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ABSTRACT

High-throughput phenotyping enables the efficient collection of plant trait data at scale. One example involves using imaging

systems over key phases of a crop growing season. Although the resulting images provide rich data for statistical analyses of

plant phenotypes, image processing for trait extraction is required as a prerequisite. Current methods for trait extraction are

mainly based on supervised learning with human labelled data or semi-supervised learning with a mixture of human labelled

data and unsupervised data. Unfortunately, preparing a sufficiently large training data is both time and labor intensive. We

describe a self-supervised pipeline (KAT4IA) that uses K-means clustering on greenhouse images to construct training data for

extracting and analyzing plant traits from an image-based field phenotyping system. The KAT4IA pipeline includes these main

steps: self-supervised training set construction, plant segmentation from images of field-grown plants, automatic separation

of target plants, calculation of plant traits, and functional curve fitting of the extracted traits. To deal with the challenge of

separating target plants from noisy backgrounds in field images, we describe a novel approach using row-cuts and column-cuts

on images segmented by transform domain neural network learning, which utilizes plant pixels identified from greenhouse

images to train a segmentation model for field images. This approach is efficient and does not require human intervention. Our

results show that KAT4IA is able to accurately extract plant pixels and estimate plant heights.

Introduction1

One type of high-throughput phenotyping involves taking images of hundreds to thousands of plants simultaneously and2

continuously throughout their growth period. Substantial advancements have been made by engineers and plant scientists to3

enable large-scale collection of plant images and sensor data in greenhouses and fields Chéné et al. (2012); Araus and Cairns4

(2014); Hairmansis et al. (2014); Fahlgren et al. (2015); Lin (2015); McCormick et al. (2016); Xiong et al. (2017). Figure 15



shows an example implemented by the Plant Science Institution (PSI) at Iowa State University, where cameras are placed in6

front of each row of plants in a field. These cameras are designed to take side-view photos every 15 minutes from 8am to7

5pm each day. Side-view images provide access to different plant traits as compared to top-down images generated by gantry8

systems and UAVs (unmanned aerial vehicles). From the resulting images, we are able to process and extract phenotypic9

features such as plant height, width and size, and use those extracted features for subsequent genetic analyses. As compared to10

cameras mounted on mobile ground-based robots, using a system of this type allows simultaneous imaging of all plants, which11

offers advantages in understanding genetic variation in plant responses to varying environmental conditions.12

(a) (b)

Figure 1. Left panel: an overview photo of the Iowa State field phenotyping system; right panel: raw RGB images of maize
plants captured from the phenotyping facility.

Because high-throughput systems of this type can generate many images per day, image processing is generally required13

to extract numerical measurements of plant traits for downstream analyses (Hartmann et al., 2011; Li et al., 2014; Araus and14

Cairns, 2014; Choudhury et al., 2018; Adams et al., 2020). Plant object segmentation is the fundamental step in extracting15

phenotypic features from images (Hamuda et al., 2016; Ge et al., 2016). There are existing data analysis tools built for specific16

phenotyping systems, for example, Field Scanalyzer (Virlet et al., 2017) by LemnaTec and CropSight (Reynolds et al., 2019),17

which uses Leaf-GP (Zhou et al., 2017) for image processing. Those tools are all based on thresholding for image segmentation,18

which is accurate for greenhouse images, but less so for field images. Moreover, those tools are designed for top-view images19

and cannot be directly applied to side-view images. Image segmentation and trait extraction are still the current bottlenecks in20

many field phenotyping experiments. There are also systems, such as PlantEye by Phenospex, that generate and analyze 3D21

images obtained from above. However, 3D imaging technologies are expensive. Due to constraints, it is generally not possible22

to deploy hundreds of 3D lasers on large numbers of genotypes.23

Separating plants from background is much easier for greenhouse images where the background is homogeneous (usually24

white). Under such conditions a thresholding algorithm can often provide satisfactory results (Ge et al., 2016; Choudhury et al.,25

2018). Thresholding is the simplest and the most commonly used method for image segmentation (Hartmann et al., 2011;26

Davies, 2012). Segmentation often involves classifying pixels using a cut-off value for pixel intensities. Thresholding can be27

applied on the average of red, green and blue channels, on the green-contrast intensity (Ge et al., 2016), or on both (Wang et al.,28
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2020).29

However, thresholding methods do not perform well for field images, which typically have quite noisy backgrounds. As30

an example, the background in Figure 1 is a mixture of dirt and plant materials on the ground, poles and silver heat shields31

that cover phenotyping equipment, and plant shadows. Figure 2 illustrates the performance of a thresholding method on ISU32

field images of maize, where a smaller thresholding value (0.04) maintains most parts of the plants but retains much of the33

background noise, while a larger thresholding value (0.08) removes most of the background noise but misses many plant pixels.34

Of particular concern, the ideal threshold for a given image is sensitive to the environment and time at which the image was35

taken. Hence, tuning thresholding values requires extensive human intervention and introduces an additional source of human36

bias.37

(a) (b)

Figure 2. Thresholding segmentation method for Figure 1 using green-contrast intensity with weights (− 1√
6
, 2√

6
,− 1√

6
), and

threshold level 0.04 (left panel) and 0.08 (right panel).

