Scikit-downscale: an open source Python package for scalable
climate downscaling

Joseph Hamman (jhamman@ucar.edu) and Julia Kent (jkent@ucar.edu)

NCAR, Boulder, CO, USA

This notebook was developed for the 2020 EarthCube All Hands Meeting. The development of Scikit-downscale done in conjunction
with the development of the Pangeo Project and was supported by the following awards:

e NSF-GEO-AGS 1928374: EarthCube Data Capabilities: Collaborative Proposal: Jupyter meets the Earth: Enabling discovery in
geoscience through interactive computing at scale
e NSF-OIA 1937136: Convergence Accelerator Phase | (RAISE): Knowledge Open Network Queries for Research (KONQUER)

ECAHM 2020 ID: 143

1. Introduction

Climate data from Earth System Models (ESMs) are increasingly being used to study the impacts of climate change on a broad range
of biogeophysical systems (forest fire, flood, fisheries, etc.) and human systems (water resources, power grids, etc.). Before this data
can be used to study many of these systems, post-processing steps commonly referred to as bias correction and statistical
downscaling must be performed. “Bias correction” is used to correct persistent biases in climate model output and “statistical
downscaling” is used to increase the spatiotemporal resolution of the model output (i.e. from 1 deg to 1/16th deg grid boxes). For our
purposes, we'll refer to both parts as “"downscaling”.

In the past few decades, the applications community has developed a plethora of downscaling methods. Many of these methods are
ad-hoc collections of processing routines while others target very specific applications. The proliferation of downscaling methods
has left the climate applications community with an overwhelming body of research to sort through without much in the form of
synthesis guilding method selection or applicability.

Motivated by the pressing socio-environmental challenges of climate change — and with the learnings from previous downscaling
efforts (e.g. Gutmann et al. 2014, Lanzante et al. 2018) in mind — we have begun working on a community-centered open framework

for climate downscaling: scikit-downscale. We believe that the community will benefit from the presence of a well-designed open
source downscaling toolbox with standard interfaces alongside a repository of benchmark data to test and evaluate new and existing
downscaling methods.

In this notebook, we provide an overview of the scikit-downscale project, detailing how it can be used to downscale a range of
surface climate variables such as surface air temperature and precipitation. We also highlight how scikit-downscale framework is
being used to compare exisiting methods and how it can be extended to support the development of new downscaling methods.

2. Scikit-downscale

Scikit-downscale is a new open source Python project. Within Scikit-downscale, we are been curating a collection of new and
existing downscaling methods within a common framework. Key features of Scikit-downscale are:

e A high-level interface modeled after the popular fit |/ predict pattern found in many machine learning packages (Scikit-
learn, Tensorflow, etc.),

e Uses Xarray and Pandas data structures and utilities for handling of labeled datasets,

e Utilities for automatic parallelization of pointwisde downscaling models,

e Common interface for pointwise and spatial (or global) downscaling models, and

e Extensible, allowing the creation of new downscaling methods through composition.

Scikit-downscale's source code is available on GitHub.

2.1 Pointwise Models

We define pointwise methods as those that only use local information during the downscaling process. They can be often
represented as a general linear model and fit independently across each point in the study domain. Examples of existing pointwise
methods are:

e BCSD_[Temperature, Precipitation]: Wood et al. (2004)
e ARRM: Stoner et al. (2012)

e (Hybrid) Delta Method (e.g. Hamlet et al. (2010)

e GARD: Gutmann et al (in prep).

Because pointwise methods can be written as a stand-alone linear model, Scikit-downscale implements these models as a Scikit-
learn LinearModel or Pipeline. By building directly on Scikit-learn, we inherit a well defined model API and the ability to interoperate
with a robust ecosystem utilities for model evaluation and optimization (e.g. grid-search). Perhaps more importantly, this structure

also allows us to compare methods at a high-level of granularity (single spatial point) before deploying them on large domain

problems.

Begin interactive demo

From here forward in this notebook, we'll jump back and forth between Python and text cells to describe how scikit-downscale works.

This first cell just imports some libraries and get's things setup for our analysis to come.

