

Exploring Graduate Students Collaborative Problem-Solving in Engineering Design Tasks

Journal:	<i>Journal of Engineering Design</i>
Manuscript ID:	Draft
Manuscript Type:	Article
Keywords:	collaborative problem solving, engineering design challenges, peer interactions, communication, teamwork

SCHOLARONE™
Manuscripts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Exploring Graduate Students Collaborative Problem-Solving in Engineering Design Tasks

For Peer Review Only

1
2
3 Abstract: This study evaluated seven engineering graduate students' collaborative problem-
4 solving (CPS) skills using a rubric designed to assess CPS while working in teams to solve
5 problems. Students worked in two different interdisciplinary teams, in face-to-face and online
6 environments, to solve complex manufacturing design challenges posed by their instructor. The
7 students were assessed using the rubric's four dimensions: *peer interactions, positive*
8 *communication, tools and methods, and iteration and adaption*, and scored via each dimension's
9 associated attributes, and subsequently interviewed. Six students scored emergent or proficient in
10 CPS and had slightly higher CPS scores during the second observation. One student
11 demonstrated a limited ability for CPS and the observable CPS skills decreased during the
12 project. Interviews revealed the importance of (1) relying on instructor and student chosen
13 technologies for collaborative tasks, (2) recognizing and drawing on peer expertise early in the
14 project, (3) building trust during and outside of team meetings, and (4) valuing off-site and
15 online collaborative work. Findings advance the understanding of how instructors can create
16 engineering design challenges developed for effective CPS skill-building and future teamwork.
17
18

19
20 *Keywords:* collaborative problem solving, engineering design challenges, peer
21 interactions, communication, teamwork
22
23

24
25 The ability to collaborate while solving problems is considered a core competency in the
26 21st century and as such, has received significant attention from researcher and industry leaders
27 with the rise of technology-enabled environments and increased emphasis on teamwork (Griffin,
28 et al., 2011). Research demonstrates that the quality of solutions often improves when differing
29 perspectives, innovative ideas, knowledge and experiences from a variety of group members
30 working together are considered (Graesser et al. 2018). Much of the complex work in today's
31 world is conducted in teams, but 'systemic training education and training on CPS is lacking for
32 those entering and participating in the global workforce' (Graesser et al. 2018, 59). Teams are
33 often defined as two or more members working interdependently toward a common goal (e.g.,
34 Salas et al. 1992). Industry and academia, particularly in STEM fields, identify collaborative
35 problem solving (CPS) among team members as important yet acknowledge that many graduates
36 entering the workforce lack collaboration skills (National Science and Technology Council,
37 2018). Interest in assessing skills associated with CPS, a critical component of preparing a
38 STEM workforce, has led to numerous research efforts across fields including environmental
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 science, STEM, math, the military, marketing and medicine (Care, Scoular and Griffin 2016).
4
5

6 One important aim of this prior research includes defining the constructs of CPS in order to help
7 instructors provide effective CPS opportunities and assist students in gaining CPS expertise to
8 improve their future professional practice. With an increased desire to improve CPS proficiency
9 in order to develop deeper knowledge and practical solutions for novel and difficult problems
10 (Graesser et al. 2018), there is a need to support both students and instructors to create an
11 environment where productive CPS occurs.
12
13

14 As part of a 5-year NSF funded engineering graduate traineeship program our research
15 team facilitated industry-sponsored collaborative projects embedded in coursework for students
16 to solve complex, multi-level human and systems manufacturing design challenges. Industry
17 partners worked with the instructors and students on identifying specific projects that would be
18 relevant to both the industry partner and the students. During their project work, we assessed the
19 students' CPS ability while solving manufacturing design challenges and then garnered their
20 perspectives on the collaborative work. The goal of our research is to offer a valid and practical
21 way to identify and assess CPS behaviours in engineering students. We also gathered students'
22 perspectives in order to assist researchers in understanding collaborative processes, and to inform
23 instructors in ways that create opportunities for collaboration. Furthermore, the feedback from
24 the assessment offers students a way to reflect on their individual CPS skills. Thus, our research
25 questions are: 1. How proficient are graduate students in collaborative problem-solving when
26 working in teams to solve engineering design challenges? and 2. What are the students'
27 perspectives towards collaborative problem solving?
28
29

30 Literature Review 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1
2
3 Much of the work done in science, technology, engineering, and mathematics (STEM)
4 professions is performed by teams (Chang et al. 2017; Marra et al. 2016). At the same time,
5 technological advances in the modern workforce has increased the ability to connect across time
6 and discipline. This modern approach to teamwork has led to the need to understand
7 collaborative problem solving (CPS), which includes social and cognitive skills where collective
8 knowledge and skills can solve complex problems (Graesser et al. 2018; OEDC 2017).
9
10 Moreover, educational institutions value CPS believing it to be a necessary skill that should be
11 assessed (Care et al. 2016; Greiff, Holt and Funke 2013; Hao et al. 2015; Oliveri, Lawless and
12 Malloy 2017; Rosen & Foltz 2014). In the field of engineering, the international Accreditation
13 Board for Engineering and Technology (ABET) requires accredited engineering programs to
14 have CPS as a student outcome. In fact, when considering the seven identified student outcomes
15 to prepare engineering graduates to enter the practice of engineering, four of them are connected
16 to CPS and include attributes such as: solving complex problems, communicating effectively
17 and, functioning on a team (ABET 2020).
18
19

35 **Literature on CPS in Engineering in Higher Education**

36

37 Researchers aptly point out that, 'there are few studies that investigate whether students
38 can be successfully trained to collaborate' (Lai 2011, 24). Training instructors to provide
39 students with explicit instruction in how to communicate, interact, help others, and negotiate
40 when solving a problem is necessary as today's engineering challenges are complex, ill-defined
41 and ill-structured (Jonassen, Strobel and Lee 2006). At the same time, it is difficult because
42 engineering preparation is rarely interdisciplinary, (Zou & Mickelborough 2015), practical or
43 relevant to how an engineer behaves (Jonassen, Strobel and Lee [2006](#)). Zou and Mickleborough
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(2015) argue that many courses simply assign students in a group, which does not inherently lead to the development of collaborative skills (Kavanagh and Crosthwaite [2007](#)).

With the call to increase CPS skills in education from the Organisation for Economic Co-operation and Development (OCED) and ABET, engineering education has incorporated CPS into their curriculum, research, and assessment (Passow and Passow 2017). For example, Todorovich, Marone and Vazquez (2012) used collaborative problem solving as a methodology to teach programmable logic to engineering students in an introductory design course. The course was structured to allow work across teams to find solution to complex projects. Results indicated students valued the hands-on experience and found it potentially useful for future engineering work (Todorovich, Marone and Vazquez 2012). Marra et al. (2016) argued for better support of collaborative skill development in engineering students using embedded collaborative technologies (i.e. Google Drive) and found 'quantitative evidence that the use of the environment was significantly correlated to improved student learning outcomes' (p. 14). Furthermore, qualitative results indicated students believed the collaborative technologies improved their work.

Students CPS abilities may also depend on their social or personal relationships with team members. One study on CPS in higher education examined the within-team and extended networks of 80 computer science engineering students (de Montjoye et al. 2014). The research demonstrated the students' problem-solving ability was a function of the strength of both networks. The authors suggest that the structure of social interactions, which includes advice, expertise, contextualised knowledge and experience, matters when solving complex problems as it assists in accessing the right pieces of information. The study found a positive correlation between strong expressive ties (i.e. friendship, affective connections) and instrumental ties (i.e.

professional in nature, to exchange information) towards team performance in that the strongest ties between both mattered.

Researchers have also extended CPS studies evaluate the impact on students' performance after analyzing their collaborative practices. Meneske, Purzer and Heo (2019) examined types of verbal episodes students used in collaborative groups looking at how the interactions occurred at the individual and team level. Results indicated that effective CPS teams need balanced participation from group members and should include active listening skills, which may need to be developed (Meneske, Purzer and Heo 2019). More recently, Mabley and colleagues (2020) argue that scaffolding and structure is needed in the early stages of a CPS pedagogy, especially if prior instruction and learning was primarily offered through traditional lectures.

An extensive systematic review of engineering competencies summed up ways that collaborative problem solving is used in engineering education. Passow and Passow (2017), looked at engineering materials and research from 1990 to 2013 to determine what competency(s) engineering education should give focus. Their results indicated that technical competence was inseparable from effective collaboration. The diverse field of engineering is ‘too complex and interdisciplinary for one person to fully know’ (Passow and Passow 2017, 491). Therefore, collaborative social interactions are needed to solve real world ill-structured problems faced by both professionals and students.

Theoretical Framework

We draw on socio-constructivist theory (Vygotsky 1980) to position our research as our focus is on understanding how language, human interactions and available technologies during collaborative relationships might assist in solving relevant problems (Squire 2004). Socio-constructivist theorists recognise cognition as social and often support the theory using situated

cognition, in which knowledge is ‘situated’ within the activity, context, and culture in which it is developed, where knowing and doing are considered entwined activities (Brown, Collins and Duguid 1989). The pedagogical implications for socio-constructivist learning and situated cognition suggest that situating problems in relevant or real world practices may engage people in creating solutions. This ostensibly can be extended to students collaboratively solving problems in engineering design environments, hence it is well aligned with our research.

Method

We used qualitative case study (Merriam 2009), to understand graduate students’ CPS while working in collaborative teams to solve manufacturing design challenges. Case study is appropriate as it relies on multiple sources of evidence and theoretical propositions when searching for meaning or developing deeper understandings. In this study, case study assists us in studying the phenomena of collaboration in its natural setting to make sense of and then describe, via our analysis of observations and interviews, how collaboration occurred in engineering students’ project work. Our case was bound by students enrolled an advanced manufacturing course during the spring semester of 2020. Our participants were seven graduate students who attended the same university in the southeast United States and moved through each course within the manufacturing trainee program together. Eight students were enrolled in the program and all of them were selected to participate, however one student was not present for all of the observations and data collection, and thus was not included in the final analysis. During our research, we paid particular attention to students’ actions aligned with dimensions and attributes using the Traineeship Evaluation CPS rubric (pseudonym used; further described below).

The context

1
2
3 The seven participating students applied to participate in the trainee program after it was
4 broadly advertised via academic media outlets; applications were reviewed by participating
5 researchers and students were selected based on the achievements and the fit of their
6 interdisciplinary background within the trainee program. All students identified as White or
7 Caucasian, five were male and two were female (students are referred to as Student A-G and
8 genders as s/he in this paper to protect their anonymity). Three students were earning their PhD
9 in Computing, one was earning his PhD in Automotive Engineering, and three students (both of
10 the females) were enrolled in the Mechanical Engineering MS program. The goal of the program
11 was to recreate experiences in which researchers, engineers and technicians collaborated on
12 projects in actual factories. Graduate students took advanced coursework together in three key
13 areas – manufacturing, data management, and human technologies, and then developed projects
14 and solutions while working collaboratively. For this study, students were in the first year of the
15 program and taking a capstone course focused on interdisciplinary collaboration on applied
16 manufacturing projects relating to advanced manufacturing capabilities. Within the projects, they
17 conducted research, imagined solutions, planned and created prototypes, tested their prototypes
18 and iterated their designs before presenting them to peers, instructors and industry partners.
19
20

21 In one project team, four students worked on problem-solving an applied manufacturing
22 project, attempting to measure shear and normal forces with a novel sensor designed for
23 handheld use cases, while also integrating IoT (Internet of Things) data collection capabilities. A
24 second project group of four students focused on developing a smart manufacturing system
25 capable of integrating environmental and machine data to create a more complete picture of the
26 manufacturing environment that could be used to predict future maintenance and workforce
27 concerns.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

```

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  Sensor Log, Processor: Arduino 1.8.11
  File Edit Sketch Tools Help
  SensorLog, Measure Sketch
  #include "Filter.h"

  // the <float> makes a filter for float numbers
  // 20 is the weight (20 => 20%)
  // 0 is the initial value of the filter
  ExponentialFilter<double> ADCFilter(20,0);
  const int OUT_PIN = A0;
  const int IN_PIN = A2;

  //Capacitance between IN_PIN and Ground
  //Stray capacitance is always present. Extra capacitance can be added to
  //allow higher capacitance to be measured.
  // 15.881221719457013
  // 16.84646666734082
  const double IN_STRAV_CAP_TO_GND = 24; //initially this was 30.00
  const double IN_EXTRA_CAP_TO_GND = 0.0;
  const double IN_CAP_TO_GND = IN_STRAV_CAP_TO_GND + IN_EXTRA_CAP_TO_GND;
  const double MAX_ADC_VALUE = 1023;

  void setup() {
    Serial.begin(9600);
  }

  void loop() {
    Sketch uses 17420 bytes (6%) of program storage space. Maximum is 262144 bytes.
  Global variables use 4584 bytes (6%) of dynamic memory, leaving 60952 bytes for local variables. Maximum is 65536 bytes.

```

Figure 1: Students meeting online to share code before testing and iterating capacitor sensors.