A well-segmented plant image is key to accurate feature extraction, but traits such as plant height and width are particularly38

sensitive to background noise in images. To improve thresholding methods for greenhouse images, Adams et al. (2020) made a39

thorough comparison for supervised learning methods trained on pixel intensities of plant RGB images acquired in a greenhouse,40

where the training data were obtained by unsupervised K-means clustering Johnson et al. (2002); Klukas et al. (2014). They41

demonstrated that neural network models are more accurate and robust at segmentation than traditional thresholding methods.42

For field imaging systems, there have been an increasing number of applications of convolutional neural networks (CNN) to43

plant phenotype extraction in recent years. Miao et al. (2019) considered leaf counting of maize by a relatively shallow CNN;44

Lu et al. (2017) employed deep CNN structures to count the number of tassels on field-grown maize plants; Aich et al. (2018)45

used CNNs for estimating emergence and biomass of wheat plants. Other applications of CNNs on field images are described46

in Mohanty et al. (2016); Ubbens and Stavness (2017); Namin et al. (2018). U-net (Ronneberger et al., 2015), which uses47

an auto encoder and decoder, is a recently developed popular CNN method for image segmentation. The idea of U-net is to48

reconstruct an original image from its low-dimensional latent representation learned from the convolution of local structures of49

the training data. Despite the satisfactory performance of U-net on feature extraction, preparing the training data and annotating50

field images is still time and labor consuming because the field images are of high-resolution with noisy backgrounds.51
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To overcome the obstacle of preparing training data for field images, we provide the KAT4IA pipeline for plant feature52

extraction from field phenotyping systems based on a self-supervised learning algorithm for plant segmentation. The idea of53

self-supervised learning originates from semi-supervised learning (Zhu and Goldberg, 2009; Zhu et al., 2003; Kingma et al.,54

2014), which is a machine learning approach that combines a small amount of labeled data with a large amount of unlabeled55

data for training. Neural network-based semi-supervised learning approaches can be found in (Weston et al., 2012; Rasmus56

et al., 2015). Semi-supervised learning also has applications in plant phenotyping. For example, (Ghosal et al., 2019) considered57

a weakly supervised deep learning framework for sorghum head detection and counting, where the initial model is trained by a58

small dataset and is used to annotate new data. The annotation is then verified by human expert raters and fed back into the59

network to increase the size of training data. The proposed self-supervised learning approach generalizes semi-supervised60

learning methods in the sense that no human labelled data are needed in the proposed approach. Self-supervised learning means61

our KAT4IA algorithm prepares the training data for in-field plant segmentation by itself without human labelling. This is62

possible for our problem because pixel intensities of greenhouse plants are similar to those of in-field plants, and greenhouse63

plant pixels can be easily obtained by unsupervised learning methods, like the K-means clustering algorithm. KAT4IA is64

able to automatically and robustly calculate plant traits from the ISU phenotyping system as shown in Figure 1, and to fit a65

non-decreasing functional curve for the extracted traits over the plant growth period. Compared to the method of Adams et al.66

(2020) for greenhouse images, our pipeline has the following innovations: (i) extends the plant segmentation method to field67

images by transform domain learning; (ii) builds an automatic pipeline to separate the target plants and measure their traits; (iii)68

uses a non-parametric monotone fitting of plant traits that is free of model assumptions.69

An important step in KAT4IA is to obtain an accurate segmentation of plants from field images. We construct a transform70

domain self-supervised neural network model, which uses plant pixels obtained by K-means clustering of pixels in greenhouse71

images, along with background pixels from field images to train segmentation models. This self-supervised method, which72

is novel in plant phenotypic analysis, can automatically and efficiently generate a large amount of supervised data by using73

plant pixels from greenhouse images and background pixels from field images as the training pixels. It is easy to implement74

and avoids expensive manual labelling for preparing training data. Post-processing (Vibhute and Bodhe, 2012; Davies, 2012;75

Hamuda et al., 2016; Gehan et al., 2017) of the segmented image from the neural network model can be applied, such as76

median blur, erosion and dilation operations. Using the segmented images, row-cut and column-cut algorithms in the pipeline77

were developed to separate the target plants by identifying the peaks of plant pixel proportions in image rows and columns.78

Plant features are then measured for each separated plant based on the segmented image. We also describe a refined feature79

extraction algorithm by pooling information of plant locations from a sequence of images taken over time in the same row80

of an experiment. In the last step, we fit a non-parametric and non-decreasing functional curve for the extracted plant trait.81

