TechTrends
https://doi.org/10.1007/s11528-021-00618-4

ORIGINAL PAPER

Check for
updates

Culturally Responsive Debugging: a Method to Support Cultural

Experts’ Early Engagement with Code

Michael Lachney'

Accepted: 2 June 2021
© Association for Educational Communications & Technology 2021

Abstract

- Aman Yadav' - Matt Drazin' - Madison C. Allen” - William Babbitt >

Despite the value that cultural experts bring to efforts to broaden the participation of racially minoritized youth in US computer
science, there has been little research on supporting their knowledge of computing. This is a missed opportunity to explore the
diffusion of computing knowledge across local community contexts where underrepresented youth of color spend time. To
address this gap, we present one strategy for promoting cultural experts’ early engagement with code, culturally responsive
debugging: using culturally situated expertise and knowledge to debug code. We analyzed qualitative data from a professional
development workshop for cultural experts to evaluate this strategy. Our findings have implications for broadening participation

efforts and supporting non-programmers’ knowledge of code.

Keywords Debugging - Culturally responsive computing - Computer science education - Adult education

Introduction

Among computer science (CS) education practitioners and
researchers there is growing recognition that the economic
discrimination and the political disenfranchisement of Black,
Brown, and Indigenous communities in the United States have
contributed to racialized barriers and gatekeeping in comput-
ing education and professions (Margolis et al., 2008; Eglash
et al., 2017; McGee, 2020). For example, of the degree-
granting institutions that responded to the Taulbee Survey in
2019, African Americans made up approximately 1% of mas-
ter’s degree recipients in CS (Zweben & Bizot, 2020), despite
being approximately 13% of'the U.S. population (United State
Census Bureau, 2010). The underrepresentation of these com-
munities of color at all levels of CS has prompted a range of
broadening participation strategies to make CS more diverse
and inclusive. A number of these strategies have been orga-
nized under the label of culturally responsive computing

P4 Michael Lachney
lachneym@msu.edu

Department of Counseling, Educational Psychology, and Special
Education, Michigan State University, College of Education, 620
Farm Ln. Room 513A, East Lansing, MI 48824, USA

Science and Technology Studies Department, Rensselaer
Polytechnic Institute, Troy, NY, USA

Published online: 20 June 2021

(CRC), an approach to technology education that builds on
the programs of culturally relevant pedagogy (Ladson-
Billings, 1995), culturally responsive teaching (Gay, 2018),
and culturally sustaining pedagogies (Paris, 2012).

Like these programs, CRC begins by critiquing deficit
thinking in education, which tends to frame students’ families,
heritages, communities, identities, and backgrounds as bar-
riers to teaching and learning, best kept outside of academics.
Alternatively, CRC seeks to make these parts of children’s
lives central to learning about and with technology (Eglash
et al., 2013a; Eglash et al., 2013b; Scott & White, 2013;
Ashcraft et al. 2017). In the context of CRC, culture can be
understood in dynamic and relational terms, where technolo-
gies, material practices, and epistemic systems are co-
constituted through interplays between individuals, communi-
ties, and institutions (Lachney et al., 2021a). Highlighting
how technologies, practices, and knowledges are always
changing helps to resist static and deterministic definitions
of culture that can reproduce racist and primitivist myths by
rooting Black and Indigenous peoples in the past (Vithal and
Skovsmose 1997). CRC uses technologies to make connec-
tions between the past, present, and future, with explicit anti-
racist and anticolonial politics that are grounded in social jus-
tice and community self-determination (Lachney et al.,
2021b).

Some CRC projects build on intersectional approaches to
social justice, where, for example, girls of color draw on their

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11528-021-00618-4&domain=pdf
http://orcid.org/0000-0003-3310-8707
mailto:lachneym@msu.edu

TechTrends

own experiences and backgrounds while programming edu-
cational robots to help inform local community members
about political and economic issues that impact their lives
(Scott et al., 2015). Other CRC projects focus on how tech-
nologies can be designed to translate between Indigenous
knowledge and science, technology, engineering, and mathe-
matics (STEM) curricula, such as making contact points be-
tween 3D visual programming software and anishinaabe-
gikendaasowin' (Eglash et al., 2020a). As these cases exem-
plify, for the majority of CRC projects there is some element
of drawing on local cultural and community knowledges (of
adults and children) as part of technology design and imple-
mentation. For the purposes of this paper, we call people who
have these knowledges cultural experts.

Collaborating with cultural experts can be a powerful way
to foster deep connections between computing, culture, and
community (Lachney, 2017a). What is more, there is some
evidence to suggest that these collaborations might be mutu-
ally beneficial, in that the local person or group gets some-
thing of value out of learning more about technology and
computing during CRC projects with teachers and researchers
(Lachney et al., 2020). This presents an interesting opportuni-
ty to create multi-directional broadening participation strate-
gies where computing, culture, and community do not just
appear connected in schools or libraries but also other locally
meaningful settings (Lachney & Yadav, 2020). Despite the
value that local cultural experts bring to CRC projects, there
has been little research or pedagogical work on supporting
their knowledge of computing, though there have been some
calls to conduct more research on the topic (e.g., Lachney
et al., 2021a). This lack of focus is a missed opportunity to
explore the diffusion of computing knowledge and technology
literacies across local community contexts (beyond schools)
where youth who are underrepresented in CS might spend
time. This paper seeks to address this gap by presenting one
strategy for supporting local cultural experts’ early or intro-
ductory engagement with code. Focusing on early experiences
is purposeful, as many—though not all—of the cultural ex-
perts we have collaborated with (whether youth sports
coaches, urban farmers, or hair braiders) tend to be non-pro-
grammers. We call our strategy for supporting cultural ex-
perts’ early introduction to code, culturally responsive
debugging (CRD): using culturally situated expertise and
knowledge to debug code.