%load_ext autoreload
%autoreload 2
¢matplotlib inline

import warnings
warnings.filterwarnings("ignore") # sklearn

import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd
from utils import get sample data

sns.set(style='darkgrid')

Now that we've imported a few libraries, let's open a sample dataset from a single point in North America. We'll use this data to
explore Scikit-downscale and its existing functionality. You'll notice there are two groups of data, training and targets . The
training datais meant to represent data from a typical climate model and the targets datais meant to represent our
"observations". For the purpose of this demonstration, we've choosen training data sampled from a regional climate model (WRF) run
at 50km resolution over North America. The observations are sampled from the nearest 1/16th grid cell in Livneh et al, 2013.

We have choosen to use the tmax variable (daily maximum surface air temperature) for demonstration purposes. With a small
amount of effort, an interested reader could swap tmax for pcp and test these methods on precipitation.

load sample data
training = get sample data('training')
targets = get_ sample data('targets')

print a table of the training/targets data

display(pd.concat({'training': training,

make a plot of the temperature and precipitation data
= plt.subplots(ncols=1,
= slice('1990-01-01",

fig, axes
time_slice

plot-temperature
training[time_slice]['tmax'].plot(ax=axes[0], label='training')
targets[time slice]['tmax'].plot(ax=axes[0], label='targets')

axes[0].1le

axes[0].set_ylabel('Temperature [C]')

gend()

plot-precipitation
training[time slice]['pcp'].plot(ax=axes[1l])
targets[time slice]['pcp'].plot(ax=axes[1l])
= axes[l].set ylabel('Precipitation [mm/day]')

time
1950-01-01
1950-01-02
1950-01-03
1950-01-04

1950-01-05

2015-11-26
2015-11-27
2015-11-28
2015-11-29

2015-11-30

24075 rows x 4 columns

tmax

NaN
NaN
NaN
NaN

NaN

7.657013
7.687256
10.480835
11.728516

10.285431

training

pcp

NaN
NaN
NaN
NaN

NaN

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00

3.152419e-13

nrows=2, figsize=(8,

'1990-12-31")

tmax

-0.22
-4.54
-7.87
-5.08

-0.79

NaN

NaN

NaN

NaN

NaN

targets

pcp

5.608394
2.919726
3.066762
4.684164

4.295568

NaN
NaN
NaN
NaN

NaN

6),

'targets': targets}, axis=1l))

sharex=True)

—— fraining
targets

Temperature [C]

100

75

50

25

Precipitation [mm/day]

]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1990

time

2.2 Models as cattle, not pets

As we mentioned above, Scikit-downscale utilizes a similiar API to that of Scikit-learn for its pointwise models. This means we can
build collections of models that may be quite different internally, but operate the same at the API level. Importantly, this means that
all downscaling methods have two common APl methods: fit , which trains the model given training and targets data, and

predict which uses the fit model to perform the downscaling opperation. This is perhaps the most important feature of Scikit-
downscale, the ability to test and compare arbitrary combinations of models under a common interface. This allows us to try many
combinations of models and parameters, choosing only the best combinations. The following pseudo-code block describe the
workflow common to all scikit-downscale models:

from skdownscale.pointwise_models import MyModel

load and pre-process input data (X and y)

model = MyModel(x*parameters)
model.fit(X_train, y)
predictions = model.predict(X_predict)

evaluate and/or save predictions

In the cell below, we'll create nine different downscaling models, some from Scikit-downscale and some from Scikit-learn.

from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor

from skdownscale.pointwise models import PureAnalog, AnalogRegression
from skdownscale.pointwise models import BcsdTemperature, BcsdPrecipitation

models = {
'GARD: PureAnalog-best-1': PureAnalog(kind='best analog', n_analogs=l),
'GARD: PureAnalog-sample-10': PureAnalog(kind='sample analogs', n_analogs=10),
'GARD: PureAnalog-weight-10': PureAnalog(kind='weight analogs', n_analogs=10),
'GARD: PureAnalog-weight-100': PureAnalog(kind='weight analogs', n_analogs=100),
'"GARD: PureAnalog-mean-10': PureAnalog(kind='mean analogs', n_analogs=10),
'"GARD: AnalogRegression-100': AnalogRegression(n_analogs=100),
'"GARD: LinearRegression': LinearRegression(),
'BCSD: BcsdTemperature': BcsdTemperature(return anoms=False),
'Sklearn: RandomForestRegressor': RandomForestRegressor (random state=0)

train slice = slice('1980-01-01", '1989-12-31")
predict slice = slice('1990-01-01", '1999-12-31")