The advantages of non-parametric functional fitting over parametric modeling and point-wise analysis of variance for plant82

growth dynamics are discussed in Xu et al. (2018). Our method restricts the fitted curve to be non-decreasing which leads to a83

more accurate estimation for growth curve than the approach of Xu et al. (2018). Although we mainly focus on plant height84
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measurement in this paper, our procedure can be easily extended to extract other plant traits such as size and width.85

The KAT4IA Method86

The primary interest of this paper is to automatically extract heights of all foreground plants in images recorded by cameras in87

the field (see Figure 1), and to use the heights obtained from sequences of photos to estimate plant growth curves. The work88

flow from the original RGB images to the fitted growth curve for each plant is summarized in Figure 3. The main steps are89

enumerated as follows. Detailed procedures for each step are explained in the subsequent subsections.90

1. Construct the training data set for plant and background pixels, whereby the plant pixels are obtained using the K-means91

clustering algorithm applied on plant images from a greenhouse.92

2. Perform image segmentation using a neural network that classifies each pixel into 0 or 1 based on the RGB intensities of93

the training data, where 0 denotes background and 1 denotes plant.94

3. Identify plants of interest and measure their heights from the segmented images.95

4. Calculate the heights of plants from a sequence of images over the growing season.96

5. Estimate a plant growth curve using non-parametric regression with a non-decreasing mean function for each plant.97

Image data98

The image data used in this paper were taken from a rainfed (i.e., non-irrigated) field near Grant, Nebraska in 2017. One camera99

was installed for each row in two replications of 103 and 101 genotypes, respectively. Each row in each replication included up100

to six plants of a single genotype. Photos were taken at a frequency of 15 minutes, and the average number of photos taken by101

each camera was 1,719 and 1,650 respectively for the two replications. We applied KAT4IA pipeline to estimate growth curves102

for all the plant photos taken from the two replications. The raw field photos are high resolution (5152×3864) RGB images103

with intensity values of red, green, and blue channels between 0 and 255 for each pixel. We normalized the pixel intensities by104

dividing by 255, producing floating point numbers between 0 and 1. To increase computation efficiency, we also re-scaled the105

image resolution to 1000×750.106

Self-supervised learning107

We considered self-supervised learning to classify each pixel of a field image into either a plant class or a background class.108

As preparing accurate training data is the most labor intensive and time consuming step in supervised learning, we deployed109

an efficient self-supervised learning method to automatically construct training data with labeled pixels for field images. To110

prepare training data for the background, it is straightforward to crop the image into pieces that only include the background.111

All the pixels in those pieces of images are labeled as background. For example, see the second panel in Figure 3, where the112
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Figure 3. KAT4IA diagram. Subfigures from top left clockwise to bottom left illustrate the algorithm workflow from the
original RGB images to the fitted growth curves.

crops of background images include the dirt and plant material on the ground, sky, shadows, and the phenotyping equipment113

(e.g., the poles and silver heat shields).114

To obtain training data for the the plant class, however, it would be time-consuming to accurately crop the plant parts115

because of their irregular shapes and the noisy backgrounds in field images. Instead, we used plant pixels obtained from116

greenhouse images to train a model for field images. Specifically, we used images of plants that had been photographed in a117

well-controlled imaging chamber, where the backgrounds are much less noisy than field images. By cropping the greenhouse118

images, we obtained part of the plant in front of a background with a universal color; see panel (a) in Figure 4 as an example.119

This can be easily accomplished for greenhouse images. Because the cropped greenhouse images have only two distinct classes,120

the K-means clustering algorithm using a Euclidean distance metric can easily separate the plant pixels from the background121

pixels; see panel (b) in Figure 4 as the clustering result from the original image in panel (a). All the extracted plant pixels122

from K-means algorithm were collected as training samples of the plant class for field images. From panel (c) in Figure 4, we123

know that K-means clustering should not be applied on field images as it only works well for plant images with a universal124

background (Adams et al., 2020).125

The key idea is to use the pixels from greenhouse plant images to train the pixel identifier for field images. Kernel126

density estimates of green contrast intensities for field background pixels, field-grown plant pixels and greenhouse plant pixels127

are shown in Figure S1 in the supplementary material. From the figure, we see that although the green contrast density of128
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greenhouse pixels is different from that of field-grown plant pixels, both densities deviate substantially from the distribution129

for field background pixels. The green contrast intensities for field-grown plant pixels tend to be much closer to the green130

contrast intensity distribution for greenhouse plant pixels than to the distribution for field background pixels. Thus, a classifier131

built on the greenhouse plant pixels and field background pixels is able to separate the field-grown plants from background.132

Despite the changing lighting conditions in the field, our learning method produced good segmentation results under various133

field conditions and at different times of day, as demonstrated in the results section and the supplementary material section S4.134

Note that there is no need to have a perfect segmentation of the whole plant from the greenhouse, as we only need part of the135

plant pixels where separation from the background is easy and can be done by K-means clustering. Both the procedures to136

construct training data for the background and plant classes are easy to implement without human labeling and annotation. This137

makes supervised learning for plant segmentation possible at the pixel level.138

Compared to traditional image segmentation like thresholding, our proposed method yields a more accurate results as139

indicated by Figure S2 in the supplementary material. Our proposed method is very efficient because we do not need the140

time-consuming and labor-expensive process of human labelling.141

(a) (b) (c)

Figure 4. An example of training data (plant class) acquisition. Panel (a) is a cropped greenhouse images; panel (b) is the
clustering result using the K-means algorithm (K = 3). The white parts are used subsequently as training data for the plant class.
The number of clusters K could be chosen as 2. For K = 3, the third class gives the edge of the plant. Panel (c) presents the
results of the K-means algorithm directly applied on a field image, which can not separate the plant pixels.

