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Abstract We put forward a unified thermodynamic analysis of generic minimal models of solar-powered
cyclic processes that can be viewed as quantum heat engines. The resulting general efficiency bound for
work production is consistent with the second law of thermodynamics if it allows for heat and entropy
generation. This bound is shown to interpolate between the Carnot and the Shockley–Queisser bounds.
Power boost induced by coherence or multiexciton generation does not affect the efficiency. These features
may allow us to design solar-pumped schemes that are optimal, both energetically and operationally.

1 Introduction

The twenty-first century still predominantly relies on
nineteenth century thermodynamic cycles to generate
power: internal combustion engines, nuclear or fossil-
fuel power plants as well as solar cells or thermo-
electric devices constitute diverse forms of cyclic heat
machines. Because of the prominence of solar energy,
it is important to evaluate the performance bounds
of solar-powered devices according to the principles of
heat machines, particularly since Scully et al. have pro-
posed that solar-generated power may be boosted by
quantum coherence [1–3]. We here present a unified
treatment of solar devices that derives and clarifies their
universal efficiency and power bounds, identifies their
minimal required ingredients and elucidates the effect
of optional (additional) ingredients. We thereby aim at
dispelling the existing ambiguity on key issues related
to this subject [4–15].

Part of the existing ambiguity is reflected by the
solar-cell efficiency, which has been the subject of alter-
native definitions: (a) one is the fraction of solar pho-
tons that may be converted into photoelectrons, which is
limited in p–n junctions by the Shockley–Queisser (SQ)
bound [4]. The underlying assumption is that the effi-
ciency for conversion of photons into excitons is zero for
photon energies below the energy gap and 100% above
it. This assumption and the tendency of photon energy
in excess of the energy gap to be dissipated as heat
(by exciting phonons) sets the SQ bound on the con-
version efficiency of a single-junction solar cell [4]. (b)
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An alternative [16] that may allow us to surpass this
SQ bound [4,16] is based on carrier multiplication, in
which the absorption of a single photon produces mul-
tiple excitons and hence the quantum efficiency (QE)
becomes greater than 100%. (c) Another definition is
the thermodynamic efficiency of the solar-cell, which is
viewed as a heat engine that generates electric work
when the photoelectrons are subject to bias voltage
across the p–n junction and to phonon-induced resis-
tivity across the contacts. The standard Carnot bound
of this efficiency is determined by the temperatures of
the hot solar-radiation and the cold (ambient) phonon
bath [1,5]. Another issue is how to account for quantum
coherence among the levels of charge-donor quantum
dots that has been proposed by Scully et al. [1] as a
way of enhancing the power output of solar devices, or
their photosynthesis yield [13]?

The ambiguity concerning the rapport between solar-
cell performance and that of heat engines can only be
fully dispelled upon answering the question: how are
the solar-cell QE or the SQ bound related to the work
efficiency of a heat engine? This question is all the more
crucial for heat engines that may benefit from quantum
features such as coherence and entanglement [1], which
call for an elucidation of the division of the absorbed
photon energy into heat and work [17–22]. Unless these
issues are resolved, we cannot optimize solar-pumped
nanodevices or attain in-depth understanding of pho-
tosynthesis as a thermodynamic cycle which has been
extensively debated [1,2,2,5–12].

To this end, we shall use the concept of non-passivity
[17–19] to decompose the energy of a non-passive state
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into ergotropy and passive energy. Ergotropy is the
maximum amount of work that can be extracted from
from a non-passive state by means of unitary transfor-
mations, while passive energy cannot be extracted in
the form of useful work [23]. These concepts help us to
evaluate the fraction of solar-energy input that is trans-
formed into proper work upon subtracting the heat and
entropy production in the process, due to its effective
resistance. We shall thereby account for the nonequilib-
rium quantum aspects of the thermodynamic processes
which are largely uncharted territory in the context of
solar-powered devices.

2 Donor–acceptor quantum heat engine
(QHE)

Various models have been proposed to analyse the
charge separation and energy transfer in photosynthetic
antennae and reaction centers. As a minimal model of
a solar-powered heat engine, we consider the photoin-
duced charge separation between the donor (D) and
the acceptor (A) molecules or quantum dots interacting
with thermal radiation (Fig. 1a). Here we consider that
both the donor and acceptor molecules are modellled by
two level systems; gD(gA) and eD(eA) are the ground
and excited states of the donor and acceptor molecules.
Therefore the model conforms to (Fig. 1b) the generic
four-level QHE scheme [2]. State b (“bottom”) corre-
sponds to the lowest energy configuration where both
molecules are in the ground states. State d describes
the configuration where donor D is excited (both the
excited electron and the hole are in donor D); c is a
charge-separated state with the electron in acceptor A
and the hole in donor D, or a conduction level in the PV
case. Finally, v is the ionized state wherein the electron
is transferred to a “sink” and the system is positively
charged, followed by recombination v → b that closes
the cycle. For further details about the donor–acceptor
QHE model we refer to Ref. [2].