Now that we've created a collection of models, we want to train the models on the same input data. We do this by looping through
our dictionary of models and calling the fit method:

extract training / prediction data

X train = training[['tmax']][train slice]
y_train = targets[['tmax']][train_slice]
X predict = training[['tmax']][predict_slice]

Fit all models
for key, model in models.items():
model.fit(X train, y_ train)

Just like that, we fit nine downscaling models. Now we want to use those models to downscale/bias-correct our data. For the sake of
easy comparison, we'll use a different part of the training data:

store predicted results in this dataframe
predict_df = pd.DataFrame(index = X predict.index)

for key, model in models.items():
predict df[key] = model.predict (X predict)

show a table of the predicted data
display(predict_df.head())

GARD: GARD: GARD: GARD: GARD: GARD:

; GARD: BCSD:
O st | sampleto | weight-10 woight100 meancto o oneoressilS LinearRegression BesdTemperature Ra
time
1091?3; 4.50 567 5375299 5.697786 5.895 5.931445 5.781472 4528703
:)91?82; 6.13 355 3543398 3.264698 2.561 2.515919 2524322 -1.584749
:)91’?8; 5.46 304 4963575 4.933534 4.692 4.862730 4.944167 2.848937
:)91’?8; 8.57 590 8369125 8239455 7.340 7.255379 7107427 6.687826
:)??gé 5.67 703 7424970 7583703 7.705 7.711861 7.878299 8.296425

Now, let's do some sample analysis on our predicted data. First, we'll look at a timeseries of all the downscaled timeseries for the first
year of the prediction period. In the figure below, the target (truth) datais shown in black, the original (pre-correction) data is
shown in grey, and each of the downscaled data timeseries is shown in a different color.

fig, ax = plt.subplots(figsize=(8, 3.5))

targets['tmax'][time slice].plot(ax=ax, label='target', c='k', lw=1l, alpha=0.75, legend=True, zorder=10)
X predict['tmax'][time slice].plot(label='original', c='grey', ax=ax, alpha=0.75, legend=True)

predict df[time_slice].plot(ax=ax, 1lw=0.75)

ax.legend(loc='center left', bbox to anchor=(1, 0.5))

_ = ax.set_ylabel('Temperature [C]")

40

i‘ A — target

30 g | a I!) criginal
%) W o R ? .'.: —— GARD: PureAnalog-best-1
o2 . L s d 4. f_r_ i | 1 L] ll' _ GARD: PureAnalog-sample-10
= Mo AWR A | " b ' —— GARD: PureAnalog-weight-10
[T [ALY TR Il Lo E b —— GARD: PureAnalog-weight-100
] / AdAA | ¥ ‘ ; B | " ! .1-:"- —— GARD: PureAnalog-mean-10
£ 0 el | I | | N| —— GARD: AnalogRegression-100
e | f GARD: LinearRegression

10 l —— BCSD: BcsdTemperature

Sklearn: RandomForestRegressor

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec
1990
time

Of course, its difficult to tell which of the nine downscaling methods performed best from our plot above. We may want to evaluate
our predictions using a standard statistical score, such as r2. Those results are easily computed below:

calculate r2

score = (predict df.corrwith(targets.tmax[predict slice]) **2).sort values().to frame('r2 score')
display(score)

r2_score
GARD: PureAnalog-best-1 0.820281
GARD: PureAnalog-sample-10 0.820977
BCSD: BcsdTemperature 0.858258
Sklearn: RandomForestRegressor 0.864160
GARD: PureAnalog-weight-10 0.881287
GARD: PureAnalog-weight-100 0.892049
GARD: PureAnalog-mean-10 0.899297
GARD: AnalogRegression-100 0.906217

GARD: LinearRegression 0.906316

All of our downscaling methods seem to be doing fairly well. The timeseries and statistics above shows that all our methods are
producing generally resonable results. However, we are often interested in how our models do at predicting extreme events. We can

quickly look into those aspects of our results using the qqg plots below. There you'll see that the models diverge in some interesting
ways. For example, while the LinearRegression method has the highest r? score, it seems to have trouble capturing extreme

heat events. Whereas many of the analog methods, as well as the RandomForestRegressor , perform much better on the tails of
the distributions.