Segmentation by neural network142

We used a training dataset generated as described above that consisted of 598,219 plant pixels from 6 greenhouse images and143

2,728,415 background pixels in 19 cropped snippets from 6 field images of different environment conditions. For each pixel,144

we used its RGB intensities and those of the surrounding eight pixels (i.e., 3× 3 pixels) as the input features. This results145

in 27 features for each pixel. Compared to neural networks with the target pixel only (i.e., no neighborhood), including the146

neighborhood information leads to a result with less background noise. The intuition is that plant and background pixels are147

more likely to be surrounded by pixels from their own category. In fact, the performance of neural networks with the target pixel148

only is more similar to the thresholding segmentation method shown in Figure 2. Compared to neural networks using 5×5149
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neighborhood pixels as input features, our 3×3 neural network has a similar segmentation performance and lower computation150

complexity. A more detailed comparison of neural networks with different neighbor sizes can be found in the supplementary151

material section S2.152

A three-layer neural network under the API Keras in R was used to train the model. Specifically, the input layer had 27153

nodes, and the first and second hidden layers had 1,024 and 512 neurons respectively. The ReLU activation function was used154

between the input layer and the first hidden layer as well as between the first and second hidden layers. The output layer had155

one neuron which gives the predicted probability of a particular pixel belonging to the plant class. The sigmoid activation156

function is used between the second hidden layer and the output layer. The dropout rates at each hidden layer were chosen to157

be 0.45 and 0.35, respectively. The binary cross-entropy loss function with the Adam optimization algorithm (learning rate158

= 0.001) was used to evaluate the network. Finally, we used 20 epochs with batch size 1,024 to train the model. 1% of the159

training data were held out as a validation set before training.160

(a) (b)

Figure 5. The original image (a) and segmentation result (b) from the self-supervised neural network model.

A cutoff threshold of 0.5 was used to classify the plant pixels, which means a pixel is classified as plant if its output161

probability from the neural net model is greater than 0.5. Our method is robust to this cut-off value. More discussion and162

results under different cut-off values can be found in the supplementary material section S3. Figure 5 provides an example of163

the segmentation result by our neural network model. Most of the plants were precisely segmented with limited background164

noise. Even a corn field in the extreme background near the top of the image was correctly classified as plant. In contrast, the165

trees on the horizon were, for the most part, classified as background. More segmentation results for different plants and under166

various environmental conditions are shown in Figure S5 in the supplementary material. From those results, we can see that the167

proposed method is stable and robust under different weather and light conditions.168

Plant height measurement from a single segmented image169

Based on the segmented images, we aimed to measure the height of the plants in the first (most forward) row of an image. As170

an example, there are six maize plants in the first row of Figure 5. This procedure constitutes identifying the first row by a171

row-cut algorithm and then separating each plant in the first row by a column-cutting algorithm before measuring the individual172
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height of each plant.173

Row-cut algorithm174

To separate the first row in an image, we use a row-cut algorithm which consists of local maximum calling and region175

identification. Specifically, row means are calculated for each pixel row of the segmented image, which gives the percentage of176

plant pixels in each row. Then a local smoother (loess function in R) is used to smooth the row means. From Figure 6, we177

can see multiple peaks in the row mean curve, where the bottom peak corresponds to the front row of plants. To find the local178

maximum of the bottom peak, we threshold the row means by Rv = 10% percent of their global maximum value. This results in179

segments of row indices with values above the threshold, where two segments are considered to be separate if they are Sr = 10180

pixel rows apart. The maximum of the bottom peak is the largest row mean in the first segment at the bottom of the image. See181

the illustration in the top right panel of Figure 6, where the red point denotes the maximum of the bottom peak (colored in182

green) identified by the procedure. Finally, to locate the region of the bottom peak, its upper and lower boundaries are chosen183

as the first pixel rows smaller than Ru = 7.5% and Rl = 2.5% percentage of its peak maximum when moving above and below184

from the center of the bottom peak. See the bottom two panels in Figure 6 as an illustration of this step. Our results show that185

this procedure can accurately separate the first row of plants and that it is robust to the tuning parameters Rv, Ru, Rl and Sr for186

all images analyzed. However, the appropriate values of those hyper-parameters may vary in different experimental settings.187