By analyzing qualitative data from a CRC workshop with a
group of cultural experts (n=16), we detail the design and
implementation of one CRD activity as a proof of concept.

"In Our Knowledge is Not Primitive: Decolonizing Botanical Anishinaabe
Teachings, Wendy Makoons Geniusz (2009) uses the Anishinaabemowin
term anishinaabe-gikendaasowin to mean the “knowledge, information, and
the synthesis” of the teachings of Anishinaabeg communities (p.11). We use
the term here to acknowledge Eglash et al.’s (2020) focus on Anishinaabeg
architecture and design.

@ Springer

The activity was implemented with a group of cosmetologists,
urban farmers, and librarians or educators who were collabo-
rating with university researchers at a public library in
Southeast Michigan. After detailing our findings we discuss
answers to three questions: 1) How do we support cultural
experts’ knowledge of programming in ways that are motivat-
ed by and affirming of their cultural expertise? 2) How do
cultural experts and educators who work with them (e.g.,
teachers and librarians) solve computational problems that
make explicit connections between computing and cultural
expertise? 3) How do cultural experts and educators who work
with them talk about technology after experiencing a CRC
workshop that includes a culturally responsive debugging ac-
tivity? We end by explaining how our findings have implica-
tions for developing multi-directional broadening participa-
tion strategies and supporting non-programmers early engage-
ment with code.

Literature Review

A major part of the CRC research program is identifying and
building up localized assets as part of technology-oriented
teaching and learning (Scott et al., 2015; Lachney, 2017a).
This provides unique opportunities to not only use computing
and computational thinking in the service of community-
based goals and educational projects but also to diffuse com-
puting knowledge across local contexts beyond compulsory
schooling. Indeed, research suggests that computational think-
ing is relevant to improving young people’s programming
skills and everyday reasoning (Shen et al., 2020), as well as
more general problem solving skills (Yadav et al., 2016; Caeli
& Yadav, 2020). With this in mind, it becomes meaningful to
think about computation (thinking and doing) as a means to
bridge students’ academic lives with their out-of-school, com-
munity, and familial lives; thus, building foundations for
multi-directional strategies where broadening participation ef-
forts are not confined to just traditional academic locations.
For example, students in one CRC after school program
used computing and computational thinking to help design
3D-printed cornrow braids (Lachney, 2017b), which were
then placed in a local hair salon. Lachney et al. (2019) report
that the 3D-prints prompted conversations in the salon about
the “algorithms” of braiding, adding to the already existing
repertoire of STEM knowledge that is found in Black hair
salons. In this case, the language and ideas of computational
thinking became more than academic content, they also be-
came relevant and meaningful to people’s socially and cultur-
ally situated experiences. One exciting aspect of this multi-
directional strategy is supporting cultural experts’ knowledge
of programming languages, since coding is how many young
people engage with CS education. Indeed, it has been sug-
gested that cultural experts’ knowledge of programming can



TechTrends

support CS education that is both culturally and computation-
ally rich (Lachney & Yadav, 2020; Lachney et al., 2021a).
What is more, having a multi-directional strategy for broad-
ening participation in CS education is not only important be-
cause teachers should not be expected to do this work alone,
but also because primary and secondary US schools have long
histories of alienating youth of color through Eurocentric cur-
ricula and structures of assimilation (Spring, 2016; Emdin,
2016). Therefore, opportunities to represent computing
knowledge in meaningful ways beyond the school walls is
important if we are serious about broadening participation.
Yet, many of the cultural experts we have worked with are
non-programmers, with a minority being novice program-
mers. Therefore, it is worth looking into culturally responsive
methods for supporting their knowledge of programming spe-
cifically and computing more generally.

Learning to program is a complicated task that involves
various cognitive skills and conceptual representations
(Rogalski & Samurcay, 1990). It is unlikely that cultural ex-
perts’ involvement in a CRC project is going to result in non-
programmers becoming novices, let alone experts. But CRC
projects can offer an introduction to the language and artifacts
of programming. Indeed, as code proliferates throughout our
social and cultural lives—not always in positive ways (e.g.,
Noble, 2018; Benjamin, 2019; Zuboff, 2019)—there is a
growing need for end-users or non-programmers to under-
stand and comprehend code (Gross & Kelleher, 2010a).
While traditional CS education tends to prioritize writing code
(Lister et al., 2004; Chmiel & Loui, 2004), there is theoretical
and empirical support for helping novices and non-
programmers with code comprehension through reading, trac-
ing, and debugging (e.g., Griffin, 2016).

