uniform distribution from 0 278	

to 3. To produce ecologically sensible, yet wide ranges for the effect of elevation on survival, we 279	

drew the quadratic elevation effect, 𝛼),!,', from a uniform distribution from -3 to 0, and then also 280	

drew a preferred elevation, v, uniformly over the entire elevation range in the data, and chose the 281	
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linear elevation effect to maximize survival at this preferred elevation, namely, 𝛼',!,' =287	

−2𝑣𝛼),!,'. A quadratic factor of zero represented species that could survive across all observed 288	

elevations equally, whereas -3 was for species that could only tolerate a narrow range of 289	

elevations.  290	

We considered three scenarios for maximum viable offspring at low population densities, 291	

fmax, (1) positively correlated with survival, (2) negatively correlated with survival, and (3) fixed 292	

across sites. For the fixed case, in each of the 1,000 parameter sets, fmax was randomly drawn 293	

from a uniform distribution ranging between the lowest possible number such that the species 294	

would be expected to persist in at least 5% of sites (i.e. 	𝜆̅$ > 1), and the largest possible number 295	

for which carrying capacity was guaranteed to be a stable equilibrium at the most favorable site, 296	

given 𝜓', 𝜓,, and the effects of environmental variables (which were drawn first). The last 297	

constraint simply eliminated the possibility of chaotic and unstable, periodic dynamics, and was 298	

determined through standard linear stability analysis (Strogatz 1994) techniques (see Appendix 299	

B). In the correlated case, fmax, was different at each site according to the environmental variables 300	

at that site. This was achieved by drawing a number between the maximum and minimum values 301	

for fmax described above, for each site, using a beta distribution, with beta distribution parameters 302	

as a function of environmental variables. This made fmax more likely to be high in sites with high 303	

survival, and low in sites with low survival (see the section “environmentally driven fecundity 304	

scenarios” in Appendix B for details). The negatively correlated scenario was achieved similarly 305	

(Appendix B).  306	

The standard deviations of environmental stochasticity and the dispersal proportion were 307	

uniformly randomly generated on (0, 0.5) and (0, 0.05), respectively, to represent wide ranges for 308	

the types of species an ecologist would consider fitting a deterministic demographic model 309	
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without dispersal. Maximum carrying capacity across all sites, kmax, was also uniformly 312	

distributed.  313	

We considered three different scenarios for how initial population sizes were distributed 314	

through space: (1) fixed initial abundances at all sites where the species was expected to persist 315	

were varied factorially with each parameter combination, using 51 values between 5% and 135% 316	

of local carrying capacity; (2) initial abundance set at 25, 50 and 75% of the carrying capacity in 317	

a fixed proportion of sites and carrying capacity in the other sites (varied across all possible 318	

proportions); and (3) uniformly distributed abundance, with 46 mean values [from 52.5%, 319	

corresponding to a lower bound of 5%, to 100% of carrying capacity]. 320	

 321	
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Table 1. A list of parameters used in the species range dynamics baseline simulations (third 324	

column), which are perturbed in the sensitivity analysis (fourth column) to test the generality of 325	

results for different types of hypothetical species.  326	

*chosen to maximize survival at a uniform randomly chosen preferred elevation, over all 327	

possible elevations in the data, given a random quadratic elevation effect, drawn from the range 328	

in the row below. 329	

330	

Parameter Description Baseline Value Range tested 

𝜓, Maximum juvenile survival  0.5 0.01 – 0.99 

𝜓' Maximum adult survival 0.5 0.01 – 0.99 

𝛼',!,' Linear forest cover effect of stage s survival 0.5 0 – 3 

𝛼',!,) Linear elevation effect on stage s survival 0.5 -5 – 23* 

𝛼),!,) Quadratic elevation effect on stage s 

survival 

-0.5 -3 – 0 

pd Dispersal proportion per time step 0.01 0 – 0.05 

σ Standard deviation of environmental 

stochastic effect on survival 

0.25 0 – 0.5 

fmax Fecundity at zero density, i.e. maximum 

fecundity [surviving offspring / adult] 