Column-cut algorithm188

Once the targeted row of plants is obtained, we separate each plant in that row using a column-cut algorithm. This algorithm189

is illustrated in Figure 7. Similar to the row-cut algorithm, the first step is to compute the pixel column mean values, which190

gives the column-wise percentage of segmented plant pixels. We applied a quadratic power transformation (i.e. f (x) = x2)191

to the column means, which magnifies the column peak maximal values so that it is easier to separate different peaks, as192

illustrated in the third step in Figure 7. Following the same strategy as the row-cut algorithm, we find the maximum for each193

peak by thresholding the squared column means at Ch = 20% percent of the overall maximum, and obtaining segments defined194

by column indices with values larger than this threshold. Then, segments that are at least Sc = 50 pixel columns apart are195

considered to be from different peaks. The maximum value for each peak can be obtained as the largest squared column196

means in each segment. The cuts between plants are calculated as the midpoints between the indices of two adjacent peak197

maxima. Specifically, let {I( j)
p }m

j=1 be the indices of the column-mean peak maximum for the m plants. Let I( j)
c , j = 2, . . . ,m198

be the indices of the cuts between plants. The left and right margin cuts are defined to be I(1)c = max{I(1)p −DI ,1} and199

I(m+1)
c = min{I(m)

p +DI ,nc} respectively, where DI = max j∈{1,...,m−1}d
I( j+1)
p −I( j)

p
2 e and nc is the total number of columns.200

Phenotype measurements201

After making the row and column cuts, we can measure phenotypic traits for each plant. In this study, we focused on height202

measurement. The proposed procedure could, however, be easily adjusted to calculate plant width and size. For the height of203

each separated plant, we first computed the column means, then found the maximum value and the corresponding index of that204
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Figure 6. Diagram of the row-cut algorithm. Top left panel: the segmented image of plants from the neural network model;
top right panel: the step of local maximum calling, which provides a separation of different peaks (illustrated by different
colors) in the row mean curve and an identification of the maximum of the lower peak (denoted by the red point); bottom right
panel: the step of peak region identification, providing the upper and lower boundaries of the bottom peak (denoted by the red
solid lines); bottom left panel: the segmented and cropped first row of plants from the original image.

maximum. Lastly, the left and right cuts were made to retain the center part of the plant: each cut was made at the pixel column205

closest to the column with the highest value among columns at which less than 10% of the maximum value was reached. The206

row mean values for the selected center part of the plant are computed, and the plant height is calculated as the index difference207

between the first row from below and the first row from above with mean values larger than 2.5% of the maximal row mean208

value. This procedure is illustrated in Figure 8.209

Plant height measurement for each time series of images210

In this section, we outline a refined height measurement procedure for a sequence of plant photos taken over time by borrowing211

information of plant locations across the time series of images. After conducting the above procedures for image segmentation,212

row cut and column cuts, we can systematically study the growth trend of each separated plant over time, and refine the213

column-cut algorithm that is based on a single image by considering a sequence of images from the same row, as the camera214

positions generally remain approximately fixed throughout the experiment. Consideration of a sequence of images can help to215

remove problematic images and images with overlapping rows of plants from which a clear separation of the plants in the front216

row is difficult.217

Figure 9 shows a set of field photos of a row of plants taken by a single camera over time. Notice that the plant locations218
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Figure 7. Diagram of the column-cut algorithm. Top left panel: the segmented first row of plants from the row-cut algorithm;
middle left panel: the column mean curve; bottom left panel: the step of local maximum calling for the column mean curve,
providing the maximum of each peak after the power transformation (denoted by red points); bottom right panel: the step of
plant separation, where the cuts (blue dashed lines) between plants are calculated as the middle points of two adjacent peaks;
top right panel: the segmented and cropped image for each plant.

of plants are roughly the same across different photos. However, we cannot identify all six plants from every photo due to219

technical issues of the camera (panels a and b where the rightmost plant is obscured), strong wind (panel e where the second220

and third plants overlap) or the death of particular plants. Meanwhile, the row-cut algorithm requires a separation between the221

first (front) row and the second (background) row of plants, so that the bottom peak of the row means are separable from other222

peaks; see Figure 6. When the plants in the first row overlaps with the plants in the background, as shown in panel (f) of Figure223

9, it is challenging to accurately measure plant height using computer vision methods. Our neural network algorithm is not able224

to separate the first row from the rest of the rows if they are overlapping in the perspective of the image. Hence, the current225

method is suitable for the earlier growth stages of field-grown plants. We explore potential solutions to this problem in the226

discussion.227

To deal with the aforementioned challenges of the dynamic photos of plant growth, we have developed an algorithm to228

check image qualities to obtain more reliable estimates of plant height. This algorithm includes four steps as follows. Firstly,229

the neural network segmentation model and the row-cut algorithm are applied to every photo in the sequence, and the heights of230

the segmented first row from each image are computed. We apply change point detection methods (via changepoint R package)231

to identify jumps in the heights of the segmented rows from the sequence of images. As illustrated in the top left panel of Figure232

