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Abstract—Background: Hackathons have become popular
events for teams to collaborate on projects and develop software
prototypes. Most existing research focuses on activities during an
event with limited attention to the evolution of the code brought
to or created during a hackathon. Aim: We aim to understand
the evolution of hackathon-related code, specifically, how much
hackathon teams rely on pre-existing code or how much new
code they develop during a hackathon. Moreover, we aim to
understand if and where that code gets reused, and what factors
affect reuse. Method: We collected information about 22,183
hackathon projects from DEVPOST– a hackathon database – and
obtained related code (blobs), authors, and project characteristics
from the WORLD OF CODE. We investigated if code blobs in
hackathon projects were created before, during, or after an event
by identifying the original blob creation date and author, and also
checked if the original author was a hackathon project member.
We tracked code reuse by first identifying all commits containing
blobs created during an event before determining all projects that
contain those commits. Result: While only approximately 9.14%
of the code blobs are created during hackathons, this amount is
still significant considering time and member constraints of such
events. Approximately a third of these code blobs get reused in
other projects. The number of associated technologies and the
number of participants in a project increase reuse probability.
Conclusion: Our study demonstrates to what extent pre-existing
code is used and new code is created during a hackathon and
how much of it is reused elsewhere afterwards. Our findings help
to better understand code reuse as a phenomenon and the role
of hackathons in this context and can serve as a starting point
for further studies in this area.

Index Terms—Hackathon, Code Reuse, Repository Mining,
Commits, Blob Reuse

I. INTRODUCTION

Hackathons are time-bounded events during which individ-

uals form – often ad-hoc – teams and engage in intensive col-

laboration to complete a project that is of interest to them [1].

They have become a popular form of intense collaboration

with the largest collegiate hackathon league alone reporting

that their events attract more than 65,000 participants each

year1. The success of hackathons can at least partially be

1https://mlh.io/about

attributed to them being perceived to foster learning [2], [3],

[4] and community engagement [5], [6], [7], [8] and tackle

civic, environmental and public health issues [9], [7], [10]

which led to them consequently being adopted in various

domains including (higher) education [2], [11], [12], (online)

communities [6], [13], [14], [15], entrepreneurship [16], [17],

corporations [1], [18], [19], [20], and others.

Most hackathon projects focus on creating a prototype that

can be presented at the end of an event [21]. This prototype

often takes the form of a piece of software. The creation of

software code can, in fact, be considered as one of the main

motivations for organizers to run a hackathon event. Scientific

and open source communities, in particular, organize such

events with the aim of expanding their code base [22], [23].

It thus appears surprising that the evolution of the code used

and developed during a hackathon has not been studied yet,

as revealed by a review of existing literature.

In order to address this gap, we aim to study the evolution

of the code used and created by the hackathon team members

from two main perspectives. First, we study from where the

code originates: While teams will certainly develop original

code during a hackathon, it can be expected that they will also

utilize existing (open source) code as well as code that they

might have created themselves prior to the event.

Second, to understand the impact of hackathon code, i.e.

code created during a hackathon event by the hackathon team

in the hackathon project repository, we aim to study whether

and how it propagates after the event has ended. There are

studies on project continuation after an event has ended [24],

[18]. These studies, however, mainly focus on the continuation

of a hackathon project in a corporate context [18] and on

antecedents of continuous development activity in the same

repository that was utilized during the hackathon [24]. The

question of where code that has been developed during a

hackathon potentially gets reused outside of the context of the

original hackathon project has not been sufficiently addressed.

Moreover, we aim to understand what factors might in-
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fluence hackathon code reuse, which can be useful for

hackathon organizers and participants to foster the impact

of the hackathon projects they organize/participate in. These

factors would also be of interest to the open source community

in general in order to effectively tap into the potential of

hackathons as a source of new software code creation.

To cover these two perspectives, we conducted an archival

analysis of the source code utilized and developed in the

context of 22,183 hackathon projects that were listed in the

hackathon database DEVPOST2. To track the origin of the code

that was used and developed by each hackathon project and

study its reuse after an event has ended we used the open

source database WORLD OF CODE [25], [26] which allows us

to track code usage between repositories. Overall, we looked

at over 8.5M blobs 3, over 3M of which were code blobs, as

identified with the help of the GITHUB linguist 4 tool.

Our findings indicate that around 9.14% of the code blobs

in hackathon projects are created during an event, which is

significant considering the time and team member constraints.

Teams tend to reuse a lot of existing code, primarily as

in the form of packages/frameworks. Many of the projects

we studied focus on front-end technologies – JavaScript in

particular – which appears reasonable because teams often

have to present prototypes at the end of an event, which lends

itself to UI design. Approximately a third of code blobs created

during events get reused in other projects. The number of

associated technologies and the number of participants in a

project increase the code reuse probability.

In summary, we make the following contributions in the

paper: we present an account of code reuse both by hackathon

projects and of the code generated during hackathons based on

a large-scale study of 22,183 hackathon projects and 1,368,419

projects that reused the hackathon code. We tracked the origins

of the code used in hackathon projects, in terms of when it

was created and by whom, and also its reuse after an event.

We also identified a number of project characteristics that can

affect hackathon code reuse. The replication package for our
study is available at [27].

II. RESEARCH QUESTIONS

As mentioned in section I, the goal of this study is to un-

derstand the evolution of hackathon code and identify factors

that affect code reuse for these projects.

Our first research question thus addresses the origin of

hackathon code:

RQ1. Where does the code used in hackathon projects
originate from?