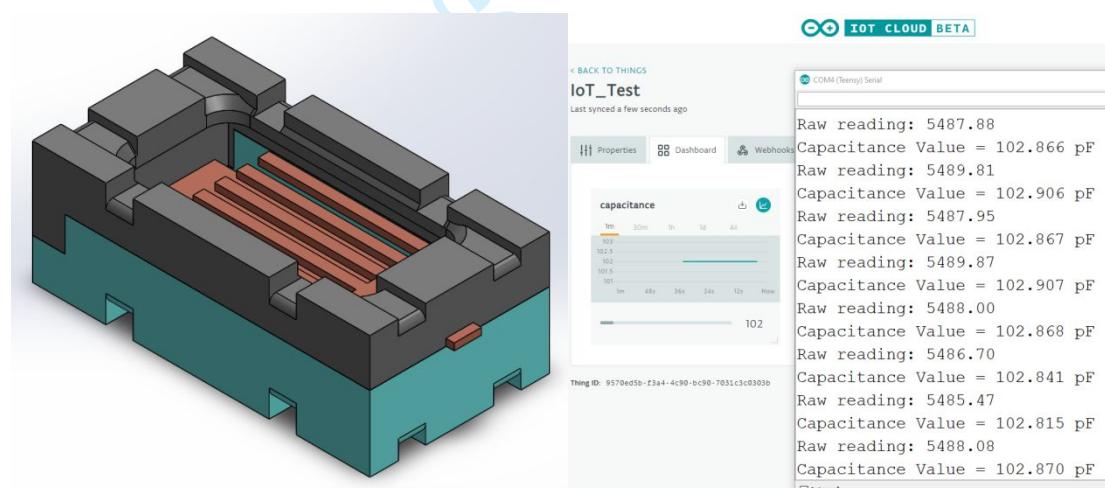


Figure 2: Samples of students' prototype and dashboard from one group.

Data sources

Our primary data sources were observations using the Traineeship Evaluation CPS rubric and semi-structured interviews all of the students. We video recorded the students working together to verify data collected via the rubrics, and audio recorded individual interviews. We describe each primary source in greater detail.

Traineeship Evaluation CPS

1
2
3 Traineeship Evaluation CPS is a rubric which defines four dimensions of CPS (two social
4 dimensions: *Peer Interactions*, *Positive Communication*, and two cognitive dimensions *Tools*
5 and *Methods and Iterations and Adaptions*) desirable when individuals are working in teams.
6
7 Each dimension includes three attributes (e.g., monitors tasks and checks for shared
8 understanding with peers, divides work to complete tasks, may assign or negotiate roles,
9 provides peer feedback, assistance and/or redirection) aligned with that dimension and scored as
10 'not evident,' 'emergent,' or 'proficient'.
11
12
13
14
15
16
17
18

Collaborative Problem Solving Observation Rubric

22
23 **Tools and Methods:** A distinguishing characteristic in collaborative problem solving is the ability
24 to identify and define the task and then use appropriate tools and methods to solve the problem.
25 When working on a project we would expect to see individuals discussing tasks and then choosing
26 collaborative tools to accomplish them.

27
28 **Iteration and Adaptation:** Another critical component of collaborative problem solving is iteration
29 and adaptation. This includes the process of working together and creating solutions that might
30 include iterative thinking during the design and/or problem solving processes. A collaborative team
31 might work on a design together, test iterations or develop and direct incremental iterations. When
32 assessing collaboration during adaptation, we would expect students to engage with their peers using
33 discussions, feedback, critique, and suggestions to meet these attributes.

Attribute	Not Evident (0)	Emerging (1)	Proficient (2)	Total
Identifies and defines task(s)	Student begins working without identifying or defining the task with group	Students usually begins working by identifying and defining the task with group	Student consistently identifies and defines the task(s) with group before working	2.0
Negotiates relevant method or materials to solve the problem	Student does not discuss relevant method or materials to solve the problem	Student occasionally discusses relevant method or materials to solve the problem	Student consistently discusses relevant method or materials to solve the problem	1.0
Uses tools collaboratively to complete task(s)	Student does not use tools collaboratively when completing tasks	Student occasionally uses tools collaboratively when completing tasks	Student consistently uses tools collaboratively when completing tasks	1.0
Notes:				

Attribute	Not Evident (0)	Emerging (1)	Proficient (2)	Total
Iterative thinking	Student does not discuss ways to iterate designs or processes with peers when perfecting a solution.	Student occasionally discusses ways to iterate designs or processes with peers when perfecting a solution.	Student consistently discusses ways to iterate designs or processes with peers when perfecting a solution.	1.5
Tests designs, prototypes or solutions	Student does not test the design, prototype or solution with peers	Student occasionally tests the design, prototype or solution with peers	Student consistently tests the design, prototype or solution with peers	1.0
Develops and directs revisions in designs and prototypes	Student does not rely on peer feedback to revise the design or prototype	Student occasionally relies on peer feedback to revise the design or prototype	Student consistently relies on peer feedback to revise their design or prototype	2.0
Notes:				

41
42 *Figure 3: Screenshot from two dimensions of Traineeship Evaluation CPS rubric.*

43
44
45
46 Table 1

47
48 *Table 1: Abridged Traineeship Evaluation CPS Rubric*

49 Dimension: Peer interaction

50 Monitors tasks and checks for shared understanding with peers
51 Divides work to complete tasks; may assign or negotiate roles
52 Provides peer feedback, assistance and/or redirection

53 Dimension: Positive Communication

54 Respects others' ideas and compromises

1	Uses socially appropriate language and behaviour
2	Listens and takes turns
3	Dimension: Tools and Methods
4	Identifies and defines task(s)
5	Negotiates relevant method or material to solve the problem
6	Uses tools collaboratively to complete the task(s)
7	Dimension: Iteration and Adaption
8	Demonstrates iterative thinking
9	Tests designs, prototypes or solutions
10	Develops and directs revisions in designs and/or prototypes

17 There is also a space for observation notes which provides further information and
18 justification for the rater's score in each dimension. Traineeship Evaluation CPS was modified
19 from a similar rubric used to evaluate CPS in STEM work that was validated for construct
20 validity and inter-rater reliability (Author 1 2017).

26 Four researchers were trained on how to use the rubric and it was piloted for usability by
27 two of the four researchers in the semester preceding the study. During data collection the
28 research team conducted the observations simultaneously, with two researchers each observing
29 four participants as they worked in different teams for a minimum of 40 minutes, using a
30 separate rubric for each individual. Since students were observed at the same time the team
31 scrolled between the rubrics or dimensions as necessary. In the observation notes on Traineeship
32 Evaluation CPS context specific information was recorded to support the selected levels or
33 proficiency.

44 After the first observation, the university closed and in-person participation was not
45 allowed due to Covid 19, however the teams continued working by having materials shipped to
46 one another's homes and meeting online, so the final observation was conducted and recorded
47 via Zoom. All seven students were observed at least twice by two researchers and sessions were
48 video recorded to review during analysis.

1
2
3 *Semi-structured interviews*
4

5 Directly following the project work, students were interviewed individually. We posed a
6 series of questions aligned with attributes on the rubric to gauge students' perspective regarding
7 working with peers and collaborating. Example questions included: How satisfied were you with
8 how your peers treated you while working in the group? How would you describe your
9 interaction with your peers? How did you decide to divide up the work? How did your group
10 decide how to choose tools and resources to complete the task? Thinking about your group
11 project, did you make any iterations or changes to your presentation, design, or prototype?
12
13

14 ***Data analysis***
15
16

17 We analyzed Traineeship Evaluation CPS data by assigning each student a summed score
18 for each dimension of the rubric (*Peer Interactions, Positive Communication, Tools and*
19 *Methods, Iterations and Adaption*) using a scale of 0 = not evident, 1= emerging, and 2 =
20 proficient. Students could also receive a score of .5 or 1.5 if two indicators were checked for the
21 same attribute. We created a summed score for each dimension, with ranges (0-2, 2.5-4 and 4.5-
22 6) for proficiency levels. For example, a student scoring a 0, 1, 1 across all 3 attributes of the
23 dimension of peer interaction would receive a summed score of 2 and be within the 'not evident'
24 range of 0-2 for that dimension. A student scoring 0, 2, 1 in the same dimension would receive a
25 summed score of 3 and fall in the 'emerging' range. The observation notes assisted in making
26 evidence-based decisions to accurately assign scores. We provide two typical, representative
27 examples of observation notes for individual students:
28
29

30 Student A: Student asks questions and responds affirmatively or with new questions,
31 appearing to be listening intently as camera zooms in while speaking. Suggests the team
32 can get one proof-of-concept prototype by the deadline. Shares a mold via screenshare,
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 searches email to find copper plates, directs others how to use sticky hands and talks
4
5 about the design.
6

7
8 Student G: Student expressed concern regarding the use of pipettes and looked up the
9
10 cost/ship date while consulting the group. Physically picked up materials and held them
11 via camera to show team examples; was prepared for the meeting and led testing sharing
12 the desktop. Conducted tests with alligator clips, reported the reading, then clarified and
13 made changes.
14
15
16
17
18

19
20
21 Next, we transcribed and analyzed student interviews to provide a more holistic
22 understanding of how students were collaborating and activities that either did or did not
23 promote collaboration. These were analyzed using a priori codes aligned to the dimensions on
24 Traineeship Evaluation CPS of positive communication, peer interactions, tools and methods and
25 iterations and adaption and used to answer the research question regarding student perspectives
26 of collaborating in teams to solve the challenges. We also noted emergent codes categorised the
27 codes into themes (Creswell 2007). The analysis was verified using inter-rater reliability in
28 which two researchers independently coded the student responses and categorised them into
29 themes, and then compared the results with one another to reach consensus (Creswell 2007). A
30 third member of the research team then checked the codes, themes and examples for accuracy.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Findings

49 ***RQ 1: How proficient are graduate students in collaborative problem-solving when working***
50 ***teams to solve manufacturing challenges?***
51
52
53
54
55
56
57
58
59
60

1
2
3 During the first observation, six of the seven students consistently scored in the emerging
4 or proficient range in the social dimensions of *peer interaction* and *positive communication*, and
5 five of the seven students also scored in the emerging or proficient range in the cognitive
6 dimensions of *tools and methods* and *iteration and adaption* (see Table 2 below). Three students
7 were proficient in all four dimensions, and one student (Student A) demonstrated an emerging
8 ability to interact with peers when solving problems, but no notable evidence of positive
9 communication or collaborating with tools or making changes to the prototype was observed.
10 Observation notes described this student as polite, but rarely engaging with the team other than
11 to occasionally respond to questions. Based on the conversation, it was evident that the student
12 had contributed to some of the prior work related to building a dashboard. While the student
13 didn't reject or monopolise the conversation, s/he simply did not contribute much.
14
15

16 For students who consistently scored in the emerging or proficient range, we noted them
17 repeatedly checking in with one another, asking clarifying questions (e.g. 'I think we can do
18 three, do you agree with that?' or 'How long would you want that tail, a quarter inch?'). They
19 would typically offer new ideas about changing a design idea or prototype, often sketching on
20 the whiteboard, making changes to a computer-aided design (CAD) drawing or physically
21 manipulating objects while discussing the math, tolerances or area of a design. At times students
22 were observed identifying the problem and then working through it together, oftentimes visually,
23 with one member drawing out the group's ideas for discussion (e.g. Student C made a
24 suggestion, while Student D drew on the board and Student F suggested how the group should
25 approach the issue, saying, 'I'm just going to sketch my ideas on paper, you can start drawing for
26 all of us.')
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 During the second observation, which was conducted one month later, while students
4 were collaborating in a Zoom break-out rooms, due to Covid 19, six of the seven students
5 consistently demonstrated they were adept at social and cognitive CPS skills scoring *emerging* or
6
7 *proficient* in each dimension, with four of the seven scoring proficient in every dimension. The
8 same student who struggled earlier, Student A, scored lower in each dimension. This student was
9 nearly absent from the conversation and even asked to turn off his camera. Although it was clear
10 s/he was still connected via audio, s/he did not respond other than to comment twice to his group
11 providing positive feedback and then to make a suggestion regarding a materials purchase.
12
13 Similar to the first observation, nothing negative was noted however the overall lack of
14 responsiveness demonstrated his inability to collaborate.
15

16 In the majority of instances where students scored emerging or proficient range, students
17 were noted responding to design modifications in a manner that is was clear they were seeking
18 feedback on steps they were taking, or some students noticeably took the lead by reminding the
19 team where they were in project and answering questions. Some students were observed holding
20 up or showing digital objects and then asking their team members questions about how the
21 objects or materials could best be used to devise a strategy to solve the problem.
22

23 Across both observations, the students generally scored slightly lower on the cognitive
24 dimension of *iteration/adaption* when collaborating, than on *tools/methods*. However, with the
25 exception of Student A, the members of both teams were both adept at choosing appropriate
26 tools and methods to solve the problem by the second observation (via Zoom). The students'
27 ability to demonstrate iterative thinking or design processes and test ideas was generally less
28 apparent in the first observation with 2 of the students scoring *not evident*, and 2 scoring
29 *emerging*. Overall, the students scored higher in both *tools/methods* and *iteration/adaption* when
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 working online. Students scoring *proficient* were noted using the screenshare function
4
5 frequently, demonstrating how tools and materials might work while teammates asked to see the
6
7 object or digital drawing manipulated, or actively making changes to physical objects (e.g. using
8
9 calipers to demonstrate a current and changed measurement, showing a box with and without
10
11 clamped ends, showing how sticky hands might work with the prototype, reviewing a CAD draft
12
13 and making a change).
14
15

16
17 Table 2
18
19
2021 *Trainee Evaluate CPS Rubric Data: First and Second Observation Results*
22
23
24
25
26

27 28 Student	29 Peer Interaction	Positive Communication	Tools and Methods	Iteration and Adaption
				Observation 1
32 Student A	3/Emerging	1/Not Evident	1/Not Evident	1/Not Evident
33 Student B	6/Proficient	5.5/Proficient	4.5/Proficient	4.5/Proficient
34 Student C	5/Proficient	5.5/Proficient	5/Proficient	4.5/Proficient
35 Student D	4/Emerging	4/Emerging	3/Emerging	1/Not Evident
36 Student E	4/Emerging	6/Proficient	3/Emerging	3/Emerging
37 Student F	6/Proficient	6/Proficient	5.5/Proficient	4.5/Proficient
38 Student G	4/Emerging	6/Proficient	6/Proficient	4/Emerging

46 47 Student	48 Peer Interaction	49 Positive Communication	50 Tools and Methods	51 Iteration and Adaption
			Observation 2	
52 Student A	0/Emerging	.5/Not Evident	0/Not Evident	0/Not Evident
53 Student B	4/Emerging	6/Proficient	5/Proficient	3/Emerging
54 Student C	5.5/Proficient	6/Proficient	5.5/Proficient	4.5/Proficient
55 Student D	6/Proficient	6/Proficient	6/Proficient	6/Proficient

1	Student E	6/Emerging	6/Proficient	5/Proficient	3/Emerging
2	Student F	5.5/Proficient	6/Proficient	6/Proficient	4.5/Proficient
3	Student G	5/Proficient	6/Proficient	6/Proficient	5/Proficient

RQ 2: What are the student perspectives towards collaborative problem solving?

