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Abstract

Augmented reality (AR) has the potential to fundamentally transform science edu-

cation by making learning of abstract science ideas tangible and engaging. However,

little is known about how students interacted with AR technologies and how these

interactions may affect learning performance in science laboratories. This study

examined high school students’ navigation patterns and science learning with a

mobile AR technology, developed by the research team, in laboratory settings.

The AR technology allows students to conduct hands-on laboratory experiments

and interactively explore various science phenomena covering biology, chemistry,

and physics concepts. In this study, seventy ninth-grade students carried out science

laboratory experiments in pairs to learn thermodynamics. Our cluster analysis iden-

tified two groups of students, which differed significantly in navigation length and

breadth. The two groups demonstrated unique navigation patterns that revealed
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students’ various ways of observing, describing, exploring, and evaluating science

phenomena. These navigation patterns were associated with learning performance

as measured by scores on lab reports. The results suggested the need for providing

access to multiple representations and different types of interactions with these

representations to support effective science learning as well as designing represen-

tations and connections between representations to cultivate scientific reasoning

skills and nuanced understanding of scientific processes.

Keywords

mobile AR, science lab, navigation patterns, multiple representations, scientific rea-

soning and processes

Introduction

Augmented Reality (AR) integrates physical and virtual objects into the same

scenario and allows physical and virtual objects to run interactively in real-time

(Azuma, 1997; Moro et al., 2021). Conceptually, AR is located between the

physical and virtual environments on the reality-virtuality continuum

(Milgram et al., 1995). One type of AR technology is an optical see-through

system (e.g., AR headset) in which the physical environment is observed through

a partially reflective glass and the virtual objects are displayed on the glass.

Another type is a video see-through system (e.g., a mobile or tablet) in which

a video camera provides the view of the physical world and the virtual objects

are merged into a single video stream. In Martin et al.’s (2011) review of tech-

nology trends in education, the authors highlighted the trend of moving con-

ventional AR towards mobile AR technologies (Kourouthanassis et al., 2015)

for ubiquitous learning and seamless interaction between physical and virtual

worlds.
AR has great potential to empower students to learn science concepts effective-

ly. Literature has shown that AR technologies could cultivate students’ interests in

science (Abdinejad et al., 2021; Ibá~nez et al., 2014), help students to gain in-depth

science knowledge and practice (Chiu et al., 2015; Turan & Atila, 2021), and

facilitate transferring science knowledge across contexts (Chiang et al., 2014).

Meanwhile, the literature pointed out that learning science with AR technology

could support students in constructing sound scientific explanations and called for

more rigorous investigations of the learning effect of AR technologies, in partic-

ular high-level cognitive outcomes such as capacities in developing scientific claims

and understanding scientific processes (Radu, 2014).
Scholarly attention has turned to examine affordances of AR technology that

could contribute to science learning opportunities. Researchers found that AR
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afforded interactions with multiple representations in both physical and virtual
worlds (Zimmerman et al., 2016), which significantly lowers the barriers to
effective science learning (Kamarainen et al., 2013). With AR technology, stu-
dents could annotate real-world objects (e.g., annotating forces on a physical
moving object; Sotiriou et al., 2006), learn science concepts in the rich context of
a real environment (e.g., museum, campus, and garden; Tarng & Ou, 2012), and
engage in science learning with embodied interaction (e.g., using hand to move
and rotate digital models of internal organs; Blum et al., 2012). In Ibá~nez and
Delgado-Kloos’s (2018) review on AR technology for STEM education, the
authors explained that AR technologies could aid the consumption of science
ideas through presenting multiple representations, including representations
that connect the physical and virtual world. Collectively, these studies demon-
strate that flexible interactions with different representations positively affect
learning outcomes.

However, patterns of students’ navigating multiple representations in AR
remain unexplored and there is limited evidence that suggests how the naviga-
tions could lead to science learning opportunities (Akçayır & Akçayır, 2017).
This study aims to address this gap by examining the navigation patterns and
the relationship between navigation patterns and learning performance in sci-
ence laboratory settings, which is one of the first in this context to our knowl-
edge. In this paper, we explore student learning with a mobile AR technology,
Infrared Explorer (described in the section of methodology), in science labora-
tories. Specifically, this study addresses the following research questions:

• What kinds of navigation patterns exist when students conducted hands-on
science experiments with the mobile AR technology?

• How did the different navigation patterns, measured on the basis of log data,
relate to students’ learning performance?