Delving deeper into this question, we aim to understand how

much of the code used in a hackathon project was actually

created before the event and reused in the project, how much

of the code was developed during the hackathon, and, since

the projects sometimes continue even after the official end date

2https://devpost.com/
3A blob is a byte string representing a single version of a file, see https:

//git-scm.com/book/en/v2/Git-Internals-Git-Objects for more details
4https://github.com/github/linguist

of the hackathon, how much of the code was created after the

event. This leads us to the sub-question:

RQ1a. When was the code created?
We also aim to understand how much of the code in a

hackathon project repository is created by one of the partic-

ipants, how frequently they reused code created by someone

they worked with earlier, and how much of code was created

by someone else, leading us to the sub-question:

RQ1b. Who were the original creators of the code?
Our second research question focuses on the aspect of

hackathon code reuse. As noted in section I, existing studies do

not address the question of whether and where hackathon code

gets reused after an event has ended. However, knowing the

answer to this question would be crucial for understanding the

impact of hackathons on the larger open source community.

Some might perceive hackathons as one-off events where

people gather and create some code that is never used again,

while in fact they might have an impact on the wider scene

of software development and create something of value that

transcends individual events. Moreover, it is important to

assess in which scale of project hackathon code gets reused

(i.e. small projects with few developers and stars or larger

projects). This aspect would be useful in understanding the

impact of hackathons in greater detail, since, arguably, code

that gets reused in larger projects can be perceived to have

more impact on the software development community than

code that is reused in smaller projects. This leads us to also

asking the following second research question:

RQ2. What happens to hackathon code after the event?
Finally, our third research question focuses on understand-

ing how different characteristics of a hackathon project can

influence the probability of hackathon code reuse. While

code reuse in Open Source Software is a topic of much

interest, there are only a few studies covering this topic.

Moreover, existing studies, e.g. [28], [29], [30], [31] only

focus on between 10 and a few hundred projects. For this

study, we examined 22,183 hackathon projects, which makes

it reasonable to assume that insights from this study – despite

them being drawn from hackathon projects only – would add

to the existing knowledge about code reuse in general. Thus,

we present our third and final research question as:

RQ3. How can certain project characteristics influence
hackathon code reuse?

Related to this third research question, we formed the follow-

ing hypotheses that focus on aspects which can reasonably be

expected to foster code reuse:

H1 Familiarity: Projects that are attempted by larger teams

will have a higher chance of their code being reused, simply

because more people are familiar with the code. Moreover,

hackathon events that are co-located offer participants more

possibilities for interaction which can contribute to a better

understanding of each other’s code, higher code quality, and

consequently foster code reuse.

H2 Prolificness: Code from projects involving many different

technologies is more likely to be reused, since: (a) they tend to
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have more general-purpose code than more focused projects,

which affects code reuse as discussed by Mockus [32], and (b)

they have a cross-language appeal, opening more possibility

for reuse. Similarly, projects with more amount of code created

before and during the event (we can not use the code created

after the event, for preventing data leakage) should have a

higher chance of code reuse by virtue of simply having more

code.

H3 Composition: The project composition, i.e. how many

blobs in a project are actually related to code, and how

many are related to, e.g., data, documentation, or others

could be another factor that might influence code reuse. This

relationship is likely to be non-linear though, e.g., since we

are considering code reuse, a higher percentage of code in the

project should increase the probability of reuse, but only up to

a certain point, since code from a repository containing only

code and no documentation is not very likely to be reused.

III. BACKGROUND

In this section we will situate our work in the context

of prior research on hackathon code (section III-A) before

discussing existing studies on code reuse (section III-B).

A. Research on hackathon code
The rise in popularity of hackathon event has led to an

increased interest to study them [33]. Current research however

mainly focuses on the event itself studying how to attract

participants [13], [34], how to engage diverse audiences [35],

[9], [36], how to integrate newcomers [5], how teams self-

organize [37] and how to run hackathons in specific con-

texts [8], [1], [2]. These studies acknowledge the project that

teams work on as an important aspect. The question of where

the software code that teams utilize for their project comes

from and where it potentially gets reused after an event has

not been a strong focus though.
There are also studies that focus on the continuation of

software projects after an event has ended [38], [16], [18],

[39]. These studies however mainly discuss how activities

of a team during, before, and after a hackathon can foster

project continuation [18], how hackathon projects fit to exist-

ing projects [38], and the influence of involving stakeholders

when planning a hackathon project on its continuation [16],

[39]. They do not specifically focus on the code that is being

developed as part of a hackathon project.
Few studies have also considered the code that teams

develop during a hackathon [24], [14]. These studies however

mainly focus on code availability after an event [14] or on how

activity before and after an event within the same repository

that a team utilized during the hackathon can affect reuse [24].

The question of whether and to what extend teams utilize

existing code and whether and where the code that they

develop during a hackathon gets reused aside from this specific

repository has not been addressed.

B. Code reuse
Code reuse has been a topic of interest and is generally

perceived to foster developer effectiveness, efficiency, and

reduce development costs [40], [28], [30]. Existing work so far

mainly focuses on the relationship between certain developer

traits [28], [40], [31] and team and project characteristics

such as team size, developer experience, and project size and

code reuse [41]. Moreover, the aforementioned findings are

mainly based on surveys among developers, thus covering their

perception rather than actual reuse behavior. In contrast, we

aim to study actual code reuse behavior.

There is also existing work that focuses on studying the

reuse of the code itself. These, however, are often small scale

studies of a few projects [29], [42] focusing on aspects such

as automatically tracking reuse between two projects [29] and

identifying reasons why developers might choose reuse over

re-implementation [42]. In contrast, our aim is to study how

the code created during a hackathon evolves i.e. where it

comes from and whether and where it gets reused.

