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Abstract—Safety-critical software systems must be developed
using rigorous safety assurance practices. This has led to the
phenomenon referred to as the “big freeze” in which the cost, ef-
fort, and difficulty of introducing new functionality to an already
certified product is prohibitively expensive. However, present
day agile processes have greatly matured to the extent that
organizations who have traditionally used waterfall approaches
are actively experimenting with agile practices even across rel-
atively high-criticality domains. At the same time, organizations
experienced in agile development are increasingly building Cyber-
Physical Systems (CPS), often without sufficient knowledge or
instrumentation to adopt appropriate hazard analysis and safety
assurance practices. The challenge in both scenarios is to manage,
and more importantly understand change, and to further leverage
automated software traceability to support the incremental devel-
opment and maintenance of a safety case. This article explores
solutions for visualizing and understanding change in highly-
incremental, safety-critical development contexts.

Index Terms—Agility, Safety-Critical Systems, Visualization,
Software Traceability

I. INTRODUCTION

SAFETY-CRITICAL software must deliver functionality
while ensuring that the system is safe for its intended

use (1). In many domains the software must be approved or
certified prior to use. For example, software developed for the
aerospace industry has to comply with ISO/IEC12207 and/or
DO-178C guidelines, while medical devices must meet diverse
international regulatory guidelines (2). Building such systems
requires extensive hazard analysis and safety assurance pro-
cesses that have led to the phenomenon referred to as the “big
freeze” in which the cost, effort, and difficulty of introducing
new functionality to a certified product is prohibitively expen-
sive. As a result, there is significant industry interest in moving
towards a more agile approach.

Many organizations working in safety-critical domains are
experimenting with agile methods (3), while organizations
experienced in agile development are increasingly building
Cyber-Physical Systems (CPS), such as factory floor robots,
Unmanned Aerial Systems (UAS), and medical devices, of-
ten without sufficient knowledge or instrumentation to adopt
appropriate hazard analysis and safety assurance practices (4).
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These two trends – emerging from opposite ends of the process
spectrum – are pointing to a new way of developing safety-
critical software which embraces the rigor of safety-critical
development environments while experiencing the benefits
of more incremental, faster delivery cycles made possible
by agile solutions. The importance of using traceability to
manage change in safety-critical software development has
been broadly recognized (3; 5) but has not yet been adequately
addressed within agile projects. The highly iterative environ-
ment of an agile project, makes it difficult to maintain accurate
traceability, evaluate the impact of change on system safety
and to accurately maintain a safety case (6).

We introduce innovative solutions for evaluating traceabil-
ity of individual versions and for visualizing the impact
of change across subsequent software releases. We provide
examples from our own DroneResponse project, which falls
into the lower-to-mid end of the safety-spectrum, but intro-
duces clear safety concerns associated with the deployment
of semi-autonomous UAVs in an urban setting. We present
four traceability views which we deem particularly helpful
for maintaining traceability and for supporting safety-related
change impact analysis. All of these views are automatically
generated by our SAFA (Software Artifact Forest Analysis)
tool. SAFA is designed for use across a range of projects
including traditional safety-critical projects which are adopting
agile techniques, as well as agile projects which need to
improve their safety assurance practices. SAFA does not pre-
scribe any specific traceability structure or notation, but instead
focuses purely on the visualization of evolving artifacts and
the roles they play in mitigating hazards and demonstrating
system safety. Furthermore, safety-critical software exists on
a criticality spectrum, and our experiences with SAFA have
been in domains of medical devices, Positive Train Control,
and Defense, as well as lower criticality projects such as
deployment of Unmanned Aerial Vehicles in urban areas.

II. MANAGING CHANGE IN AGILE PROJECTS

Safety-critical system design requires rigorous and system-
atic hazard analysis and safety assurance using techniques
such as Software Fault Tree Analysis (FTA) or Software
Failure Mode, Effects, and Criticality Analysis (FMECA) (1)
to identify hazards and prepare countermeasures in the form of
mitigating, safety-related requirements. Safety-critical systems
have traditionally been developed using carefully controlled
processes, such as waterfall, V, or W models or relatively
heavyweight incremental processes (e.g., the Rational Unified
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Fig. 1: A project’s TIM defines artifacts and traceability paths
and can be customized for each development environment. The
paths needed to generate the trace slice depicted in Fig. 2a are
labeled in red.

Process) which emphasize detailed planning, upfront design,
and phase-based quality assurance gateways. As the cost,
effort, and difficulty of introducing new functionality to a
certified product can be prohibitively expensive, many organi-
zations are moving towards a more agile approach.