Theoretical and Empirical Background

Two theoretical frameworks were integrated to understand student learning in
AR-based learning environments: embodied learning that occurs through inter-
acting with physical objects and multimedia learning that involves interactions
with different representations, such as visual and verbal information. In cogni-
tive sciences, embodied learning is a pedagogical theory that highlights the cou-
pling of body movements and cognitive activities in educational practice
(Skulmowski & Rey, 2018). Cognitive processes are deeply rooted in sensori-
motor processing and come from embodied interaction with a physical environ-
ment (Wilson, 2002). Previous studies have shown that both fine-grained and
gross motor skills led to improved science learning as learners could encode
tactile information along with the educational content (Lindgren et al., 2016).
As an example, Fidan and Tuncel (2019) showed that the tactile characteristics
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of FenAR application contributed to high school students’ long-term retention

of physics concepts (e.g., weight, mass, and gravity) in a problem-based learning

environment. Extending embodied learning to acquire invisible science concepts,

involving bodily movements and haptics can be an alternative method in science

education that enhances the understanding of these foundational concepts.
Multimedia learning theory suggests that learning outcomes can be improved

if students learn through more than one representation (Mayer, 2014; Moreno,

2006). For instance, Altmeyer et al. (2020) presented a novel tablet-based AR

application that supports conducting laboratory experiments to learn electricity

in higher education. The authors compared cognitive load and learning gain in

two conditions, an AR-supported and a matching non-AR learning environ-

ment. The study showed that when designed appropriately, multiple represen-

tations from AR applications would not add the cognitive load of interpreting

representations and held the promise of supporting the acquisition of in-depth

scientific knowledge. Furthermore, Mayer (2014) suggested that students would

actively select and integrate different representations to make meaning of them

and this meaning-making process could contribute to effective learning.

Therefore, we expect that providing access to multiple representations in AR-

based learning environments could promote students’ engagement and increase

learning outcome.
To date, AR has been applied as an educational medium to benefit student

learning. AR-based learning environment could improve students’ understand-

ing of complex phenomena (Chiu et al., 2015; Turan & Atila, 2021), lengthen

long-term memory knowledge retention (Chiang et al., 2014), and increase stu-

dent motivation of learning (Akçayır et al., 2016). Experiences in AR bring three

positive and unique attributes to improve learning outcomes. First, the physical

interactivity provided by AR promotes embodied learning. Therefore, learners

in AR can encode proprioceptive information along with the educational con-

tent. Second, AR can align educational content with physical items through

spatial and temporal registration, so that spatial and temporal contiguity can

be guaranteed (e.g., a virtual label with textual explanation shows up next to a

physical object). According to multimedia learning theory, spatial and temporal

contiguity can effectively reduce the cognitive load for the brain to process

information from sensory channels. Third, AR interface and content are

novel and motivational because 2D representations become lifelike 3D objects

in the students’ own physical environments. With such an engaging experience,

an AR educational environment enables easier processing of the delivered edu-

cational content (Mayer & Moreno, 2003), and promotes student

exploration and creativity (Kaufmann & Dünser, 2007). Given these benefits

brought by AR, we developed a video see-through mobile AR application

to facilitate carrying out hands-on science laboratory experiments in high

school classrooms.
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Methodology

Participants and Learning Context

Seventy ninth-grade students (Female 37, Male 31, Other 2; White 47, Asian/
Pacific Islander 12, Latinx 5, American Indian/Alaska Native 4; African
American 3, Other 4) from four science classrooms of one suburban public
high school in the Northeastern United States participated in this project.
They were taught by a male teacher, Kevin (all names are pseudonyms).
Kevin attended our professional development workshops before implementing
the project and used course materials developed by the research team when
implementing the project. The research team had a well-established partnership
with Kevin and the school. We took the position of participant-observer
(Spradley, 1980) in this study and conducted the main task of collecting data
and giving students feedback when needed.

In this project, students conducted science experiments in pairs. Each pair
was provided with one smartphone to run Infrared Explorer. Kevin first paired
up students who did not submit consent forms and then paired up the rest of
students based on how he used to pair them in other hands-on labs. Even
though the setup reduced the individual data available for further analytics,
pairing students in science labs did enhance collaborative learning experience
(Shibley & Zimmaro, 2002). Specifically, they participated in a five-day curric-
ular unit with one session (approximately one hour) per day. Kevin introduced
the mobile AR technology at the beginning of the first day and then students
conducted the following experiments to learn thermodynamics: thermal radia-
tion, natural convection, forced convection, conduction, and latent heat
(Table 1).