The considered cycle consists of 4 steps or stages: (1)
following the absorption of a solar photon, the excited
electron is promoted from b to d. This step is char-
acterized by the average occupation number of solar
photons at energy Edb = Ed − Eb, n̄h = 1

exp(
Edb

kBTh
)−1

.

(2) In the second step, the excited electron is trans-
ferred to c with the excess energy radiated as a phonon
into a bath whose average occupation phonon number
at energy Edc = Ed − Ec is n̄p = 1

exp(
Edc

kBTp
)−1

. (3) In

the third step, the electron released from state c con-
tributes to a charge flow (current) from c to v, following
its relaxation at a rate Γ, so that the current

jcv = eΓ [(n̄a + 1)ρcc − n̄aρvv] , (1)

is governed by the populations of c and v, and the aver-
age occupation number of the bath at the ambient tem-
perature Ta, n̄a = 1

exp( Ecv
kBTa

)−1
. (4) To complete the

Fig. 1 a Scheme of charge separation between donor (D)
and acceptor (A) molecules. The broad solar spectrum is
absorbed by the antennae complex which undergoes rapid
thermalization due to phonon scattering and reaches the
bottom of the electronic band. The excitation is transferred
to the reaction center represented by donor and acceptor
molecules, resulting in charge separation followed by ther-
mal relaxation that closes the cycle [2]. b Generic four-level
quantum heat engine (QHE). c Analogous process in a pho-
tovoltaic solar cell combined with a p–n junction
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cycle, we assume that the fourth step brings the elec-
tron back to the ground state b of donor D (reversibly
or irreversibly—Appendix).

Charge separation in a reaction center can be viewed
as (chemical) work done by the system, analogous to
the production of electric work in a photovoltaic cell,
or more generally, any kind of work in a QHE. Assuming
that c and v are connected to a “load”, we introduce the
drop of the electrostatic potential V as the difference
between μc and μv, the chemical potentials of the levels
c and v.

The steady-state populations ρscc and ρsvv calculated
from the master (rate) equations in the Appendix yield
the power delivered to the load as P = jcv.V upon using
Eq. (1). By increasing Γ one can change the operation
from the open-circuit (Γ = 0, V = VOC, jcv = 0) to the
short-circuit regime.

Even if the c → v transition is viewed as a coher-
ent or non-dissipative process, under the action of
some bias potential Vbias, its coherence must be eventu-
ally destroyed by the load according to Kirchoff’s law.
Hence, in a cyclic heat engine, Eq. (1) with Γ �= 0 is
appropriate.

3 Work production

The maximum useful work W that can be done by
the system when the electron undergoes the transition
from c to v is equal to the change in the total energy
from which the change in passive energy (heat) must
be deducted? [17–22]

W = eV
︸︷︷︸

Work(non-passivity)

= Ecv
︸︷︷︸

energy

− TaΔSc→v
︸ ︷︷ ︸

heat(passivity)

, (2a)

where

ΔSc→v = kB ln
(

ρvv
ρcc

)

, (2b)

is the change in the entropy of the system when the
electron undergoes the c → v transition. Only if |c〉 and
|v〉 correspond to equilibrium states, W in (2a) can be
identified with the change in the Helmholtz free energy
[24]. Note that ΔSc→v can only be negative if there is
population inversion between levels c and v, in which
case non-passivity increases as a result of the transition.

On the other hand, the total entropy change ΔStot in
the cycle must be positive-definite according to Spohn’s
rendition of the second (Clausius) law of thermodynam-
ics [25], which requires (assuming v → b recombination
to be reversible)

ΔStot = ΔSb→d + ΔSd→c + ΔSc→v ≥ 0. (3)

In analysing the inequality (3), we may allow for
phonon temperature Tp (inside the junction) that dif-
fers from the ambient temperature Ta at the load (out-

side the junction) (Fig. 1c). Then ΔSb→d = Ebd/Th

and ΔSd→c = Edc/Tp respectively. The total change
in the system’s entropy is (partially) compensated by
ΔSc→v. Full compensation of the entropy change in a
cycle occurs in the open-circuit limit jcv → 0, Γ → 0
which corresponds to

ΔSc→v = − [ΔSb→d + ΔSd→c]

=
[

Edb

Th
− Edc

Tp

]

. (4)

In what follows we analyse the rate of passivity
increase according to Eq. (2a), so as to estimate the
maximum amount of work extracted from an engine
upon accounting for the heat and entropy flux.