Large scale studies on code reuse have been scarce. The few

existing studies often focus on code dependencies [43] or on

technical dept induced based on reuse [30] which are both not

a strong focus for us because our aim is rather to study where

hackathon code gets reused. There are studies that discuss the

reuse of code on a larger scale [32] and showed that it is

mainly code from large established open source projects that

get reused, while we aim to study reuse of code that has been

developed by a small group of people during a short-term

intensive coding event.

IV. METHODOLOGY
A. Data Sources

While hackathon events have risen in popularity in the

recent past, many of them remain ad-hoc events, and thus

data about those events is not stored in an organized fashion.

However, DEVPOST is a popular hackathon database that is

used by corporations, universities, civic engagement groups

and others to advertise events and attract participants. It

contains data about hackathons including hackathon locations,

dates, prizes and information about teams and their projects

including the project’s GITHUB repositories. Organizers curate

the information about hackathons and participants indicate

which hackathons they participated in, which teams they were

part of and which projects they worked on. DEVPOST does

not conduct accuracy checks.

However, DEVPOST does not contain all the information

required for answering our research questions. We thus lever-

aged the WORLD OF CODE dataset for gathering additional

information about projects, authors, and code blobs. WORLD

OF CODE is a prototype of an updatable and expandable

infrastructure to support research and tools that rely on version

control data from the entirety of open source projects that use

Git. It contains information about OSS projects, developers

(authors), commits, code blobs, file names, and more. WORLD

OF CODE provides maps of the relationships between these

entities, which is useful in gathering all relevant information

required for this study. We used version S of the dataset for

the analysis described in this paper which contains repositories

identified until Aug 28, 2020.
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Fig. 1. Data Collection Workflow: Highlighting the different data sources
used and the process of gathering the required information from them,
and the data used in answering our research questions

B. Data Collection and Cleaning

Here we describe how we collected the data required for

answering our research questions, along with details of all the

filtering we introduced. An overview of the approach is shown

in fig. 1, which also highlights the different data sources and

what data was used for answering each research question.

1) Selecting appropriate hackathon projects for the study:
We started by collecting information about 60,479 hackathon

projects from DEVPOST. Since the project ID used in DEV-

POST is different from the project names in WORLD OF CODE,

in order to link these hackathon projects to the corresponding

projects in WORLD OF CODE, we looked at the corresponding

GITHUB URLs, which could be easily mapped to the project

names used in WORLD OF CODE, where the project names

are stored as GitHubUserName_RepoName. After filtering

out the projects without a GITHUB URL, we ended up with

23,522 projects. While trying to match these projects with the

corresponding ones in WORLD OF CODE, we were not able

to match 1,339 projects, which might have been deleted or

had their names changed afterwards. Thus, we ended up with

22,183 projects for further analysis.

2) Gathering the contents (blobs) of the project: Our first

step was to identify all code blobs used in the hackathon

projects. WORLD OF CODE does not have a direct map be-

tween projects and blobs, so we started by collecting commits

for all hackathon projects using the project-to-commit (p2c)

map in WORLD OF CODE, which covers all commits for

each hackathon project. For the 22,183 hackathon projects,

we collected 1,659,435 commits generated in the hackathon

repository. Then, we gathered all the blobs associated with

these commits using the commit-to-blob (c2b) map in WORLD

OF CODE, which yielded 8,501,735 blobs, which are all the

blobs associated with the hackathon projects under consider-

ation.

3) Filtering to only select code blobs: The hackathon

project repositories, like most other OSS project repositories,

have more than just code in them — they also contain images,

data, documentation, etc. Since our aim in this project is the

identification of the reuse of “code”, we decided to filter the

blobs to only have the ones related to “code”. In order to

achieve that, we looked at the filenames for each of the blobs in

the project (since blobs only store the contents of a file, not the

file name) using the blob-to-filename (b2f ) maps in WORLD

OF CODE. After that, we used the linguist tool from GITHUB

to find out the file types. The linguist tool classifies files into

types “data, programming, markup, prose”, with files of type

“programming” being what we are focusing on in this study.

Additionally, we marked all the files that are not classified

by the tool as files of type “Other”, with the presumption

that they do not contain any code. Therefore, we focused

only on the blobs whose corresponding files are classified as

“programming” files by the linguist tool, which reduced the

number of blobs under consideration to 3,079,487.
4) Gathering data required to identify the origins of

hackathon code (RQ1): To address our first research question,

we needed information about the first commits associated with

each of the 3,079,487 blobs under consideration. Fortunately,

it is possible to get information about the first commit that

introduced each blob using WORLD OF CODE. We extracted

the author of that first commit, along with the timestamp,

which would be useful in identifying when the blob was first

created. We have the end date for each of the hackathon events

from DEVPOST, however, it does not include any information

about the start date of the hackathon. We consider the start of

a hackathon 72 hours before the end date. This assumption

appears reasonable since hackathons are commonly hosted

over a period of 48 which are often distributed over three

days [44], [16]. We also conducted a manual investigation

of 73 randomly selected hackathons and found that only 2

projects (2.7%) were longer than 3 days, which empirically

suggested that our assumption would be valid for most of the

hackathons under consideration. Under this assumption, we

have the start and end dates of each of the hackathon events,

and we used that information to identify if a blob used in

a hackathon project was created before, during, or after the

hackathon event.
We can identify the first commit that introduced the

hackathon blobs under consideration, the author of that com-

mit, and all of the developers who have been a part of the

hackathon project 5 using WORLD OF CODE. With this data,

we can determine if the blob was first created by a member of

the hackathon team or someone else. In order to dig further

and understand if the blob was created in another project a

member of the hackathon project participated in, we used

WORLD OF CODE to identify the project associated with the

first commit for each blob under consideration, identified all

developers of that project, and checked if any of them are

members of the team that created the hackathon project under

consideration. This lets us identify if the blob was created by

(a) a developer who is a participant of the hackathon project

(thus, they are creating the code/reusing what they had created

earlier), (b) a developer who was part of a project one of the

5We used the approach outlined by [45] for author ID disambiguation to
merge all of the different IDs belonging to one developer together, which is
a common occurrence, as discussed in [46]
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TABLE I
DESCRIPTION OF VARIABLES USED FOR ADDRESSING RQ3. FOR THE BINARY VARIABLE, NO. OF TRUE/FALSE CASES ARE SHOWN

