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Abstract

The reduced cost of implementing pervasive industrial sensing networks enables universities to incorporate these tools in engineering curricula.
They provide engineering students from increasingly computerized backgrounds, such as mechanical and automotive engineering, the opportunity
to work alongside students from technical schools who bring different skill sets than what students may be used to, synthesize historical data, and
drive the sensing system’s physical system design and implementation. This paper outlines this convergent curriculum’s initial implementation
stage, including the wireless environmental sensing Internet of Things (IoT) network, focusing on laboratory environmental sensing. Students
placing many sensors around the lab and on equipment generates a wealth of real-time and historical data for use in the classroom and provides
them a tangible example of learning to measure the world around them. This setup parallels the current varied Industry 4.0 state of the manu-
facturing industry, where Big Data exists but is underutilized, and where additional sensors and intelligent machine data streams are added each
year. Students in each class are given a defined portion of a broader roadmap to a fully instrumented and intelligent laboratory environment. In the
first step, student-programmed environmental sensors were placed around the lab and provide temperature, humidity, pressure, and gas mixture
measures every five minutes. Classroom use of the aggregated data includes visualizing the laboratory and essential equipment’s current status
using a Microsoft PowerBI dashboard and historical data visualization and analysis through trend forecasting and outlier detection in Python
JupyterLab notebooks. The IoT system’s installation also provided an infrastructure for further study of future student-designed IoT projects.
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1. Introduction

Manufacturing education is evolving alongside the paradigm
shift of industry 4.0. Traditional education domains are being
blended in a convergent curriculum to meet these new job needs
as modern manufacturing engineers become increasingly com-
puterized with cross-domain knowledge expectations. Industry
4.0 encompasses the shift of disparate manufacturing systems
to connected cyber-physical systems where heterogeneous data
and knowledge are blended to achieve increased operational ef-
ficiency, productivity, and automation of tasks [1, 2]. U.S.A. ed-
ucation has shifted to a convergent problem-solving approach
of blending expertise from multiple domains to provide more
holistic education to meet these needs [3].

Two excellent examples of this shift are the work of Shih er
al. and Summerville et al..
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Shih et al. used a quadcopter drone as a first-semester class
culmination project in teaching undergraduate freshman an in-
troduction to manufacturing, process planning and analysis,
communication of one’s ideas and with technical college stu-
dents, the crossover of social sciences and manufacturing, and
the basics of design for manufacturing to meet societal chal-
lenges [4]. Combining manufacturing and social sciences edu-
cation provided freshman engineering students with an under-
standing of the interplay of manufacturing and design’s signif-
icant impact on society and overcoming broader societal chal-
lenges.

Summerville et al. taught chemical engineers a design-
oriented approach to manufacturing process selection during
a four-day workshop on advancing chemical process innova-
tions [5]. The workshop goals included instructing students
in the Manufacturing Engineering discipline as a vehicle to
translate laboratory technology through to commercialization.
These skills are directly applicable to the current manufacturing
shift to Industry 4.0 significantly increasing the required cross-
domain knowledge. Surveyed participating students scored the
manufacturing process portion of the workshop the highest with
a high rating given to in-laboratory process demonstrations
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where students were able to see manufacturing processes in ac-
tion for themselves.

Manufacturing is taught to a small subset of engineering stu-
dents, primarily in the Mechanical and Industrial engineering
tracks. At Clemson University in 2017, of the 24,387 enrolled
students, only 5% (1331) of those were enrolled in mechanical
or industrial engineering degree programs, while all engineer-
ing programs comprise 23% (5683) of enrolled students. At The
Pennsylvania State University in 2017, of the 93,318 enrolled
undergraduate and graduate students, only 2% (1716) of those
enrolled in mechanical or industrial engineering degree pro-
grams, while all engineering programs comprised 14% (12960)
of enrolled students. The percentage of students taught manu-
facturing as a required course is similarly mirrored at the Uni-
versity of Michigan in Ann Arbor. Of 6500 incoming first-year
students in 2019, only 6% (400) were enrolled in degree pro-
grams with required manufacturing courses [4]. Students asked
by Shih ez al. in aerospace, chemical, and nuclear engineer-
ing responded that knowledge in manufacturing was essential
to their domain and professional careers, yet opportunities for
these students and especially non-engineering students, to have
in-person or hands-on manufacturing experiences during their
education are limited.