4 Heat and entropy production

The steady-state energy flow through the system

Ėt=∞ = Tr

[

dρS
dt

HS

]

, (5)

is obtained from the master equation associated with
the action of the hot-bath (h), phonon-bath (p) and
ambient-bath (a) Liouville Lindblad operators L:

dρS
dt

= (Lh + Lp + La)ρS(t). (6)

The heat flux from the respective bath to the system is
[21,22]

Jh→S = Tr [Lh[ρS ]HS ]t=∞ ,

Jp→S = Tr [Lp[ρS ]HS ]t=∞ ,

Ja→S = Tr [La[ρS ]HS ]t=∞ , (7)

whose explicit form is given by Eq. (A12). The von-
Neumann entropy increase Ṡ = −kBTr[ρ̇S ln ρS ] is
related to the heat flux. Using Eq. (6) we obtain the
entropy fluxes from the respective baths (h, p and a)
as

Ṡh→S = −kBTr [Lh[ρS ] ln ρS ] ,

Ṡp→S = −kBTr [Lp[ρS ] ln ρS ] ,

Ṡa→S = −kBTr [La[ρS ] ln ρS ] . (8)

We present here only the explicit form of Ṡa→S which
is important for our present purpose:

Ṡa→S = −kBΓ[n̄aρvv − (n̄a + 1)ρcc] ln
(

ρcc
ρvv

)

, (9)
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A particular definition of the entropy production rate
was given in Ref. [12] as

σ = Ṡ − Jh→S

Th
− Jp→S

Tp
≥ 0, (10)

where the entire entropy change rate of the system is
Ṡ = Ṡh→S+Ṡp→S+Ṡa→S . At steady state, this entropy
production rate (blue solid line in Fig. 2a), becomes
negative for Ecv → Edb. This however contradicts the
Second Law.

The problem with the definition in Eq. (10) is that
it ignores the heat flux from heat engine to the outside
agent at the ambient temperature, −Ja→S

Ta
. Instead, we

redefine the minimum entropy production rate as

σ′ = Ṡ − Jh→S

Th
− Jp→S

Tp
− Ja→S

Ta
≥ 0, (11)

The entropy production rate σ′ in the steady state
(Fig. 2b—red solid line), is always positive. The pos-
itivity of the entropy production rate can be generally
proven for Markovian processes using Spohn’s analysis
[25].

5 Maximum output work and power

It is commonly assumed [5] that the power and the effi-
ciency can be defined as

P = −[Jh→S + Jp→S ] ⇒ P = −Ja→S

η =
−[Jh→S + Jp→S ]

Jh→S
⇒ η =

−Ja→S

Jh→S
(12)

However, these conventional definitions of power and
efficiency only hold for Ta = 0, whereas for finite Ta,
such definitions may overestimate power and efficiency,
since they do not take into account the entropy flux
out of the system (Cf. Eq. (10)) that contributes to its
passivity increase. In the following we obtain the actual
work done by the heat engine upon allowing for the rate
of entropy production as per Eq. (11).

Using Eq. (8), the output power can be obtained by
the relation

P = −
[

Ja→S − TaṠa→S

]

, (13)

where TaṠa→S is the passivity-change contribution.
This power in turn corresponds to the efficiency

η =
P

Jh→S
=

−
[

Ja→S − TaṠa→S

]

Jh→S
. (14)

6 Efficiency bound

An alternative definition for the efficiency is the ratio
of the power acquired from the sun, Ps = js

e Edb, where
js/e is the rate of generated photo-electrons, to the
power extracted from the reaction center, P = jcv.V .
The highest (Carnot) efficiency of a heat engine is
obtained at its reversibility point, which for a dis-
sipative c → v transition corresponds to the zero-
current limit of Eq. (1), i.e., at the open-circuit value
VOC (Eq. A7): given that near the reversibility point
P = jcv · VOC, we have

ηMax =
eVOC

Edb

(

jcv
js

)

=
Ecv + kBTa

(

Edc

kBTp
− Edb

kBTh

)

Edb
·
(

jcv
js

)

. (15)

Under the assumption js = jcv, and upon using the
identity Ecv = Edb − Edc, where each term expresses
the corresponding energy difference, the maximum effi-
ciency can be evaluated to have the general form

ηMax = 1 − Ta

Th
+

Edc

Edb

(

Ta

Tp
− 1

)

. (16)