The students' interviews provided their perspectives of CPS during the team projects.

Although the Traineeship Evaluation CPS attributes guided the development of the interview questions, the goal of the interviews was not to verify ratings, but instead to better understand how the students viewed collaborating with peers while solving engineering challenges. We discuss their perspectives of the social and cognitive dimensions of their teamwork and acknowledge the overlap between the dimensions. To that end, we noted how often students would describe an interaction or communication with their peers in conjunction with dividing work, an approach they took, a method or tool that they chose or a change they decided to make.

Students' perspective on interacting and communicating with their team

Overall, the students described their peer interactions and communication as constructive and positive noting how the effective use of Slack, Google Hangouts, and a Gantt Chart or what they deemed, 'high level mapping on a flowchart' kept them on task and allowed them to monitor tasks throughout the project. A couple of the students talked about how chat function on OneDrive made it easier to collaborate. One student even pointed out that their team had 'really good communication through email, which is not the norm.' Another student mentioned that using Power BI for the visualizations was confusing at first and s/he would have likely not taken the time to really utilise it without both technology and another team member. S/He explained that they had limited experience with data streams, but after talking with a team member who was slightly more experienced with hit, s/he suggested they use in their project and find help

1
2
3 online. This led the student to LinkedIn Learning as a resource for his entire team, otherwise s/he
4
5 said they would 'have been aimlessly wandering around YouTube to find help.'
6
7

8 All seven of the students mentioned that that group members got along and were
9
10 respectful, and this appeared to emanate from early conversations about their research interests
11
12 and abilities. Student B explained:
13
14

15 We did these (digital) presentations at the beginning of the semester that were all kind of
16
17 corny, like, get-to-know-you things. But we also talked about our research interests and
18
19 relative strengths and weaknesses. Because of that, I think everyone has a good amount
20
21 of mutual respect so we respect our [sic] project-related discussions. When I mention
22
23 something about air flow and how it might affect sensors, I've taken heat transfer and
24
25 fluid mechanics, so it's like, oh s/he knows that. And when Student C talks about data, I
26
27 respect her/his expertise.
28
29
30
31
32

33 A few of the students mentioned that the open-ended nature of the project assisted them
34
35 in interacting and communicating because, 'we don't know what works and what doesn't, so we
36
37 have to get as many ideas as we can and test them.' All of the students responded that they were
38
39 'satisfied' or 'pretty satisfied' with the team's ability to communicate and conveyed that they
40
41 respected their team members abilities and believed the tasks, while not always discussed in
42
43 detail, were clearly divided based on expertise. Student G mentioned, 'I think we all kind of
44
45 know who we can leverage', and Student B, explained how they divided tasks in greater detail:
46
47
48

49 We work separately, we kind of have to decompose the question (referring to their
50
51 problem-solving task) a little bit. I think everyone's expectations are entirely clear. I
52
53 don't think anyone at any point has to wonder what the other person wants. It's an issue
54
55
56
57
58
59
60

1
2
3 I've seen in other groups, but we're just very clear on what everyone is doing and
4 expected to get done. We'll put out a doc and it's like, 'hey everyone, mark your sections'
5 and within two days it's all done.
6
7
8
9
10
11

12 One student described how tasks were divided based on talents the group recognised,
13 saying:
14

15 It's all very positive like, we have individual conversations about everybody about
16 certain tasks, like talking to Student F about material property stuff, and then taking to Student H
17 (absent from second observation) about getting different prototypes and then taking to Student A
18 about all of the dashboard stuff. It's easy to know who's background it suited for different things.
19
20
21
22
23
24
25

26 Another student talked about the ease in which he/his group communicated, indicating
27 that team members were could easily provide assistance or redirect one another. S/he said:
28

29 We don't have communication blocks. I mean, usually, if someone is confused about
30 something, they just bring it up right there and it makes life a lot easier. Everyone asks,
31 Student C a lot of questions about hardware because s/he knows all the stuff. S/He's, you
32 know getting a PhD in it so after four-ish years, s/he knows the hardware in and out.
33
34 S/He's under a fair bit of stress with his dissertation and I can still ask him pretty much
35 anything at any time. Student G is doing his thesis, but my interactions with have not
36 been standoffish at all. We have our (morning) meeting times and they go just fine.
37
38
39
40
41
42
43
44
45
46
47
48

49 The students also believed they freely shared knowledge, materials, and the workload with one
50 other - although not necessary equally or even equitably at different points in the project. This
51 included the student we observed contributing very little during our observations. That said, most
52
53
54
55
56
57
58
59
60

1
2
3 students said they did not believe that the workload needed to be equitable, instead they
4
5 suggested it should be dependent on the team members strengths, and a relative to where the
6
7 team was in the project. Student D explained:
8
9

10 I would say it (referring to the workload) is equal, especially since here some people have
11 different strengths as a consequence of where we are in the project, so until we got to the
12 prototyping stuff Student A and F were really only talking to use about the pricing. S/He
13
14 then added, 'I think we've done a good job staying together in terms of contributions.'

15
16
17
18
19
20
21 This perspective regarding other team members contributions extended to Student A that we
22 observed interacting and contributing very little. During interviews it was apparent that the team
23
24 felt the student's contributions before and after team meetings (these were purposefully designed
25 as working meetings) were valuable, even if it was less than their own or not apparent during the
26 sessions we observed.
27
28
29
30
31

32
33 *Students' perspective on tools, methods and iterations*
34

35 When asked about how their team chose particular tools and resources or handled design
36 iterations, a majority of the students pointed to how they relied on one another's expertise and
37 past experience to divide tasks, choose tools and make changes. They also believed this division
38 of tasks and way of choosing tools or approaches was natural. For example, Student B said:
39
40
41
42
43

44 I hate to say it naturally coalesced, but it kind of did. I think me and Student E worked at
45 the same manufacturing site, I know that s/he is experienced. When we talk about what
46 we want the dashboard to look like, well we've both used dashboard in manufacturing
47
48 and created them in the past.
49
50
51
52

1
2
3 Students D explained,
4
5 I think we self-divided based on expertise into the two many area that we perceived as
6
7 part of our project. We formed subgroups that are kind of natural – the programming and
8
9 coding side and then the dashboarding and informatics side.
10
11

12 Student G told us:
13
14 For me and Student E, we have fairly common background experience, we have general
15 conversations about tech and outside conversations that aren't even related (directly to
16 the project). There are other things I know he knows about, and if s/he knows those
17 things that is probably what s/he wants to do.
18
19
20
21
22
23
24
25
26 A few of the students talked about the comfort they felt bringing ideas forward to for their team
27 to discuss, try out or test, and revise if necessary. For instance, Student B explained:
28
29
30 I feel pretty thankful that we're pretty comfortable with this kind of thing. That if
31 something isn't going to work, it's okay. When it comes down to the design, the right
32 one, we're still going to try and test it. We all kind of acknowledged it might not give us
33 the results we are looking for, but there is no harm in trying it. For a while Nikola Tesla
34 was like, yeah, I don't think that's gonna [sic] work either, but from that you get other
35 ideas. It's part of our brainstorming process.
36
37
38
39
40
41
42
43
44
45
46
47 A few other suggestions made during the student interviews that emerged are worth
48 noting. One student indicated that while there was nobody on the team that s/he would prefer to
49 not work with, the addition of an electrical engineer would have been helpful. Another student
50
51
52
53
54
55
56
57
58
59
60

1
2
3 from the other team responded similarly, even mentioning that the group enlisted the help of an
4 electrical engineering graduate student not directly associated with the course or project.
5
6

7
8 Four students also suggested that the entire team be exposed to the project and be
9
10 allowed to form teams earlier, believing that spending time as a team prior to working on the
11 project would help them better understanding one another's expertise and to build trust. To that
12 end, another student remarked several times throughout the interview that there was an element
13 of trust that made the teamwork effective. S/He talked about trust within and beyond the team,
14 extending it to the fellowship (training program and instructor) believing that since the students
15 were all vetted, they felt comfortable asking questions of other group members because they
16 were 'credentialed to a degree' and likely had the answers. S/He then described the instructor as
17 trusting them and treating the teams as if they were all 'extremely massively qualified.'
18
19
20
21
22
23
24
25
26
27
28

Discussion

29
30 In this study, graduate student teams were tasked with solving two different
31
32 manufacturing engineering challenge problems (developing a novel handheld sensor and creating
33 a smart manufacturing system). Our research team followed each team throughout the process of
34 completing teamwork, noting how each team member scored on a variety of CPS variables and
35 also providing qualitative data about student teamwork perceptions and the manner in which
36 students chose to enact collaboration.
37
38
39
40
41
42
43

44
45 The majority of the graduate students in this study demonstrated their ability to interact
46 and communicate positively and proficiently, choose appropriate tools and methods to jointly
47 solve problems, and work with team members to test and iterate designs and prototypes. Almost
48 all of the students were observed developing CPS skills (emerging or proficient) during the
49 course of the project work. We noted them asking new questions or responding to team members
50
51
52
53
54
55
56
57
58
59
60

1
2
3 questions based on their individual area of expertise, demonstrating ideas with tools, drawing or
4 designs, dividing work and checking in, taking turns leading the team in their area of expertise,
5 and appearing respectful of other team member's expertise.
6
7
8
9

10 Our observation notes and qualitative interviews highlight several instances of students
11 bringing forth alternative ideas based on their own background and levels of proficiency. The
12 presence of interdisciplinary individual backgrounds composing the overall team allowed for
13 reinforced productive CPS skills to both be developed and applied. This implies, in part, that
14 interdisciplinary students can be trained to successfully collaborate, and answers calls to build
15 this body of research (Lai 2011). In addition there is the implication that training programs,
16 similar to this NRT program, that focus on interdisciplinary problem solving with engineering
17 challenges mirroring industry are a potential way forward to successfully hone collective
18 knowledge and skills to solve complex problems (Graesse et al. 2018; OCED 2017). The
19 matching of real world problem sets to students skills provides students with knowledge
20 regarding these types of problems, but more importantly allows students a testbed to identify and
21 practice relevant CPS skills in a testbed environment before they are implemented in a real world
22 environment.
23
24

25 Both observations and student interviews illuminated the unique methods that
26 engineering instructors worked in concer with industry partners to develop feasible classroom
27 projects mirroring real world challenges. The challenges were ill-defined and ill-structured,
28 much like today's complex engineering challenges in the workforce (Jonassen, Strobel and Lee
29 2006; Zou and Mikelborough, 2015) and likely assisted the students in having to rely on team
30 members to advance in solving each problem.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Although one student (Student A) was not observed participating fully or collaboratively,
4 his team members still identified, acknowledged and viewed his 'between working meetings'
5 and offline contributions as valuable. This finding highlights an important facet of this type of
6 work, and teamwork in the class in general, in that contributions are not always occurring within
7 the classroom or during team meetings. As educators, it is important that we understand student
8 enact teamwork in a myriad of ways, many of which are not apparent to us while in the
9 classroom. The type of project enlisted in this program required a great deal of outside the
10 classroom work, and it appears that this is when Student A completed his work while still being
11 accountable to s/he's team. It is easy to bias our viewpoints on this student's work by simply not
12 being able to directly observe that work or their CPS skills, but it is important to understand that
13 teamwork is dynamic and occurs in many ways.
14
15

16 In general, our research team concluded that CPS may occur productively outside of
17 team meetings and further research is necessary to understand the overall impact of CPS for
18 work occurring outside of team meetings is warranted, especially in light of the increased value
19 of remote work during and after Covid 19. To that end, having students aware of the dimensions
20 and attributes of CPS skills, using a checklist derived from Traineeship Evaluation CPS, and then
21 asking them to self-monitor and compare their observed and self-assessments is the next step in
22 our research.
23
24