10, there is a clear jump in the row heights around July 21. This change point, denoted by the red vertical line, corresponds to233

the date when the front line of plants begins to overlap with the plants in the background, becoming inseparable. The current234
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Figure 8. Diagram of the height measurement algorithm. Top left panel: the segmented image for a single plant from the
row-cut and column-cut algorithms; bottom left panel: extracting the center part of the plant by thresholding (blue line) the
column mean curve of the segmented image in the top left panel and identifying the left and right cuts (red lines); bottom right
panel: the extracted center part (marked by two solid red lines) of the segmented image, and the height measurement by
thresholding (blue line) the row mean curve of the center part of the segmented image; top right panel: the segmented image of
a plant with the annotated height.

(a) (b) (c)

(d) (e) (f)

Figure 9. A sequence of field photos from a row of plants over the growth period.

height measurement method only works for early stages of plant growth when the target row of plants does not overlap with235

plants in the background. To separate plants from overlapped rows, we need to first obtain a good segmentation of all the plants236

that removes the background noise and then identify the targeted plants from the segmented image. The proposed method237

provides a solution to the first step of this process. We describe how to separate targeted plants when the rows are overlapping238
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in the discussion section. We focus on measuring the plant heights of the front row prior to this change point. Secondly, the239

column cuts algorithm is implemented to count the number of plants in the front row for the segmented images from step one.240

The mode of these counts, denoted by m, is used as an estimate for the true number of plants in a given row over time. Because241

six seeds are planted in each row in this experiment, the modes for most of the rows are six during the growing season. We only242

consider those images with the number of plants in the first row equal to its mode m. This is illustrated in the top right and243

bottom left panels of Figure 10, where m = 6 and the red points are the images with 6 identified plants over the time course. We244

compute the plant heights for those selected images for the time sequence of photos in the following steps.245

Given a row (camera), let n be the number of the selected images with m identified plants from the first two steps.246

In the third step, we refine the column cuts for each plant in a row by pooling information of plant locations from those247

selected n images. Let I(i, j)p be the column peak index for the jth plant in the ith photo. The average column peak index for248

the jth plant can be computed as Ī( j)
p = n−1

∑
n
i=1 I(i, j)p . Note that the camera might slightly shift horizontally due to wind,249

which affects the position of the column peaks over time in a given row. However, the distance between two adjacent peaks250

should remain constant. Therefore, it is reasonable to stabilize the column peak index for the jth plant in the ith photo as251

Î(i, j)p = Ī( j)
p +median j(I

(i, j)
p )−median j(Ī

( j)
p ), where the term median j(I

(i, j)
p )−median j(Ī

( j)
p ) adjusts the horizontal shift of the252

camera. The separation for each plant can be made at the average index of two adjacent peaks, as discussed in the “Column-cut253

algorithm” section. The red solid lines and blue dashed lines in the bottom right panel of Figure 10 show the stabilized column254

peaks and column cuts, respectively. Finally, we calculate the height of each separated plant as discussed in the previous section.255

The measured heights for the six plants in Figure 10 are shown in Figure 11.256

Estimating growth curves257

Plant heights are not expected to decrease during the growing season. Using the extracted heights from the plant images, we258

can fit a growth curve for each plant by nonparametric regression (Wahba, 1990; Fan and Gijbels, 1996). However, the classical259

nonparametric curve fitting methods cannot ensure the non-decreasing property for the growth curve. To fit a non-decreasing260

function for the plant growth, following Dette et al. (2006), we first apply a kernel-based estimation to fit an unconstrained261

growth curve µ̂(t). Then, we construct a density estimate using the estimated values µ̂(i/N) for i = 1, . . . ,N, where N is the262

total number of observations over time. It can be shown that integrating the density estimate from−∞ to t gives a consistent and263

non-decreasing estimator for µ−1(t) if µ(t) is a non-decreasing function. Thus, the estimator for µ(t) is also a non-decreasing264

function. To make estimation more robust, outlying height measurements are detected based on the interquantile range of265

the residuals. Height measurements whose residuals are outside 3 times the interquartile range are ignored when fitting the266

non-decreasing growth curves a second time. The curves in Figure 11 are the fitted non-decreasing growth curves based on this267

method for six plants in one camera before the front row and the background rows overlap. Our method fit the data well with268

high R-square values. The goodness-of-fit results of the proposed method are reported in the supplementary material section S5.269
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Figure 10. Refined height measurements for an examplary sequence of images from one row. Top left panel: change point
detection to identify the jump in the heights of the segmented rows, where the plants in the first row overlap with the
background rows; top right panel: the number of identified plants in a given row over time; bottom left: the selected images
(marked as red) for the growth curve analysis, which have 6 identified plants before row overlapping; bottom right: refining the
column cuts for each image by pooling information of plant locations from other images in the same row over the growth period.
The red solid lines are the estimated center of each plant over time, and the blue dashed lines are the refined column cuts.