The numbers point towards a need to increase engineer-
ing students’ opportunities and non-engineering students to be
exposed to manufacturing education and how manufacturing
is changing. The prior successes and student responses from
Shih et al. and Summerville et al. also point towards including
in-person experiences in manufacturing education curriculums
which allow students to participate in manufacturing or at least
to see the processes for themselves.

Unlike in the class examples presented, it was decided to
focus the class solely on graduate-level students in the initial
offering. This decision enabled the class’s focus to execute a
manufacturing context-based project rather than on teaching
manufacturing concepts through in-person laboratory classes.
Therefore, this class would be complimentary to the evolving
manufacturing education programs. By diversifying the project
group’s background, students were pushed to discuss and teach
each other concepts they had not encountered before but had
been taught in their major or work experience.

1.1. Class Overview

The project-based class was an entirely new class offered
through the Automotive Engineering department at Clemson
University. It consisted of a semester-long effort going through
project definition and planning, background research, self-
setting measurable goals, evaluating software and hardware
tools, prototyping a solution, and reporting conclusions. The
problem statement given to the team was left intentionally open
and ambiguous to allow them an opportunity to define the
path they took and measures of success for the project, much
as they will encounter during their professional careers. Stu-
dents completed detailed reports and presentations of their work
throughout to build communication skills. They were encour-
aged to learn new skills such as programming C-based micro-

controllers, designing/building physical prototypes, and data vi-
sualization for a target audience that did not include them or
their peers.

Students met weekly, first in the classroom and then moved
to the laboratory and were free to use all facilities outside of
classroom hours. The classroom activities included project up-
dates, discussion of project activities, difficulties, and needs.

The four student team in the initial offering of the class
were selected from the Clemson Technology-Human Integrated
Knowledge Education and Research (THINKER) National Sci-
ence Foundation (N.S.F.) Research Traineeship program, which
is a graduate traineeship program supported by the N.S.F. where
participating students in engineering graduate programs (in-
cluding automotive, mechanical, industrial, human factors and
computing) study collaboration, manufacturing, human behav-
ior, and big data analysis along with special workshops in career
education and planning. Lessons learned from the class’s initial
offering are being incorporated into an existing general mixed
undergraduate/graduate automotive engineering class, Digital
Manufacturing, to be offered in 2021.

To assist in the development of new or altered courses, the
Clemson University Vehicle Assembly Center (CVAC) at the
Greenville Technical College Center for Manufacturing Innova-
tion is working with students from multiple engineering degree
programs and with technical school students to complete multi-
domain hands-on projects to simulate the types of projects that
the students will work on in their careers. CVAC represents an
opportunity to reimagine approaches to automotive assembly
and engineer, technician, and operator education. CVAC com-
prises a three-station automotive assembly skid line with a vehi-
cle body, raised static assembly platform, dedicated enterprise
server and data network, and controlled environmental abilities
such as high-fidelity background noise. The laboratory mimics
the current automotive assembly environment while providing
a controlled space for student and industry prototyping and re-
search activities.

As a step in developing the space’s cyberinfrastructure, an
Industrial Internet of Things (IIoT) network was deployed by
students placing wireless sensors throughout CVAC to moni-
tor environmental and worker health conditions. Students de-
fined the metrics to be monitored, including air quality, temper-
ature, pressure, and humidity, and these data were to be used
to evaluate worker comfort and safety. These monitoring out-
puts were displayed on a user-friendly dashboard to assist pro-
duction management (laboratory personnel) in decision-making
and planning. Collected data were aggregated and will be ana-
lyzed via future student projects in machine learning to classify
optimal and sub-optimal conditions, control strategies, and sen-
sor fusion as additional sensors and data streams are incorpo-
rated.