25 Four main themes emerged from the interview data: (1) the use of instructor and student
26 chosen technologies enhanced each team's ability to collaborate, (2) team member's expertise
27 played a crucial role in task division and ways work was distributed, (3) building trust and
28 feeling trusted, early on, was perceived as important to the success of the team's CPS, (4)
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 members valued contributions that occurred outside of working meetings. We discuss each
4
5 below and note when observations also supported the themes.
6
7
8 ***Blending instructor and student technology choices to enhance CPS***
9

10 The observations and interviews helped demonstrate the value of using a host of
11 technologies to effectively communicate and collaboratively solve problems. This is not a novel
12 or surprising finding, as numerous studies point to technological advancements increasing the
13 capacity for CPS (Chang et al. 2017). However, in this study, the engineering students provided
14 insight towards the value of blending instructor facilitated and student chosen technologies.
15
16

17 Students discussed using digital tools provided by the instructors such as Slack, OneDrive and
18 numerous Google Apps, and choosing communication tools that students were comfortable with
19 or had knowledge of such as LinkedIn Learning, Google Hangouts and FaceTime. Introducing
20 students to productive collaborative tools and allowing them to choose their own appeared to
21 effectively foster collaboration and extended expertise to other members of the team. The
22 instructor's willingness to not restrict technology choices, and the students' willingness to
23 introduce digital tools to each other assisted in the team's ability to successfully complete tasks.
24
25 We suspect, that much liked the ill-defined nature of the entire project, the ill-defined nature of
26 articulating what tools should be used actually helped the student team members develop
27 investment and autonomy in their teamwork and their final products. Allowing students to have a
28 choice in multiple aspects of the projects (not just in relation to tools) engenders a level of
29 investment from the students, as the student made that choice and the outcome (positive or
30 negative), at some level, depends on the choice that the student made, not the instructor. Simply
31 stated, this level of choice has the potential to increase both individual and team level
32 accountability.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 After Covid 19 forced the teams to move to Zoom and utilise the breakout room
4
5 affordance (each team is in their own room), they continued to collaborate and managed their
6
7 individual workload and schedules to remain productive during the online meeting. In
8
9 observations this was evidenced as students discussed purchases of equipment ordered far in
10
11 advance of their working meetings, or progress they shared regarding designs and molds
12
13 developed for electrical boxes or creating their team's dashboard. Similar to Marra et al. (2016)
14
15 the students believed the collaborative technologies improved the quality of their work, and they
16
17 also believed it enhanced their ability to share and benefit from team members' expertise.
18
19
20

21 ***The importance of recognizing expertise in forming teams and discussing roles***

22

23 The observations and interviews illustrated the ease in which students positively
24
25 communicated with team members. The innovative and open-ended nature of the problems
26
27 meant they had to rely on each other to plan, innovate and rethink ideas when efforts failed. We
28
29 seldom saw, nor did the students indicate, any difficulty in getting along or being respectful to
30
31 teammates. Several of the students talked about how respect emanated from recognizing each
32
33 other's expertise, whether they were in an MA or PhD program, and knowing a particular area
34
35 (hardware, technology, design, visual display, environmental sensing) 'inside and out' – and
36
37 being open to helping one another. The collective nature of being a student in the NRT program
38
39 may have also helped to develop respect among team members. Students pointed to efforts early
40
41 in the project to share their own expertise and talk with their team as beneficial. Although, these
42
43 students said the efforts should have begun even earlier as a productive way to form teams and
44
45 think about how their skills aligned with roles they might play in completing tasks and solving
46
47 the problems. This finding supports de Montjoye et al. (2015) who posit that CPS is supported by
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 the function of social interactions and suggest that advice, expertise and contextualised
4 knowledge and experience matters when solving complex problems.
5
6

7
8 ***Building trust to strengthen CPS***
9

10 A theme that emerged from the student interviews was the need for trust and
11 teambuilding exercises early on in the program or coursework in order to share expertise,
12 identify and acknowledge what might be lacking in the team (in this case, electrical engineering
13 proficiency), and to provide time to thoroughly understand the problem. Four of the students
14 talked at length about the need to trust group members in order to feel comfortable bringing any
15 question forward, and not feel embarrassed when their individual or collective idea failed.
16
17 Similar to the prior theme of recognizing expertise, almost every student interviewed discussed
18 the open-ended and hands-on nature of the project as requiring a level of flexibility and
19 'respecting the discussion', which meant trusting each other's knowledge related to their
20 expertise. This could be addressed by class discussions early in the training program, short
21 student presentations detailing own interests and strengths, and attention to additional team and
22 trust-building exercises. To further building trust around expertise in open-ended CPS,
23 instructors could include opportunities to work with industry mentors to simulate how trust,
24 expertise and CPS is approached in the real world.
25
26

27 ***Valuing off-site work and online collaboration***
28

29 An unexpected theme noted in the analysis of the interviews was the general belief that
30 work done outside of the teams working meetings played a significant role in solving the
31 engineering challenges, and thus work done during team meetings or during particular points in
32 the project did not have equitable to be valuable. This was further evidenced and supported in
33 observations conducted while the teams meet in Zoom Breakout rooms. These meetings were
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 mainly viewed as touchpoint meetings, to plan and provide a path forward for each individual
4 member team roles in relation to the overall team goals. After Covid 19, the value of off-site
5 work and online collaboration was realised more than ever, by students completely working off-
6 site and utilizing online to facilitate collaboration. Our research team did not set forth with this
7 research to solely focus on the impacts of digital collaborative technologies, but the advent of
8 Covid 19 certainly allowed us the opportunity to examine this in greater detail. In general, based
9 on observations, interviews, and informal meetings among the research team, we found these
10 students to be very resilient in completing their teamwork, and also not having issues relating to
11 using online collaboration. This is significant for two reasons: 1) students can and will use online
12 collaborative technologies in a meaningful way to complete teamwork, and 2) as educators, we
13 should be purposefully developing projects that require the use of these types of technologies as
14 they are likely to become permanent fixtures within our world.
15
16

31 **Limitations, next steps and conclusion**

32

33 We acknowledge some limitations with this research. First, the small sample size may
34 limit the generalizability of this research, however this qualitative research provides an in-depth
35 and more contextualised perspective of collaboration between individual students and their
36 teams. Conducting observations over a longer period of time might provide richer, comparative
37 data, and help us better understand the progression of CPS for individuals. That said, Traineeship
38 Evaluation CPS is designed to provide a relatively quick observation of students' ability to
39 collaborate in short periods of time to offer instructors and educational researchers feasibility in
40 using it. As the next cohort of NRT trainees are included we will extend data collection to the
41 larger group to mitigate both limitations. Next steps in our research also includes the creation of
42 a self-assessment CPS checklist for students to self-monitor and reflect on their collaborative
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 activities. The checklists will be used to make students aware of the constructs of CPS and
4
5 discuss their perceptions, expectations and abilities when collaborating and teams.
6
7

8 Opportunities to hone CPS in existing engineering curricula are lacking or inadequate (Zou
9
10 and Mickleborough, 2015). While modest in scope, this study offers an initial first step and valid
11
12 way to identify and assess CPS behaviours in engineering students. We assist researchers in
13
14 further understanding collaborative processes, instructors in developing teaching practices aimed
15
16 at fostering effective projects that promote CPS and provide a way for students to understand and
17
18 self-monitor their own CPS ability.
19
20

21
22
23 Acknowledgements: This research was supported by the United States National Science
24
25 Foundation: XXX Grant under award number XXX. (anonymized for peer review)
26
27

28 The authors declare that they have no competing interests.
29
30

31 References 32

33 Author et al. 2017.
34
35

36 Accreditation Board for Engineering and Technology (ABET). 2020. *Criteria for Accrediting
37 Engineering Programs, 2020-2021*. Retrieved from
38 <https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering->
39 programs-2020-2021/#GC2
40

41
42 Brown, John Seely, Allan Collins, and Paul Duguid. 1989. "Situated Cognition and the Culture
43 of Learning." *Educational Researcher* 18, (1): 32-42.
44
45

46 Care, Esther, Claire Scoular, and Patrick Griffin. 2016. "Assessment of Collaborative Problem
47 Solving in Education Environments." *Applied Measurement in Education* 29, (4): 250-264.
48
49

50 Chang, C-J., M-H. Chang, C-C. Liu, B-C. Chiu, S-H. Fan Chiang, C-T. Wen, F-K. Hwang, P-Y.
51 Chao, Y-L. Chen, and C-S. Chai. 2017. "An Analysis of Collaborative Problem-solving
52 Activities Mediated by Individual-based and Collaborative Computer Simulations." *Journal of
53 Computer Assisted Learning* 33, (6): 649-662. doi: 10.1111/jcal.12208
54
55

1
2
3 Creswell, John. 2007. *Qualitative Inquiry and Research Design: Choosing Among Five*
4 *Approaches*. Thousand Oaks, CA: Sage
5
6

7 De Montjoye, Yves-Alexandre, Arkadiusz Stopczynski, Erez Shmueli, Alex Pentland, and Sune
8 Lehmann. 2014. "The Strength of the Strongest Ties in Collaborative Problem
9 Solving." *Scientific Reports* (4): 5277. <https://doi.org/10.1038/srep05277>
10
11

12 Graesser, Arthur C., Stephen M. Fiore, Samuel Greiff, Jessica Andrews-Todd, Peter W. Foltz,
13 and Friedrich W. Hesse. 2018. "Advancing the Science of Collaborative Problem
14 Solving." *Psychological Science in the Public Interest* 19, (2): 59-92.
15
16

17 Greiff, Samuel, Daniel V. Holt, and Joachim Funke. 2013. "Perspectives on Problem Solving in
18 Educational Assessment: Analytical, Interactive, and Collaborative Problem Solving." *Journal of*
19 *Problem Solving* 5, (2): 71-91.
20
21

22 Hao, Jiangang, Lei Liu, Alina von Davier, and Patrick Kyllonen. 2015. "Assessing Collaborative
23 Problem Solving with Simulation Based Tasks. In Lindwall, O., Hakkinen, P., Koschmann, T.,
24 Tchounikine, P. & Ludvigsen, S. *Exploring the Material Conditions of Learning: The Computer*
25 *Supported Collaborative Learning (CSCL) Conference* (2): 544-547.
26
27

28 Jonassen, David, Johannes Strobel, and Chwee Beng Lee. 2006. "Everyday Problem Solving in
29 Engineering: Lessons for Engineering Educators." *Journal of Engineering Education* 95, (2):
30 139-151.
31
32

33 Kavanagh, Lydia, and Caroline Crosthwaite. 2007. "Triple-objective Team Mentoring:
34 Achieving Learning Objectives with Chemical Engineering Students." *Education for Chemical*
35 *Engineers* 2, (1): 68-79.
36
37

38 Lai, Emily. 2011. *Motivation: A Literature Review*. A Research Report.
39 London, England: Pearson. Retrieved
40 from http://images.pearsonassessments.com/images/tmrs/Motivation_Review_final.pdf
41
42

43 Liu, Lei, Jiangang Hao, Alina A. von Davier, Patrick Kyllonen, and Juan-Diego Zapata-Rivera.
44 2016. "A Tough Nut to Crack: Measuring Collaborative Problem Solving." In *Handbook of*
45 *Research on Technology Tools for Real-world Skill Development*, 344-359. Hershey, PA: IGI
46 Global.
47
48

49 Mabley, Seren, Esther Ventura-Medina, and Anthony Anderson. 2020. "'I'm Lost'—a
50 Qualitative Analysis of Student Teams' Strategies During their First Experience in Problem-
51 based Learning." *European Journal of Engineering Education* 45, (3) 329-348. doi:
52 10.1080/03043797.2019.1646709
53
54

1
2
3 Marra, Rose M., Linsey Steege, Chia-Lin Tsai, and Nai-En Tang. 2016. "Beyond "group work":
4 an Integrated Approach to Support Collaboration in Engineering Education." *International*
5 *Journal of STEM Education* 3,(1): 17. doi: 10.1186/s40594-016-0050-3
6
7
8

9 Menekse, Muhsin, Senay Purzer, and Damji Heo. 2019. "An Investigation of Verbal Episodes
10 that Relate to Individual and Team Performance in Engineering Student Teams." *International*
11 *Journal of STEM Education* 6, (1): 7. doi: 10.1180/s40594-019-00160-9
12
13

14 Merriam, Sharon. 2009. *Qualitative Research: A Guide to Design and Implementation*, San
15 Francisco, CA: Jossey-Bass.
16
17

18 National Science & Technology Council. 2018. *Charting a Course for Success. America's*
19 *Strategy for STEM Education*. A report by the Committee on STEM Education. Office of
20 Science and Technology Policy, Washington, D.C.
21
22

23 Oliveri, María Elena, René Lawless, and Hillary Molloy. 2017. "A Literature Review on
24 Collaborative Problem Solving for College and Workforce Readiness." *ETS Research Report*
25 *Series* 2017, (1): 1-27. doi: 10.1002/ets2.12133
26
27

28 Organisation for Economic Co-operation and Development (OECD). 2017. *PISA 2015 Results*
29 (*volume V*): *Collaborative Problem Solving*. doi:10.1787/9789264285521-en
30
31

32 Passow, Honor J., and Christian H. Passow. 2017. "What competencies should undergraduate
33 engineering programs emphasize? A Systematic Review." *Journal of Engineering*
34 *Education* 106, (3): 475-526.
35
36