Hypothesis Variable Variable Description Source Value Range (min-max) Median

no.Participant Number of Participants in the hackathon DEVPOST 2 - 10 3
H1: Familiarity

is.colocated hackathon is held in single or multi location DEVPOST TRUE: 12,445 (97%) FALSE:436 (3%)
no.Technology Number of different technologies the

hackathon is related to
DEVPOST 1 - 40 5

Before Number of blobs in the hackathon project
repo that were created before the event

WORLD OF CODE 0 - 205,666 4
H2: Prolificness

During Number of blobs in the hackathon project
repo that were created during the event

WORLD OF CODE 1 - 3288 23

pctCode Fraction of the blobs in the project repo that
are classified as “programming”

WORLD OF CODE

and GITHUB

0 - 1 0.40

pctMarkup Fraction of the blobs in the project repo that
are classified as “Markup”

WORLD OF CODE

and GITHUB

0 - 0.96 0.02

pctData Fraction of the blobs in the project repo that
are classified as “Data”

WORLD OF CODE

and GITHUB

0 - 0.999 0.12
H3: Composition

pctProse Fraction of the blobs in the project repo that
are classified as “Prose”

WORLD OF CODE

and GITHUB

0 - 0.999 0.03

participants of the hackathon project also contributed to (which

might suggest that they are familiar with the code, which

might have influenced the reuse of that code in the hackathon

project), or (c) someone else who has not contributed to any

of the projects the hackathon project developers previously

contributed to (which would suggest a lack of direct familiarity

with the code from the hackathon participants’ perspective).

5) Gathering data to identify hackathon code reuse (RQ2):
Our second research question focuses on the reuse of

hackathon code, which, per our definition (see section I),

refers to the blobs created during the hackathon event by one

of the members of the hackathon team. Therefore, to address

this question, we utilized the results of our earlier analysis

in order to focus only on the code blobs which satisfy the

following two conditions: (a) The blob was first introduced

during the hackathon event and (b) the blob was created by one

of the hackathon project developers. After identifying 581,579

blobs that met these conditions, we collected all commits

containing these blobs from WORLD OF CODE using the blob-

to-commit (b2c) map, and we collected the projects where

these commits are used using the commit-to-project (c2p) map.

WORLD OF CODE has the option of returning only the most

central repositories associated to each commit, excluding the

forked ones (based on the work published in [47]), and we

used that feature to focus only on the repositories that first

introduced these blobs, and excluded the ones that were forked

off of that repository later, since most forks are created just

to submit a pull request and counting such forks would lead

to double-counting of code reuse.

In addition to understanding how the blobs get reused, we

also wanted to understand if they are reused in very small

projects, or if larger projects also reuse these blobs. So, we

needed a way to classify the projects into different categories.

We focused on two different project characteristics for the

purpose of such classification: the number of developers who

contributed to that project, and the number of stars it has on

GITHUB, a measure available from a database (MongoDB)

associated with WORLD OF CODE. Both the number of devel-

opers and stars are quintessential measures of project size and

popularity and were found to have a low correlation (Spearman

Correlation: 0.26), so we decided to use both measures. Instead

of manually classifying the projects using these variables using

arbitrary thresholds, we decided to use Hartemink’s pairwise
mutual information based discretization method [48], which

was applied to a dataset with log-transformed values of the

number of stars and developers for projects, to classify them

into three categories: Small, Medium, and Large. We found

different thresholds for the number of developers and stars
(for no. of developers, > 2 → Medium projects and > 6 →
Large; for stars, > 1 → Medium and > 14 → Large), and

classified a project as “Large” if it is classified as such by

either the number of developers or the number of stars, and

used a similar approach for classifying them as “Medium”.

The remaining projects were classified as “Small”. Overall,

we identified 1,368,419 projects that reused at least one of

the 581,579 blobs, and using our classification, 1,220,114

(89.2%) projects were classified as “Small”, 116,177 (8.5%)

as “Medium”, and 32,128 (2.3%) as “Large”.

6) Collecting Data for Identifying the factors that af-
fect hackathon code reuse (RQ3): In addition to tracking

hackathon code reuse (RQ2), we also aimed to study factors

that can affect this phenomenon. For this purpose we collected

various characteristics of the hackathon projects, both from

DEVPOST and WORLD OF CODE, and extracted the variables

of interest, per the hypotheses presented in section II.

The data we collected for RQ2 was for the blobs, so, in order

to find out if code from a project were reused, we investigated

how many blobs from a project was reused, and calculated the

ratio of the number of reused code blobs and the total number

of code blobs in the project. This revealed that almost 60%

of projects had none of their code reused. So, we decided

to pursue a binary classification problem for predicting if a

project has at least one code blob reused or not instead of

doing regression analysis.

For the purpose of our analysis, we excluded hackathon

projects with a single member, since a hackathon project
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Fig. 2. Plot of Who created how much of the Hackathon Code and When

“team” with a single participant does not really make a lot of

sense, and also the projects that were not related to any existing

technology, since these likely were non-technical events. By

looking for code reuse, we also automatically filtered out any

project that had no code blobs in its repository. After these

filterings, we were left with 12,881 hackathon projects.