4 0.1 – 250 

kmax Maximum carrying capacity (at a site with 

100% forest cover) [number of adults] 

1,000 500 – 1,000 
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Simulated field sampling 332	

We assumed that simulated population dynamics represented the true population, and sampled 333	

from this population by simulating a demographer using common field-sampling methods 334	

(Zurell et al. 2010). Sampling occurred for ten time-steps from the start of the simulation with 335	

dispersal turned off, to simplify the analysis and mimic a situation where the researcher can 336	

account for the origin of individuals in the site. The virtual ecologist randomly chose ns sites 337	

where the species was present at the beginning of the simulation and then counted the number of 338	

surviving juveniles (new adults), surviving adults, and new juveniles, at each sampled site, over 339	

ten time-steps. While this is a standard approach (Lavine et al. 2002), an alternative, but more 340	

laborious and computationally expensive, approach, would model individual organisms, and 341	

track a sampled subset of these individuals. Tracking individuals is advantageous if one wants to 342	

quantify individual variability in demographic processes, but this was not a focus of our study. 343	

Also, considering we were analyzing nearly five-billion time series, computational efficiency 344	

was required to make sure results were general across species. We set ns = 200 sites, representing 345	

a highly optimistic, but realistic sample size. For example, previously, DDMs have used 138 346	

sites (Merow et al. 2014). We selected a high value because the purpose of the study was to 347	

identify species for which DDMs could generate useful predictions given high-quality data, but 348	

we also tested DDM accuracy for scenarios with 50, 30, 25 and 20 sampled sites. We set the 349	

length of demographic surveys to two years, but we also tested survey lengths of three, five, 10 350	

and 20 years. 351	

 352	

Distribution models 353	
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The demographic distribution model (DDM) assumed that the population dynamics in site i were 354	

governed by a two-stage matrix population model. While a variety of density-independent 355	

demographic models have been used to build DDMs in the literature, including integral 356	

projection models (Merow et al. 2014, 2017) and matrix population models (Buckley et al. 357	

2010), we chose a matrix approach for both the simulation and fitted DDM because it is the 358	

simplest and most computationally efficient model that maintains the essential demographic 359	

features of structured population dynamics. The fitted model was, 360	

 

𝑁FF⃗ $,-1' = 𝑨𝒊𝑁FF⃗ $,-; 

 

𝑨$ = J
0 𝑓K(𝑥$,', 𝑥$,))

𝜙M,(𝑥$,', 𝑥$,)) 𝜙M'(𝑥$,', 𝑥$,))N
, 

 

(eqn. 6) 

where Ai is a transition matrix for site i, and 𝑓K(𝑥$,', 𝑥$,)), 𝜙M,(𝑥$,', 𝑥$,)), and 𝜙M'(𝑥$,', 𝑥$,)) are the 361	

estimated fecundity, juvenile and adult survival in site i, respectively. Note these are functions of 362	

the two environmental variables in site i, 𝑥$,', and	𝑥$,).	The estimation of 𝑓K(𝑥$,', 𝑥$,)), 363	

𝜙M,(𝑥$,', 𝑥$,)), and 𝜙M'(𝑥$,', 𝑥$,)) was performed using a statistical model. From the simulated field 364	

sampling of demographic data, we computed the observed per-capita fecundity, number of 365	

surviving adults and juveniles over the sampling period. These quantities were uniquely 366	

determined because we turned off dispersal during the period of demographic sampling. This 367	

procedure created a vector of observed juveniles survived, adults survived, and fecundity, each 368	

with the number of entries equal to the number of sites. The functions 𝜙M,, 𝜙M', and 𝑓K, were then 369	

estimated using generalized additive models,  function ‘gam’ in R (Wood 2017). The generalized 370	
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additive models assumed binomially distributed counts of surviving adults and juveniles and 382	

Poisson distributed total offspring with a rate parameter equal to an estimated parameter, based 383	

on environmental predictors, times the number of adults at the site. The estimated parameter was 384	

therefore expected per-capita fecundity. We restricted total offspring predictions to the range of 385	

observed values to avoid issues extrapolating beyond the data, as is common in distribution 386	

modelling (Stohlgren et al. 2011, Owens et al. 2013). 387	

 The DDMs predicted a unique matrix, Ai, for every site based on the environmental 388	

variables at that site. We used the predicted Ai to calculate the long-term population growth rate, 389	