37 Rosen, Yigel and Peter Foltz, P.W. 2014. "Assessing Collaborative Problem Solving Through
38 Automated Technologies." *Research and Practice in Technology Enhanced Learning*, 9(3): 389-
39 410.
40
41

42 Salas, Eduardo, Terry L. Dickinson, Sharolyn A. Converse, and Scott I. Tannenbaum. 1992.
43 "Toward an Understanding of Team Performance and Training." In R. W. Swezey & E. Salas
44 (Eds.), *Teams: Their Training and Performance*, 3-29. New York: Ablex Publishing.
45
46

47 Todorovich, Elías, José A. Marone, and Martín Vazquez. 2011. "Introducing Programmable
48 Logic to Undergraduate Engineering Students in a Digital Electronics Course." *IEEE*
49 *Transactions on Education* 55, (2): 255-262.
50
51

52 Vygotsky, Lev Semenovich. 1980. *Mind in Society: The Development of Higher Psychological*
53 *Processes*. Cambridge, MA: Harvard University Press.
54
55

1
2
3 Zou, Tracy XP, and Neil C. Mickleborough. 2015. "Promoting Collaborative Problem-solving
4 Skills in a Course on Engineering Grand Challenges." *Innovations in Education and Teaching*
5 *International* 52, (2): 148-159.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Exploring Graduate Students Collaborative Problem-Solving in Engineering Design Tasks

For Peer Review Only

1
2
3 Abstract: This study evaluated seven engineering graduate students' collaborative problem-
4 solving (CPS) skills using a rubric designed to assess CPS while working in teams to solve
5 problems. Students worked in two different interdisciplinary teams, in face-to-face and online
6 environments, to solve complex manufacturing design challenges posed by their instructor. The
7 students were assessed using the rubric's four dimensions: *peer interactions, positive*
8 *communication, tools and methods, and iteration and adaption*, and scored via each dimension's
9 associated attributes, and subsequently interviewed. Six students scored emergent or proficient in
10 CPS and had slightly higher CPS scores during the second observation. One student
11 demonstrated a limited ability for CPS and the observable CPS skills decreased during the
12 project. Interviews revealed the importance of (1) relying on instructor and student chosen
13 technologies for collaborative tasks, (2) recognizing and drawing on peer expertise early in the
14 project, (3) building trust during and outside of team meetings, and (4) valuing off-site and
15 online collaborative work. Findings advance the understanding of how instructors can create
16 engineering design challenges designed for effective CPS skill-building and future teamwork.
17
18

19
20 *Keywords:* collaborative problem solving, engineering design challenges, peer
21 interactions, communication, teamwork
22
23

24
25 The ability to collaborate while solving problems is considered a core competency in the
26 21st century and as such, has received significant attention from researcher and industry leaders
27 with the rise of technology-enabled environments and increased emphasis on teamwork (Griffin,
28 et al. 2011). Research demonstrates that the quality of solutions often improves when differing
29 perspectives, innovative ideas, knowledge and experiences from a variety of group members
30 working together are considered (Graesser et al. 2018). Much of the complex work in today's
31 world is conducted in teams, but 'systemic training education and training on CPS is lacking for
32 those entering and participating in the global workforce' (Graesser et al. 2018, 59). Teams are
33 often defined as two or more members working interdependently toward a common goal (e.g.,
34 Salas et al. 1992). Industry and academia, particularly in STEM fields, identify collaborative
35 problem solving (CPS) among team members as important yet acknowledge that many graduates
36 entering the workforce lack collaboration skills (National Science and Technology Council,
37 2018). Interest in assessing skills associated with CPS, a critical component of preparing a
38 STEM workforce, has led to numerous research efforts across fields including environmental
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 science, STEM, math, the military, marketing and medicine (Care, Scoular and Griffin 2016).
4
5

6 One important aim of this prior research includes defining the constructs of CPS in order to help
7 instructors provide effective CPS opportunities and assist students in gaining CPS expertise to
8 improve their future professional practice. With an increased desire to improve CPS proficiency
9 in order to develop deeper knowledge and practical solutions for novel and difficult problems
10 (Graesser et al. 2018), there is a need to support both students and instructors to create an
11 environment where productive CPS occurs.
12
13

14 As part of a 5-year NSF funded engineering graduate traineeship program our research
15 team facilitated industry-sponsored collaborative projects embedded in coursework for students
16 to solve complex, multi-level human and systems manufacturing design challenges. Industry
17 partners worked with the instructors and students on identifying specific projects that would be
18 relevant to both the industry partner and the students. During their project work, we assessed the
19 students' CPS ability while solving manufacturing design challenges and then garnered their
20 perspectives on the collaborative work. The goal of our research is to offer a valid and practical
21 way to identify and assess CPS behaviours in engineering students. We also gathered students'
22 perspectives in order to assist researchers in understanding collaborative processes, and to inform
23 instructors in ways that create opportunities for collaboration. Furthermore, the feedback from
24 the assessment offers students a way to reflect on their individual CPS skills. Thus, our research
25 questions are: 1. How proficient are graduate students in collaborative problem-solving when
26 working in teams to solve engineering design challenges? and 2. What are the students'
27 perspectives towards collaborative problem solving?
28
29

30 Literature Review 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1
2
3 Much of the work done in science, technology, engineering, and mathematics (STEM)
4 professions is performed by teams (Chang et al. 2017; Marra et al. 2016). At the same time,
5 technological advances in the modern workforce has increased the ability to connect across time
6 and discipline. This modern approach to teamwork has led to the need to understand
7 collaborative problem solving (CPS), which includes social and cognitive skills where collective
8 knowledge and skills can solve complex problems (Graesser et al. 2018; OEDC, 2017).
9
10 Moreover, educational institutions value CPS believing it to be a necessary skill that should be
11 assessed (Care et al. 2016; Greiff, Holt and Funke 2013; Hao et al. 2015; Oliveri, Lawless and
12 Malloy 2017; Rosen and Foltz 2014). In the field of engineering, the international Accreditation
13 Board for Engineering and Technology (ABET) requires accredited engineering programs to
14 have CPS as a student outcome. In fact, when considering the seven identified student outcomes
15 to prepare engineering graduates to enter the practice of engineering, four of them are connected
16 to CPS and include attributes such as: solving complex problems, communicating effectively
17 and, functioning on a team (ABET, 2020).
18
19

35 **Literature on CPS in Engineering in Higher Education**

36

37 Researchers aptly point out that, 'there are few studies that investigate whether students
38 can be successfully trained to collaborate' (Lai 2011, 24). Training instructors to provide
39 students with explicit instruction in how to communicate, interact, help others, and negotiate
40 when solving a problem is necessary as today's engineering challenges are complex, ill-defined
41 and ill-structured (Jonassen, Strobel and Lee 2006). At the same time, it is difficult because
42 engineering preparation is rarely interdisciplinary, (Zou and Mickelborough,2015), practical or
43 relevant to how an engineer behaves (Jonassen, Strobel and Lee [2006](#)). Zou and Mickleborough
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(2015) argue that many courses simply assign students in a group, which does not inherently lead to the development of collaborative skills (Kavanagh and Crosthwaite [2007](#)).

With the call to increase CPS skills in education from the Organisation for Economic Co-operation and Development (OCED) and ABET, engineering education has incorporated CPS into their curriculum, research, and assessment (Passow and Passow, 2017). For example, Todorovich, Marone and Vazquez (2012) used collaborative problem solving as a methodology to teach programmable logic to engineering students in an introductory design course. The course was structured to allow work across teams to find solution to complex projects. Results indicated students valued the hands-on experience and found it potentially useful for future engineering work (Todorovich, Marone and Vazquez 2012). Marra et al. (2016) argued for better support of collaborative skill development in engineering students using embedded collaborative technologies (i.e. Google Drive) and found 'quantitative evidence that the use of the environment was significantly correlated to improved student learning outcomes' (p. 14). Furthermore, qualitative results indicated students believed the collaborative technologies improved their work.

Students CPS abilities may also depend on their social or personal relationships with team members. One study on CPS in higher education examined the within-team and extended networks of 80 computer science engineering students (de Montjoye et al. 2014). The research demonstrated the students' problem-solving ability was a function of the strength of both networks. The authors suggest that the structure of social interactions, which includes advice, expertise, contextualised knowledge and experience, matters when solving complex problems as it assists in accessing the right pieces of information. The study found a positive correlation between strong expressive ties (i.e. friendship, affective connections) and instrumental ties (i.e.

1
2
3 professional in nature, to exchange information) towards team performance in that the strongest
4
5 ties between both mattered.
6

7
8 Researchers have also extended CPS studies evaluate the impact on students' performance
9
10 after analyzing their collaborative practices. Meneske, Purzer and Heo (2019) examined types of
11
12 verbal episodes students used in collaborative groups looking at how the interactions occurred at
13
14 the individual and team level. Results indicated that effective CPS teams need balanced
15
16 participation from group members and should include active listening skills, which may need to
17
18 be developed (Meneske, Purzer and Heo 2019). More recently, Mabley and colleagues (2020)
19
20 argue that scaffolding and structure is needed in the early stages of a CPS pedagogy, especially if
21
22 prior instruction and learning was primarily offered through traditional lectures.
23
24

25
26 An extensive systematic review of engineering competencies summed up ways that
27
28 collaborative problem solving is used in engineering education. Passow and Passow (2017),
29
30 looked at engineering materials and research from 1990 to 2013 to determine what
31
32 competency(s) engineering education should give focus. Their results indicated that technical
33
34 competence was inseparable from effective collaboration. The diverse field of engineering is 'too
35
36 complex and interdisciplinary for one person to fully know' (Passow and Passow 2017, 491).
37
38 Therefore, collaborative social interactions are needed to solve real world ill-structured problems
39
40 faced by both professionals and students.
41
42

43 44 **Theoretical Framework** 45

46
47 We draw on socio-constructivist theory (Vygotsky 1980) to position our research as our
48
49 focus is on understanding how language, human interactions and available technologies during
50
51 collaborative relationships might assist in solving relevant problems (Squire 2004). Socio-
52
53 constructivist theorists recognise cognition as social and often support the theory using situated
54
55
56
57
58

cognition, in which knowledge is 'situated' within the activity, context, and culture in which it is developed, where knowing and doing are considered entwined activities (Brown, Collins and Duguid 1989). The pedagogical implications for socio-constructivist learning and situated cognition suggest that situating problems in relevant or real world practices may engage people in creating solutions. This ostensibly can be extended to students collaboratively solving problems in engineering design environments, hence it is well aligned with our research.

Method

We used qualitative case study (Merriam 2009), to understand graduate students' CPS while working in collaborative teams to solve manufacturing design challenges. Case study is appropriate as it relies on multiple sources of evidence and theoretical propositions when searching for meaning or developing deeper understandings. In this study, case study assists us in studying the phenomena of collaboration in its natural setting to make sense of and then describe, via our analysis of observations and interviews, how collaboration occurred in engineering students' project work. Our case was bound by students enrolled an advanced manufacturing course during the spring semester of 2020. Our participants were seven graduate students who attended the same university in the southeast United States and moved through each course within the manufacturing trainee program together. Eight students were enrolled in the program and all of them were selected to participate, however one student was not present for all of the observations and data collection, and thus was not included in the final analysis. During our research, we paid particular attention to students' actions aligned with dimensions and attributes using the Traineeship Evaluation CPS rubric (pseudonym used; further described below).