For the variables related to H3, the composition of the

repository, we have 5 categories, 4 of which are dictated by

the GITHUB linguist tool: Code(programming), Markup, Data,

and Prose, and a category Other for all file types not classified

by the tool. We looked at what percentage of the blobs in

the projects belonged to which type. Since they all sum up

to 100%, 4 of these variables are sufficient to describe the

fifth variable. In order to remove the resulting redundancy, we

decided to remove the entry for type Other, since its effect is

sufficiently described by the remaining variables.

The description of all the variables along their sources and

values are presented in table I.

7) Analysis Method for Identifying project characteristics
that affect code reuse (RQ3): As we noted in the hypotheses

presented in section II, we are expecting some of the project

characteristics to have a linear effect on hackathon code reuse,

while some should have a more complex non-linear effect.

The goal of our analysis is not to make the best predictive

model that gives the optimum predictive accuracy, instead,

we are trying to find out which of the predictors have a

significant effect by creating an explanatory model. As noted

by Shmueli [49], these two are very different tasks.

In order to achieve our goal of having linear and non-linear

predictors in the same model and be able to infer the signifi-

cance of each of them, we decided to use Generalized Additive

Models (GAM). Specifically, we used the implementation of

GAM from the mgcv package in R.

V. RESULTS

Here we will discuss our findings in relation to our research

questions and discuss the result of a small case-study on some

examples of code reuse for selected hackathon projects.

A. Origins of hackathon code (RQ1)

As mentioned in section II and section IV-B4, we focused

on two aspects while looking for the origins of the code

in the hackathon project repositories, when was it created

(RQ1.a), and who was the original creator of the code blob

(RQ1.b). In terms of “when”, we examined if the first creation

of the code blob under consideration was Before, During, or

After the corresponding hackathon event. In terms of “who”,

Fig. 3. Top 5 languages for blobs created before, during, and after
hackathons

Fig. 4. Top 5 languages for blobs created by project members, co-
contributors, and others

we checked if the first creator of the code blob was one of

the members of the hackathon project (Project Member), or

someone who was a contributor to a project in which one of

the members of the hackathon project contributed to as well

(Co-Contributor), or someone else (Other Author).

The result of the analysis is presented in fig. 2, showing that,

overall, 85.56% of the code used in the hackathon projects

was created before an event. Most of these reused blobs were

part of a framework/library/package used in the hackathon

project, which aligns with the findings of [32]. Around 9.14%

of the blobs were created during events, since participants need

to be efficient during an event owing to the time limit [18]

which fosters reuse as previously discussed in the context of

OSS [28]. We also found that 5.3% of the blobs were created

after an event, suggesting that most teams do not add a lot of

new content to their hackathon project repositories after the

event. This finding is in line with prior work on hackathon

project continuation [24].

Looking at top languages for the blobs created at different

times (fig. 3), identified by the GITHUB linguist tool, we

found that most of the code reused by hackathon projects

(created before) is JavaScript, and other top languages together

indicate that most of the reused code by hackathon projects are

related to web development frameworks. JavaScript is also the

most common language worked on during the hackathons we

studied, followed by Java, Python, Swift, and C#/Smalltalk,

indicating that most hackathon projects work on develop-

ing web/mobile apps. C++ was the most common language

for code developed after the event, followed by Swift and

JavaScript, showing a slight shift in the type of work done

after the event, favoring Machine Learning applications.�

�

�

�

RQ1.a: 85.56% of the code (in terms of the no. of
blobs) in the hackathon project repositories is created
before the hackathons, with around 9.14% of the code
being created during the events (which is significant
considering the limited duration of the hackathons).

Figure 2 shows that, overall, the original creators of most of
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the code blobs (69.54%) in the hackathon project repositories

are someone who is not a part of the team. They are mostly the

original creators of some project/package/framework used by

the hackathon team. Around one-third (29.47%) of the code

was created by the project members, and the reuse of code

from co-contributors in other projects is very limited (0.99%).

This aspect has not been extensively studied in the context of

work on hackathons yet.

Looking at the top languages for the code created by

different authors, as shown in fig. 4, we can see that, once

again, most of the code created by developers not part of

the hackathon team is JavaScript, which is similar to the

code created before the event (fig. 3). This is not surprising,

since they have a great deal of overlap (fig. 2). Most of the

code created by project members indicate a leaning towards

web/mobile app development, and most of the C++ and Python

code was found to be related to Machine Learning frameworks.�

�

�

�

RQ1.b: The members of the hackathon teams created
around 29.47% of the code blobs, while 69.54% of the
code blobs are created by developers outside the team
(mostly authors of some project/package/framework
used by the team).

If we consider the code blobs created during and after the

hackathon event, as shown by the combined picture in fig. 2,

which are the main contributions of the hackathons in terms of

code creation, we see that most of that code (97% for the code

created during the event, and 93% of the code created after the

event) was actually created by the project members. Moreover,

we also find that the project members often reuse the code they

had written earlier in their projects, 15.67% of all the code

belong to this category. This finding is in line with prior work

on hackathon projects in that teams often prepare their projects

e.g. by setting up a repository [24] and/or making (detailed)

plans on what they want to achieve during an event [18].

It is also worth noting that, typically, widely-used frame-

works like Django, Rails, jQuery, etc have decades of de-

velopment history and a large number of contributors. Thus,

around 9.14% of blobs being created during the short duration

of hackathon events (72 hours per our assumption) by teams of

around 2-3 members (up to a maximum of 10 members — see

table I), is indeed significant and it highlights the importance

of hackathons in generating new code.�

�

�

�

Origin of the Hackathon Code (RQ1): Hackathon
projects often reuse code in terms of some pack-
age/framework. Teams also tend to reuse their own
code. Most of the code created during or after the
event is created by the hackathon team members.