Several authors have proposed techniques for integrating
agility with safety-critical software development in order to
achieve compliance to diverse regulations (7). Kuhrmann et
al. found that agile practices and methods, such as water-
scrum-fall, are common in safety-critical contexts (8). R-Scrum
emphasizes traceability of artifacts and continuous compliance
to certification standards throughout the development process
(3) and introduces the concept of “Living Traceability”. Safe-
Scrum (5) separates safety-related activities by splitting the
project backlog into two distinct parts containing safety and
functional stories. It defines the traceability task as a separate
activity within each sprint, but does not address the challenges
of creating, evolving, and using links in the highly iterative,
rapidly changing environment of an agile project.

All of these processes are characterized by incremental
change and frequent safety evaluations. “Living Traceability”
aims at establishing (semi-)automated tool support for creat-
ing, maintaining, and utilizing trace links. Existing traceability
approaches, such as Capra1 and OSLC2 standards, enable mod-
eling and integration of trace information across heterogeneous
tools and artifacts; however, they do not specifically address
the challenges of evolving trace links in a fast-paced agile
environment. In practice, organizations implementing trace-
ability solutions, often create a Traceability Information Model
(TIM) to specify the key artifacts and their desired traceability
paths, and then focus traceability efforts on demonstrating that
each hazard has been mitigated (9; 10) and that all regulatory
requirements have been met. Integrating traceability checks
into the software process, by tracking the evolution (11) of
trace links, aids project stakeholders to systematically establish
links at appropriate times.

Automated solutions, based on techniques such as informa-
tion retrieval, deep-learning, and software repository mining,
can generate candidate trace links across requirements, design,
tests, and other artifacts (12). While they are not sufficiently
accurate to produce high-quality links in a fully automated
way, they can be used to recommend links to users in order to
help them to maintain relatively complete and accurate links

1https://projects.eclipse.org/projects/modeling.capra
2https://open-services.net/
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Fig. 2: Artifact trees are generated automatically using our SAFA
tool based on information in the project’s TIM

as the system evolves (13). The trace links that are created and
evolved throughout the development process are essential for
iteratively assessing change and its impact on system safety
(14; 15). These links provide the foundation for our SAFA
approach.

III. THE DRONERESPONSE PROJECT

We illustrate SAFA using examples from our DroneResponse
project 3. DroneResponse deploys small groups of semi-

3http://DroneResponse.net
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Fig. 3: A delta tree is fully generated using our SAFA tool to visually depict changes in the way a hazard is addressed across two
versions. Artifacts are colored to show additions (green), deletions (red), and modifications (blue). Informational icons provide access
to rationales and explanations of the underlying change.

autonomous UAVs to support emergency response scenarios
such as search-and-rescue and fire reconnaissance. It is being
developed in close collaboration with firefighters from the city
of South Bend. DroneResponse is located at the medium to
low end of the safety spectrum and therefore both the process,
and the collection of artifact types and links, are appropriately
lightweight. Later on we discuss how the same techniques
can be used in projects with higher-levels of dependability
requirements.

As we adopted a relatively agile approach, we specified
DroneResponse’s requirements using a combination of user
stories, safety stories, and design constraints. User stories were
written from the perspective of human operators and UAVs in
order to describe the basic functionality of the system. For
example:
User Story (US1): “As a compliance officer I need to avoid
UAVs flying into prohibited airspace.”
Next we performed a preliminary hazard analysis for each
story to identify hazards that could prevent the realization of
the story. An example hazard is:
Hazard (H1) Controlled airspace is not clearly identified and
a UAV accidentally flies into prohibited airspace.
For each hazard, we then explored solutions and defined one
or more safety stories. Each safety story describes a mitigation
to the hazard from the perspective of an actor. Safety stories
should not be confused with a safety-case but are likely

to contribute claims and evidence to a system-wide safety
assurance case. Examples include:
Safety Story (SS1) “As a compliance officer, I want all
controlled airspace to be clearly marked on the map.”
Safety Story (SS2) “As a UAV, I want to check my flight
paths dynamically so that I can avoid flying into prohibited
airspace.”
Finally, for each safety story, we identified and specified
design constraints which provide a more formal specification
of the system. An example is as follows:
Design Constraint (DC1) The FlightPlanner shall check the
current FAA airspace class prior to flight and establish altitude
limits according to local airspace restrictions.

Our intent was to create a light-weight agile environment
whilst providing sufficient design details to clearly specify how
hazards would be mitigated. We added the more formal layer
of design-definitions between stories and code in order to track
and validate that each safety story had been fully addressed.