The context

1
2
3 The seven participating students applied to participate in the trainee program after it was
4 broadly advertised via academic media outlets; applications were reviewed by participating
5 researchers and students were selected based on the achievements and the fit of their
6 interdisciplinary background within the trainee program. All students identified as White or
7 Caucasian, five were male and two were female (students are referred to as Student A-G and
8 genders as s/he in this paper to protect their anonymity). Three students were earning their PhD
9 in Computing, one was earning his PhD in Automotive Engineering, and three students (both of
10 the females) were enrolled in the Mechanical Engineering MS program. The goal of the program
11 was to recreate experiences in which researchers, engineers and technicians collaborated on
12 projects in actual factories. Graduate students took advanced coursework together in three key
13 areas – manufacturing, data management, and human technologies, and then developed projects
14 and solutions while working collaboratively. For this study, students were in the first year of the
15 program and taking a capstone course focused on interdisciplinary collaboration on applied
16 manufacturing projects relating to advanced manufacturing capabilities. Within the projects, they
17 conducted research, imagined solutions, planned and created prototypes, tested their prototypes
18 and iterated their designs before presenting them to peers, instructors and industry partners.
19
20

21 In one project team, four students worked on problem-solving an applied manufacturing
22 project, attempting to measure shear and normal forces with a novel sensor designed for
23 handheld use cases, while also integrating IoT (Internet of Things) data collection capabilities. A
24 second project group of four students focused on developing a smart manufacturing system
25 capable of integrating environmental and machine data to create a more complete picture of the
26 manufacturing environment that could be used to predict future maintenance and workforce
27 concerns. [Insert figure 1 and figure 2 about here]
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2 3 **Data sources** 4

5 Our primary data sources were observations using the Traineeship Evaluation CPS rubric
6 and semi-structured interviews all of the students. We video recorded the students working
7 together to verify data collected via the rubrics, and audio recorded individual interviews. We
8 describe each primary source in greater detail.
9
10
11
12
13

14 *Traineeship Evaluation CPS* 15

16 Traineeship Evaluation CPS is a rubric which defines four dimensions of CPS (two social
17 dimensions: *Peer Interactions*, *Positive Communication*, and two cognitive dimensions *Tools*
18 and *Methods and Iterations and Adoptions*) desirable when individuals are working in teams.
19 Each dimension includes three attributes (e.g., monitors tasks and checks for shared
20 understanding with peers, divides work to complete tasks, may assign or negotiate roles,
21 provides peer feedback, assistance and/or redirection) aligned with that dimension and scored as
22 'not evident,' 'emergent,' or 'proficient'.
23
24 [insert figure 3 about here]
25
26
27

28 [insert table 1 about here]
29
30
31

32 There is also a space for observation notes which provides further information and
33 justification for the rater's score in each dimension. Traineeship Evaluation CPS was modified
34 from a similar rubric used to evaluate CPS in STEM work that was validated for construct
35 validity and inter-rater reliability (Author 1 2017).
36
37

38 Four researchers were trained on how to use the rubric and it was piloted for usability by
39 two of the four researchers in the semester preceding the study. During data collection the
40 research team conducted the observations simultaneously, with two researchers each observing
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 four participants as they worked in different teams for a minimum of 40 minutes, using a
4 separate rubric for each individual. Since students were observed at the same time the team
5 scrolled between the rubrics or dimensions as necessary. In the observation notes on Traineeship
6 Evaluation CPS context specific information was recorded to support the selected levels or
7 proficiency.
8
9

10 After the first observation, the university closed and in-person participation was not
11 allowed due to Covid 19, however the teams continued working by having materials shipped to
12 one another's homes and meeting online, so the final observation was conducted and recorded
13 via Zoom. All seven students were observed at least twice by two researchers and sessions were
14 video recorded to review during analysis.
15
16

26 *Semi-structured interviews* 27

28 Directly following the project work, students were interviewed individually. We posed a
29 series of questions aligned with attributes on the rubric to gauge students' perspective regarding
30 working with peers and collaborating. Example questions included: How satisfied were you with
31 how your peers treated you while working in the group? How would you describe your
32 interaction with your peers? How did you decide to divide up the work? How did your group
33 decide how to choose tools and resources to complete the task? Thinking about your group
34 project, did you make any iterations or changes to your presentation, design, or prototype?
35
36
37
38
39
40
41
42
43
44
45

Data analysis 46

47 We analyzed Traineeship Evaluation CPS data by assigning each student a summed score
48 for each dimension of the rubric (*Peer Interactions, Positive Communication, Tools and*
49 *Methods, Iterations and Adaption*) using a scale of 0 = not evident, 1= emerging, and 2 =
50 proficient. Students could also receive a score of .5 or 1.5 if two indicators were checked for the
51
52
53
54
55
56
57
58
59
60

1
2
3 same attribute. We created a summed score for each dimension, with ranges (0-2, 2.5-4 and 4.5-
4
5 6) for proficiency levels. For example, a student scoring a 0, 1, 1 across all 3 attributes of the
6 dimension of peer interaction would receive a summed score of 2 and be within the 'not evident'
7 range of 0-2 for that dimension. A student scoring 0, 2, 1 in the same dimension would receive a
8 summed score of 3 and fall in the 'emerging' range. The observation notes assisted in making
9 evidence-based decisions to accurately assign scores. We provide two typical, representative
10 examples of observation notes for individual students:
11
12
13
14
15
16
17
18

19 Student A: Student asks questions and responds affirmatively or with new questions,
20 appearing to be listening intently as camera zooms in while speaking. Suggests the team
21 can get one proof-of-concept prototype by the deadline. Shares a mold via screenshare,
22 searches email to find copper plates, directs others how to use sticky hands and talks
23 about the design.
24
25
26
27
28
29

30 Student G: Student expressed concern regarding the use of pipettes and looked up the
31 cost/ship date while consulting the group. Physically picked up materials and held them
32 via camera to show team examples; was prepared for the meeting and led testing sharing
33 the desktop. Conducted tests with alligator clips, reported the reading, then clarified and
34 made changes.
35
36
37
38
39
40
41
42
43
44

45 Next, we transcribed and analyzed student interviews to provide a more holistic
46 understanding of how students were collaborating and activities that either did or did not
47 promote collaboration. These were analyzed using a priori codes aligned to the dimensions on
48 Traineeship Evaluation CPS of positive communication, peer interactions, tools and methods and
49 iterations and adaption and used to answer the research question regarding student perspectives
50
51
52
53
54
55
56
57
58
59
60

1
2
3 of collaborating in teams to solve the challenges. We also noted emergent codes categorised the
4 codes into themes (Creswell 2007). The analysis was verified using inter-rater reliability in
5 which two researchers independently coded the student responses and categorised them into
6 themes, and then compared the results with one another to reach consensus (Creswell 2007). A
7 third member of the research team then checked the codes, themes and examples for accuracy.
8
9
10
11
12
13
14
15
16

Findings

RQ 1: How proficient are graduate students in collaborative problem-solving when working teams to solve manufacturing challenges?

24 During the first observation, six of the seven students consistently scored in the emerging
25 or proficient range in the social dimensions of *peer interaction* and *positive communication*, and
26 five of the seven students also scored in the emerging or proficient range in the cognitive
27 dimensions of *tools and methods* and *iteration and adaption* (see Table 2 below). Three students
28 were proficient in all four dimensions, and one student (Student A) demonstrated an emerging
29 ability to interact with peers when solving problems, but no notable evidence of positive
30 communication or collaborating with tools or making changes to the prototype was observed.
31 Observation notes described this student as polite, but rarely engaging with the team other than
32 to occasionally respond to questions. Based on the conversation, it was evident that the student
33 had contributed to some of the prior work related to building a dashboard. While the student
34 didn't reject or monopolise the conversation, s/he simply did not contribute much.
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49 For students who consistently scored in the emerging or proficient range, we noted them
50 repeatedly checking in with one another, asking clarifying questions (e.g. 'I think we can do
51 three, do you agree with that?' or 'How long would you want that tail, a quarter inch?'). They
52
53
54
55
56
57
58
59
60

would typically offer new ideas about changing a design idea or prototype, often sketching on the whiteboard, making changes to a computer-aided design (CAD) drawing or physically manipulating objects while discussing the math, tolerances or area of a design. At times students were observed identifying the problem and then working through it together, oftentimes visually, with one member drawing out the group's ideas for discussion (e.g. Student C made a suggestion, while Student D drew on the board and Student F suggested how the group should approach the issue, saying, 'I'm just going to sketch my ideas on paper, you can start drawing for all of us.')

During the second observation, which was conducted one month later, while students were collaborating in a Zoom break-out rooms, due to Covid 19, six of the seven students consistently demonstrated they were adept at social and cognitive CPS skills scoring *emerging* or *proficient* in each dimension, with four of the seven scoring proficient in every dimension. The same student who struggled earlier, Student A, scored lower in each dimension. This student was nearly absent from the conversation and even asked to turn off his camera. Although it was clear s/he was still connected via audio, s/he did not respond other than to comment twice to his group providing positive feedback and then to make a suggestion regarding a materials purchase. Similar to the first observation, nothing negative was noted however the overall lack of responsiveness demonstrated his inability to collaborate.

In the majority of instances where students scored emerging or proficient range, students were noted responding to design modifications in a manner that is was clear they were seeking feedback on steps they were taking, or some students noticeably took the lead by reminding the team where they were in project and answering questions. Some students were observed holding

1
2
3 up or showing digital objects and then asking their team members questions about how the
4 objects or materials could best be used to devise a strategy to solve the problem.
5
6

7 Across both observations, the students generally scored slightly lower on the cognitive
8 dimension of *iteration/adaption* when collaborating, than on *tools/methods*. However, with the
9 exception of Student A, the members of both teams were both adept at choosing appropriate
10 tools and methods to solve the problem by the second observation (via Zoom). The students'
11 ability to demonstrate iterative thinking or design processes and test ideas was generally less
12 apparent in the first observation with 2 of the students scoring *not evident*, and 2 scoring
13 *emerging*. Overall, the students scored higher in both *tools/methods* and *iteration/adaption* when
14 working online. Students scoring *proficient* were noted using the screenshare function
15 frequently, demonstrating how tools and materials might work while teammates asked to see the
16 object or digital drawing manipulated, or actively making changes to physical objects (e.g. using
17 calipers to demonstrate a current and changed measurement, showing a box with and without
18 clamped ends, showing how sticky hands might work with the prototype, reviewing a CAD draft
19 and making a change).
20
21

22 [insert table 2 about here]
23
24

25 ***RQ 2: What are the student perspectives towards collaborative problem solving?***

26 The students' interviews provided their perspectives of CPS during the team projects.
27 Although the Traineeship Evaluation CPS attributes guided the development of the interview
28 questions, the goal of the interviews was not to verify ratings, but instead to better understand
29 how the students viewed collaborating with peers while solving engineering challenges. We
30 discuss their perspectives of the social and cognitive dimensions of their teamwork and
31 acknowledge the overlap between the dimensions. To that end, we noted how often students
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 would describe an interaction or communication with their peers in conjunction with dividing
4 work, an approach they took, a method or tool that they chose or a change they decided to make.
5
6

7
8 *Students' perspective on interacting and communicating with their team*
9

10 Overall, the students described their peer interactions and communication as constructive
11 and positive noting how the effective use of Slack, Google Hangouts, and a Gantt Chart or what
12 they deemed, 'high level mapping on a flowchart' kept them on task and allowed them to
13 monitor tasks throughout the project. A couple of the students talked about how chat function on
14 OneDrive made it easier to collaborate. One student even pointed out that their team had 'really
15 good communication through email, which is not the norm.' Another student mentioned that
16 using Power BI for the visualizations was confusing at first and s/he would have likely not taken
17 the time to really utilise it without both technology and another team member. S/He explained
18 that they had limited experience with data streams, but after talking with a team member who
19 was slightly more experienced with hit, s/he suggested they use in their project and find help
20 online. This led the student to LinkedIn Learning as a resource for his entire team, otherwise s/he
21 said they would 'have been aimlessly wandering around YouTube to find help.'

22
23 All seven of the students mentioned that that group members got along and were
24 respectful, and this appeared to emanate from early conversations about their research interests
25 and abilities. Student B explained:

26 We did these (digital) presentations at the beginning of the semester that were all kind of
27 corny, like, get-to-know-you things. But we also talked about our research interests and
28 relative strengths and weaknesses. Because of that, I think everyone has a good amount
29 of mutual respect so we respect our [sic] project-related discussions. When I mention
30 something about air flow and how it might affect sensors, I've taken heat transfer and
31

1
2
3 fluid mechanics, so it's like, oh s/he knows that. And when Student C talks about data, I
4
5 respect her/his expertise.
6
7
8
9

10 A few of the students mentioned that the open-ended nature of the project assisted them
11 in interacting and communicating because, 'we don't know what works and what doesn't, so we
12 have to get as many ideas as we can and test them.' All of the students responded that they were
13 'satisfied' or 'pretty satisfied' with the team's ability to communicate and conveyed that they
14 respected their team members abilities and believed the tasks, while not always discussed in
15 detail, were clearly divided based on expertise. Student G mentioned, 'I think we all kind of
16 know who we can leverage', and Student B, explained how they divided tasks in greater detail:
17
18

19 We work separately, we kind of have to decompose the question (referring to their
20 problem-solving task) a little bit. I think everyone's expectations are entirely clear. I
21 don't think anyone at any point has to wonder what the other person wants. It's an issue
22 I've seen in other groups, but we're just very clear on what everyone is doing and
23 expected to get done. We'll put out a doc and it's like, 'hey everyone, mark your sections'
24 and within two days it's all done.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

One student described how tasks were divided based on talents the group recognised,
saying:

It's all very positive like, we have individual conversations about everybody about
certain tasks, like talking to Student F about material property stuff, and then taking to Student H
(absent from second observation) about getting different prototypes and then taking to Student A
about all of the dashboard stuff. It's easy to know who's background it suited for different things.

1
2
3 Another student talked about the ease in which he/his group communicated, indicating
4
5 that team members were could easily provide assistance or redirect one another. S/he said:
6
7

8 We don't have communication blocks. I mean, usually, if someone is confused about
9 something, they just bring it up right there and it makes life a lot easier. Everyone asks,
10
11 Student C a lot of questions about hardware because s/he knows all the stuff. S/He's, you
12
13 know getting a PhD in it so after four-ish years, s/he knows the hardware in and out.
14
15 S/He's under a fair bit of stress with his dissertation and I can still ask him pretty much
16 anything at any time. Student G is doing his thesis, but my interactions with have not
17
18 been standoffish at all. We have our (morning) meeting times and they go just fine.
19
20
21
22
23
24
25

26 The students also believed they freely shared knowledge, materials, and the workload with one
27 other - although not necessary equally or even equitably at different points in the project. This
28 included the student we observed contributing very little during our observations. That said, most
29
30 students said they did not believe that the workload needed to be equitable, instead they
31
32 suggested it should be dependent on the team members strengths, and a relative to where the
33
34 team was in the project. Student D explained:
35
36
37

38 I would say it (referring to the workload) is equal, especially since here some people have
39
40 different strengths as a consequence of where we are in the project, so until we got to the
41
42 prototyping stuff Student A and F were really only talking to use about the pricing. S/He
43
44 then added, 'I think we've done a good job staying together in terms of contributions.'