When using the technology to conduct experiments, students went through
the prediction-observation-explanation (POE) process (Coştu et al., 2012;
Ebenezer & Erickson,1996). They were required to finish a lab report in each
experiment. Guided by the report, they first answered a few questions about
science phenomena based on prior knowledge (i.e., prediction phase), then con-
ducted hands-on experiments to observe science phenomena (i.e., observation
phase), and lastly, answered a few questions similar to those in the prediction
phase to explain science phenomena (i.e., explanation phase). These questions
were used to understand students’ prior knowledge about relevant science con-
cepts. For example, in the first experiment, students conducted a radiation
experiment to learn heat transfer. Before conducting the experiment, students
answered two multiple-choice questions and explained their choices. The two
questions were about comparing the temperature of the piece of paper when it
was 1 inch and 2 inches away from the hot water jar in the scenarios of jar facing
the paper and jar alongside the paper respectively (as shown in Table 1). After
answering the questions, they moved to the observation phase and carried out
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two experiments: jar facing the paper and jar alongside the paper. In the obser-
vation phase, students used Infrared Explorer to explore the temperature of the
paper when the jar was placed at different places. After conducting the exper-
iment, they answered two questions that aim to assess students’ understanding
of the concepts of thermal radiation. The questions were similar to the questions
in the prediction phase. Specifically, students described the temperature changes
when the paper was facing the jar and when the jar was alongside the paper.
Other experiments followed a similar flow of POE activities.

AR Technology: Infrared Explorer

This study builds on a five-year design-based research project that explored
affordances of a mobile AR technology, Infrared Explorer (Figure 1; Sung
et al., 2021; Xie, 2011; Xie & Hazzard, 2011), for science learning. A wide

Figure 1. The Experiment Set Up of Infrared Explorer, a Mobile AR Application.
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range of science experiments that the technology can support are listed here:
(website link omitted for blind review). In this project, we focused on the learn-
ing of physics concepts, in particular, thermodynamics.

Infrared Explorer allows students to explore a thermal version of laboratory
experiments using the FLIR ONE IR camera attached to an Android or iOS
device (Figure 1). As easy to use as a conventional camera, the FLIR ONE is a
high-throughput data acquisition instrument that collects thousands of temper-
ature data points each time a picture is taken. To facilitate the investigation,
exploration, and analysis of experiments, Infrared Explorer provides interac-
tions with different representations, such as data graphs (Figure 2A), images
(Figure 2B), videos (Figure 2C), and physical objects through editing thermom-
eters (Figure 2D). The data graphs present temperature changes over time with
time and temperature being the x-axis and y-axis respectively. The images illus-
trate temperature differences with contrasting colors (i.e., areas in purple have
lower temperature than areas in red in default settings; users could change
colors) and the videos show temperature differences over a particular period.
Students can create galleries of data graphs, images, and videos as evidence to
support their scientific claims. In addition, students can add thermometers in
images and videos to read temperature of anywhere of interest and at any par-
ticular time point.

Data Collection

We collected multiple sources of data to examine students’ science learning with
Infrared Explorer and navigation patterns, including semi-structured interviews,
log data, and lab reports.

Semi-structured interviews. At the end of the project, we conducted semi-structured
interviews (Patton, 1990) with students to learn about their experiences of learn-
ing science with the mobile AR technology. The teacher, Kevin, selected 31
students to conduct the interview based on students’ classroom performance,
English proficiency, and availability. These students were selected to cover both
students with high and low achievement levels and students with high and low
English proficiency. This stratified sampling (Patton, 1990) was utilized to select
interviewees to ensure broad representativeness and applicability of results. This
was individual -based interview. Each interview lasted around ten minutes. We
asked about their attitudes and perceptions toward science learning with AR
technology, such as “how did the technology, the smartphone, the camera,
and the lab activities help you do science” and “which lab activity surprised
you the most?”

Log data. The mobile AR application logged students’ processes of conducting
hands-on experiments, including interactions with multiple representations.

Jiang et al. 9



There are 41 types of interactions with different representations (Table 2): 9
interactions with data graphs (e.g., Scale data graphs to fit window), 10 inter-
actions with images (e.g., Open palette to change the color legend of images), 14
interactions with videos (e.g., Start dragging slider to select a particular period
of videos), and 8 interactions with physical worlds (e.g., adding thermometers to
read temperatures of areas of interests). We collected log data from 35 pairs
while data for one pair was missing due to technical issues and one pair did not
submit consent forms. Thus, our analysis was based on log data for 33 pairs.

Figure 2. Four types of representations in Infrared Explorer. (a) Data graph; (b) image; the
thermal view shows up in default; students can switch between thermal view and real-world
view and can also change color scheme; (c) video; students can record a video to show the
thermal view over time; (d) students can interact with objects in the physical world, such as
through adding a thermometer to read temperature.