from utils import prob plots

fig = prob plots (X predict, targets['tmax'], predict df[score.index.values], shape=(3, 3), figsize=(12, 12))

GARD: PureAnalog-best-1 GARD: PureAnalog-sample-10 BCSD: BesdTemperature
40 = griginal = griginal = griginal
target target | target

30 —— corrected —— comected —— corrected
g
o 20
B
M
510
o
5
F oo

-10
Sklearn: RandomForestRegressor GARD: PureAnalog-weight-10 GARD: PureAnalog-weight-100
40 original — aoriginal — original
target | target target 1

30 — corrected — corrected — corrected
Y
@ 20
=]
M
510
=3
G
E oo

-10

GARD: PureAnalog-mean-10 GARD: AnalogRegression-100 GARD: LinearBeqression

40 —— ariginal

—— ariginal —— ariginal
target L target ~ target s
30 corrected = corrected - corrected 2
)
o 20
=
=
o
T 1o
o
£
= 0
=10 o - v

-4 -2 0 2 4 -4 -2 0 2 4 —4 -2 0 2 4
Standard Normal Quantiles Standard Normal Quantiles Standard Normal Quantiles

In this section, we've shown how easy it is to fit, predict, and evaluate scikit-downscale models. The seamless interoperability of

these models clearly facilitates a workflow that enables a deeper level of model evaluation that is otherwise possible in the
downscaling world.

2.3 Tailor-made methods in a common framework

In the section above, we showed how it is possible to use scikit-downscale to bias-correct a timeseries of daily maximum air
temperature using an arbitrary collection of linear models. Some of those models were general machine learning methods (e.g.
LinearRegression or RandomForestRegressor) while others were tailor-made methods developed specifically for

downscaling (e.g. BCSDTemperature). In this section, we walk through how new pointwise methods can be added to the scikit-
downscale framework, highlighting the Z-Score method along the way.

2.3.1 Z-Score Method
Z-Score bias correction is a good technique for target variables with Gaussian probability distributions, such as zonal wind speed.

In essence the technique:

1. Finds the mean

and standard deviation

\/zl o |z —)

of target (measured) data and training (historical modeled) data.

2. Compares the difference between the statistical values to produce a shift

Sh’ift = Ttarget — Ttraining
and scale parameter
scale = Otarget ~ Otraining

3. Applies these paramaters to the future model data to be corrected to get a new mean

Leorrected = L future + Shift
and new standard deviation
Ocorrected = O future X scale
4. Calculates the corrected values

Lcorrected;, — <i X Ocorrected T Lcorrected

from the future model's z-score values

In practice, if the wind was on average 3 m/s faster on the first of July in the models compared to the measurements, we would adjust
the modeled data for all July 1sts in the future modeled dataset to be 3 m/s faster. And similarly for scaling the standard deviation

2.3.2 Building the ZScoreRegressor Class

Scikit-downscale's pointwise all implement Scikit-learn's fit / predict API. Each new downscaler must implement a minimum of
three class methods: __init__, fit, predict.

class AbstractDownscaler(object):

def __init__ (self):

def fit(self, X, y):
return self
def predict(X):

return y_hat
Ommitting some of the complexity in the full implementation (which can be found in the full implementation on GitHub), we
demonstrate how the ZScoreRegressor was built:

First, we define our __init__ method, allowing users to specify specific options (in this case window_width):
class ZScoreRegressor(object):

def __init_ (self, window_width=31):
self.window_width = window_width

Next, we define our fit method,
def fit(self, X, y):

X_mean, X_std = _calc_stats(X.squeeze(), self.window_width)
y_mean, y_std = _calc_stats(y.squeeze(), self.window_width)

self.stats_dict_ = {
"X_mean'": X_mean,
"X _std": X_std,
"y _mean": y_mean,
"y std": y_std,

¥

shift, scale = _get_params(X_mean, X_std, y_mean, y_std)
self.shift_ = shift

self.scale_ = scale

return self

Finally, we define our predict method,

def predict(self, X):

fut_mean, fut_std, fut_zscore = _get_fut_stats(X.squeeze(), self.window_width)
shift_expanded, scale_expanded = _expand_params(X.squeeze(), self.shift_, self.scale_)
fut_mean_corrected, fut_std corrected = _correct_fut_stats(

fut_mean, fut_std, shift_expanded, scale_expanded

self.fut_stats_dict_ = {
"meani": fut_mean,
"stdi": fut_std,
"meanf": fut_mean_corrected,
"stdf": fut_std_corrected,