One task, in particular, that can help people to “analyze”—
i.e., break up content into smaller parts to see how they relate
to one another—code is debugging (Shargabi et al., 2015, p.
34). Generally, when programmers debug something it “in-
volves observing abnormalities in a program’s behavior, find-
ing bugs (errors), and fixing them” (Griffin, 2016, p. 148).
This requires people to read the program, tracing it alongside
the output, and iteratively manipulate the code for a desired
result. What is more, Ahmadzadeh et al. (2005) found that
while novices who were good at debugging were generally
good at programming, being good at programming did not
automatically make someone good at debugging. It may be
that the skills needed to write and program code are not the
same as those that are needed to find and fix errors (Katz &
Anderson, 1987).

The trial-and-error problem solving of debugging is often
frustrating (Fitzgerald et al., 2008) but it can also be an im-
portant part of the learning process (Papert, 1980). While the
act of fixing the bug is the intended goal, research shows that
people tend to take more time locating errors than fixing them
(Fitzgerald et al., 2008). Two general methods have been

identified for locating errors: forward reasoning where debug-
gers start with the code (this is often done when a person is
debugging someone else’s code) and backward reasoning
where debuggers start with the output (this is often done when
a person debugs their own code) (Katz & Anderson, 1987).
Debugging is an important skill for anyone interacting with
code. While experts and novices will obviously benefit from
learning to debug, end-users and non-programmers also ben-
efit if they work with code from someone else that they ma-
nipulate and change, often creating bugs of their own (Gross
etal., 2011a).

Recognizing the affordances of debugging for learning has
prompted researchers and educators to experiment with pur-
posefully placing bugs in educational programming activities
(Richards, 2000; Kafai et al., 2014a; Searle et al., 2018). The
educational value of debugging is not new to the CS education
community. Drawing on ethnographies of scientific laborato-
ries (e.g., Latour & Woolgar, 1979; Traweek, 1988), Turkle
and Papert (1990) likened the trial-and-error learning process-
es of debugging to some scientific laboratory work. Papert’s
(1993) theory of constructionism largely centers around this
type of learning by doing. Building on the work of Papert
(1980), Griffin (2016) theorizes that learning to take code
apart through reading, tracing, and debugging—what Griffin
calls “deconstructing code”™—is a key part of understanding
program behavior. These types of activities show how people
can learn to locate and fix bugs through reverse engineering
(Griffin et al., 2012).

While there is substantial research on novice and expert
debugging (McCauley et al., 2008) there is less on non-pro-
grammers. Prompted by the proliferation of end-user code,
Gross and colleagues have been exploring how to support
end-users’ and non-programmers’ evaluation and use of code
through studying their strategies and designing supportive
tools (Gross & Kelleher, 2010a; Gross & Kelleher, 2010b;
Gross et al., 2011b; Gross, Yang, & Kelleher 2011a). When
working with unfamiliar programs, Gross and Kelleher
(2010a) explain that finding code that is responsible for a
specific behavioral output can be a major challenge for end-
users and non-programmers. They suggest including meta-
information and supports for users to connect code to observ-
able outputs can help to overcome this challenge. They also
found that non-programmers use similar navigation and
search strategies as experts and novices when reading, tracing,
and debugging code: forward reasoning, backward reasoning,
and working through the code line-by-line (Gross & Kelleher,
2010a).

Building on the claims that debugging can support users’
familiarity with code (Richards, 2000) but that non-
programmers need support in connecting code to output be-
havior (Gross & Kelleher, 2010a), this paper proposes the
method of culturally responsive debugging (CRD) to support
cultural experts’ familiarity and early engagement with code.

. @ Springer



TechTrends

The process of supporting and designing CRD activities be-
gins by first identifying localized knowledge that is embedded
in cultural and community practices. Second, computational
hardware and/or software are used to represent that knowledge
in ways that are respectful, meaningful, and authentic to cul-
tural experts. Next, a bug is placed in the code of the software
that changes the output of the program in a way that is coun-
terintuitive to what the cultural experts know to be correct.
Finally, they are then prompted to use their own culturally
situated knowledge to debug the program. Below we describe
the design, implementation, and evaluation of one CRD activ-
ity with cultural experts at a CRC professional development
workshop.

Context and Methods
Background

This research on CRD is situated within a two-year CRC
project that included highlighting the localized and cultural
uses of pH knowledge by cosmetologists, natural hair experts,
and urban farmers via do-it-yourself computing technologies.
While mainstream broadening participation discourses often
assume (explicitly or implicitly) that underrepresented com-
munities lack STEM knowledge or expertise and therefore—
in standard deficit fashion—it must be brought in from the
outside, CRC works with the existing knowledge systems that
are already embedded within community contexts. Indeed,
these existing knowledge systems are assets for broadening
participation efforts. Our choice to focus on pH emerged from
a collaboration with a high school cosmetology teacher and a
group of high school girls who were hired by our research
team to help develop computationally and culturally rich
STEM lessons for high school cosmetology courses. People
connected to the high school cosmetology program (including
the teacher) and the girls identified pH as a key knowledge-
base for anyone working with hair and/or chemicals in the
salon. A summer professional development workshop in
2017—which brought together teachers, cultural experts,
school staff, researchers, students, and technologists—is
where the first iteration of the pH Empowered lesson was
formally designed.