Discussion270

This paper describes a self-supervised method (K-means assisted training) to separate plants from background for field images271

and a computation pipeline to extract plant features (traits) from the segmented images. Our self-supervised learning approach is272

advantageous for high-throughput phenotypic analyses as no human-labelling is required to construct supervisory training data.273

The absence of tedious human labelling makes up-scaling efficient and feasible. Our KAT4IA method is easy to implement274

and can be broadened to provide a variety of plant phenotypic analyses. Although this paper focuses on extracting height275

measurements, other features can also be extracted from the segmented images. For example, topological skeletonization can be276

applied to the post-segmentation binary images, and leaves can be separated based on skeleton-based computer vision methods.277

The idea of transforming learning that uses greenhouse images to learn field images can be applied to various feature278

extraction problems. As many plant features, including height and number of leaves, have been extracted from greenhouse plant279

images (Miao et al., 2019), we can generate pseudo-field images based on greenhouse images with their extracted plant features,280

and build machine learning models on those pseudo-field images to measure plant traits from field phenotyping projects.281

As shown in Figure 10, the proposed method works for early stages of plant growth, during which the first row in the images282

does not overlap with plants in the background. Self-supervised learning methods can also be developed to separate the first283
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Figure 11. The fitted growth curves for each plant in a set of images from one camera. The points are the extracted plant

heights from images, and the non-decreasing curves are the fitted values from the KAT4IA pipeline.

row from the background plants if they overlap. This can be achieved in a two-step procedure. In the first step, the proposed284

segmentation method would be applied to segment all plants from the background. Training data of plant pixels from the first285

row and the background rows can be automatically formed from the images where the first row is separable. In the second step,286

using the training data, a convolutional neural network model can be constructed based on the pixel intensities from a small287

neighborhood of each pixel. In the same way we have used greenhouse images to train self-supervised learning for field-grown288

plants, we can use plant images in early growth stages to form self-supervisory information for separation of plants in late289

growth stages.290

The functional curve smoothing method is applied on each individual plant over time. Functional data analysis for genotype291

and treatment effects on plant growth can be conducted based on the fitted values from the non-decreasing functional curve.292

The “implant” package (Wang et al., 2020) can be applied on the smoothed plant traits for this purpose.293

Currently, we do not have high-throughput field images with labeled plant pixels. In future work, results generated from294

our KAT4IA approach could be compared to results obtained by more labor-intensive approaches, such as using manually295

segmented images for supervised learning, obtaining manually measured heights of plants from images, or manually measuring296

plant heights in the field.297

Finally, weeds were well controlled in our experiment, which can be seen from the original images. So, the proposed298

segmentation model does not consider weeds as the background. When weeds are prevalent, we could crop the part of the299

in-field images with weeds and use their pixels as part of the training data for the background class. A larger neighborhood size300

might be needed, as those surrounding pixels may be able to distinguish the structure differences between maize plants and301
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weeds.302
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S1. Comparing the distributions of green contrast intensity between the greenhouse and1

field images2

Kernel density estimates of green contrast intensities, i.e. (2G−R−B)/
√

6 distributions for the field background for field3

background pixels, field-grown plant pixels and greenhouse plant pixels are shown in Figure S1. From the figure, we see4

that although the green contrast density of greenhouse pixels is different from that of field-grown plant pixels, both densities5

deviate substantially from the distribution for field background pixels. The green contrast intensities for field-grown plant pixels6

tend to be much closer to the green contrast intensity distribution for greenhouse plant pixels than to the distribution for field7

background pixels. Thus, a classifier built on the greenhouse plant pixels and field background pixels is able to separate the8

field-grown plants from background.9

S2. Comparing segmentation methods10

We compare the thresholding segmentation method (using green-contrast intensity), K-means clustering of field-image pixel11

intensities, and our proposed neural network method for each of three neighborhood sizes. One example photo and its12

segmentation results can be found in Figure S2. Note that none of these methods requires expensive manual labelling for13

preparing training data. From Figure S2 (b) and (c), we can see that K-means with larger K will lead to a better result compared14

to small K; however, many background pixels are falsely classified as plant pixels by K-means. Our 1× 1 neural network15

method is better than K-means; however, the 1×1 neural network method is visually more similar to the thresholding method16



Figure S1. Distributions of green contrast intensity for greenhouse plant pixels, field plant pixels, and field background pixels.