2. Project

Students were given the problem of indoor air quality in
manufacturing and tasked with identifying applicable metrics,
defining the physical sensors that would be needed, data analy-
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Table 1. Major indoor air pollutants and emission sources adapted from [6]

Pollutant Major Emission Source
Allergens House dust, domestic animals, insects
Asbestos Fire retardant materials, insulation

Carbon dioxide
Carbon monoxide
Formaldehyde
Micro-organisms
Nitrogen dioxide
Organic substances

Metabolic activity, combustion activities, motor vehicles in garages

Fuel burning, boilers, stoves, gas or kerosene heaters, tobacco smoke

Particleboard, insulation, furnishings

People, animals, plants, air conditioning systems

Outdoor air, fuel burning, motor vehicles in garages

Adhesives, solvents, building materials, volatilization, combustion, paints, tobacco smoke

Ozone Photochemical reactions

Particles Re-suspension, tobacco smoke, combustion products
Polycyclic aromatic hydrocarbons Fuel combustion, tobacco smoke

Pollens Outdoor air, tress, grass, weeks, plants

Radon Soil, building construction materials (concrete, stone)
Fungal spores Soil, plants, foodstuffs, internal surfaces

Sulphur dioxide Outdoor air, fuel combustion

sis methods, and providing a visualization intended for a mixed
knowledge background audience. The following section in-
cludes sources and information that the student team found nec-
essary in building the case for implementing sensors in a factory
and office environment, a description of the system design, and
resulting data visualization. Due to Spring 2020 COVID-19 re-
strictions and university cancellations, the student team could
not implement their entire project plan, but a section on addi-
tional sensors that the student team identified as important and
plans for visualization are included.

2.1. The problem of indoor air quality

The majority of the average U.S. person’s day is spent in-
doors. A 2001 National Human Activity Pattern Survey in con-
nection with the U.S. Environmental Protection Agency Na-
tional Exposure Research Lab found that, on average, respon-
dents spent 87% of their time in enclosed buildings and 6%
of their time in enclosed vehicles [7]. Much work has been di-
rected to understanding the effect of indoor air quality on health
as changes in building materials has resulted in higher energy
efficiency and lower cost structures that are more airtight and
made with higher percentages of synthetic materials [8]. These
improvements have produced more comfortable homes and of-
fices while also allowing for the buildup of higher concentra-
tions of indoor air pollutants. Office productivity losses due to
air quality have been found to be between 6% and 9% [9]. In-
door air pollutants come from many sources, such as those pre-
sented in Table 1. The origins of pollutants are both biological
and non-biological, and many are the emissions from activi-
ties within the building. Combustion of fuel to emissions from
building materials, furniture, foodstuffs, and people, there is a
constant source for indoor air pollutants.

Historically, measuring the amount of exposure to indoor air
pollution has been difficult or impossible as most measurement
tools were developed for outdoor usage or were too costly to
deploy on a large and continuous scale [8]. Advances in sen-
sor technology and significantly reduced cost of sensors, and

associated computing have made small, low-cost sensors avail-
able to businesses and individual consumers. The second gap in
current practices is that most deployed sensors developed for in-
door usage record and average over many hours, days, or weeks
potentially missing extreme short-term exposure. A third gap is
that the density of the deployed sensors is extremely low. In an
example 4,000 square foot (100 ft x 40 ft) office space, there
are typically one or two thermostats mounted on the wall to
measure and control the temperature for the entire area. With
two points of reference for the measurement, if one thermo-
stat reads higher than the set point for a time, due to an in-
creased number of occupants gathering to talk or a computer
or printer emitting significant heat, the entire 4000 square foot
space will be cooled to reduce the temperature in the localized
zone. From these gaps, a denser grid of continuously monitor-
ing sensors has the potential to improve indoor air quality and
improve building efficiency by using data to generate knowl-
edge.

2.2. Pervasive environmental sensing

A brief background is presented to establish the real-world
significance of necessary environmental measures for under-
standing while in the classroom and actively monitoring health
conditions by the students later in industry.

Temperature and humidity are the most commonly refer-
enced measurements used when describing weather and envi-
ronmentally based worker comfort. Research has shown that
productivity falls when temperatures are too high [10]. High
temperature and humidity can also increase a worker’s chance
of having a heat-related illness. This is reason enough to track
these measures, but temperature and humidity also play a role
in machine function and maintenance needs. As the sensors will
be placed in more locations than the current thermostats, we
will get a better picture of what is occurring in distinct areas.
Suppose the temperature in a specific area of the lab is consider-
ably higher than the day before. In that case, it may be caused by
outdoor environmental conditions affecting indoor conditions,
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by a machine malfunction causing excess heat to be produced,
or by students leaving lab equipment running overnight. With-
out an understanding of the change’s evolution (the collected
data), it may be more challenging to diagnose the root cause
(knowledge generation).