The lesson used an Atlas Scientific pH sensor that could be
programmed with an Arduino micro-controller to first test the
pH levels of off-the-shelf cosmetic products and then of nat-
ural products that students made (Fig. 1). Students would
build the sensor, upload a program to the Arduino, and cali-
brate the sensor before generating hypotheses about the pH of
cosmetic products and measuring the pH of the products to
test their hypotheses. While this lesson was first used in a high
school cosmetology program, it was later used in out-of-
school STEM programs (e.g., in libraries) and as part of

@ Springer

Fig. 1 To an audience of peers and teachers, a student explains her own
natural cosmetic product, with a pH sensor and computer in the
foreground

professional development for cosmetologists interested in
supporting CRC programs and collaborating with STEM
teachers (Fig. 2).

However, one of the major limitations of the lesson was the
relatively shallow engagement with the Arduino code for the
pH sensor itself. The lesson called for uploading the code and
calibrating the sensor, but this only required inputting numer-
ical values into the serial monitor, it did not call for reading or
manipulating the code. When confronted with these chal-
lenges while preparing for a CRC professional development
workshop with the pH sensor for cosmetologists, urban
farmers, and librarians, the first three authors on this paper

Fig. 2 A group of cosmetologists build pH sensors at a 2018 “Cos-
computing” (cosmetology + computing) professional development
workshop



TechTrends

explored ways to motivate workshop participants’—who we
assumed would be mostly non-programmers—engagement
with the code. The challenge was how to motivate engage-
ment in a way that authentically connected to the workshop
participants’ own knowledge of pH. We came up with the idea
of purposefully placing a logic bug into the program that
would make the pH reading appear obviously off—and there-
fore recognizable to people with knowledge of pH—after the
code was uploaded. We wanted to make sure that the bug
could be fixed in multiple ways, but with little or no
prior programming knowledge. We present data from the de-
sign and implementation of the coding activity below.

Workshop and Participants

The workshop where we first introduced this CRD activity
took place at a public library in Southeast Michigan and was
organized in collaboration with a group of three librarians.
The workshop took place in a small city of about 20,000
people. People of color make up approximately 63% of the
population, and those under 18 years old make up approxi-
mately 13.5% of the population (United State Census Bureau,
2010). The present study took place in the city’s downtown
library, specifically in a teen space where a youth version of
the workshop would be held the following summer. This area
is generally designed to be a safe space for teens to study, play,
socialize, learn, and create. Indeed, part of the library system’s
mission is to create youth-driven opportunities to connect to
the broader community, develop leadership skills, and have a
voice at the library.

In collaboration with the librarians, we decided to focus on
recruiting local cosmetologists and urban farmers since both
use pH as part of their professional practices. The workshop
had three purposes: 1) to receive feedback from cultural ex-
perts for future iterations of the pH lesson; 2) begin forming
relationships with cultural experts who might help implement
the pH lesson at the library that following summer; and 3)
implement and evaluate the CRD activity. The three librarians
who helped to organize the workshop used their connections
to the local community—including connections to prominent
urban farms, beauty salons, and braiding shops—to recruit
participants.

The workshop was divided up into four different parts.
Workshop participants largely worked in pairs, but were also
given the opportunity to work independently. The first part of
the workshop was an introduction to the pH Empowered les-
son and how cosmetologists and urban farmers can leverage
their knowledge to support its implementation. In the second
part of the workshop participants built, calibrated, and
debugged the Arduino-based pH sensor. During the third part
of the workshop participants made pH “alarms” with LEDs or
speakers, which would light up or play music, respectively,
when the pH sensor reached a certain threshold. Finally, there

was a share-out section where everyone reflected on the work-
shop, offering feedback on what went well and what could
have been improved.

Because this paper is primarily focused on the debugging
activity the following is a more detailed explanation of the pH
sensor code and the bug. We placed a logic error within the
code for participants to find and correct that intentionally drew
on what we assumed were cosmetologists’ and urban farmers’
knowledge of pH. Logic errors differ from syntax errors in
that the error allows for “compilation and running but lead[s]
to incorrect results” (McCauley et al., 2008, p. 68). Correcting
the error would support backward reasoning, where users start
with the output behavior of the program first and then move
into the code from there to debug. While non-programmers
can be intimidated by code and have trouble connecting the
behavioral output to sections of code (Gross & Kelleher,
2010a), we hypothesized that making the logic error relevant
to the workshop participants’ prior knowledge of pH would
provide sufficient scaffolding for completing the task.

The section of code with the error contained nested “if”
statements for displaying whether the input from the sensor
registered a high pH or a low pH. Without the error, if pH was
greater or equal to 7.0, “high” printed to the serial monitor. If
pH was less than 6.999, “low” printed. The bug we created
caused readings below a pH of 6.999 to print the word “high”
and readings above or equal to a pH of 7.0 to print the word
“low” (Fig. 3). This code, like all Arduino code, has two basic
functions. Functions are areas of code that are organized by
action in such a way that they might be repeated. The two
functions in all Arduino programs are the “setup” function
and the “loop” function. The setup function runs whenever
the Arduino hardware is turned on or restarted—it creates
the structure and initializes values for the rest of the program.
The loop function runs immediately after the setup function
and repeats itself until the hardware is disconnected from a
power source. The code used for this project utilized these two
functions. The setup function initialized variables and set out-
put conditions for the serial monitor (the readable display).
The loop function continuously read information from the

if (sensor_string_complete == true) {
Serial.println(sensorstring);
if (isdigit (sensorstring([0])) {
pPH = sensorstring.toFloat();

if (pH >= 7.0) {
Serial.println("low");

}

if (pH < 6.999) {

Serial.println("high");

}
Fig. 3 The “logic error” in the pH sensor code

. @ Springer



TechTrends

probe and for each reading it conditionally displays informa-
tion from the probe to the serial monitor.