λi, by computing Ai’s leading eigenvalue. Following standard practice for DDMs (Merow et al. 390	

2014, 2017), we interpreted λi as a measure of persistence, where λi<1 predicted eventual 391	

extinction and λi>1 predicted long-term persistence at a given site. We then compared the 392	

predicted λi values to the presence of the species, 200-time steps after demographic sampling, to 393	

determine whether DDM predictions of persistence were correlated with long-term persistence at 394	

a site. Note that, throughout the paper, we refer to λi as long-term population growth rate from 395	

the fitted DDM, whereas 𝜆̅$ is the expected population growth rate from a deterministic version 396	

of the true model used to simulate the data. 397	

We also compared how accurately the DDMs predicted occupancy in comparison to 398	

correlative species distribution models (SDMs). SDMs were generalized additive models, 399	

predicting the probability of species’ presence given presence/absence data and environmental 400	

variable values, at the ns sampled sites, at the end of demographic sampling. In cases where the 401	

generalized additive models did not converge (less than 0.1 percent of scenarios), for both the 402	

DDM and SDM, we used generalized linear models with similarly distributed error. To calculate 403	
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the prediction accuracy of the SDM we considered sites to be predicted present when the 419	

modeled probability of presence was greater than 0.5.  420	

  421	
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Results 422	

For the baseline scenario, with all parameters set to intermediate values, and initial population 423	

sizes in each site set to 10% of local carrying capacity, the DDM performed well. For 95.1% of 424	

the 3,518 sites where the population went extinct (light grey in Fig. 2a), the DDM predicted λi<1 425	

(Fig. 2b). For the 1,397 sites where the species was present at the end of the simulation (green in 426	

Fig. 2a), the DDM predicted λi>1 in 99.7% of these sites. The lack of red pixels in Fig. 2c 427	

denotes the 0.3% of present sites where the DDM incorrectly predicted λi<1.  428	

In the same baseline scenario, but with initial populations at carrying capacity during the 429	

start of demographic sampling, the DDM over-predicted extinction (Fig. 2 d-f). For the 1,415 430	

sites where the species was present at the end of the simulation, the DDM predicted λi>1 at only 431	

39.0% of the sites. On the other hand, out of the 3,500 sites where the population went extinct 432	

(light grey in Fig. 2d), the DDM correctly predicted λi<1, 97.3% of the time (Fig. 2d). This 433	

means the DDM predicted the status of absent sites well regardless of population density at 434	

demographically sampled sites.  435	
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 437	

Fig. 2. Maps of occupancy and predicted population growth rate, λ, from the Demographic Distribution 438	

Model (DDM) of a virtual species in Switzerland, given demographic data sampled from sites with low 439	

(top row) and high (bottom row) population densities, showing an over prediction of extinction when 440	

demographic data come from locations at carrying capacity. (a, d) Map of occupancy at the end of the 441	

simulation, (b, e) predicted population growth rate λ from the DDM, and (c, f) sites where present 442	

populations at the end of the simulation are incorrectly predicted by the DDM to be absent. The initial 443	

population sizes at sampled sites were at 10% of carrying capacity in row 1 (a-c) and at 100% of carrying 444	

capacity in row 2 (d-f), for the baseline parameterization. When demographic samples were conducted at 445	

sites where the populations were at 10% of carrying capacity, the DDM correctly predicted all present 446	

sites as present, whereas the DDM only correctly predicted 56.1% of present sites when demographic 447	

sampling occurred at carrying capacity.  448	
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To summarize, in the baseline scenario, DDMs predicted present sites accurately if initial 449	

density during sampling was close to zero, and inaccurately for initial density at carrying 450	

capacity. However, for what initial density in sampled sites, between 10% and 100% of carrying 451	

capacity, do predictions cease to be accurate at present sites? To identify the critical population 452	

density to achieve a specified target percentage of correctly predicted present sites, we ran the 453	

above simulation with initial densities of 5% to 135% of carrying capacity (Fig. 3) and computed 454	

the proportion of present sites where the DDM predicted λi>1 for each initial density (black dots 455	

in Fig. 3). The black dots in Fig. 3 formed a clear monotonic decreasing pattern, and we fit a 456	

smooth curve to these data (curve in Fig. 3, see Appendix C for details on curve fitting methods). 457	