¥

fut_corrected = (fut_zscore % fut_std corrected) + fut_mean_corrected

return fut_corrected.to_frame(name)

from skdownscale.pointwise models import ZScoreRegressor

open a small dataset

training = get sample data('wind-hist')
target = get sample data('wind-obs')
future = get sample data('wind-rcp')

bias correction using ZScoreRegresssor
zscore = ZScoreRegressor()
zscore.fit(training, target)

fit stats = zscore.fit stats_dict

out = zscore.predict(future)

predict stats = zscore.predict stats dict

visualize the datasets
from utils import zscore ds plot

zscore_ds_plot(training, target, future, out)

th a ~ fraining |

E ~——— fanget

; I —— future L | | =

£ -~ morrected J i

g 4 | | | F] i ll T

m

g 2 | 1 |

=]

i

L0

@

1]

Z 2

E

7 =1

4 -6

1980 1984 1988 15992 1996 2000

Time

In [13]: from utils import zscore correction plot

zscore correction plot(zscore)

05 — fraining
— farget
— future

04 —— corrected

0.3

0.2

01

0.0

2.4 Automatic Parallelization

In the examples above, we have performed downscaling on sample data sourced from individual points. In many downscaling
workflows, however, users will want to apply pointwise methods at all points in their study domain. For this use case, scikit-
downscale provides a high-level wrapper class: PointWiseDownscaler .

In the example below, we'll use the BCSDTemperature model, along with the PointWiseDownscaler wrapper, to downscale
daily maximum surface air temperature from CMIP6 for all point in a subset of the Pacific Norwest. We'll use a local Dask Cluster to
distribute the computation among our available processors. Though not the point of this example, we also use intake-esm to access
CMIP6 data stored on Google Cloud Storage.

Data:

e Training / Prediction data: NASA-GISS-E2 historical data from CMIP6
e Targets: GridMet daily maximum surface air temperature

parameters
train slice = slice('1980', '1982') # train time range
holdout_slice = slice('1990', '1991') # prediction time range

bounding box of downscaling region
lon_slice = slice(-124.8, -120.0)
lat_slice = slice(50, 45)

chunk shape for dask execution (time must be contiguous, ie -1)
chunks = {'lat': 10, 'lon': 10, 'time': -1}

Step 1: Start a Dask Cluster. Xarray and the PointWiseDownscaler will make use of this cluster when it comes time to load input
data and train/predict downscaling models.

from dask.distributed import Client

client = Client()

client
Client Cluster
Scheduler: tcp://127.0.0.1:41711 Workers: 4

Dashboard: /user/jhamman/proxy/8787/status Cores: 4
Memory: 25.77 GB

Step 2. Load our target data.

Here we use xarray directly to load a collection of OpenDAP endpoints.

import xarray as xr

fnames = [f'http://thredds.northwestknowledge.net:8080/thredds/dodsC/MET/tmmx/tmmx {year}.nc'
for year in range(int(train slice.start), int(train slice.stop) + 1)]
open the data and cleanup a bit of metadata
obs = xr.open mfdataset(fnames, engine='pydap', concat dim='day').rename({'day': 'time'}).drop('crs')

obs_subset = obs['air temperature'].sel(time=train slice, lon=lon_slice, lat=lat slice).resample(time='1ld').mea
display

display(obs_subset)
obs_subset.isel(time=0).plot()

xarray.DataArray 'air_temperature' (time: 1096, lat: 106, lon: 115)

& dask.array<chunksize=(1096, 10, 10), meta=np.ndarray>

v Coordinates:

time (time) datetime64[ns] 1980-01-01 ... 1982-12-31]
lat (Iat) float64 49.4 49.36 49.32 ... 45.07 45.03 EE=
lon (lon) float64 -124.8 -124.7 ... -120.1-120.0 =2 S

» Attributes: (0)

<matplotlib.collections.QuadMesh at 0x7fbffec07610>

Step 3: Load our training/prediction data.