Gas monitoring, such as for carbon monoxide, has been
prevalently monitored in indoor spaces due to known safety
concerns. As increased focus has been placed on indoor air
quality, additional compounds have been monitored on a one-
time per year manual check or long-term time-averaged basis
that may not provide the full exposure history for an occupant
[11]. Additional compounds such as benzene, toluene, xylenes,
styrene, formaldehyde, terpenes, and ammonia, to name a few,
have become of interest due to their increased usage in commer-
cial and consumer products. Compounds such as formaldehyde
and benzene are generally regarded as carcinogenic, mean-
ing exposure above allowable thresholds or length of time
poses a demonstrated health risk [6, 11]. Toluene, xylenes,
styrene, terpenes, and ammonia are generally regarded as non-
carcinogenic but have the potential to cause eye and respiratory
irritation, dizziness, headaches, or bronchitis at higher concen-
trations [11, 12]. Monitoring air quality for these contaminants
may help detect and mitigate worker exposure.

2.3. Additional student identified sensors

Additional worker well-being factors that the students could
not implement included the manufacturing environment’s noise
level and the worker’s mental workload. Internationally, occu-
pational noise exposure causes between 7% and 21% of the
hearing loss among workers in industrial settings [13]. The Na-
tional Institute for Occupational Safety and Health has set rec-
ommended exposure limits for sound to protect workers against
permanent hearing loss [14]. The daily exposure limits are
shown below in Table 2 and can serve as guidelines for moni-
toring “good” and “bad” durations of noise exposure.

Table 2. NIOSH Average Sound Exposure Levels Needed to Reach the Maxi-
mum Allowable Daily Dose of 100%

Time to reach 100% noise dose Exposure level per NIOSH REL

8 hours 85 dB(A)
4 hours 88 dB(A)
2 hours 91 dB(A)
60 minutes 94 dB(A)
30 minutes 97 dB(A)
15 minutes 100 dB(A)

Worker well-being may be affected by factors relating to
mental workload. Many different factors have been shown to
correlate with increases in mental workload, and these increases
have been shown to affect performance [15]. These factors can
be represented by physiological responses to increased cogni-
tive processing or stress-related responses. In general, monitor-
ing mental workload aspects is most effectively done by assess-
ing several triangulating variables simultaneously [16]. These
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Fig. 1. Proposed student prototype sensor locations in laboratory space listed
by sensor designation and location, actual locations marked with numbers 1-5

responses can increase workers’ ease of tasks or indicate when
a particular employee may need a break.

While many different physiological responses exist for mea-
suring cognitive workload, a few of the most common are heart
rate variability, galvanic skin response, and signals from elec-
troencephalogram (E.E.G.) headsets [17]. For student analysis,
heart rate variability was chosen as the primary method of mon-
itoring operator workload due to its ease of collection through
wearable devices and the broad literature base of use cases.
Heart rate variability as a measure for assessing an individual’s
cognitive workload is a form of indirect measurement that has
been shown to correlate with cognitive activity closely. Stud-
ies have shown that, in addition to assessing physical workload,
this simple measurement has been used to indicate higher levels
of mental stress in subjects based on their working environment
[18].

2.4. System Design

The Clemson Vehicle Assembly Center (CVAC) is a large
space with three separate labs cohabitating one space. To bet-
ter cover the space than the existing two wall-mounted ther-
mostats, the students were asked to propose enough sensor loca-
tions and types to cover the laboratory space’s entirety. Thirty-
six separate sensor locations, as in Figure 1, were selected to
target. The locations were selected to spread the sensor points
around so that a reasonable interpolation could be completed,
hot spots identified, and source location approximated. Loca-
tions included placing sensors near high traffic areas, near door-
ways, or significant equipment (example, a heat and gas gener-
ating composite extrusion machine). Each door to the CVAC in-
cluded a pressure sensor to detect the doors’ opening and clos-
ing throughout the day. One sensor location was placed outside
under cover and out of direct sunlight to measure and compare
internal conditions against external conditions. The number of
locations and sensor types was then reduced in this initial de-
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ployment to demonstrate a proof of concept system. For this
first phase, five locations were instrumented to be the pilot lo-
cations and can be found numbered in Figure 1.