IV. USING TRACEABILITY TO VISUALIZE CHANGE

SAFA leverages underlying trace links to visualize and
explore the impact of change upon system safety. We introduce
four visualization techniques that we deem helpful for eval-
uating trace links and understanding change. We show how
carefully structured arrangements of artifacts, augmented by



SUBMITTED VERSION 4

the use of color and textual annotations, can provide critical
safety insights.

A. Visualizing Artifact Trees

Top-down trace slices allow human analysts to assess
the hazard mitigation plan including associated design solu-
tions (10), test cases, and supporting trace links. Our first
visualization, depicted in Fig 2a, displays a trace slice for a
subset of artifacts within a single version of the system. While
visualizing trace slices is certainly not a new concept; it pro-
vides the foundation for the novel cross-version visualizations
presented in this paper. The trace slice starts with an anchor
node, such as a hazard. The anchor node is not necessarily
the root node of the trace slice, but it represents the entity of
interest in the analysis. In our case, we use hazards as anchor
nodes, and then trace them backwards up the artifact tree to
their associated user stories, and down the tree to see how they
are mitigated in the system.

Trace link traversal is guided by the rules embedded into
the project’s TIM. For example, the links used to generate our
hazard slice are colored red in Fig. 1. By following these rules,
SAFA automatically generates and visualizes the trace slice.
In this example, the slice is anchored by the Hazard UAV-
1364 stating that “Prohibited airspace is not clearly identified
and the drone accidentally flies into the airspace”. If this
hazard were to occur it would inhibit the user story “As a
compliance officer, I want to make sure that UAVs do not
fly into prohibited airspace” (UAV-1383). Additional nodes,
directly and indirectly related to this trace slice contextualize
the hazard (UAV-1438) and show how it is addressed through
safety stories, design constraints, and ultimately implemented
in the code. Test cases and other forms of validation such as
formal models or simulations are not displayed here due to
space constraints, but could equally well be included in the
hazard slice.

Finally, we define a set of rules which SAFA uses to generate
warnings. An example, stated informally is that “each Design
Constraint must have one or more associated source code
files”. The warning in Fig 2a highlights the fact that design
constraint UAV-1388 is either not implemented or that related
trace links have not yet been established. SAFA is supported
by several underlying tools. In this example, a trace link
evolution algorithm (13) recommends three source code files
that could be linked to the design constraint, the first of which
has been accepted by the user. Artifact trees can be generated
repeatedly by developers throughout a sprint to visually track
the mitigation of relevant hazards. They can be used to answer
questions such as “Is the safety story sufficiently addressed in
the design?”, “Have I fully implemented and tested the design
constraints?”, “Are any known design constraints missing from
the artifact tree?” This last question would imply missing trace
links.

B. Bottom-up Analysis

Agile developers may find themselves modifying source
code as they perform refactorings or as they add new features
to the system. The underlying trace links support this activity

through visualizing a bottom-up graph as depicted in Fig. 2b.
Starting at a source code file, all artifact trees which include
a link to this file are identified and each traceability path is
followed in an upwards direction through design constraints,
safety-stories, and hazards as specified in the TIM. This view
can be generated anytime a developer is working on code,
and can be used to address questions such as “What is the
potential impact of my current or planned code changes upon
the overall safety of the system?”

C. Delta Analysis

Delta views represent one of the more novel aspects of
SAFA by visualizing changes that have occurred between a
baseline version and the current version of an artifact tree.
In the example depicted in Fig. 3, a change has occurred
in the operating context (i.e., see UAV-765 (red) vs. UAV-
1414 (green)), a new safety story (UAV-1384), complete with
design constraints, code, and an acceptance test has been
added and is shown in green. Furthermore, source code has
been added (green) and modified (blue). While SAFA’s artifact
trees annotate nodes with warnings, the delta views introduce
informational nodes which provide insights into the change.
The goal is not to näively tell developers and analysts whether
a change is safe or not, but rather to draw their attention to
specific changes that warrant further analysis. We annotate
nodes with an informational symbol to indicate that additional
information is available. For example, clicking on the source
code informational nodes provides links to commit messages
and to results from a refactoring detection tool explaining
specific changes in the code; whereas, clicking on the infor-
mational node attached to the green context node provides a
rationale and explanation of the FAA’s new LAANC (Low
Altitude Authorization and Notification Capability) system.
Adding additional AI-driven insights associated with diverse
patterns of change, represents an ongoing endeavor.

The delta tree therefore supports questions such as “What
has changed in this version?”, “How do those changes impact
safety?”, and “Are additional constraints or evidence needed
for safety purposes?” Our goal is not to fully automate the
safety analysis process, but to provide tools that empower
developers to make informed, analytical, safety decisions.