10 Journal of Educational Computing Research 0(0)



Lab reports. We collected 35 lab reports from students as they worked in pairs to

conduct experiments. In the lab report, students answered 11 questions related

to the experiments in the explanation phase (Table 3). Their responses to these

questions were used to evaluate students’ learning performance.

Data Analysis

This study involved four phases of data analysis. In the first phase of analysis,

we openly coded semi-structured interviews (Patton, 1990) to understand stu-

dents’ learning experiences in the project. The emerging themes showed that

students perceived interacting with different representations (e.g., data graphs)

as engaging and effective for science learning (Jiang et al, 2020). The emerging

themes from the first phase of analysis guided our analysis of log data in the

second phase of analysis.
In the second phase, we coded log data by focusing on interactions with

different representations, including data graphs (D), images (I), videos (V),

and objects in the physical world (P). The navigation pattern represented the

sequence of interacting with different representations from the first to the last

experiment. Considering navigation patterns in one experiment could be totally

different from navigation patterns in another experiment and our focus was

examining navigation patterns in this learning environment over time, we

used the sequence of all experiments. As an example of sequence, in a scenario,

a student first clicked video recording button, then added thermometers to mea-

sure temperature of objects, and then dragged the timeline of the video to see

temperate changes over time. The navigation pattern of this scenario would be

Table 2. Overview of 41 Types of Interactions With Representations.

Representation Interaction (number of interactions with representations)

Data graph Open Analyze Menu, Graph T(t), Graph T(x), Pan Graph, Scale

Graph, Fit Graph in Window, Export Graph as Image, Export

Time Graph as CSV, No Graph (9)

Image Open Image, Screenshot, Rotate Image, Blur, Brighten, Posterize,

Open Palette, Close Image, Delete Image, Save Image (10)

Video Create MyVideosActivity, Start MyVideosActivity, Pause

MyVideosActivity, Stop MyVideosActivity, Resume

MyVideosActivity, Destroy MyVideosActivity, Start Dragging

Slider, Stop Dragging Slider, Open Videos, Delete Video, Start,

Pause, Play, Stop (14)

Physical world Add Thermometer, Move Thermometer, Remove Thermometer,

Clear Thermometers, Add Thermoruler, Move Thermoruler,

Remove Thermoruler, Clear Thermorulers (8)

Jiang et al. 11



represented as VPV. Afterward, hierarchical clustering analysis (Li & Tsai,

2017) was performed in R studio using the TraMineR package to classify stu-

dent pairs into different groups based on the navigation pattern. The clustering

analysis generated two clusters of navigation behaviors (as described in the

Results section). Drawing from gene pattern detection in the field of microbi-

ology (Bekal et al., 2003), navigation length and breadth were used to differen-

tiate these two clusters. Navigation length, measured with frequency, represents

the number of representations students explored while navigation breadth, mea-

sured with standard deviation, shows the distribution of movements from one

representation to another, regardless of the direction. In the aforementioned

scenario (VPV), the navigation length is three (V, P, V) and the navigation

breadth is 0.66 (DI¼ 0, DV¼ 0, DP¼ 0, IV¼ 0, IP¼ 0, VP¼ 2). We employed

independent t-tests to compare mean differences of navigation length and

breadth between these two groups.

Table 3. Questions That Students Answered in the Explanation Phase.

Experiment Questions

Radiation: catch invisi-

ble light!

1. The paper warmed up when facing a jar of hot water and

cooled down when facing a jar of cold water. Why was this

phenomenon caused by radiation but not something else?

2. When the paper facing the jar was further away from the jar,

did the paper absorb less thermal radiation? Why or why

not?

3. When the jar was alongside the paper, did the paper absorb

thermal radiation as much as the case when the paper faced

the jar? Why or why not?

Natural convection:

track invisible flow!

1. For the cutout paper experiment, how can you distinguish

the effects of heat transfer from a hot water jar to the paper

through radiation and convection, respectively?

Forced convection:

blow heat away?

1. Does the paper always cool off when we turn on the fan?

2. How do you determine if the flow of thermal energy is

facilitated by an external force? Explain.

Conduction: two

thumbs up!

1. Does thermal energy diffuse at different rates in different

materials?

2. Why does the thumb on the metal ruler feel colder?

Latent heat: paper on

cup

1. Why is the water temperature lower than the room tem-

perature?

2. Why does the area of dry paper covering the cup warm up?

3. What mechanisms are responsible for the formation of the

thermal pattern?