(see (g)) rather than the neural networks that use 3×3 and 5×5 neighborhood information (see (e) and (f)). The results from17

the models with 3×3 and 5×5 neighborhoods are similar. As a smaller neighborhood size reduces the computation complexity18

of neural network approach, we choose the 3×3 neighborhood to construct our segmentation method. Figure S3 provides19

the comparison of the median height estimates of 23 randomly selected images from a photo sequence using our proposed20

algorithm. A local smoother is used to fit each growth curve. From Figure S3, we find that the neural networks with 3×321

and 5×5 neighborhoods perform similarly. The K-means algorithm fails to provide reasonable results. The neural network22

method using the target pixel only provides performance similarly to thresholding segmentation with threshold level 0.04. The23

thresholding segmentation method with threshold level 0.08 provides the smallest height.24

S3. Comparing different cutoff threshold values of our proposed method25

Figure S4 provides visual segmentation results and height measurements for three different cutoff threshold values (0.5, 0.9,26

and 0.95). Visually, the segmentation performs similarly across threshold values. When the cutoff threshold value is very high,27

say 0.95, there may be less noise, but the segmentation will provide almost the same height measurement result as for lower28

thresholds, which shows that our row-cut/column-cut algorithm is robust against noise.29
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(a) Original (b) K-means (K = 3) (c) K-means (K = 9)

(d) Neural network (1×1) (e) Neural network (3×3) (f) Neural network (5×5)

(g) Green contrast thresholding (0.04) (h) Green contrast thresholding (0.08)

Figure S2. The segmentation results of the original image in panel (a) by K-means clustering with (b): K = 3 and (c): K = 9;
the proposed neural networks with (d): the target pixel only, (e): its 3×3 neighborhoods and (f): 5×5 neighborhoods; and
thresholding segmentation using green-contrast intensity with threshold level (g): 0.04 and (h): 0.08.

S4. Comparing segmentation results under different environmental conditions30

Figure S5 provides segmentation results for two sequences of photos under five different environment conditions: dawn, sunrise,31

cloudy, foggy, and sunny, where the brightness and color scale of these images vary. From those results, we can see that our32

algorithm successfully segments most plant pixels without much background noise, which is sufficient to estimate the height33

accurately.34

S5. Evaluating the goodness of fit of the fitted growth curves35

To further illustrate that our proposed method leads to a stable estimation of growth curves, we evaluate goodness of fit by36

computing the R-squared values. The boxplots of the R-square values are presented in Figure S6, where panels (a) and (b)37
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Figure S3. The comparison of the median height estimates of 23 random selected images from a photo sequence for the 8
different methods shown in Figure S2.

give the R-squared values for each camera (row) and for each plant position, respectively. We can see that our proposed38

non-decreasing nonparametric regression method can fit the height measurements well for most of the plants, given that most39

cameras have R-squared values around 0.8 or more.40

The small R-square values for some plants from certain cameras as observed from Figure S6 in the supplementary material41

are due to plant death, overlapping of neighboring plants and changing weather conditions over the plant growth. Figure S742

provides the extracted plant heights and the fitted growth curves for a camera (camera No.45 in Figure S6) that shows a high43

spread of the R-square values among the six plants. Figure S8 provides the original images on four days from this camera with44

the vertical lines in four different colors indicating the heights measured by our KAT4IA pipeline. The measured heights of the45

six plants from the four images are also highlighted in Figure S7 with the same colors as those in Figure S8.46

Figure S8 (a) shows one image of camera 45 taken at a time with little to no wind (on 07/11/2017), and panels (b) and47

(c) show two images of this camera taken under windy conditions (on 07/12/2017). From those figures, we can see that due48

to the wind effect, the measured heights for the middle four plants under the no wind condition are much higher than those49

under the windy condition, especially for the heights measured from panel (b) where the plants are severely bent left by wind.50

Meanwhile, the height of the right-most plant is affected by the leaves of the plant left to it as seen from panel (c). Panel (d)51

presents a case of imaging failure which causes under-estimation of plant heights. These reasons lead to a high variation of the52

extracted heights and low R-square values for some cameras.53
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(a) threshold = 0.5 (b) threshold = 0.9

(c) threshold = 0.95
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(d) compare height measurement

Figure S4. The segmented images using three cutoff threshold values are shown in (a) 0.5, (b) 0.9, (c) 0.95. The comparison
of the median measured heights of 23 random selected images from a photo sequence is made among three different thresholds
in (d).
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(a) dawn (b) dawn segmentation (c) sunrise (d) sunrise segmentation

(e) cloudy (f) cloudy segmentation (g) foggy (h) foggy

(i) sunny (j) sunny segmentation

Figure S5. Segmentation results of the proposed method for images under different enviromental and brightness conditions.

(a) (b)

Figure S6. The R-square value for 67 cameras × 6 plants. (a) the boxplot of R-squared values for each camera; (b) the

boxplot of R-squared values for the 6 positions (i.e. left-most plants, second from the left plants, etc).
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Figure S7. The extracted heights and the fitted growth curves by the proposed KAT4IA pipeline for each of the six plants in a
set of images from camera No. 45. The highlighted points correspond to the cases shown in Figure R2.
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(a) (b)

(c) (d)

Figure S8. The original images from camera No. 45 under four different conditions. The red horizontal lines and red vertical
lines correspond to the results from the proposed row-cut and column-cut algorithms. The vertical lines in four colors give
visualization of the extracted heights by the proposed KAT4IA pipeline.
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