Sixteen adult participants signed up for and attended the
workshop. This included seven cosmetologists, all who iden-
tified as Black/African American; six librarians or teachers,
three who identified as White, one as Black/African
American, and two as multiracial; and three urban farmers,
two White and one Black/African American. Of the sixteen
adults, thirteen were women and three were men (one man in
the cosmetology group and two men in the urban
farming group). The ages of the workshop participants ranged
from seventeen to sixty-four, but most of the participants were
over the age of thirty-five. In addition to collecting demo-
graphic information, we also asked participants about their
programming experiences. Of the fifteen who
responded, seven of the participants indicated that they had
some form of programming experience, while eight indicated
that they had no prior programming experience. Of the seven
who did have experience, we followed up with an open-ended
survey question to discover that two had brief exposure to an
introductory programming language, one misinterpreted
what we meant by programming, and four had more in-
depth experiences through the likes of formalized coursework.
We categorized the four participants with more in-depth ex-
perience as novices, while the rest of the workshop partici-
pants were categorized as non-programmers.

Research Questions

To evaluate and explore the pH sensor CRD activity we pose
three questions to guide our analysis and findings. We list
each question below along with it rationale.

(a) Given that many cultural experts who work on CRC pro-
Jjects are non-programmers, how do we support their
knowledge of programming in ways that are motivated by
and affirming of their cultural expertise? Here we aim to
put our hypothesis to the test: connecting the logic error to
workshop participants’ knowledge of pH will provide suf-
ficient scaffolding for completing the CRD task. But, this is
not just about completing a task. CRD does not treat cultural
experts’ knowledge as sugar coating or surface gloss for
learning to code, but, instead, is about collaborative rela-
tionships that aim to respectfully and meaningfully repre-
sent cultural knowledge with computing. The goal is for
culture to motivate computational engagement in ways that
are respectful and affirming of the depth of cultural and
intercultural knowledge systems.

(b) How do cultural experts and educators who work with
them (e.g., teachers and librarians) solve computational
problems that make explicit connections between com-
puting and cultural expertise? The purpose of this ques-
tion is to explore the problem-solving processes that

@ Springer

cultural experts and educators use when confronted with
the CRD activity. We hope that this provides insight into
improving both the theory and practices of CRD.

(¢) How do cultural experts and educators who work with
them talk about technology after experiencing a CRC
workshop that includes a culturally responsive
debugging activity? Given that programming was new
to many of the workshop participants, we are interested
in exploring if and how they think their ideas about tech-
nology changed. We are interested in reflections that
might be about coding specifically, but also about tech-
nology generally since opening up the black box of com-
puting may shape how people think about their own re-
lationships to technological devices and systems.

To answer these three questions, we analyzed four types of
data: video data of the debugging activity, observational notes
from workshop facilitators, pictures from the workshop, and
focus group interview data from after the workshop. To an-
swer questions one and two we relied on video data, pictures,
and observational notes that were collected during the work-
shop. For the third question we analyzed data from focus
group interviews that took place after the workshop.

Data Collection and Analysis

Video data of the debugging activity were collected in two
ways. First, video was taken of participants building, calibrat-
ing, and debugging their pH sensors as they worked in groups
or individually. Second, video was captured from participants’
computer screens as they worked in the Arduino integrated
development environment to calibrate and debug the pH sen-
sor. Drawing on video analysis methods from qualitative CS
education research (Kafai et al., 2014b; Searle & Kafai, 2015;
Tenenberg, 2019), we created a video log of both the people
and screen captures side-by-side, showing a minute-by-
minute breakdown of individuals’ and groups’ activities.
This resulted in an analysis of approximately 220 minutes of
video of 10/16 participants. One participant did not show up in
time for the debugging activity and another five workshop
participants had either malfunctions with their computer cam-
eras or their cameras were turned off.

A two-step qualitative analysis was conducted of the video
log. During the first step, notes were made by the first and last
authors of this paper about when, where, and how participants
first identified the existence of the bug, how long it took them
to search the code, and how long it took them to fix the bug.
During the second step, findings were compared and any dis-
parities in interpretations were debated and discussed.
Pictures, observational notes, and video from the workshop
were triangulated—combining different data sources from dif-
ferent people and/or different methods during analysis—with
the video log to construct trustworthiness and validity.



TechTrends

After the workshop, three focus-group interviews were
conducted to collect workshop participants’ (n=16) self-
reports about any changes in their perceptions or attitudes
toward technology. The groups for each of these interviews
were demarcated by professional expertise: a group of cosme-
tologists, a group of urban farmers, and a group of librarians or
educators. They were semi-structured, with each lasting ap-
proximately 35-50 minutes. Reflecting on their uses of tech-
nology during the workshop was only part of the focus group
interview, other topics, reported elsewhere, included their
STEM expertise and the role of the concept of race in broad-
ening participation efforts (Lachney et al., 2021b).