12 Journal of Educational Computing Research 0(0)



Furthermore, to fully understand students’ nuanced interactions with differ-

ent representations, we visualized navigation patterns using d3.js, a JavaScript

library for producing dynamic and interactive data visualizations. Figure 3

illustrates an example of the visualization: each node represents one type of

interaction; the color of nodes represents interactions with different representa-

tions; the arcs represent relationships between nodes with arcs above nodes

showing direction from left to right and arcs below nodes showing direction

from right to left; the weight of arcs indicates frequency. We compared and

discussed the visualizations to gain an in-depth view of learning opportunities

that the patterns reveal and characteristics of patterns for each group

(Andrienko & Andrienko, 2013). We also reviewed interview data to find evi-

dence for or against findings about learning opportunities for accuracy and used

the transcripts to fill in any gaps. When reviewing the interview data, we were

particularly interested in, from individual students’ perspectives, how and why

Figure 3. Juan and His Partner’s Navigation Pattern: Iterative Video Interaction. In this pat-
tern, the weight of arcs within video interactions is greater than arcs within other repre-
sentations, indicating the pair interacted frequently with videos.
Note. Blue, orange, green, and red dots represent interactions with data graph, image, video,
objects in the physical world respectively; Arcs above dots represent movement from left to
right; Arcs below dots represent movement from right to left; weight of arcs represent
frequency of movement. Green dots represent different types of interactions with videos. For
example, the first green dot (from left to right) represents the action of creating a video gallery
(i.e., Create MyVideosActivity).

Jiang et al. 13



they performed certain navigation patterns. In other words, interviews were
used to show students’ perspectives when presenting observations from log data.

In the third phase, we adopted Ruiz-Primo and Shavelson’s (1996) framework
to code lab reports. In particular, we coded student responses to explanation
questions from two dimensions: giving rationale and describing processes. These
two dimensions have been stressed as critical but challenging science practices
(Chiu et al., 2015). In each dimension, we coded the responses using a 3-point
scale (0-2). If students extensively or briefly described the reasons for their sci-
entific claims, their answers were coded as 2 or 1 point respectively. If they did
not explain the rationales, we coded the answers as 0 point. Likewise, we coded
students’ responses as 2 if students clearly described dynamic changes in science
phenomena, 1 if there were limited descriptions of dynamic changes, 0 if they did
not describe dynamics changes. We discussed and resolved coding disagreements
in weekly meetings. Learning performance was the sum of scores for the eleven
questions (Table 3) from each experiment as these experiments are independent
(Garribba et al., 2001).

In the last phase of data analysis, we conducted independent t-tests in SPSS
(version 27) to identify differences in learning performance between the two
groups. In addition, given these two groups displayed different navigation pat-
terns, we discussed the relationship between navigation patterns and learning
performance as measured by student responses in lab reports in weekly meetings
and generated analytical memos (Lee et al., 2019) to describe the relationships.
In this process, we also revisited interview data to understand students’ perspec-
tives on their learning experiences. In the following section, we will present
student navigation patterns, characteristics of navigation patterns that could
contribute to learning opportunities, and the relationship between navigation
patterns and learning performance.

Results

RQ1: What Kinds of Navigation Patterns Exist When Students Conducted
Hands-on Science Experiments with the Mobile AR Technology?

The cluster analysis classified student pairs into two distinct groups, group 1
with 13 pairs and group 2 with 20 pairs. These two groups showed different
patterns of navigating representations. Compared with group 1, group 2 had
significantly more frequent movements (i.e., group 2 had a larger value in nav-
igation length; t (31)¼�7.09, p <.001) and a significantly more uneven distri-
bution of movements between different representations (i.e., group 2 had a
larger value in navigation breadth; t (31)¼ -7.48, p <.001; see Table 4). In
other words, students in group 1 tended to focus on particular representations
while students in group 2 were more likely to engage in moving from one par-
ticular representation to another. This does not necessarily mean that group 1
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spent less time in conducting lab experiments as they might have in-depth explo-

ration within certain representations.
Specifically, in group 1, three out of thirteen pairs performed iterative video

interactions. They engaged extensively in observing the thermal view over time

and editing video recordings of the thermal view. The thermal view offered
students a new perspective to investigate nuances and dynamic changes in sci-
ence phenomena. As Juan described in the interview, “It (the thermal view) is
more of a way to experience different things from a new angle or point-of-view.”
Juan and his partner’s interaction (Figure 3) with the AR technology demon-

strated frequent movements within the video representation (i.e., pattern of
iterative video interactions). In Figure 3, clearly, the weight of arcs within
video interactions is greater than other arcs. This indicates that they had fre-
quent navigations within this representation. For instance, the arc from “start
dragging slide” to “stop dragging slide” is large, showing that the pair dragged

sliders to view specific video frames. They created approximately four videos in
each experiment. In particular, they dragged the slider (i.e., representing the
timeline of videos) to identify temperature changes in critical moments (e.g.,
pushing the paper 1” to the side after covering the cup with the dry paper for
one minute) and recorded new videos when they could not observe obvious

temperature changes over time. This pair represented those who had fewer (nav-
igation length¼ 52) and less uneven distribution of movements (navigation
breadth¼ 8.46).