B. Hackathon code reuse

As discussed in section II and section IV-B5, our goal while

looking for hackathon code reuse is twofold: First, we want to

see how much of the code gets reused, and second, we want to

find if they get reused in small, medium, or large projects. By

Fig. 5. Top 5 Languages for the reused code blocks in different projects

following the procedure outlined in section IV-B5, we found

that 167,781 (28.8%) of the 581,579 hackathon code blobs got

reused in other projects.

We further classified the projects that reused these code into

Small, Medium, and Large, as discussed in section IV-B5. To

recap, 89.2% of the projects that reused the hackathon code

blobs were classified as Small, 8.5% were Medium, and 2.3%

were classified as Large projects. By investigating the blobs

reused by these projects we found that, unsurprisingly, there

are a number of instances where a blob was reused in projects

of different categories. However, such cases were found to be

quite rare, in fact, only 8.85% of reused blobs got reused in

more than one project. By looking at the size of the projects

a blob was reused in, we found that over half (57.73%) of the

blobs are only reused in other Small projects, around one-third

(32.85%) are reused in Medium projects, and less than a tenth

(9.42%) are reused in Large projects.

The top-5 languages for the blobs reused by various projects

are shown in fig. 5. As we can see JavaScript still remains

the most common, and Python, C/C++, C#/Smalltalk, Java

were among the top ones as well. While most reused blobs

are related to web/mobile apps/frameworks, we also found the

relatively uncommon Gherkin being the second most common

language for Medium projects, and the Small projects reused

a lot of blobs related to D/DTrace/Makefile.

We were interested in exploring the temporal dynamics of

code reuse as well. Therefore, we looked at the reuse of

hackathon code blobs over-time for the duration of two years

(104.3 weeks) after the corresponding hackathon event ended.

The result of that analysis is shown in fig. 6, which shows

the weekly hackathon code reuse for 2 years after the end of

the corresponding hackathon event, with the fraction of total

number of hackathon code blobs (581,579) reused per week on

the Y-axis. As we can see from this plot, while overall 28.8%

of the hackathon code blobs were reused, over the span of

a single week, no more than 0.8% of the blobs got reused.

This finding is in line with prior work on hackathon project

continuation (e.g. Nolte et al. [24] found that continuation

activity drops quickly within one week after a hackathon

before reaching a stable state) within the same repository that

the team used during the hackathons. A clear trend of the code

reuse dropping and then saturating after some time is visible,

which is significant because it indicates that the code created
in the hackathon events continue to bear some value even after
2 years have passed after the event. For code reuse in Small
projects, the knee point comes after around 10-15 weeks, while

for the Medium and Large projects, it comes much earlier, in

around a month. It is also a bit surprising to see code reuse

74

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 05,2021 at 17:01:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Plot depicting hackathon weekly code reuse in projects of different
categories over the period of 2 Years

peaking so soon after the event, but this could be due to the

participants of the event putting/influencing people they know

to put the code they think is valuable to some other project

where they think it might be of use. This distinction has not

been studied in prior work on hackathon code.�

�

�

	

Hackathon code reuse (RQ2): Around 28.8% of
hackathon code blobs got reused in other projects,
with 57.73% of the code being used in Small projects,
32.85% in Medium projects, and 9.42% in Large
projects. Most of the reused blobs were related to
web/mobile apps/frameworks. The temporal dynamics
of code reuse show a clear trend of it reducing over
time, and then saturating to a stable value.

C. Characteristics affecting code reuse

Our third and final Research Question was about identifying

what project characteristics affect code reuse and we formed

three hypotheses about what factors might be affecting it,

which were presented in section II. Using the procedure

outlined in section IV-B6, we gathered the variables of interest

related to the three hypotheses, as presented in table I. As

discussed in section IV-B7, we decided to use Generalized

Additive Models (GAM) to identify the variables that have a

significant impact on code reuse.

Since we presumed the variables related to H1 and H2
would have a linear effect on the probability of code reuse

for a project, we kept them as linear terms in the model. The

variables related to H3 were presumed to have a non-linear

effect, so they were used as non-linear terms in the model.

The formula we used for invoking the GAM model was:

Y ∼ no.Participant + is.colocated + no.Technology + Be-
fore + During + s(pctProse) + s(pctData) + s(pctCode) +
s(pctMarkup)

The result of the analysis is presented in table II, which

shows that all of the variables related to hypotheses H1
and H2, which we assumed would affect code reuse, were

indeed significant. The effect direction, communicated by

the signs of the estimates for the corresponding variables

match the rationale we presented in section II. These findings

are partially in line with prior work on hackathon project

continuation in that complex projects for which hackathon

participants have prepared prior to the hackathon showed

TABLE II
EFFECT OF PROJECT CHARACTERISTICS ON HACKATHON CODE REUSE -

RESULTS FROM THE GENERALIZED ADDITIVE MODEL.
PART A. SHOWING THE RESULTS FOR THE linear TERMS, WITH THE

ASSOCIATED ESTIMATE, STANDARD ERROR, AND P-VALUES.
PART B. SHOWS THE RESULTS FOR THE non-linear TERMS, WITH THE

EFFECTIVE DEGREES OF FREEDOM – “EDF” – A MEASURE OF THE

DEGREE OF NON-LINEARITY, THE P-VALUES, AND THE PARTIAL EFFECTS

OF EACH VARIABLE ON THE RESPONSE ( 0: NO EFFECT, POSITIVE

VALUES: POSITIVE EFFECTS, NEGATIVE VALUES: NEGATIVE EFFECTS).
THE “PCTDATA” VARIABLE, FOUND TO BE “NOT SIGNIFICANT”, IS SHOWN