Analysis of the focus group interviews was completed by
the first and last authors as part of a larger “provisional cod-
ing” process, which consists of an a priori list of codes that
were determined based on previous research (i.e., the work
with cosmetologists leading up to the creation of the
debugging activity) (Saldafia, 2016, 297). Content dealing
with technology, computing, and debugging were aggregated
under the code of “technology” for each of the three focus
groups. The first and last authors then engaged in intersubjec-
tive dialogue—"agreement through a rational discourse and
reciprocal criticism between those interpreting a phenome-
non” (Brinkmann & Kvale, 2015, p. 279)—to come to an
agreed interpretation of participants’ self-reports.

Findings
Culturally Responsive Debugging in Action

As a way to explore computational problem solving among
workshop participants, Table 1 is a breakdown of the exper-
tise, programming experience, and time that it took to com-
plete the debugging activity for the six groups or individuals
whose videos were analyzed. The “approx. time to find bug”
indicates the time from when they entered the Arduino pro-
gramming environment to when they found the bug in the

code. “Approx. time to fix bug once found” indicates the time
from when they identified the bug in the code to when they
uploaded a correctly fixed program. For some additional con-
text, all paired groups and individuals were able to identify
and fix the logic error that we placed in the code. When
prompted to look for a problem within their programs, all
groups and individuals, except the solo librarian (#6), used
the serial monitor to identify the mix-up between “high” and
“low.” The librarian did not find the problem until she was
prompted that there was a bug, and she was already looking
through the code. Of those who identified the problem within
the serial monitor, everyone independently went from the se-
rial monitor to the programming environment to debug, ex-
cept for the group of cosmetologists (#5). Group #5 at first
thought that the bug could be fixed by recalibrating the pH
probe and did not go to the code until after a facilitator ex-
plained that the bug would be found there.

In line with some prior literature on debugging (e.g.,
Fitzgerald et al., 2008), group or individual #1, #4, and #6
took more time to locate the error than to fix it. Group #5 took
anotable amount of time figuring out where they could fix the
error but once they were in the programming environment
they quickly skimmed it for signs of pH and fixed it by
correcting the print text. Groups #2 and #3 found the bugs
quicker than most of the other groups or individuals but took
longer to fix it. While taking longer to fix the error might not
look good from a traditional standard of code efficiency, from
a learning perspective taking longer to fix the bug represented
deeper and more active engagement with the pH sensor code.

To further understand workshop participants’ engagement
with code, Table 2 represents the different strategies that
groups and individuals used to find and fix the bug. We de-
marcated the groups and individuals by paired or not paired
and then by programming background. We then only included
shared strategies. This was appropriate for the most part, but it
also meant that we did not represent data on group #2, who
added to the code in their attempt to fix the bug. Every group
or individual talked aloud to some extent while locating and

Table 1 Breakdown of each individual’s or group’s expertise, programming experience, and approximate time to find and fix the error (n = 10)
Group or Number of Expertise Non-programmer -or- Approx. time to find ~ Approx. time to fix bug once
individual Participants Novice bug found
1 2 a. Teacher a. Non-programmer 3 min 2 min
b. Librarian b. Non-programmer
2 2 a. Librarian a. Novice 2 min 15 min
b. Cosmetologist b. Non-programmer
3 2 a. Farmer a. Novice 2 min 5 min
b. Farmer b. Non-programmer
1 a. Cosmetologist a. Non-programmer 4 min 2 min
5 2 a. Cosmetologist a. Non-programmer 1 min 1 min
b. Cosmetologist b. Non-programmer
6 1 a. Librarian a. Non-programmer 4 min 2 min

. @ Springer



TechTrends

Table 2

Workshop participants’ strategies for locating and fixing the bug (n = 10)

Paired Groups or Individuals

Bug Location Strategies

Debugging Strategies

Paired Novice Programmers and Non-programmers (#2 & #3)

Paired Non-programmers (#1 & #5)

- Work through code from top-down

- Talk aloud to each other

- Read parts of the code aloud - Change syntax

- Talk aloud to each other - Change print text

- Talk about computer specific terms - Discuss and/or try to create
and ideas a “mid” case

- Work through code from top-down - Talk aloud to each other

- Read parts of the code aloud - Change print text

- Talk aloud to each other

Individual Non-programmers (#4 & #6)
- Talks

- Works through code from top-down

- Talks aloud to self and/or others

aloud to self and/or others - Changes print text

fixing the bug and every group or individual started from the
top and worked their way down when trying to locate the bug.
But the groups with novices were the only ones to discuss
computer specific terms while locating the error, including
asking questions about strings and explaining syntax (e.g.,
brackets). This makes sense given their prior knowledge and
experiences. In addition, the time these groups spent fixing the
bug provided them with more opportunities to explore differ-
ent strategies than the non-programmers.