We then computed the critical population abundance as the intersection of this curve with the 458	

specified target prediction accuracy (Fig. 3). A critical initial population size of 94.2% of 459	

carrying capacity was required to achieve a prediction accuracy of 80% in present sites (circle in 460	

Fig. 3). The critical population abundance needed to correctly predict 90% of present sites was 461	

90.1% of carrying capacity (square in Fig. 3). Unlike true presence predictions, correctly 462	

predicting absent sites was not strongly related to population density, which we discuss further in 463	

the results of the sensitivity analysis. 464	
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 475	

 476	

Fig. 3. The probability that the DDM correctly predicted species’ presence at present sites 477	

declined as population size, relative to carrying capacity, increased at sampled sites. Each black 478	

dot is the proportion of occupied sites at the end of a single simulation where the DDM predicted 479	

λi>1, given an initial population size, during demographic sampling, specified by the x-axis. The 480	

red line is a fitted smooth monotonic curve to these data. The green square and blue circle on the 481	

x-axis are the critical initial population sizes (90.1%, and 94.2% of carrying capacity, 482	

respectively) required, during demographic sampling, to achieve a 90% and 80% chance of 483	

correctly predicting occupied sites at the end of the simulation. All parameters were set to their 484	

baseline, and the fecundity function was logistic. Absent sites were always predicted absent by 485	

the DDM with 96-100% accuracy regardless of initial population abundance in sampled sites and 486	

hence are not displayed here.  487	
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 To demonstrate that Fig 3 was not an artefact of the baseline parameterization chosen, we 490	

then proceeded to calculate the critical population abundance, as in Fig. 3, for every parameter 491	

combination, fecundity function, and correlation scenario in the sensitivity analysis. We set the 492	

true presence accuracy threshold equal to 80% accuracy, a round number close to the 79% 493	

prediction accuracy reported from past empirical DDMs (Merow et al. 2014). A histogram of 494	

critical population abundances across all parameter combinations tested, under both fecundity 495	

functions and all three correlation scenarios, shows that high critical initial population sizes (80-496	

95% of carrying capacity) at demographically sampled sites were the most common (Fig. 4). 497	

This means that DDMs predicted presence accurately even when abundances at sampled sites 498	

were intermediate rather than small. However, in the fixed fecundity scenario, when maximum 499	

fecundity was not spatially correlated with survival, the DDMs did not accurately predict 500	

occupancy at present sites for a few parameter combinations, even when sites had small 501	

population sizes during sampling (small leftmost bar in the middle column of Fig. 4).  502	
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 513	

Fig. 4. Histogram of critical population size at the start of demographic sampling required for the 514	

DDM to achieve 80% prediction accuracy at present sites, across 1,000 randomly drawn 515	

parameter combinations. Critical population density [initial abundance as a proportion of 516	

carrying capacity] was typically between 0.75 - 0.95. The top and bottom rows are for Logistic 517	

and Beverton-Holt negative density-dependent fecundity functions. Maximum fecundity, at low 518	

population densities, is positively and negatively correlated with survival in the left and right 519	

columns. In the middle column, maximum fecundity is fixed across the landscape. As long as 520	

both survival and fecundity were correlated with environmental variables, DDMs achieved an 521	

80% prediction accuracy in nearly all simulations. Note that critical population size means the 522	

population must be at or lower than this population size, to achieve the accuracy threshold. 523	

524	
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 In the case where populations were at 50% of carrying capacity at the start of 526	

demographic sampling DDMs had higher prediction accuracy at present sites than correlative 527	

species distribution models (SDMs) in both the correlated (Fig. 5a) and negatively correlated 528	