Students in group 1 tended to perform video-physical-world interactions,
navigation breadth of this group was smaller than group 2 though. These stu-
dents not only had frequent navigations within video representation but also
often interacted with objects in the physical world. They explored the thermal
view while editing thermometers to capture temperature of different places in

the physical world. Camille and her partner’s laboratory experience highlights
this pattern (as shown in Figure 4). Figure 4 shows arcs from video represen-
tation to physical world representation and comparing with the pattern of iter-
ative video interaction, there were more arcs in the physical world
representation for this pattern. This pair frequently edited thermometers to

collect evidence for lab reports. In the interview, Camille shared, “Probably

Table 4. Differences Between Groups in Terms of Navigation Length and Breadth.

Group Mean SD t

Navigation length 1 51 11.06 �7.09***

2 94.95 20.40

Navigation breadth 1 7.14 1.54 �7.48***

2 12.89 2.86

***p< .001.
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the thermometers (help me most in doing science). Because I could just see how
hot something is just by taking a picture of it (referring to screenshot of a video)
and putting a thermometer on it.” This pair’s navigation pattern illustrates that
interacting with videos was in the service of gaining the temperature needed as
evidence collection for lab reports.

Group 2 had larger navigation breadth, which indicates that some students
developed strategies to conduct experiments by focusing on moving from certain
representations to another. For instance, Olivia, a student in group 2, performed
iterative video-data-graph interactions, which entails flexible movement between
video and data graph. The graph, showing temperature changes over time
for one or multiple thermometers, served as a venue for scientific reasoning.
Olivia stressed that video and graph helped her to learn science and further
explained:

Because every single time that I moved the video and I see the thermometer (refer-

ring to the graph) go up and down. That was so, in my opinion it was like it was

controlling how much it went up every single minute and second. Some changed

Figure 4. Camille and Her Partner’s Navigation Pattern: Video-Physical-World Interaction.
This pattern shows that in addition to frequent interactions with videos, the pair navigated
between videos and objects in the physical world.
Note. Red dots represent different types of interactions with physical world. For example, the
first red dot (from left to right) represents the action of adding a thermometer (i.e., Add
Thermometer).
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and some stayed the same, and then it comes to me why some stayed the same, you

know, with hot jar close to it.

Olivia’s interview response demonstrates that the video provided contexts of
interpreting graph and the graph triggered scientific reasoning. She observed
and reasoned about different patterns of changes based on the graph. Figure 5
represents this pair’s navigation pattern. Comparing with other patterns, there
were more arcs from video representation to data graph. This pattern illustrated

Figure 5. Olivia and Her Partner’s Navigation Pattern: Iterative Video-Data-Graph
Interaction. In this pattern, the pair navigated between videos and data graphs.
Note. Blue dots represent different types of interactions with data graph. For example, the first
blue dot (from left to right) represents the action of opening analyze window (i.e., Open
Analyze).
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frequent and diverse navigations within the representation of data graph as well

as flexible movements between video and data graph.
However, two students, Mary and Bryan, explained the challenge of inter-

preting the graph: “the graph was a little too complicated (Mary’s interview)”

and “the one where you had to graph and put the temperatures that was really

confusing for me. (Bryan’s interview)” This calls the attention that adding mul-

tiple layers of information might increase the cognitive load and suggests the

need of helping students to develop data literacy.
As shown in these patterns of navigating representations, students not only

frequently interact within one representation, but also moved across different

representations. Furthermore, these patterns demonstrated various ways of

observing, describing, exploring, and evaluating science phenomena. These

cases, among other cases, demonstrate that providing access to multiple repre-

sentations and offering different kinds of interactions had the potential of sup-

porting effective science learning.

RQ2: How Did the Different Navigation Patterns, Measured on the Basis of

Log Data, Relate to Students’ Learning Performance?