Indeed, each of the groups or individuals with all non-
programmers simply found the error and changed the printed
text, swapping “high” and “low.” In groups with novice pro-
grammers (#3 and #2), there was a strong focus on the lack of
the middle or “mid” case in the code for when the pH sensor
would read exactly 7.0, which, according to any cosmetology
or chemistry textbook, would be “neutral.” In addition, cali-
brating the sensor required inputting a value for “mid” into the
serial monitor to account for a neutral level, but because the
sensor rarely ever reads exactly 7.0 it was not part of the code.
The additional time it took to fix the code in both of these
groups was due to discussing if they should add the additional
code for a “mid” case, how to go about doing so, and making
adjustments in the code to test out their ideas. The librarian
and cosmetologist group (#2) did add the case, altering the
existing code for the high reading to be suitable for exactly
equal to 7.0, and then adding a third case for “high” (greater
than 7.0). While doing this they created more errors in the
process, which prompted them to explore more of the code.
The farmer group (#3) decided to forego the addition of the
case, deleted the equal sign in the greater than if statement,
preferring that it not read anything for 7.0.

After the debugging activity, we found that some groups
and individuals continued to modify and explore the code by
drawing on their knowledge of pH to inform their decisions
and inquiries. The two urban farmers (#3) continued to think
about what they would need to change in the code to add a
“mid” case. While manipulating some of the code, they won-
dered if such a case would ever be meaningful in the context
of an urban farm. The group of cosmetologists (#5) drew on

@ Springer

their general and profession-specific knowledge of pH, chang-
ing “low” and “high” to “battery acid” and “lye.” Lye is high
on the alkaline side of the pH scale and can be found in prod-
ucts such as relaxers. These workshop participants’ continued
explorations of pH through computing helped to reinforce the
goal of the CRD activity: making programming meaningful
and relevant to cultural experts’ own knowledge and contexts.

Post-Workshop Reflections on Technology

In general, participants’ attitudes toward the workshop were
affirming and positive. In the library group, there was a sense
that the workshop made programming, as one participant put
it, “accessible” and “low stakes.” The librarian who worked
alone on the debugging activity (#6) was particularly vocal
about what this exposure to code meant for her personally.
She has a brother who often works with programming lan-
guages but expressed that it always seemed too “intimidating”
for her personally. While she said that this feeling lingered at
the beginning of the workshop, once she got started working
with the sensor and code she recalled a shift in her attitude:
“That's what I learned new is how to actually, like, read
through code and figure out, like, what some of the terms
mean now, as opposed to be[ing] like, ‘okay that’s cool, yeah
sure, all right’.” Another librarian expressed that it was helpful
to debug in pairs:

1liked it, how it was kind of like a puzzle that you needed
to figure out and it was very nice that I had a partner to
help me figure it out because when I was reading it as
“high” when it was like 3.1, I thought that meant high
acidity and I was like ‘Oh that's good. It's reading as
high acidity" and then she was like no, that means like
high on the scale. I was like "Oh yeah then that is
wrong."

Here we can see that prior knowledge of pH motivated recog-
nizing the error and prompted this group to try and solve the
debugging “puzzle.” In addition, the workshop prompted



TechTrends

librarians to consider not only supporting young people’s
knowledge of code but also adults who might not have been
exposed to code when in school: “...with the coding, how to
incorporate it also into the library system, it’s not just, | mean
we always focus on the young people, but it’s not just young
people, it's a lot of our, you know, older adults who would like
to do something like that.” Thinking about the library as a
space for adult programming education was an exciting sug-
gestion given that one of the goals of the workshop was to
explore methods and strategies for supporting cultural experts’
programming knowledge.

The urban farmers also expressed enthusiasm for the
debugging activity and workshop in general. The non-
programmer in group #3 explained her experience:

1 think maybe one thing that's different now than earlier
is, before, I knew there was all this open-source code
and plans... and all this stuff available for us to use. But
I've never physically done anything before. So, while 1
was like, really, I'm really happy that it exists among the
farming community, now I feel like, “Oh actually this is
something that maybe I could do.”

This attitude is different from her more general stance that
technology does not often work in favor of small farming
operations:

1 feel like using computer programming and technolo-
gy... we're at a crossroads in the farming world where
there is a shit ton of money being put towards high tech
agriculture. That completely takes the soul out of agri-
culture and produces food that doesn't have
micronutrients in it and puts people out of work...

The urban farmers tended to express general skepticism of any
large-scale farming or technology operation. But it did seem
that their convivial experiences with the pH probe and
Arduino code helped to connect the “soul” of farming to tech-
nology in a meaningful way. The novice urban farmer recalled
their discussions and explorations of the “mid” case, which
they continued to explore after they had fixed the bug:

So, we altered it [the code] to do acidic, alkaline, and
neutral, which was a learning curve just to remember
the code and everything. So, I think understand[ing],
making sure that I know why I'm putting things where
they are, and understanding why I'm putting that code in
there is the key for me teaching somebody.

Here we can see that the workshop helped this farmer think
about what it would mean to teach programming in his own
context, which included youth outreach programs.