IN RED, AND THE CORRESPONDING EFFECT PLOT IS OMITTED

A. Linear Variables (Hy-
pothesis)

Estimate Std. Error p-value

no.Participant (H1) 0.2078 0.0181 < 0.0001
is.colocated-TRUE (H1) 0.2034 0.1030 0.0483
no.Technology (H2) 0.0261 0.0060 < 0.0001
Before (H2) 0.0001 0.0000 < 0.0001
During (H2) 0.0036 0.0004 < 0.0001

B. Non-Linear Variables
(Hypothesis)

edf p-value Partial Effect Plot

pctProse (H3) 3.8984 0.0195
pctData (H3) 3.7148 0.2490

pctCode (H3) 3.8425 0.0208

pctMarkup (H3) 6.6779 0.0001

increased continuation activity [24]. In that study, the team size

was however negatively related to project continuation while

for the study in this paper we found the reverse to be true

for code reuse. One possible explanation for this discrepancy

can be related to larger teams having more opportunities and

wider networks to spread the news about their project [18].

As for the variables related to H3, the “pctData” (see table I

for definition) variable was found to be not significant, but the

other three variables were. Since the effects of these variables

were non-linear in the model, we decided to observe their

partial effect plots, which shows the relationship between the

two plotted variables (an outcome and an explanatory vari-

able) while adjusting for interference from other explanatory

variables [50]. As demonstrated by the partial effect plots, and

the effective degrees of freedom associated with each of these

variables, each of them actually have a non-linear effect on

the response variable.

Let’s take a closer look at the effects of the three significant

variables related to H3. For “pctProse”, which refers mostly

to documentation files (e.g. Markdown, Text, etc.), we see that

having some documentation is good, however, projects which

have around half its total content as documentations are not

likely to have their code reused. However, rather surprisingly,

we see that projects with almost all of their content as

documentation are more likely to have their code reused. On

closer inspection, we found that these are quite large projects

with a lot of data stored in their corresponding repositories in

the form of text or other files (An example of such a project is
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https://github.com/sreejank/PoliClass). Therefore, though most

of them have a good amount of code, by volume, it appears

that it is almost all made up of files of type “Prose”, which

causes this predictor to show positive values for projects

very high amount of “Prose” files. Such projects however are

common in particular in civic and scientific hackathons where

participants often develop projects that are related to utilizing

specific datasets (e.g. [5], [37], [14]). Our finding thus can

potentially point to a specific use case that is beneficial for

code reuse after an event has ended.

On closer inspection of the variable “pctCode”, we realized

that it refers to how much of the total content in a repository

is of type “code”, not the absolute number of code blobs,

therefore, having a more balanced repository with a good

mix of other types of files signal that it is of higher quality,

thus increasing the chance of code reuse. This is somewhat

expected since for code to be reused it is beneficial to have

accompanying documentation as well as use cases (data). As

we can observe, projects with over 60% of their content related

to code take a big hit when it comes to their code getting

reused. This finding can potentially be due to hackathon teams

only having a finite amount of time during an event to actually

develop code and the more the code they develop the more

likely it is that they do not have time to “polish“ it for reuse.

The behavior of the “pctMarkup” variable is more complex

than the rest (it also has a higher edf value), so it is hard to

summarize the interaction without a detailed inspection on a

larger dataset, however, it looks like having up to around 60%

markup content (e.g. HTML, CSS, LaTeX, etc.) can lead to a

higher propensity of code reuse. The reason for the increase

for projects with a very high percentage of markup content is

likely similar to what we observed for the “pctProse” variable.


�

�



Characteristics affecting Code Reuse (RQ3): The
hypotheses presented in section II were found to hold.
All of the variables related to H1 and H2 were
significant and had effects as anticipated. The effect of
the variables related to H3 were more complex, which
led to additional insights about hackathon code reuse.

D. A Case-Study on Code Reuse

In addition to investigating the research questions presented

here, we also conducted a small-scale case study on a few

projects selected by stratified random sampling to gain addi-

tional insights.

We observed that there are 4 main types of hackathon

projects: some containing few blobs that were created before

the corresponding hackathon, but have a good amount of

activity after the event (Type - A : After), while some projects

had a large number of blobs that were created before the event,

but with little activity afterwards (Type - B: Before). Some

projects contained code created before, during, and after the

event (Type C: Continuous), and some mostly contained code

created during the event (Type D: During).

For this case study, we looked at both projects that had

some of their code reused, and projects that did not, and chose

one project of each type (A, B, C, and D) for both of these

categories at random. The names and details about how many

blobs each project had, when they were created, and for the

blobs that were created during the hackathon, what was their

type and how many were reused are presented in table III.

Detailed findings for the individual projects with code reuse

are listed below:

• Opportunity-Hack-2015-Arizona Team1: This project had

one code and one data blob reused, both with content related

to python libraries, in 2 and 1 other projects respectively.

• TheMichaelHu PickyPusheen: A number of reuses, mostly

icons and configuration from a framework. Only one code blob

created by one of the project members was reused, and it was

a report for a debug tool they ran.

• drfuzzyness WearHax-OlivMatt: This project shows evi-

dence of code reuse related to Occulus/Kinect/Wii which was

widely reused afterwards by projects of different sizes. All

these blobs are under the assets folder and most probably

are part of a framework though, so either this team created

that framework, or were the first ones to use it. This project

had no README or any other documentation.

• kylemsguy building-point: A good amount of code from this

project was used in another small project, likely created by one

of the team members. Almost all of the reused files were part

of a framework used in the project.

One curious distinction between the projects with and with-

out code reuse was that, in most cases, projects with code reuse

had other types of blobs reused as well, and for those without

code reuse, they mostly have none of their blobs reused. This

is in line with the previously discussed finding that additional

documentation and a potential use case can foster code reuse.