Students in group 2 performed better in describing reasons for scientific claims

than those in group 1. Learning performance was measured by scoring lab

reports from two dimensions: giving rationale and describing processes. As

shown in Table 5, students in group 2 significantly got better scores in giving

rationale than those in group 1 (t (31)¼ -2.27, p <.05). Such a significant dif-

ference might be related to group 2’s frequent movements between different

representations. The flexible movement might indicate that these students

understood and could use connections between different representations to

reason about science phenomena. For example, Byron, a student in group 2,

reflected in his interview:

They (representations) help you understand better what exactly is going on at some

point, and as time goes by. It (referring to the thermal view) helps you understand

the things that you can’t really see with your own eyes, so it really makes it easier to

understand what’s going on on a cellular level or a thermal level and over time with

graph, to see the changes.

Byron mentioned that the thermal view presented a new angle to investigate

science phenomena at particular time points and the data graph helped him to

reason overall temperature changes over time. The data graph could help stu-

dents to identify when and where temperature was increasing, decreasing, or

constant while the thermal view could contextualize specific lab settings at that

point. As shown in this case, students became aware of the connections between
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representations and developed strategies to leverage the connections to support

scientific reasoning.
Students in group 1 and 2 performed similarly in describing dynamic changes

in scientific phenomena. There was no significant performance difference in

describing processes between the two groups, the mean of group 2 (M¼ 2.5)

is larger than group 1 (M¼ 2) though. This result makes sense as the group was

clustered on the basis of navigation length and breadth while describing pro-

cesses might be more related to navigations within particular representations,

such as videos. For instance, in group 1, Camille shared her experiences of

frequent edits with video to explore temperatures and collect evidence for lab

reports. In the lab report for Two Thumbs Up, she and her partner provided

detailed descriptions of temperature changes, “once the thumbs pressing on the

rules the temperature near the bottom started to rise. The metal ruler had a

greater temperature. And once the thumbs moved away the temperature where

the thumbs were, decreased a little.” This case demonstrated that students paid

close attention to dynamic changes in scientific phenomena through describing

videos. In addition, Table 5 shows that the mean score of describing processes

was much lower than the mean score of giving rationale. The low score of

describing processes was associated with the fact that students were not required

to elaborate on dynamic changes when answering questions. This could also

partially explain the no significant difference in describing processes between the

two groups. This finding indicates that we should closely align the assessment of

learning performances and the analysis of navigation patterns in order to make

meaningful connections between these two.

Discussion and Implications

In this study, we examined student learning with a mobile AR technology in

science laboratory settings. We first employed cluster analysis to categorize

students based on log data. The log data captured sequences of representations

that students interacted with. We identified two groups: group 1 interacted with

fewer representations and had more even distribution of movements between

representations than group 2. Afterward, we coded lab reports to assess learning

Table 5. Differences Between Groups in Terms of Learning Performance.

Group Mean SD t

Giving rationale 1 8 6.65 �2.27*

2 12.45 4.65

Describing processes 1 2 2.71 �0.49

2 2.50 2.97

*p< .05.

Jiang et al. 19



performance and compared learning performance of those two groups. This

work contributes to the understanding of different ways that students interacted

with multiple representations in AR technology and the relationship between

navigation patterns and learning performance.
Results of independent samples t-tests revealed insignificant difference

between two groups’ performance in describing processes, but a significant dif-

ference in giving rationale. This finding indicates that frequent movements

between representations might help students to reason why temperature

changed in the experiments from scientific perspectives. Our further analysis

of nuanced interactions (i.e., navigations within representations) showed that

some students had in-depth exploration of certain representation, which the

sequences of presentations could not capture. These students’ knowledge acqui-

sition of describing processes might be related to nuanced interactions, instead

of sequences of interactions with different representations. In addition, the score

of describing processes was low as the questions did require students to explain

dynamic changes in the experiments. This could also explain the insignificant

difference in this dimension. Previous studies find conflicting results in the rela-

tionship between navigation patterns, generated from log data, and learning

performance (Baker et al., 2020). For instance, Crossley et al. (2020) argued

that click-stream patterns generated from interaction data in a game-based

learning platform could predict math identity. In contrast, Yu, Pardos, and

Scott (2019) examined the correlation between event-level course behaviors

and course grades in online learning environments and found that student inter-

activity measures failed to predict grades. The conflicting results could be attrib-

uted to different ways of representing log data. This study stressed the need of

representing fine-grained log data in ways that are meaningful for explaining

learning performance when investigating the relationship between these two

types of data sources.
This study provides a new understanding into students’ interaction with mul-

tiple representations in AR-based learning environments. As described by

Zimmerman et al. (2016), “AR mobile technology supports interest-driven inter-

actions between learners and the nature center setting (p. 103).” They argue that

offering students the flexibility of selecting points of interest to interact with

could contribute to active learning. In addition to designing flexible interactions,

the literature highlighted that we should provide multiple representations to

facilitate students to learn disciplinary knowledge through the interaction.