Before selecting the individual sensors, the desired environ-
mental information was determined by examining existing lit-
erature and governmental regulatory agency recommendations
for Indoor Air Quality (IAQ). From these sources, the students
determined that in this initial pilot, the system should target:

o Temperature
Pressure
Humidity
Carbon monoxide (CO)
Carbon dioxide (CO,)
Volatile Organic Compounds (VOC)
— Nitrogen dioxide (NO,)

Ethanol (C,HsOH)
Hydrogen (H,)
Ammonia (NH3)
Methane (CHy)
Propane (C3Hg)

— Isobutane (C4H;0)
e Light Level

The sensors listed in Table 3 were selected to target each of
the desired sensor streams from the list of data targets. To meet
their goals, some areas included multiple sensors with similar
data output.

2.5. Hardware

The BMEG68O0 is the primary sensor the team selected for
measuring temperature and humidity. It can measure the rel-
ative humidity in the range from 0-100% and temperature in
the range from —30 - +100 degrees Celsius, with an accuracy
of plus or minus 3% humidity and plus or minus 0.4 degrees
Celsius. The sensor requires relatively little power and is well
suited to battery-powered applications. Another sensor that was
considered is the HTU21D. It measures the same range as the
BMEG680 for humidity, but it measures from —40 to +125 de-
grees Celsius in temperature. However, the additional range is
unlikely to be needed when measuring the air temperature in
the CVAC laboratory, but it may be needed in other production
contexts. The sensor was sampled every 5 minutes to increase
time-series resolution during the trial and artificially increase
the growth of the database for performance testing.

A 13.5x13.5 cm A.B.S. enclosure, seen in Figure 2 was se-
lected to enclose and protect each sensor and allow for ample
room to mount the microprocessor, sensors, battery, and an-
tenna with additional room if the battery size needs to be ex-
panded in later revisions.

Each of the five pilot boxes was configured with a BME680,
microcontroller, Mioty transceiver, and battery. Each box was
powered by a rechargeable 3.7V 2000 mAh LiPo battery. The
data is collected by an STM32F407VG Microprocessor, which
includes an A.R.M. 32-bit Cortex-M4 CPU at 140 MHz and
programmed in C through MikroC Pro for A.R.M. All compo-

Fig. 2. Prototype sensor box made by student team

nents run on either a Serial Peripheral Interface (S.P.1.) or Inter-
Integrated Circuit (I2C) interface and are 3.3V tolerant to func-
tion correctly with the microprocessor. Current work with the
system includes evaluating battery life per sensor type and col-
lection frequency, whether a battery size change is required, and
how long the sensor boxes will last between charges. Charging
is completed through a mini-USB port on the microprocessor
board and can be recharged through a standard USB 5V charger.

Data transmission is handled wirelessly using Behrtech
Mioty MYTHINGS modules with an omnidirectional antenna
and a single base station. Mioty is a 915 MHz telegram split-
ting Low Power Wireless Area Network (LPWAN) designed to
be robust to high interference areas, ultra-low power consump-
tion, and long transmission range. It is limited in the amount of
data that can be transferred at one time, but as the application
here includes sample rates that sample at a maximum of once
per five minutes, this was not seen as impacting the system per-
formance. An outline from Behrtech of the MYTHINGS data
receiving and storage method is presented in Figure 3 for refer-
ence.

[ Sensors/Data ] [ Base Stations. ] [ Storage/Ul ]

(Wanagement )

Management

+ Network

« Base stations

* Monitoring

+ Data
management

Data Storage,
Visual ion,
and Analytics

-
-
=

On premises

Fig. 3. Mioty data transmission outline. Expanded figure available in Appendix
A

The A.B.S. enclosures were tough and water-resistant as re-
ceived, so they were machined on a HAAS VF-3 to mill open-
ings for environmental air to flow through them. The students
were guided through the setup and use of the mill by a stu-
dent lab leader. Additional miscellaneous components needed
are 10mm M2 standoffs for mounting the microprocessor and
sensors to the case, small command strips for holding the bat-
tery in place with the intention to replace it with a 3D printed
mount in the future, and large command strips for holding the
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Table 3. Sensor designation and data output

Sensor Designation Output

BME680 ENV Temp., Pres., Hum., VOC

SGP30 AQ4 CO», TVOC

MiCS-6814 AQ5 CO, NO,, CoH50H,H,,NH3, CHy , C3Hg, C4H;0
BPS230 TH10 Temp., Hum.