(Fig. S2a) fecundity scenarios. However, SDMs predicted locations where the population was 529	

absent more accurately (Fig. 5b and S2b). The trade-off in improved accuracy at present and 530	

absent sites for DDMs and SDMs, respectively, occurred in over 98 percent of the simulations 531	

(points in the lower-right, grey region in Fig 5c and S2c). SDMs improved total accuracy over 532	

DDMs more frequently if survival was correlated with fecundity (more points below the 1-1 line 533	

in Fig 5c). However, the DDM improved overall accuracy if survival and fecundity were 534	

negatively correlated (more points above the 1-1 line in Fig S2c). In the negatively correlated 535	

fecundity scenario, the accuracy of both methods declined compared to the correlated scenario 536	

(see more left bars in the histograms in Figs S2ab than 5ab). However, the relative improvement 537	

of DDMs over SDMs was due to major decreases in SDM accuracy at present sites under 538	

negatively correlated fecundity (see the leftward shift of pink bars in Fig S2a compared to Fig 539	

5a). 540	
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 574	

Fig. 5. DDM and SDM prediction accuracy at (a) present and (b) absent sites, and (c) difference 575	

in prediction accuracy between SDMs and  DDMs at present sites (horizontal axis) and absent 576	

sites (vertical axis), given initial densities at 50% of carrying capacity. Positive values indicate 577	

that DDMs have higher prediction accuracy. In (c) each point corresponds to a single randomly 578	

sampled parameter set. Almost all points fall in the lower right quadrant, corresponding to 579	

parameter sets where DDMs more accurately predicted present sites, and SDMs more accurately 580	

predicted absent sites. Points above the red one-to-one line correspond to parameter sets where a 581	

DDM’s improved prediction accuracy at present sites is higher than the DDM’s decreased 582	

prediction accuracy at absent sites. Fecundity was logistic, and positively correlated with 583	

survival.  584	
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All of the results discussed thus far assumed that populations were at a specified density, 585	

relative to carrying capacity, at all sites used to build the DDM. If only a portion of sites started 586	

at a specified density, perturbed below carrying capacity, while others started at carrying 587	

capacity, predictions worsened (Fig S3, S4). For example, if fecundity was logistic, 25 – 61 588	

percent of sites supplying demographic data needed to be perturbed from carrying capacity in 589	

order to achieve 80 percent prediction accuracy in 90 percent of the simulations (Fig S3) across 590	

the three fecundity correlation structures and three perturbation magnitudes tested. The results 591	

were qualitatively similar for Beverton-Holt fecundity, but with a higher proportion of sites that 592	

needed to be perturbed (34-75% of sites) to achieve the same accuracy (Compare Fig S3a-c to 593	

Figs. S4a-c). In the case where initial population size was uniformly distributed at each site, 80 594	

percent prediction accuracy was achieved if mean initial densities exceeded 71% of carrying 595	

capacity, across all scenarios (Fig S4).  596	

In general, given 200 sampled sites, across all scenarios, if mean initial abundance, 597	

averaged across sites, was 70% of carrying capacity or less, a density-independent DDM 598	

predicted present sites with at least 80% accuracy, in at least 90% of the simulations (Fig S3-S6 599	

and 6a). However, demographic data from fewer than 200 sites, meant more sites had to be 600	

perturbed below carrying capacity during demographic sampling to achieve a desired DDM 601	

prediction accuracy. For example, for logistic fecundity, positively correlated with survival, and 602	

populations at 50% of carrying capacity in perturbed sites, the DDM required 25, 61, and 87% of 603	

sites to be perturbed below carrying capacity, given 200, 50, and 30 sampled sites, respectively 604	

(Fig. 6a-c). Even if all populations were at 50% of carrying capacity during the start of 605	

demographic sampling, it was impossible to guarantee 80% accuracy in 90% of the simulations, 606	

if there were 25 sampled sites or fewer (Fig. 6de). Additionally, DDMs built with long-term 607	
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monitoring data (e.g. 10 time-steps or greater) provided less accurate predictions (right column 643	

of Fig S6) despite increased sample sizes, because sampled populations frequently saturated at 644	

carrying capacity during data collection.  645	

 646	

 647	

Fig. 6. Percent of present sites correctly predicted by the DDM as a function of the percentage of 648	

sites perturbed 50% below carrying capacity given data from (a) 200, (b) 50, (c) 30, (d) 25, and 649	