45
46
47
48
49
50
51 This perspective regarding other team members contributions extended to Student A that we
52
53 observed interacting and contributing very little. During interviews it was apparent that the team
54
55
56
57
58
59
60

1
2
3 felt the student's contributions before and after team meetings (these were purposefully designed
4 as working meetings) were valuable, even if it was less than their own or not apparent during the
5 sessions we observed.
6
7
8
9

10 *Students' perspective on tools, methods and iterations*
11

12 When asked about how their team chose particular tools and resources or handled design
13 iterations, a majority of the students pointed to how they relied on one another's expertise and
14 past experience to divide tasks, choose tools and make changes. They also believed this division
15 of tasks and way of choosing tools or approaches was natural. For example, Student B said:
16
17
18
19
20
21
22
23
24
25
26
27
28
29

I hate to say it naturally coalesced, but it kind of did. I think me and Student E worked at
the same manufacturing site, I know that s/he is experienced. When we talk about what
we want the dashboard to look like, well we've both used dashboard in manufacturing
and created them in the past.

30
31
32
33 Students D explained,
34

35 I think we self-divided based on expertise into the two many area that we perceived as
36 part of our project. We formed subgroups that are kind of natural – the programming and
37 coding side and then the dashboarding and informatics side.
38
39
40
41

42 Student G told us:
43

44 For me and Student E, we have fairly common background experience, we have general
45 conversations about tech and outside conversations that aren't even related (directly to
46 the project). There are other things I know he knows about, and if s/he knows those
47 things that is probably what s/he wants to do.
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 A few of the students talked about the comfort they felt bringing ideas forward to for their team
4 to discuss, try out or test, and revise if necessary. For instance, Student B explained:
5
6

7 I feel pretty thankful that we're pretty comfortable with this kind of thing. That if
8 something isn't going to work, it's okay. When it comes down to the design, the right
9 one, we're still going to try and test it. We all kind of acknowledged it might not give us
10 the results we are looking for, but there is no harm in trying it. For a while Nikola Tesla
11 was like, yeah, I don't think that's gonna [sic] work either, but from that you get other
12 ideas. It's part of our brainstorming process.
13
14

15 A few other suggestions made during the student interviews that emerged are worth
16 noting. One student indicated that while there was nobody on the team that s/he would prefer to
17 *not* work with, the addition of an electrical engineer would have been helpful. Another student
18 from the other team responded similarly, even mentioning that the group enlisted the help of an
19 electrical engineering graduate student not directly associated with the course or project.
20
21

22 Four students also suggested that the entire team be exposed to the project and be
23 allowed to form teams earlier, believing that spending time as a team prior to working on the
24 project would help them better understanding one another's expertise and to build trust. To that
25 end, another student remarked several times throughout the interview that there was an element
26 of trust that made the teamwork effective. S/He talked about trust within and beyond the team,
27 extending it to the fellowship (training program and instructor) believing that since the students
28 were all vetted, they felt comfortable asking questions of other group members because they
29 were 'credentialed to a degree' and likely had the answers. S/He then described the instructor as
30 trusting them and treating the teams as if they were all 'extremely massively qualified.'
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Discussion

In this study, graduate student teams were tasked with solving two different manufacturing engineering challenge problems (developing a novel handheld sensor and creating a smart manufacturing system). Our research team followed each team throughout the process of completing teamwork, noting how each team member scored on a variety of CPS variables and also providing qualitative data about student teamwork perceptions and the manner in which students chose to enact collaboration.

The majority of the graduate students in this study demonstrated their ability to interact and communicate positively and proficiently, choose appropriate tools and methods to jointly solve problems, and work with team members to test and iterate designs and prototypes. Almost all of the students were observed developing CPS skills (emerging or proficient) during the course of the project work. We noted them asking new questions or responding to team members questions based on their individual area of expertise, demonstrating ideas with tools, drawing or designs, dividing work and checking in, taking turns leading the team in their area of expertise, and appearing respectful of other team member's expertise.

Our observation notes and qualitative interviews highlight several instances of students bringing forth alternative ideas based on their own background and levels of proficiency. The presence of interdisciplinary individual backgrounds composing the overall team allowed for reinforced productive CPS skills to both be developed and applied. This implies, in part, that interdisciplinary students can be trained to successfully collaborate, and answers calls to build this body of research (Lai 2011). In addition there is the implication that training programs, similar to this NRT program, that focus on interdisciplinary problem solving with engineering challenges mirroring industry are a potential way forward to successfully hone collective

1
2
3 knowledge and skills to solve complex problems (Graesse et al. 2018; OCED 2017). The
4 matching of real world problem sets to students skills provides students with knowledge
5 regarding these types of problems, but more importantly allows students a testbed to identify and
6 practice relevant CPS skills in a testbed environment before they are implemented in a real world
7 environment.
8
9

10 Both observations and student interviews illuminated the unique methods that
11 engineering instructors worked in concer with industry partners to develop feasible classroom
12 projects mirroring real world challenges. The challenges were ill-defined and ill-structured,
13 much like today's complex engineering challenges in the workforce (Jonassen, Strobel and Lee
14 2006; Zou and Mikelborough 2015) and likely assisted the students in having to rely on team
15 members to advance in solving each problem.
16
17

18 Although one student (Student A) was not observed participating fully or collaboratively,
19 his team members still identified, acknowledged and viewed his 'between working meetings'
20 and offline contributions as valuable. This finding highlights an important facet of this type of
21 work, and teamwork in the class in general, in that contributions are not always occurring within
22 the classroom or during team meetings. As educators, it is important that we understand student
23 enact teamwork in a myriad of ways, many of which are not apparent to us while in the
24 classroom. The type of project enlisted in this program required a great deal of outside the
25 classroom work, and it appears that this is when Student A completed his work while still being
26 accountable to s/he's team. It is easy to bias our viewpoints on this student's work by simply not
27 being able to directly observe that work or their CPS skills, but it is important to understand that
28 teamwork is dynamic and occurs in many ways.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 In general, our research team concluded that CPS may occur productively outside of
4 team meetings and further research is necessary to understand the overall impact of CPS for
5 work occurring outside of team meetings is warranted, especially in light of the increased value
6 of remote work during and after Covid 19. To that end, having students aware of the dimensions
7 and attributes of CPS skills, using a checklist derived from Traineeship Evaluation CPS, and then
8 asking them to self-monitor and compare their observed and self-assessments is the next step in
9 our research.

10
11
12
13
14
15 Four main themes emerged from the interview data: (1) the use of instructor and student
16 chosen technologies enhanced each team's ability to collaborate, (2) team member's expertise
17 played a crucial role in task division and ways work was distributed, (3) building trust and
18 feeling trusted, early on, was perceived as important to the success of the team's CPS, (4)
19 members valued contributions that occurred outside of working meetings. We discuss each
20 below and note when observations also supported the themes.

21 ***Blending instructor and student technology choices to enhance CPS***

22
23
24
25
26 The observations and interviews helped demonstrate the value of using a host of
27 technologies to effectively communicate and collaboratively solve problems. This is not a novel
28 or surprising finding, as numerous studies point to technological advancements increasing the
29 capacity for CPS (Chang et al. 2017). However, in this study, the engineering students provided
30 insight towards the value of blending instructor facilitated and student chosen technologies.
31
32 Students discussed using digital tools provided by the instructors such as Slack, OneDrive and
33 numerous Google Apps, and choosing communication tools that students were comfortable with
34 or had knowledge of such as LinkedIn Learning, Google Hangouts and FaceTime. Introducing
35 students to productive collaborative tools and allowing them to choose their own appeared to
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 effectively foster collaboration and extended expertise to other members of the team. The
4 instructor's willingness to not restrict technology choices, and the students' willingness to
5 introduce digital tools to each other assisted in the team's ability to successfully complete tasks.
6
7 We suspect, that much liked the ill-defined nature of the entire project, the ill-defined nature of
8 articulating what tools should be used actually helped the student team members develop
9 investment and autonomy in their teamwork and their final products. Allowing students to have a
10 choice in multiple aspects of the projects (not just in relation to tools) engenders a level of
11 investment from the students, as the student made that choice and the outcome (positive or
12 negative), at some level, depends on the choice that the student made, not the instructor. Simply
13 stated, this level of choice has the potential to increase both individual and team level
14 accountability.
15
16

17 After Covid 19 forced the teams to move to Zoom and utilise the breakout room
18 affordance (each team is in their own room), they continued to collaborate and managed their
19 individual workload and schedules to remain productive during the online meeting. In
20 observations this was evidenced as students discussed purchases of equipment ordered far in
21 advance of their working meetings, or progress they shared regarding designs and molds
22 developed for electrical boxes or creating their team's dashboard. Similar to Marra et al. (2016)
23 the students believed the collaborative technologies improved the quality of their work, and they
24 also believed it enhanced their ability to share and benefit from team members' expertise.
25
26

27 ***The importance of recognizing expertise in forming teams and discussing roles***

28

29 The observations and interviews illustrated the ease in which students positively
30 communicated with team members. The innovative and open-ended nature of the problems
31 meant they had to rely on each other to plan, innovate and rethink ideas when efforts failed. We
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 seldom saw, nor did the students indicate, any difficulty in getting along or being respectful to
4
5 teammates. Several of the students talked about how respect emanated from recognizing each
6
7 other's expertise, whether they were in an MA or PhD program, and knowing a particular area
8
9 (hardware, technology, design, visual display, environmental sensing) 'inside and out' – and
10
11 being open to helping one another. The collective nature of being a student in the NRT program
12
13 may have also helped to develop respect among team members. Students pointed to efforts early
14
15 in the project to share their own expertise and talk with their team as beneficial. Although, these
16
17 students said the efforts should have begun even earlier as a productive way to form teams and
18
19 think about how their skills aligned with roles they might play in completing tasks and solving
20
21 the problems. This finding supports de Montjoye et al. (2015) who posit that CPS is supported by
22
23 the function of social interactions and suggest that advice, expertise and contextualised
24
25 knowledge and experience matters when solving complex problems.

26
27
28
29
30 ***Building trust to strengthen CPS***

31
32 A theme that emerged from the student interviews was the need for trust and
33
34 teambuilding exercises early on in the program or coursework in order to share expertise,
35
36 identify and acknowledge what might be lacking in the team (in this case, electrical engineering
37
38 proficiency), and to provide time to thoroughly understand the problem. Four of the students
39
40 talked at length about the need to trust group members in order to feel comfortable bringing any
41
42 question forward, and not feel embarrassed when their individual or collective idea failed.
43
44 Similar to the prior theme of recognizing expertise, almost every student interviewed discussed
45
46 the open-ended and hands-on nature of the project as requiring a level of flexibility and
47
48 'respecting the discussion', which meant trusting each other's knowledge related to their
49
50 expertise. This could be addressed by class discussions early in the training program, short
51
52
53
54
55
56
57
58
59
60

1
2
3 student presentations detailing own interests and strengths, and attention to additional team and
4 trust-building exercises. To further building trust around expertise in open-ended CPS,
5
6 instructors could include opportunities to work with industry mentors to simulate how trust,
7
8 expertise and CPS is approached in the real world.
9
10
11

12 ***Valuing off-site work and online collaboration***

13

14 An unexpected theme noted in the analysis of the interviews was the general belief that
15 work done outside of the teams working meetings played a significant role in solving the
16 engineering challenges, and thus work done during team meetings or during particular points in
17 the project did not have equitable to be valuable. This was further evidenced and supported in
18 observations conducted while the teams meet in Zoom Breakout rooms. These meetings were
19 mainly viewed as touchpoint meetings, to plan and provide a path forward for each individual
20 member team roles in relation to the overall team goals. After Covid 19, the value of off-site
21 work and online collaboration was realised more than ever, by students completely working off-
22 site and utilizing online to facilitate collaboration. Our research team did not set forth with this
23 research to solely focus on the impacts of digital collaborative technologies, but the advent of
24 Covid 19 certainly allowed us the opportunity to examine this in greater detail. In general, based
25 on observations, interviews, and informal meetings among the research team, we found these
26 students to be very resilient in completing their teamwork, and also not having issues relating to
27 using online collaboration. This is significant for two reasons: 1) students can and will use online
28 collaborative technologies in a meaningful way to complete teamwork, and 2) as educators, we
29 should be purposefully developing projects that require the use of these types of technologies as
30 they are likely to become permanent fixtures within our world.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Limitations, next steps and conclusion

1
2
3 We acknowledge some limitations with this research. First, the small sample size may
4 limit the generalizability of this research, however this qualitative research provides an in-depth
5 and more contextualised perspective of collaboration between individual students and their
6 teams. Conducting observations over a longer period of time might provide richer, comparative
7 data, and help us better understand the progression of CPS for individuals. That said, Traineeship
8 Evaluation CPS is designed to provide a relatively quick observation of students' ability to
9 collaborate in short periods of time to offer instructors and educational researchers feasibility in
10 using it. As the next cohort of NRT trainees are included we will extend data collection to the
11 larger group to mitigate both limitations. Next steps in our research also includes the creation of
12 a self-assessment CPS checklist for students to self-monitor and reflect on their collaborative
13 activities. The checklists will be used to make students aware of the constructs of CPS and
14 discuss their perceptions, expectations and abilities when collaborating and teams.
15
16