MQ-7 coc Cco

Photocell LC Light

MEMS Microphone SD Sound level

Type of Data; Sensor values
Flowrate: Every 15 minutes

Type of Data: Sensor values
Flowrate: Every 15 mins

Format: ISON | Format: CSV
Sensor ". Data_base ‘. Power BI |
H Temperature Sensor 1
Pressure f Sensor 2
Humidity Sensor 3
coz | Sensor ... |

TVOC 4 Sensor N

Fig. 4. Outline of data flow through system

boxes in place at their location. Command strips were used for
mounting to allow for adjustment and movement of the boxes
as desired without damaging the CVAC facilities.

It was right before this stage of work on the physical system
that restrictions canceled in-person activities out of an abun-
dance of caution for student safety. The next portion describes
how the students would have completed the project based on
their original project plan, as due to the restrictions, only por-
tions of the following were able to be completed.

Data is collected on a timer, packaged into a (JavaScript Ob-
ject Notation) JSON format message, and sent wirelessly to the
base stations for ingestion and buffering. The data is then vali-
dated to contain the required information in an expected format
without errors before being sent by NODE-RED to the CVAC
server, where it is stored in a MySQL database. Each sensor
has its own table to store information in columns for each of
the timestamp and sensor streams.

The data is not altered from the collected form. Any cal-
culated columns will be populated only in new columns, so
the initially collected data is preserved. Additionally, a system
health monitoring script will be written for the base station to
monitor for missing data messages or sensor boxes in case of
a sensor software fault, power running out, or physical dam-
age. Each sensor entry increased the database size by approx-
imately 1 K.B., but this is highly variable depending on the
number of columns from both raw sensor reading, calculated
value columns, and configuration of the MySQL database it-
self. In this system, which includes 5 sensors collecting every
5 minutes and including calculated columns, the database per
year is estimated to grow by approximately 530 GB which is
reasonably sized to be stored on a standard desktop P.C. using
a spinning disk hard drive. Once stored in the server database,

it will be pulled as needed by the central dashboard running
through Microsoft Power B.I. on a computer for display on the
laboratory’s large screen. Any analytics or computation needed
for display will be completed through the Power B.I. interface.

Daily
Averages

58.28
973.14

25.77

Fig. 5. PowerBI based visualization of temperature, pressure, and humidity for
one sensor output. Full page figure available in Appendix B

As previously mentioned, once the data is sent to the cen-
tral server, it is stored in a MySQL database. This database’s
schema may change based on the sensors used, but its gener-
alized design is constant. Each sensor has been given its own
table, as shown by Figure 4. The sensor tables must contain the
timestamp and ‘boxID’ and the sensor measurements. A single
relational table contains all of the ‘boxID’s with their physi-
cal locations and other metadata that the user may want. This
method allows data to be queried based on the box, time, or
Sensor.

Although social distancing modifications affected the vol-
ume and representative nature of the data collected being from
a house rather than the laboratory, a dashboard was still com-
piled for a visualization “proof of concept”. The dashboard was
designed in Power B.I. and is comprised of three main tabs:
HVAC, Air Quality, and an exploratory Heatmap visualization.
In general, the tabs specified below had three aims:

o To allow the user to view metrics over a useful window
of time (e.g. three shifts)

o To quickly provide the user with summary statistics (e.g.
daily averages)

e To display variations among the metrics in different areas
of the facility (e.g. heatmap)
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The first tab, titled “HVAC” and shown in Figure 5, cap-
tured data for quantities relevant to the performance of climate
control equipment, which may also affect manufacturing pro-
cesses and maintenance schedules. These quantities included
air humidity (‘Env_Hum_RH’) in units of percent relative hu-
midity, air pressure (‘Env_Pres_Pa’) in Pascals, and air temper-
ature (‘Env_Temp_C’) in degrees Celsius.

The second tab, titled “Air Quality” and shown in 6, cap-
tures data relevant to the safety and quality of air in the envi-
ronment. The three measures on this tab were carbon dioxide
levels (‘CCS_CO2_ppm’) measured in parts per million, lev-
els of volatile organic compounds in air (‘CCS_TVOC_ppb’)
in parts per billion, and the concentration of gas in air
(‘Env_Gas_KOhms’) which provides a variable resistance in
Ohms.