It is also worth noting that for almost all of the code reuses

we observed, the code was part of a package/library/framework

used in the project. This is not too surprising, since we are only

looking at exact code reuse. However, we filtered our dataset

to only look for blobs first created by one of the members of

the project team during the event, so it is very likely that the

framework was created/modified to some extent by the project

team members, and that newly created/modified framework

was later used by others. At the same time, it is possible that

someone might have made the exact same changes to a file

as made by a member of the hackathon project, which then

gets counted as reuse. Further study is needed to ascertain the

probability of such chance events happening by accident.

VI. IMPLICATIONS

Our findings have a number of implications for research and

practice. They can serve as a valuable guidance for scientific

and other communities that aim to organize hackathons for

expanding their existing code base. Organizers could suggest

participating teams to attempt projects that do not require

developing a large amount of code and rather focus on a

specific use case e.g. related to an existing data set. Moreover,

they should suggest teams to also spend time on not only

developing code but also providing additional materials and

documentation, and also for the teams to reuse existing code
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TABLE III
DETAILS OF THE PROJECTS SELECTED FOR CASE STUDY: SHOWING NO. OF BLOBS CREATED BEFORE, DURING, AND AFTER THE CORRESPONDING

HACKATHON EVENTS, HOW MANY BLOBS OF DIFFERENT TYPES WERE CREATED during THE EVENT, AND HOW MANY OF THEM GOT REUSED

Category Hackathon Project (Type) Blob Creation Time Blob Reuse Blob Types

Before During After Other Data Markup Code Prose

Projects
with
code usage

Opportunity-Hack-2015-Arizona Team1 (Type-A) 42 177 316 Reused 0 1 0 1 0
Not reused 21 33 19 97 5

TheMichaelHu PickyPusheen (Type-B) 3372 520 1
Reused 66 3 0 9 1
Not reused 90 259 2 78 12

drfuzzyness WearHax-OlivMatt (Type-C) 3154 823 1194
Reused 4 60 0 17 2
Not reused 19 645 0 53 4

kylemsguy building-point (Type-D) 29 81 10
Reused 7 7 0 15 0
Not reused 0 26 0 26 0

Projects
without
code usage

quki IDHACK2016 (Type-A) 26 96 102 Used 0 1 0 0 0
Not reused 0 44 0 50 1

Marblez Haven-App (Type-B) 448 20 1
Reused 0 0 0 0 0
Not reused 1 11 0 7 1

shkbfzl hs-lunchbot (Type-C) 186 48 59
Reused 0 0 0 0 0
Not reused 0 2 0 46 0

jrdbnntt DaReactTV (Type-D) 4 63 1
Reused 2 0 0 0 0
Not reused 2 11 6 41 1

from their existing code base rather than attempting to develop

a lot of original code. This approach can in turn improve

efficiency and foster code reuse after an event has ended.

With respect to research, our findings provide an initial ac-

count on how code gets reused and created during a hackathon

as well as whether and where it gets reused afterwards. They

indicate that not much new code gets developed during a

hackathon and much of the code used by the teams is actually

reused from existing code, thus altering our perception that

hackathons are intensive code creation events. Moreover, they

indicate that hackathon code indeed gets reused and that

hackathons can thus be more than one-off coding events.

VII. LIMITATIONS AND THREATS TO VALIDITY

For our study, we tracked the code generation and usage on

a blob level - represented in WORLD OF CODE by the SHA1

hash value of each blob - which means that we focused only

on exact code reuse since any changes in the file contents

would lead to a change in the blob SHA1 value that we used to

identify each blob. However, it is quite common to make minor

changes in a code file while using it in a different context,

and that aspect will not be captured in our study, nor can

we capture the reuse of code snippets. Moreover, our analysis

does not consider the size of a file since we aree looking at the

SHA1 values of the blobs, i.e. our analysis cannot distinguish

between reuse of a small file and that of a large file.

The DEVPOST dataset does not include the start date of

the hackathon events but it is essential information needed to

answer our research questions. We assumed the duration of

the hackathons to be 72 hours based on existing literature and

a manual investigation of 73 randomly selected hackathons 71

of which lasted up to 3 days. However, that might not have

been the case for all of the events we studied which may affect

the results of RQ1 and RQ3.

We relied on the GITHUB Linguist tool to categorize files

and we only focused on files with type ”Programming”, how-

ever the categorization is not infallible, e.g. the type ”Markup”

contains HTML and CSS files which could be considered code

instead of documentation.

Finally, in our study we only considered hackathon projects,

thus, our findings may not be generalizable to other types of

software projects and repositories.

VIII. CONCLUSION AND FUTURE WORK

In this study, we investigated the origins of hackathon code

and its reuse after an event. We found that most hackathon

projects reuse existing code and that code created during

events also gets reused by other OSS projects later on. Our

study also revealed that project characteristics related to its

prolificness and the developers’ familiarity with the code

positively affects code reuse, and the composition of the

project in terms of what file types it contains have an effect as

well. In summary, our findings agree with most earlier studies,

and reiterate the impact of hackathon events, at the same

providing an account of code reuse in Open Source Software.

There are several ways to extend this research, e.g. consid-

ering code clones/snippets while looking for code reuse (e.g.

by looking at the associated CTAG tokens - a dataset available

in WORLD OF CODE), identifying other factors that affect

code reuse, including code quality [51], [52], project popu-

larity [53], [54], the type of Open Source license used, etc.

Looking deeper into the code created during the hackathons,

it might also be interesting to see to what extent the teams

use bots [55], [56] which might aid in the understanding of

hackathon code reuse as well. We hope that further studies will

explore these and other related topics, and give us a clearer

understanding of the impact of hackathons and code reuse.
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