This equation is our central result. In order to be con-
sistent with the second law, we choose Ta to be the
lowest of all bath temperatures, i.e., Ta ≤ Tp < Th.
The above efficiency is then invariably bounded by its
Carnot bound

ηMax � 1 − Ta

Th
:= ηCarnot (17)

We can now compare the Carnot bound ηCarnot, the
Schockley–Queisser (SQ) bound ηSQ evaluated for
Ta → 0, and ηMax. The highest efficiency bound is
attained as Ta → 0, where ηMax is bounded by

ηMax
Ta→0−−−−→ ηSQ =

Ecv

Edb
≤ ηCarnot(Ta = 0) = 1. (18)

When Ecv → Edb, we have ηSQ → 1. On the contrary,
the lowest efficiency bound is

ηMax = 1 − Tp

Th
;⇔ Ta = Tp; (19)

whereas ηSQ = 0 when Ecv = 0. Hence, we conclude
that at Ta = 0, SQ is the relevant efficiency bound while
at a higher temperature, Ta = Tp, Carnot serves as a
tighter bound for the machine performance. In general,
one should interpolate between these bounds according
to Eq. (16) in order to find ηMax (Fig. 2b).
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Fig. 2 a Comparison of the entropy production rate as a
function of Ecv/Edb as given by Eq. (10) (blue line—can
become negative) and Eq. (11) (red line—always positive).
b Variation of ηMax with Ta. For Ta = 0, the maximum
efficiency is bounded by ηSQ = Ecv/Edb ≤ ηCarnot, while
close to Ta = Tp it is only bounded by ηCarnot. c Interference
of two degenerate c ↔ v transitions with parallel dipoles

Importantly, Eq. (16) is identical to the efficiency
expression obtained from

ηMax =
P

Ps
, (20)

if we identify jcv with Eq. (1),

Ps = Jh→S =
js
e

Edb, P = jcvV, (21a)

eV = Ecv + kBTa ln
(

ρcc
ρvv

)

, (21b)

where the ratio of their populations obeys the Fermi–
Dirac statistics, ρcc = 1

exp(Ec−µc
kBTa

)+1
; ρvv = 1

exp(Ev−µv
kBTa

)+1
.

This efficiency bound coincides with the open-circuit
limit (Eq. 15), the work term (as in Eq. 2a) being given
by Eq. (A11).

Hence, Eq. (20), just like (16) is the genuine effi-
ciency bound for work extractable at steady state, since
it takes into account the passivity (generated heat) as
a loss contribution in the evaluation of the net output
power. Alternatively, one has to explicitly account for
the loss incurred by the passivity factor in Eqs. (13),
(14) for the calculation of power and the efficiency.

7 Boost mechanisms

The case of multiexciton production [16], wherein the
quantum efficiency (QE) exceeds 1, can be accounted
for in Eq. (20) or (15) by the boost factor αQE > 1:

js → αQEjs, jcv → αQEjcv. (22)

Since the generated and absorbed power, P and Ps are
both boosted by the same factor, ηMax is unchanged.
In deriving our central result (16) from Eq. (15) we
assume that js = jcv, i.e., current reaches its steady
value during the cycle. In case of irreversible tunnelling,
it may so happen that jcv 	 js, i.e., current does not
reach a steady value [15]. Then it will strongly affect
the efficiency according to Eq. (15).

The same is true in the scenario where, say [1,2,5],
two degenerate conduction (donor) levels, c1, c2 couple
to an acceptor (valence) level v (Fig. 2c). The result
may be a boost of the heat current Jh→S , Jp→S and
hence a power boost compared to that obtained for level
c1 or c2. However, the transition dipoles of the |c1〉 →
|v〉 and |c2〉 → |v〉 transitions must be parallel. Still, the
efficiency as opposed to power does not change due to
such boost, as in Eq. (20). Hence, the Carnot and SQ
bounds remain valid.

8 Conclusions

To conclude, we have put forward a unified thermo-
dynamic analysis of generic, minimal models of solar-
powered cyclic processes that can be viewed as quantum
heat engines. The resulting general efficiency bound
for work production that is consistent with the sec-
ond law of thermodynamics and allows for passivity
and entropy generation has been shown to interpolate

123



Eur. Phys. J. Spec. Top.

between the Carnot and the Shockley–Queisser bounds.
Power boost induced by coherence or multiexcitation
generation does not affect the efficiency.