TS Tz gy T 9

W\

Daily
TV 558 T Averages
MWM w\ 2.60K

Env_Cas_KOhms by Tir 334.51
WMVM-M,J 108.97

Fig. 6. PowerBI based visualization of air quality for one sensor output. Full
page figure available in Appendix C

The third tab, titled “Heatmap” and shown in Figure 7, en-
abled the user to view certain metrics by specific physical area.
This visualization could be overlaid on a schematic of CVAC
and provided a spatially-representative view of the data coming
from the sensors. The intention was to expand this to a smooth
interpolated view based on multiple sensor outputs. Unfortu-
nately, since the team could not use the sensors to measure the
laboratory, the heatmap shown used “dummy data” as a proof
of concept.

Air Guality by Area

Fig. 7. PowerBI based visualization of interpolated distribution of air quality
throughout laboratory space

The students explored two additional tabs and focused on
historical data and the accumulation of exposure. A prolonged
data collection was needed to use these visualizations fully but
was limited by social distancing restrictions. The first tab in-
cluded a “slicer” which allowed the user to view data over the
past day, week, month, quarter, or year, for a selected shift
or combination of shifts. The visualization shown in Figure 8
showed the historical distribution of CO2 levels.

CCS_COZ_ppm

0.0

Fig. 8. PowerBI based visualization of historical distribution of air quality

3. Results and discussion

The initial project team consisted of graduate engineering
majors from four departments. Two students were in the final
semester of M.S. programs, and two were on Ph.D. programs.
All were domestic U.S.A. students and came from varied un-
dergraduate and graduate backgrounds in Mechanical, Indus-
trial, Computing, and Automotive engineering programs. Tai-
loring a manufacturing project class for graduate students is in
contrast to other literature that focuses primarily on undergrad-
vate students. This provided the opportunity to focus less on
teaching the skills of manufacturing itself and focus more on
allowing students to use their skills while allowing them to de-
termine what skills they needed to be taught. By the end of the
course, students had opportunities to learn new skills in phys-
ical prototyping, including guided use of a 3-axis C.N.C. mill
and hand tools, C programming, project management and goal
setting, experience working with team members from varied
backgrounds and knowledge, presentation of ideas, and dealing
with initial ambiguity in a project definition.

Students were graded primarily on submitting deliverables
that they defined early on in the semester, with project reports
and presentations being the few required submissions from the
start. The students had direct input in defining how they would
be graded during their project goal-setting phase. Grades for
project submissions included how thoroughly and clearly the
ideas and meaning of the reports were conveyed.

Overall, the initial team worked well together and provided
positive and constructive feedback. The students preferred that
the project’s context was a production simulation environment
that they could work in and walkthrough. There were mixed re-
actions to the ambiguity in the initial project problem statement
and prompt. They recommended reducing the ambiguity and
increasing the emphasis on explaining that the students would
define the project’s goals and output as initially, the project’s
scope was inferred to be much larger than it had to be. Reducing
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the initial ambiguity in terms of project tasks and specific deliv-
erables will be considered during future class offerings. How-
ever, some level of ambiguity is needed to allow the students
freedom to define their path to success and provides the oppor-
tunity to learn to manage uncertainty. The students also indi-
cated a preference for increasing the amount of mid-term feed-
back. The feedback that the students received was in the con-
text of graded presentations and written reports on progress. All
students liked the hands-on prototyping activities, and they re-
quested to increase the opportunity for in-person practical skill-
building.

The data that is generated by the sensors are stored for fu-
ture classes. In keeping with the hands-on nature of the project,
the collected data provides a more tangible learning dataset for
future coursework in machine learning and A.L. as the topics
are more deeply integrated into the curriculum, where for ex-
ample, students can increase or decrease consumption of addi-
tional power, air, or water and model the consumption fluctua-
tion. As projects are completed, the number of sensors, diversity
of sensor type, and calculated metrics will increase to improve
the historical and real-time information available continually.
Students were also asked to compile how-to guides and doc-
ument difficulties that they encountered while completing the
projects. While semi-formal in structure and content, this infor-
mation is useful to future students who may use the same hard-
ware/software or encounter similar difficulties that their group
must overcome.