Here we use intake-esm to access a single Xarray dataset from the Pangeo's Google Cloud CMIP6 data catalog.

import intake esm
intake esm._version

'2020.6.11"

In [18]:

time = 1980-01-01

49.0 . - 282.5
£ 485 _
5 280.0
[=]
£, 48.0 -2775 2
i 2
441
@ 475 -2750 5
E‘\ [« 8
5 4.0 -2725 £
Ll 455 J_II
. |-
o - 2700 5
k= 46.0
e - 2675
453 - 265.0

—-1z24 -123 —-122 -121 -120
longitude [degrees_east]

import intake

search the cmipé6 catalog

col = intake.open esm datastore("https://storage.googleapis.com/cmip6/pangeo-cmip6.json")

cat = col.search(experiment id=['historical', 'ssp585'], table id='day', variable_ id='tasmax',
grid label='gn')

access the data and do some cleanup

ds_model = cat['CMIP.NASA-GISS.GISS-E2-1-G.historical.day.gn'].to dask().squeeze(drop=True).drop(['height', 'la
ds_model.lon.values[ds _model.lon.values > 180] -= 360

ds_model = ds_model.roll(lon=72, roll coords=True)

regional subsets, ready for downscaling

train subset = ds _model['tasmax'].sel(time=train slice).interp_ like(obs_subset.isel(time=0, drop=True), method=
train subset['time'] = train subset.indexes['time'].to_datetimeindex()

train subset = train subset.resample(time='1ld').mean().load(scheduler='threads').chunk(chunks)

holdout_ subset = ds model['tasmax'].sel(time=holdout slice).interp like(obs_subset.isel(time=0, drop=True), met
holdout_subset['time'] = holdout subset.indexes['time'].to datetimeindex()
holdout subset = holdout subset.resample(time='1ld').mean().load(scheduler='threads').chunk(chunks)

display
display(train_subset)
train subset.isel(time=0).plot()

xarray.DataArray 'tasmax' (time: 1096, lat: 106, lon: 115)

& dask.array<chunksize=(1096, 10, 10), meta=np.ndarray>

v Coordinates:

time (time) datetime64[ns] 1980-01-01 ... 1982-12-31 —
lat (lat) float64 49.4 49.36 49.32 ... 45.07 45.03 S
lon (lon) float64 -124.8 -124.7 ... -120.1-120.0 —

» Attributes: (0)

Oout[18]: <matplotlib.collections.QuadMesh at 0x7fbffe6eff70>

time = 1980-01-01

- 280
49.0
485 - 278
48.0

- 276
475
47.0 - 274
46.5 R
46.0
455 - 270

-124 —-123 —122 =121 =120
lon

lat

fasmax

Step 4. Now that we have loaded our training and target data, we can move on to fit our BcsdTemperature model at each x/y point in
our domain. This is where the PointWiseDownscaler comes in:

C .
9T from skdownscale.pointwise models import PointWiseDownscaler

from dask.diagnostics import ProgressBar

model = PointWiseDownscaler (BcsdTemperature(return anoms=False))
model

Out[19]: <skdownscale.PointWiseDownscaler>
Fit Status: False

Model:
BcsdTemperature(return anoms=False)

Step 5. We fit the PointWiseDownscaler , passing it data in Xarray data structures (our regional subsets from above). This
opperation is lazy and return immediately. Under the hood, we can see that PointWiseDownscaler._models is an

Xarray.DataArray of BcsdTemperature models.

Note: The following two cells may take a few minutes, or longer, to complete depending on how many cores your computer has, and

your internet connection.

model.fit(train subset, obs_ subset)
display(model, model. models)

<skdownscale.PointWiseDownscaler>
Fit Status: True

Model:
BcsdTemperature(return anoms=False)

xarray.DataArray 'tasmax' (lat: 106, lon: 115)

& dask.array<chunksize=(10, 10), meta=np.ndarray>

v Coordinates:
lat (lat) floaté4 49.4 49.36 49.32 ... 45.07 45.03
lon (lon) floate4 -124.8 -124.7 ... -120.1-120.0

((N((

» Attributes: (0)

Step 6. Finally, we can use our model to complete the downscaling workflow using the predict method along with our
holdout_subset of CMIP6 data. We call the .load() method to eagerly compute the data. We end by plotting a map of

downscaled data over our study area.