This study contributes to the growing interest among researchers in designing

interactions and multiple representations by demonstrating the patterns of stu-

dents’ interaction with multiple representations. The patterns could help us to

understand different ways that students used representations in science experi-

ments and guide us to design scaffolds based on these patterns. However, the

patterns we identified are closely related to the designed activity and the
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affordances of the technology, future research is needed to reveal students’

navigation patterns in other contexts and with different kinds of AR

technologies.
Moreover, this study presents learning opportunities made available through

different ways of interacting with multiple representations. Specifically, we

found that iterative video interaction, iterative video-physical-world interaction,

and iterative video-data-graph interaction might support understanding dynam-

ic changes in scientific process, collecting evidence, and reasoning about science

phenomena respectively. This finding supports the current understanding of the

importance of presenting multiple representations to engage students in various

science practices, such as planning and carrying out scientific investigations. In

this study, students gained scientific perspectives of the physical world through

observing, exploring, and analyzing the thermal view over time. The observa-

tion, exploration, and analysis are made available through multiple representa-

tions and the connections between representations. For instance, students can

add thermometers on the thermal view and the graph presents temperature

changes for the added thermometers. Connecting video, object in the physical

world, and data graph in such way had the potential of supporting reasoning

about science phenomena. These findings have implications for providing mul-

tiple representations and designing connections between representations for

meaningful science learning.
In accordance with the literature, this study shows that AR promoted effec-

tive science learning. Most studies investigated the affective outcomes in

AR-based science learning environments, including satisfaction, motivation,

enjoyment, attitude, and engagement (e.g., Akçayır et al., 2016). There is a

lack of understanding as to science learning with AR technologies in laboratory

settings. This study presented new applications of a mobile AR technology that

students utilized as an inquiry tool to conduct experiments and learn science

concepts. In addition, the majority of studies focused on low-level cognitive

outcomes, such as remembering facts and content (e.g., Cai et al., 2017) while

limited research has been done examining high-level cognitive outcomes that

demonstrate more complex cognitive processes involving creating, applying,

analyzing, and evaluating information. Our study fills this gap and shows that

AR afforded positive high-level cognitive outcomes, the ability of describing

dynamic changes in scientific processes and in particular, reasoning about sci-

ence phenomena. These two types of abilities have been stressed as critical but

challenging cognitive skills in science experiments. It is important to continue an

exploration of other high-level cognitive outcomes, such as interpreting data and

drawing insightful conclusions. For future studies, it is also worth linking

detailed responses from lab reports (in this study, we used aggregated scores

in two dimensions) with navigation patterns to explain students’ intention

during scientific investigation and inquiry.
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These findings support the current understanding of the positive effect of

high-degree interactivity in science labs (e.g., Washington et al., 2019). The

literature pointed out the high-degree interactivity improved the level of engage-

ment. As highlighted in the literature, one common type of interaction was

changing the configuration of a few parameters. Contributing to this line of

research, this study illuminates that augmented interaction with physical objects

(e.g., adding thermometers) had the potential of engaging students in free explo-

ration of science phenomena and facilitate students in gaining different perspec-

tives to evaluate scientific claims. In addition to interacting with laboratory

settings in the physical world by adding thermometers, students used the AR

application to analyze data in real-time. Both interactions had their own unique

affordances for science learning. In this study, we focused on interactions with

different representations. However, navigations within the same representation

(e.g., taking a screenshot of an image and rotating an image) might provide

different learning opportunities. More efforts should be devoted to this area.

These findings have implications for designing different kinds of interactions for

providing authentic science practices in science labs.
In conclusion, this study presents an example of how AR technologies can be

easily used for conducting hands-on science experiments. Furthermore, the anal-

ysis of log data, interviews, and lab reports demonstrated that the technology

held the promise of supporting engaging and effective science learning.

However, more research is needed to extend and build on our findings about

designing multiple representations and different types of interactions in mobile

AR technologies for high school science labs.

Limitation

One limitation is the short duration of intervention time and only 31 students

were involved in the interview due to time and resource constraints. The other

limitation is that our analysis did not consider students’ age, gender, language

proficiency, and ethnic backgrounds as it’s not directly related to the research

questions. An in-depth study is needed to investigate how these variables might

influence learning performance. Furthermore, this study investigates the learn-

ing effect of a particular type of AR technology, which affords limited types of

interactions and representations. It would be beneficial to study student learning

with other types of AR technologies in various settings. This study opens the

door to needed conversations about supporting hands-on science experiments

with mobile AR technologies in high school classrooms.
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