17 Opportunities to hone CPS in existing engineering curricula are lacking or inadequate (Zou
18 & Mickleborough, 2015). While modest in scope, this study offers an initial first step and valid
19 way to identify and assess CPS behaviours in engineering students. We assist researchers in
20 further understanding collaborative processes, instructors in developing teaching practices aimed
21 at fostering effective projects that promote CPS and provide a way for students to understand and
22 self-monitor their own CPS ability.
23
24

25 Acknowledgements: This research was supported by the United States National Science
26 Foundation: NRT Training Grant under award number 1829008.
27
28 The authors declare that they have no competing interests.
29
30

31 **References**

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Author et al. 2017.
4
5

6 Accreditation Board for Engineering and Technology (ABET). 2020. *Criteria for Accrediting*
7 *Engineering Programs, 2020-2021*. Retrieved from
8 <https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2020-2021/#GC2>
9
10

11
12 Brown, John Seely, Allan Collins, and Paul Duguid. 1989. "Situated Cognition and the Culture
13 of Learning." *Educational Researcher* 18, (1): 32-42.
14
15

16 Care, Esther, Claire Scoular, and Patrick Griffin. 2016. "Assessment of Collaborative Problem
17 Solving in Education Environments." *Applied Measurement in Education* 29, (4): 250-264.
18
19

20 Chang, C-J., M-H. Chang, C-C. Liu, B-C. Chiu, S-H. Fan Chiang, C-T. Wen, F-K. Hwang, P-Y.
21 Chao, Y-L. Chen, and C-S. Chai. 2017. "An Analysis of Collaborative Problem-solving
22 Activities Mediated by Individual-based and Collaborative Computer Simulations." *Journal of*
23 *Computer Assisted Learning* 33, (6): 649-662. doi: 10.1111/jcal.12208
24
25

26 Creswell, John. 2007. *Qualitative Inquiry and Research Design: Choosing Among Five*
27 *Approaches*. Thousand Oaks, CA: Sage
28
29

30 De Montjoye, Yves-Alexandre, Arkadiusz Stopczynski, Erez Shmueli, Alex Pentland, and Sune
31 Lehmann. 2014. "The Strength of the Strongest Ties in Collaborative Problem
32 Solving." *Scientific Reports* (4): 5277. <https://doi.org/10.1038/srep05277>
33
34

35 Graesser, Arthur C., Stephen M. Fiore, Samuel Greiff, Jessica Andrews-Todd, Peter W. Foltz,
36 and Friedrich W. Hesse. 2018. "Advancing the Science of Collaborative Problem
37 Solving." *Psychological Science in the Public Interest* 19, (2): 59-92.
38
39

40 Greiff, Samuel, Daniel V. Holt, and Joachim Funke. 2013. "Perspectives on Problem Solving in
41 Educational Assessment: Analytical, Interactive, and Collaborative Problem Solving." *Journal of*
42 *Problem Solving* 5, (2): 71-91.
43
44

45 Hao, Jiangang, Lei Liu, Alina von Davier, and Patrick Kyllonen. 2015. "Assessing Collaborative
46 Problem Solving with Simulation Based Tasks. In Lindwall, O., Hakkinen, P., Koschmann, T.,
47 Tchounikine, P. & Ludvigsen, S. *Exploring the Material Conditions of Learning: The Computer*
48 *Supported Collaborative Learning (CSCL) Conference* (2): 544-547.
49
50

1
2
3 Jonassen, David, Johannes Strobel, and Chwee Beng Lee. 2006. "Everyday Problem Solving in
4 Engineering: Lessons for Engineering Educators." *Journal of Engineering Education* 95, (2):
5 139-151.
6

7
8 Kavanagh, Lydia, and Caroline Crosthwaite. 2007. "Triple-objective Team Mentoring:
9 Achieving Learning Objectives with Chemical Engineering Students." *Education for Chemical
10 Engineers* 2, (1): 68-79.
11

12 Lai, Emily. 2011. *Motivation: A Literature Review*. A Research Report.
13 London, England: Pearson. Retrieved
14 from http://images.pearsonassessments.com/images/tmrs/Motivation_Review_final.pdf
15

16
17 Liu, Lei, Jiangang Hao, Alina A. von Davier, Patrick Kyllonen, and Juan-Diego Zapata-Rivera.
18 2016. "A Tough Nut to Crack: Measuring Collaborative Problem Solving." In *Handbook of
19 Research on Technology Tools for Real-world Skill Development*, 344-359. Hershey, PA: IGI
20 Global.
21

22
23 Mabley, Seren, Esther Ventura-Medina, and Anthony Anderson. 2020. "'I'm Lost'—a
24 Qualitative Analysis of Student Teams' Strategies During their First Experience in Problem-
25 based Learning." *European Journal of Engineering Education* 45, (3) 329-348. doi:
26 10.1080/03043797.2019.1646709
27

28
29 Marra, Rose M., Linsey Steege, Chia-Lin Tsai, and Nai-En Tang. 2016. "Beyond "group work":
30 an Integrated Approach to Support Collaboration in Engineering Education." *International
31 Journal of STEM Education* 3,(1): 17. doi: 10.1186/s40594-016-0050-3
32

33
34 Menekse, Muhsin, Senay Purzer, and Damji Heo. 2019. "An Investigation of Verbal Episodes
35 that Relate to Individual and Team Performance in Engineering Student Teams." *International
36 Journal of STEM Education* 6, (1): 7. doi: 10.1180/s40594-019-00160-9
37

38
39 Merriam, Sharon. 2009. *Qualitative Research: A Guide to Design and Implementation*, San
40 Francisco, CA: Jossey-Bass.
41

42
43 National Science & Technology Council. 2018. *Charting a Course for Success. America's
44 Strategy for STEM Education*. A report by the Committee on STEM Education. Office of
45 Science and Technology Policy, Washington, D.C.
46

47
48 Oliveri, María Elena, René Lawless, and Hillary Molloy. 2017. "A Literature Review on
49 Collaborative Problem Solving for College and Workforce Readiness." *ETS Research Report
50 Series* 2017, (1): 1-27. doi: 10.1002/ets2.12133
51

1
2
3 Organisation for Economic Co-operation and Development (OECD). 2017. *PISA 2015 Results*
4 (*volume V*): *Collaborative Problem Solving*. doi:10.1787/9789264285521-en
5
6

7 Passow, Honor J., and Christian H. Passow. 2017. "What competencies should undergraduate
8 engineering programs emphasize? A Systematic Review." *Journal of Engineering*
9 *Education* 106, (3): 475-526.
10
11

12 Rosen, Yigel and Peter Foltz, P.W. 2014. "Assessing Collaborative Problem Solving Through
13 Automated Technologies." *Research and Practice in Technology Enhanced Learning*, 9(3): 389-
14 410.
15
16

17 Salas, Eduardo, Terry L. Dickinson, Sharolyn A. Converse, and Scott I. Tannenbaum. 1992.
18 "Toward an Understanding of Team Performance and Training." In R. W. Swezey & E. Salas
19 (Eds.), *Teams: Their Training and Performance*, 3-29. New York: Ablex Publishing.
20
21

22 Todorovich, Elías, José A. Marone, and Martín Vazquez. 2011. "Introducing Programmable
23 Logic to Undergraduate Engineering Students in a Digital Electronics Course." *IEEE*
24 *Transactions on Education* 55, (2): 255-262.
25
26

27 Vygotsky, Lev Semenovich. 1980. *Mind in Society: The Development of Higher Psychological*
28 *Processes*. Cambridge, MA: Harvard University Press.
29
30

31 Zou, Tracy XP, and Neil C. Mickleborough. 2015. "Promoting Collaborative Problem-solving
32 Skills in a Course on Engineering Grand Challenges." *Innovations in Education and Teaching*
33 *International* 52, (2): 148-159.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 1: Students meeting online to share code before testing and iterating capacitor sensors.

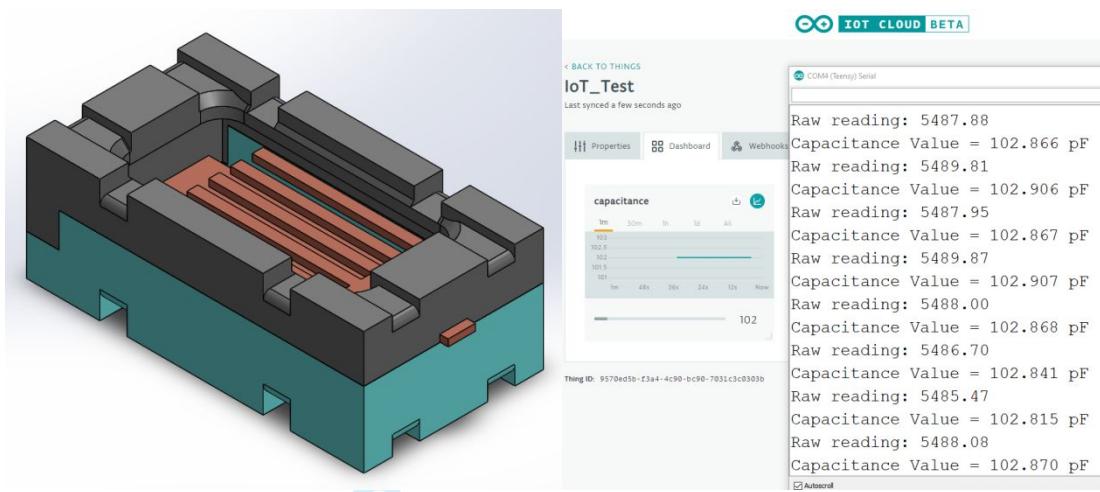


Figure 2: Samples of students' prototype and dashboard from one group.

Collaborative Problem Solving Observation Rubric				
Attribute	Not Evident (0)	Emerging (1)	Proficient (2)	Total
Identifies and defines task(s)	Student begins working without identifying or defining the task with group	Students usually begins working by identifying and defining the task with group	Student consistently identifies and defines the task(s) with group before working	2.0
Negotiates relevant method or materials to solve the problem	Student does not discuss relevant method or materials to solve the problem	Student occasionally discusses relevant method or materials to solve the problem	Student consistently discusses relevant method or materials to solve the problem	1.0
Uses tools collaboratively to complete task(s)	Student does not use tools collaboratively when completing tasks	Student occasionally uses tools collaboratively when completing tasks	Student consistently uses tools collaboratively when completing tasks	1.0
Notes:				

Attribute	Not Evident (0)	Emerging (1)	Proficient (2)	Total
Iterative thinking	Student does not discuss ways to iterate designs or processes with peers when perfecting a solution.	Student occasionally discusses ways to iterate designs or processes with peers when perfecting a solution.	Student consistently discusses ways to iterate designs or processes with peers when perfecting a solution.	1.5
Tests designs, prototypes or solutions	Student does not test the design, prototype or solution with peers	Student occasionally tests the design, prototype or solution with peers	Student consistently tests the design, prototype or solution with peers	1.0
Develops and directs revisions in designs and prototypes	Student does not rely on peer feedback to revise the design or prototype	Student occasionally relies on peer feedback to revise the design or prototype	Student consistently relies on peer feedback to revise their design or prototype	2.0
Notes:				

Figure 3: Screenshot from two dimensions of Traineeship Evaluation CPS rubric.

Table 1

Table 1: Abridged Traineeship Evaluation CPS Rubric

Dimension: Peer interaction

- Monitors tasks and checks for shared understanding with peers
- Divides work to complete tasks; may assign or negotiate roles
- Provides peer feedback, assistance and/or redirection

Dimension: Positive Communication

- Respects others' ideas and compromises
- Uses socially appropriate language and behaviour
- Listens and takes turns

Dimension: Tools and Methods

- Identifies and defines task(s)
- Negotiates relevant method or material to solve the problem
- Uses tools collaboratively to complete the task(s)

Dimension: Iteration and Adaption

- Demonstrates iterative thinking
- Tests designs, prototypes or solutions
- Develops and directs revisions in designs and/or prototypes

Table 2

Traineeship Evaluation CPS Rubric Data: First and Second Observation Results

Student	Peer Interaction	Positive Communication	Tools and Methods	Iteration and Adaption
Observation 1				
Student A	3/Emerging	1/Not Evident	1/Not Evident	1/Not Evident
Student B	6/Proficient	5.5/Proficient	4.5/Proficient	4.5/Proficient
Student C	5/Proficient	5.5/Proficient	5/Proficient	4.5/Proficient
Student D	4/Emerging	4/Emerging	3/Emerging	1/Not Evident
Student E	4/Emerging	6/Proficient	3/Emerging	3/Emerging
Student F	6/Proficient	6/Proficient	5.5/Proficient	4.5/Proficient
Student G	4/Emerging	6/Proficient	6/Proficient	4/Emerging
Observation 2				
Student A	0/Emerging	.5/Not Evident	0/Not Evident	0/Not Evident
Student B	4/Emerging	6/Proficient	5/Proficient	3/Emerging
Student C	5.5/Proficient	6/Proficient	5.5/Proficient	4.5/Proficient
Student D	6/Proficient	6/Proficient	6/Proficient	6/Proficient
Student E	6/Emerging	6/Proficient	5/Proficient	3/Emerging
Student F	5.5/Proficient	6/Proficient	6/Proficient	4.5/Proficient
Student G	5/Proficient	6/Proficient	6/Proficient	5/Proficient