predicted = model.predict(holdout subset).load()
display(predicted)
predicted.isel(time=0).plot()

xarray.DataArray (time: 730, lat: 106, lon: 115)

nan nan nan nan nan ... 280.30255 280.80515 280.2077 279.81027

-
=
v

Coordinates:

lat (lat) float64 49.4 49.36 49.32 ... 45.07 45.03 —
time (time) datetime64[ns] 1990-01-01 ... 1991-12-31 —
lon (lon) float64 -124.8 -124.7 ... -120.1 -120.0 S

» Attributes: (0)

Out[21]: <matplotlib.collections.QuadMesh at 0x7fbffcadlbe0>

time = 1990-01-01

490 — 2825
48.5 - 280.0
48.0 -2775
47.5 - 275.0
m
- 40 _2725
465 2700
46.0 - 2675
455 - 265.0
-124 -123 -122 -121 -120
lon

2.2 Spatial Models

Spatial models is a second class of downscaling methods that use information from the full study domain to form relationships
between observations and ESM data. Scikit-downscale implements these models as as SpatialDownscaler. Beyond providing fit and
predict methods that accept Xarray objects, the internal layout of these methods is intentionally unspecified. We are currently
working on wrapping a few popular spatial downscaling models such as:

e MACA: Multivariate Adaptive Constructed Analogs, Abatzoglou and Brown (2012)
e | OCA: Localized Constructed Analogs, Pierce, Cayan, and Thrasher (2014)

3. Discussion

3.1 Benchmark Applications

Its likely that one of the reasons we haven't seen strong consensus develop around particularl downscaling methodologies is the
abscense of widely available benchamrk applications to test methods against eachother. While Scikit-downscale will not solve this
problem on its own, we hope the ability to implemnt downscaling applications within a common framework will enable a more robust
benchmarking inititive that previously possible.

3.2 Call for Participation

The Scikit-downscale effort is just getting started. With the recent release of CMIPG, we expect a surge of interest in downscaled
climate data. There are clear opportunities for involvement from climate impacts practicioneers, computer scientists with an interest
in machine learning for climate applications, and climate scientists alike. Please reach out if you are interested in participating in any
way.

References

1. Abatzoglou, J. T. (2013), Development of gridded surface meteorological data for ecological applications and modelling. Int. J.
Climatol., 33: 121-131.

2. Abatzoglou J.T. and Brown T.J. A comparison of statistical downscaling methods suited for wildfire applications, International
Journal of Climatology (2012), 32, 772-780

3. Gutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A., and Rasmussen, R. M. (2014), An intercomparison of
statistical downscaling methods used for water resource assessments in the United States, Water Resour. Res., 50, 7167- 7186,
doi:10.1002/2014WR015559.

4. Gutmann, E., J. Hamman, M. Clark, T. Eidhammer, A. Wood, J. Arnold, K. Nowak (in prep), Evaluating the effect of statistical
downscaling methodological choices in a common framework. To be submitted to JGR-Atomspheres.

5. Hamlet, A.F., Salathé, E.P., and Carrasco, P., 2010. Statistical downscaling techniques for global climate model simulations of
temperature and precipitation with application to water resources planning studies. A report prepared by the Climate Impact
Group for Columbia Basin Climate Change Scenario Project, University of Washington, Seattle, WA.
http://www.hydro.washington.edu/2860/products/sites/r7climate/study_report/CBCCSP_chap4_gcm_draft_20100111.pdf

6. Lanzante JR, KW Dixon, MJ Nath, CE Whitlock, and D Adams-Smith (2018): Some Pitfalls in Statistical Downscaling of Future
Climate. Bulletin of the American Meteorological Society. DOI: 0.1175/BAMS-D-17-0046.1.

7. Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer, and D.P. Lettenmaier, 2013: A Long-Term
Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions,
Journal of Climate, 26, 9384-9392.

8. Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using Localized Constructed Analogs (LOCA).
Journal of Hydrometeorology, volume 15, page 2558-2585
9. Stoner, A., K. Hayhoe, and X. Yang (2012), An asynchronous regional regression model for statistical downscaling of daily climate
variables, Int. J. Climatol., 33, 2473-2494, doi:10.1002/joc.3603.
10. Wood, A., L. Leung, V. Sridhar, and D. Lettenmaier (2004), Hydrologic implications of dynamical and statistical approaches to
downscaling climate model outputs, Clim. Change, 62, 189-216.

License

This notebook is licensed under CC-BY. Scikit-downscale is licensed under Apache License 2.0.