3.1. Remote learning in a laboratory-based class

Due to COVID-19 affecting all in-person classes at Clemson
University partway into the semester, the students had to rapidly
alter their project plan mid-semester and move to an all-online
laboratory format. The flexible nature of the class format, al-
lowing the students to define the end goals themselves, provided
them with the ability to reasonably alter their project plan. The
students reacted well and demonstrated flexibility and adapt-
ability to alter their project outcomes while still satisfying the
course’s requirements. The students reduced their output scope
but included a detailed plan for meeting the original goals, sim-
ilar to what their future employer might expect when faced with
significant negative external factors. Out of concern for student
safety and keeping with university policy, all in-person labora-
tory activities were canceled, which meant that physical proto-
typing ended prematurely, and in-laboratory data collection had
to be canceled. The students were able to continue their work
from home and completed a prototype of their design with parts
they had on hand and demonstrated how the system would have
worked.

4. Conclusion

This work details a project-based graduate manufacturing
class that provides in-laboratory opportunities for students to
work with a multi-disciplinary team to meet a topical manufac-
turing need. The manufacturing need will change each semester

and in partnership with local manufacturers. Overall, students
had positive reviews of the class and format and provided valu-
able feedback to evolve the course further.

4.1. Future Development

Future sections of the class will be offered in a phased
approach. A multi-phased approach is being used to ensure
that student feedback is incorporated into subsequent projects,
to ensure that each student is provided proper learning re-
sources/outcomes based on their knowledge background and
that the generalized project framework and requirements are
sufficiently developed to provide for the best outcome. The
work detailed here comprises the first phase. The second phase
expands the class to include both graduate engineering and se-
nior mechatronic community college students. A third phase
will further expand the class offering to three or more groups
and open enrollment for undergraduate and non-engineering
majors. The output from phase three also includes a general-
ized project framework and requirements definition to facilitate
an industrial partner project that needs translation for student
projects.

The second phase offering of this class will continue in Jan-
uary 2021, as possible, and is open to two student teams of four
graduate students each. It is intended to increase the opportu-
nities to work with P.L.C. systems and the larger mechanical
equipment and robotic systems available at the Clemson Ve-
hicle Assembly Center. The second class iteration will be of-
fered in partnership with the Mechatronic program offered by
Greenville Technical College, which includes final year stu-
dents to increase student background and knowledge diversity
through their practical skills and more in-depth knowledge of
mechanical equipment and control systems. Bringing both sides
together has the intention that they are not only learners but also
internal mentors for their group.

Augmenting the project to include tasks for both sides in-
clude adding additional sensing modalities such as collect-
ing data from lineside P.L.C. systems, industrial sensor de-
vices (example, proximity, temperature, vibration, distance, and
safety), and incorporating new industrial sensor devices into the
larger mechanical systems of vehicle lifts, drive motors, and
surrounding infrastructure. Project supplies will also be aug-
mented to provide the teams access to P.L.C. systems, such
as a Siemens S7-1200 PLC with analog and digital input and
output, and industrial sensing systems, such as .LEM. Elec-
tronic GMBH VSEO002 diagnostic module and VSAOQO1 single-
axis accelerometer. These devices were selected based on input
from an industrial partner who is working to deploy and scale
their Industry 4.0 sensing strategy. Similar to this work provid-
ing hands-on experience for graduate students, the next phase
project aims to provide technical college students the oppor-
tunity to work with technology that they otherwise would not
have had access to and that they will encounter during their ca-
reer.

A future third phase class aims to offer undergraduate and
non-engineering student opportunities while also increasing the
number of teams. It is not expected that the project class will
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need to be altered significantly for undergraduate engineering
students as many of the skills and expectations for graduate stu-
dents are already on the edge or outside of the current curricu-
lum. Students from non-engineering domains are not expected
to significantly alter the desired learning outcomes, but their
learning path will need to be tailored based on their background
and in collaboration with their department.
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Appendix A. Mioty data transmission outline enlarged from Figure 3
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Appendix B. PowerBI based visualization of temperature, pressure, and humidity for one sensor output enlarged from
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Appendix C. PowerBI based visualization of air quality for one sensor output enlarged from Figure 6
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