The features analyzed here should allow us to design
the conceived solar-pumped schemes that are optimal,
both energetically and operationally.
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A. Appendix: Analysis of the full 4-level
scheme

The master equation for the density matrix elements of the
system read as follows:

ρ̇dd = γh[n̄hρbb − (n̄h + 1)ρdd] + γp[n̄pρcc − (n̄p + 1)ρdd],

ρ̇cc = γp[(n̄p + 1)ρdd − n̄pρcc] + Γ[n̄aρvv − (n̄a + 1)ρcc],

ρ̇vv = Γ[(n̄a + 1)ρcc − n̄aρvv] + γv[n̄vρbb − (n̄v + 1)ρvv],

ρdd + ρbb + ρcc + ρvv = 1, (A1)

where γp, γh, Γ and γv are spontaneous decay rates of the
corresponding transitions and n̄v = 1

exp(
Evb

kBTv
)−1

is the aver-

age phonon occupation number for the Evb transition. When
Evb becomes zero (Fig. 1c), as discussed in the main text,
we note that n̄v corresponds to very large value, i.e., one
may assume n̄v → ∞ in this condition (Fig. 3).

Fig. 3 Generic four-level quantum heat engine (QHE)

Using the relation (1), Eq. (A1) can be simplified as fol-
lows:

ρ̇dd = γh[n̄hρbb − (n̄h + 1)ρdd] + γp[n̄pρcc − (n̄p + 1)ρdd],

ρ̇cc = γp[(n̄p + 1)ρdd − n̄pρcc] − jcv

e
,

ρ̇vv =
jcv

e
+ γv[n̄vρbb − (n̄v + 1)ρvv],

ρdd + ρbb + ρcc + ρvv = 1. (A2)

The steady state solutions of Eq. (A2) are given by

ρ
(s)
dd =

1 −
[

1
γhn̄h

· (2n̄v+1)
(n̄v+1)

− 1
γpn̄p

+ 1
γv(n̄v+1)

]
jcv
e

3 + 1
n̄h

+ 1
n̄p

+ (1+1/n̄h)
(1+1/n̄v)

ρ
(s)
bb =

1 + 1
n̄h

+
[
2+1/n̄p

γhn̄h
− 1+1/n̄h

γpn̄p
− 1+1/n̄h

γv(n̄v+1)

]
jcv
e

3 + 1
n̄h

+ 1
n̄p

+ (1+1/n̄h)
(1+1/n̄v)

ρ(s)
cc =

1 + 1/n̄p

3 + 1
n̄h

+ 1
n̄p

+ (1+1/n̄h)
(1+1/n̄v)

[
1 − C.

jcv

e

]
, (A3)

where,

C =
1

γhn̄h
· (2n̄v + 1)

(n̄v + 1)
+

1

γv(n̄v + 1)

+
1

γp(1 + n̄p)

[
2 +

1

n̄h
+

(1 + 1/n̄h)

(1 + 1/n̄v)

]
(A4)

and

ρ(s)
vv =

(1 + 1/n̄h)

(1 + 1/n̄v)
· 1 + D j

e

3 + 1
n̄h

+ 1
n̄p

+ (1+1/n̄h)
(1+1/n̄v)

, (A5)

where

D =
2 + 1/n̄p

γh(1 + n̄h)
+

3 + 1/n̄h + 1/n̄p

γvn̄v(1 + 1/n̄h)
+

1

γpn̄p
(A6)

The open-circuit voltage VOC is then obtained for jcv = 0
in the form

eVOC = μc − μv = Ecv + kBTa ln

×
[
(1 + 1/n̄p)(1 + 1/n̄v)

(1 + 1/n̄h)

]
. (A7)

eV − eVOC

kBTa
= ln

×
[

ρ
(s)
cc

ρ
(s)
vv

· (1 + 1/n̄h)

(1 + 1/n̄p)(1 + 1/n̄v)

]
.(A8)

Therefore,

exp

(
eV − eVOC

kBTa

)
=

1 − C jcv
e

1 + D j
e

. (A9)

Or,

jcv

e
=

1 − exp
(

eV −eVOC
kBTa

)

C
[
1 + D

C
exp

(
eV −eVOC

kBTa

)] . (A10)

where D
C

= j0eR
kBTa

, R being the internal resistance of the

load.
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To recover Eq. (15) we take the limit n̄v → ∞ and use
the values of n̄h, n̄p in Eq. (A7) to obtain

eVOC = Ecv + kBTa

[
Edc

kBTc
− Edb

kBTh

]
. (A11)

The corresponding heat current expressions are

Jh→S = γh[n̄hρbb − (n̄h + 1)ρdd]Eab,

Jc→S = γp[n̄pρcc − (n̄p + 1)ρdd]Eac

+γv[n̄vρbb − (n̄v + 1)ρvv]Evb,

Ja→S = Γ[n̄aρvv − (n̄a + 1)ρcc]Ecv. (A12)
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