(e) 20, sites respectively. Dark and light shaded regions are 80 and 95% confidence intervals, 650	

respectively. Black circles are the critical percentage of sites that must be perturbed below 651	

carrying capacity during demographic sampling to achieve 80% prediction accuracy or higher at 652	

present sites in 90% of the simulations. As the number of sampled sites decreases, a higher 653	

percentage of sites need to be below carrying capacity to achieve the desired accuracy. If there 654	

were 25 sampled sites, or fewer, it was not possible to achieve 80% prediction accuracy, in 90% 655	

of the simulations (d, e). Fecundity was logistic, and maximum fecundity was positively 656	

correlated with survival. 657	

  658	

Deleted:  when perturbed populations were allowed to 659	
grow over longer periods660	

Deleted: ¶661	

Deleted: ;662	
Deleted: ;663	

Deleted: .664	
Deleted: ,, 38,16(b), 21665	
Deleted:  (for fixed and  scenarios see Fig S, and for 666	
Beverton-Holt fecundity see Fig S).667	
Formatted: Font: Not Bold



32	
	

Discussion  668	

Using 1.5 million simulations of hypothetical species’ range-dynamics, we evaluated when 669	

deterministic, density-independent, demographic distribution models (DDMs) accurately 670	

predicted species’ distributions. While DDM predictions were biased towards species absence in 671	

simulations where data used to build the DDM came from sites with populations near carrying 672	

capacity, our comprehensive simulations support the following generality: if mean initial 673	

population size is less than 50% of carrying capacity, averaged across >25 sites, where 674	

demographic data is available, a density-independent DDM will predict present sites accurately. 675	

When this condition was satisfied, DDMs outperformed correlative species distribution models 676	

(SDMs) at accurately predicting present sites, but, not absent sites. Our results suggest that 677	

density-independent DDMs may be useful for predicting species ranges for some taxa and 678	

applications (Briscoe et al. 2019), despite obvious limitations (Ellner et al. 2016). Often species’ 679	

have multiple locations available for sampling with populations well below carrying capacity 680	

(Haak 2000, Williams et al. 2011), and there are 11 species of plants and animals with matrix 681	

population models built from data at >25 sites, already available in the global, open-access 682	

databases COMPADRE and COMADRE (Salguero-Gómez et al. 2015, 2016). 683	

One particularly important application of density-independent DDMs is invasive species 684	

risk mapping (Merow et al. 2017), an application where traditional SDM approaches have been 685	

criticized (Liu et al. 2020). Our work confirms that this is potentially an appropriate use of 686	

DDMs because invasive species, at the start of an invasion, are typically well below carrying 687	

capacity (Ramula et al. 2008, Davis 2009, Burns et al. 2013). Additionally, because successful 688	

invaders often invade multiple locations across wide geographic ranges, they are also species for 689	

which demographic data replicated across geographically distant and climatically dissimilar sites 690	
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can be collected (Marshall 2016). Our simulations suggest more than 25 such sites are required 703	

for accurate predictions. While this will be feasible for many invasive species (Merow et al. 704	

2017), DDMs will not be useful for mapping invasion risk for species already abundant 705	

throughout their entire invaded ranges or those whose populations start small but quickly saturate 706	

to carrying capacity during demographic data collection.  707	

DDMs may also be appropriate for predicting threatened species ranges, because 708	

threatened populations are often at low densities (IUCN 2012). Since DDMs tie these predictions 709	

to mechanisms of decline and growth,	they may provide insight into which management actions 710	

will maximize species persistence (Briscoe et al. 2019). However, our results identify a key 711	

limitation of using DDMs for threatened species management. While DDMs accurately predicted 712	

presence at sites where the species persisted, correlative species distribution models SDMs 713	

outperformed DDMs at sites where the species was absent in over 95 percent of the simulations. 714	