We previously conducted a preliminary user study of SAFA’s
delta views with ten software professionals, seven of whom
had experience working in safety critical domains, and four
of whom had over seven years of experience in industry (9).
The ten participants were divided into two approximately
equally skilled groups (A,B) and asked to evaluate six different
hazards. Group A evaluated hazards 1-3 using the delta trees,
and hazards 4-6 without them, while Group B did the oppo-
site. Overall, participants identified all risk points using the
delta views and only 80.6% without them. Nine participants
(including everyone with more than 2 years of development
experience) preferred the delta view over the use of paired
artifact trees. Furthermore, one participant with 35 years of
experience stated that he would “kill to have this (Delta View)
in my workplace.”
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Fig. 4: Models are integrated into an Artifact using traceability
links. This enables changes to be highlighted in the delta tree
and safety-related alerts to be visualized.

D. Integrating Models

The examples we have provided so far, are relatively light-
weight; however, it is often desirable to specify system be-
havior in the form of a more precise model or simulation, and
then to integrate the model into the artifact tree in order to
provide evidence that a safety hazard has been mitigated. This
is illustrated in Fig. 4. At the highest level of abstraction, the
model is treated as a black box component and visualized
in red, blue, or green according to whether it has been
removed, modified, or created since the previous baseline.

In addition, selected model attributes that provide important
information about changes in the system and its operating
environment can be exposed and specifically tracked. Fig. 4a
shows a State Transition Diagram for UAV runtime behavior in
the DroneResponse system. Three specific events of interest,
representing potential error conditions, are identified, and the
system is instrumented to support runtime monitoring and
logging. Safety story UAV-1387 describes the need for UAVs
to return-to-launch (RTL) if they breach the external geofence,
and a link is created between Safety Story UAV-1387 and
the state transition diagram (MOD-1986). More specifically,
a finer-grained link is created to the Geofence Breach fault
log. Change is now visualized at two levels – first, as previ-
ously described, colors are used to represent changes in the
model itself, and secondly the state of the linked log file is
displayed in the warning section of the node. In this example,
no violations have been observed since the last release and
therefore the message simply states “No Geofence Breach
reported”. In our second example, we link Design Constraint
UAV-1482 to a flight simulation which is run periodically.
In this case, the simulation has failed because one or more
UAVs flew into restricted airspace, and therefore an alert is
raised for a Restricted airspace violation. Model integration
can provide additional safety insights by answering questions
such as “Has anything changed in the runtime environment
that might impact safety?” or “Should I update any models to
reflect changes in functionality?”

V. CONCLUSION

The SAFA approach is implemented in a tool that fully
automates visualizations reported in this paper. We are work-
ing with industrial collaborators to certify SAFA and to
deploy SAFA into their industrial systems-level projects with
high degrees of dependability. Such systems tend to include
hierarchies of requirements (e.g., System-level, subsystem-
level, and software requirements) with hazards specified at
multiple levels and the use of both formal and semi-formal
models. —SAFA supports this through the use of visualization
techniques including abstractions and filters. The ultimate
goal of our work is to tackle the “Deep Freeze” problem by
providing fully-automated visualizations that empower project
stakeholders to evaluate the impact of change on system safety
in a rapidly evolving project environment.

ACKNOWLEDGMENT

The SAFA work described in this paper has been funded
by the USA National Science Foundation under grants CCF-
1909007, CCF-1647342 and by support from Northrop-
Grumman. Additional aspects of the work were supported by
the Austrian Science Fund (FWF): P29415-NBL funded by
the Government of Upper Austria.

REFERENCES

[1] N. G. Leveson, “The Use of Safety Cases in Certification
and Regulation,” MIT, Tech. Rep., 2011.

[2] D. B. Kramer, Y. T. Tan, C. Sato, and A. S. Kesselheim,
“Ensuring medical device effectiveness and safety: a



SUBMITTED VERSION 6

cross–national comparison of approaches to regulation.”
Food and drug law journal, vol. 69 1, pp. 1–23, i, 2014.

[3] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien,
“Scaling agile methods to regulated environments: An
industry case study,” in Proc. of the 35th Int’l Conf. on
Software Engineering. IEEE, 2013, pp. 863–872.

[4] P. Diebold and S. Theobald, “How is agile development
currently being used in regulated embedded domains?”
Journal of Software: Evolution and Process, vol. 30,
no. 8, 2018. [Online]. Available: https://doi.org/10.1002/
smr.1935

[5] T. Myklebust and T. Stålhane, The Agile Safety
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