Therefore, our results suggest that DDMs may be more appropriate for applications where 715	

identifying present sites correctly is more important than identifying absent sites. For example, in 716	

invasion risking mapping, predicting a local invasion at a site where an invasion fails to occur is 717	

a more tolerable error than missing the location of a future invasion. In this case, present site 718	

predictions are more important and a DDM will be appropriate, if demographic data from low 719	

density sites are available. In contrast, a manager looking for a site to release a threatened 720	

species, to establish a new population (often called a species “translocation”), would not want to 721	

select a site where the species will go extinct. Therefore, when identifying translocation sites, 722	

predicting absences accurately is very important, and DDMs may be inappropriate. Our DDMs 723	

possibly overpredicted presence in sites where the species went extinct because they were 724	

deterministic and therefore did not predict extinctions caused by demographic stochasticity. 725	
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Applications for which correct predictions in unsuitable habitat are more important than 744	

predictions in suitable habitat, therefore, require a stochastic DDM, or a coupled niche-745	

population model, to account for demographic stochasticity explicitly (Keith et al. 2008, 746	

Fordham et al. 2013), or an SDM, which can account for extinctions from demographic 747	

stochasticity implicitly.  748	

  Perhaps the biggest obstacle for wide-scale use of density-independent DDMs is that, for 749	

many species, demographic data are sampled primarily at sites where the species is already 750	

abundant (Quintana-Ascencio et al. 2018, Fournier et al. 2019). Field ecologists do not typically 751	

risk designing randomized, labor-intensive, demographic studies at sites where populations are 752	

so small that the ecologists may not even find individuals to sample. However, there is a small 753	

subset of the demography literature focused on populations at the edge of species ranges, where 754	

population density is often small (Sexton et al. 2009, Eckhart et al. 2011, Pironon et al. 2017). 755	

Our results show that demographic data from such low-density sites are highly valuable for 756	

building accurate density-independent DDMs. 757	

 There are three major caveats behind our approach to identifying guidelines for when to 758	

use density-independent DDMs. First, we simulated range dynamics using a simple model with 759	

several underlying assumptions, such as common pool dispersal, random/fixed initial population 760	

densities across sites, density dependence in fecundity, and demographic rates influenced by life 761	

stages rather than continuous traits (Easterling et al. 2000). Second, we assumed no systematic 762	

environmental change (e.g.  climate change or deforestation). Lastly, the DDM used a model that 763	

closely matched the stochastic model employed to simulate the data. Some of these choices may 764	

have affected the relative performance of DDMs vs. SDMs. For example, DDM performance 765	

may have improved, relative to SDMs, if we included systematic, environmental change, 766	
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allowing estimated vital rates to change through time with environmental drivers (Evans et al. 770	

2016). And the relative accuracy of DDMs might have declined if the DDM model did not 771	

closely match the simulation model. However, the main result of our paper, that density-772	

independent DDMs will only be useful when demographic data are collected from areas where 773	

populations are below carrying capacity is likely robust to all of these caveats. 774	

 For modelers who wish to predict species ranges using process-explicit models for 775	

species with data collected from populations near carrying capacity, one option is to model 776	

density dependence explicitly. Simulation studies have found that models including carrying-777	

capacity (Pagel and Schurr 2012, Schurr et al. 2012) can outperform density-independent 778	

methods when predicting species occurrence (Zurell et al. 2016). And there are a few examples 779	

of empirically-driven density-dependent demographic models (Vanderwel et al. 2013, García-780	

Callejas et al. 2016, Pagel et al. 2020). These models, which incorporate density dependence 781	

explicitly are likely required to predict transient dynamics and project species abundances (rather 782	

than just presence absence). Unfortunately, fitting density-dependent models requires, not only 783	

data at multiple sites, across multiple environmental conditions, and tracking multiple life stages, 784	

but also requires replication across populations at different densities. This may be impractical to 785	

obtain in many scenarios. Here, we have demonstrated that ignoring density dependence when 786	

predicting species ranges from demographic models is a practical first step and likely appropriate 787	

in several situations.  788	
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