After the workshop, the cosmetologists focused less on the
specifics of the CRD activity and more so on the potential of
integrating technologies that they already knew about into
their practices, particularly to support their clients’ health.
One cosmetologists discussed how technology could help
them understand pH in more “precise” ways. Another
cosmetologist discussed other applications of technology that
she had seen and would like to use in her practices, such as for
a “scalp analysis”: “You put the data in, you get [a] printout
for the client to see and you to see. You all huddle together and
come up with a resolution to cure whatever.” The cosmetolo-
gists articulated that technology applications had the potential
to support their practices but also expressed uncertainty in
terms of their own knowledge and access. As one cosmetolo-
gist who had helped to facilitate the workshop put it, “It’s our
job to try to start educating our clients more... as far as the
possibilities of having healthy hair. For me... that’s basically
what it is. The technology is out there, it’s just trying to find
where it is.” While there are certainly benefits to cultural ex-
perts having computing knowledge to help support young
people’s interest in CS, this quote opens up the door for think-
ing about how CRC might help cultural experts access and use
technology to innovate their own practices.

Discussion

Despite the growing importance of cultural and community
expertise in constructing equitable CS education, there is a
dearth of literature on how to support cultural experts’ knowl-
edge of CS generally and programming specifically. This is
unfortunate because there is evidence to suggest that cultural
experts can help to make deep culture-computing connections
that challenge traditional assumptions about whose knowl-
edge is relevant to CS and programming (Lachney & Yadav,
2020; Lachney et al., 2021a). This also provides opportunities
for cultural experts to bring knowledge of culture-computing
connections back into their own locally meaningful contexts
(Lachney et al., 2019), thus helping to build a multi-
directional foundation for broadening participation. In re-
sponse, this paper has sought to introduce the idea
of culturally responsive debugging and provide a proof of
concept through one CRC professional development work-
shop with cosmetologists, librarians, and urban farmers.

How Do we Support Cultural Experts’ Knowledge of
Programming in Ways that Are Motivated by and
Affirming of their Cultural Expertise?

We have proposed one method for supporting cultural ex-
perts’ engagement with code called CRD: using culturally
situated expertise to debug code. In our case, groups
and individuals used their culturally situated knowledge—

AECT @ Springer



TechTrends

from urban farming or cosmetology—of pH to identify a
problem with the output of the program and then, mostly,
engaged in backward reasoning to connect the behavior to
specific lines of code. We were intentional in our choice to
make the error explicitly relevant to the content of pH because
non-programmers tend to have trouble identifying connec-
tions between behavioral output and code (Gross &
Kelleher, 2010a).

While we spent a notable amount of space examining one
case of this method, the process of coming up with the pH
activity also required sustained temporal engagement with
cultural experts themselves. Before the first, second, and third
authors came up with the debugging activity, the first and last
authors spent multiple years collaborating with cosmetologists
to understand how their expertise intersected with STEM
topics and how to represent that expertise in computing edu-
cation. Elsewhere we have reported on how to design technol-
ogies and technology experiences that bridge culture and com-
puting, as well as our approaches to collaboration and trust-
building (e.g., Lachney et al., 2019; Lachney et al., 2020;
Lachney et al., 2021b), but we have not studied our collabo-
rators’ own experiences or engagement with code.

Our findings indicate that when designing paired program-
ming activities that are meant to foster early engagement with
code, we should not only focus on disciplinary expertise but
also pairing people up with different levels of programming
experience. While all of the groups or individuals in our study
fixed the bug, groups that had novice programmers working
alongside non-programmers took more time to engage with
the code, exploring creative solutions for fixing the bug.
Indeed, both groups with novices focused on fixing the bug
by discussing and/or programming a “mid” case to account for
a neutral pH level. While this did not fit the traditional stan-
dards of coding efficiency—indeed, group #2 created more
bugs during their debugging process—it did support trial-
and-error learning, which is a major educational affordance
of computing (Papert, 1980). Therefore, when developing
CRC programs that support cultural experts’ computing
knowledge it is worth considering how to bring people togeth-
er with not only cultural and community expertise but also
different programming backgrounds. It may be that the novice
programmers, having worked with code before, felt more
comfortable with treating debugging as an open problem,
whereas the non-programmers were still figuring out how to
engage with code in more open-ended ways.

For groups with novices and groups with just non-pro-
grammers, framing the debugging activity around pH helped
them connect computing to their professional and cultural
expertise. After fixing the bug, the group of farmers and the
group of cosmetologists drew on context-specific knowledge
of pH to motivate discussing and/or manipulating the code.
Indeed, discussing how the code might be changed to fit the
urban farm context or representing more alkaline numbers

@ Springer

along the pH scale as “lye” is, in a sense, providing insights
into how to deepen the cultural responsiveness of the pH les-
son by offering more bridges between community, cultural
expertise, and computing.

How Do Cultural Experts and Educators Who Work
with them (e.g., Teachers and Librarians) Solve
Computational Problems that Make Explicit
Connections between Computing and Cultural
Expertise?

As we saw from the workshop participants, the error that we
created could easily be fixed without much knowledge of
syntax or programming more generally. As we have ex-
plained, we find that the majority of cultural experts who we
work with are non-programmers but, nonetheless, introducing
computing and programming to cultural experts is an impor-
tant part of our CRC work because it might help to foster a
more dynamic community of stakeholders for broadening par-
ticipation efforts. Therefore, the bug was designed to support
introductory engagement with code that was motivated and
contextualized by cosmetologists’ and farmers’ knowledge
of pH. This helped to resist the idea of engaging with code
for coding’s sake, which, arguably, just reproduces the status
quo (Lachney & Yadav, 2020).

We felt that the connection was well made, as post-
workshop discussions indicated that the participants were able
to use the activities to think about computing and technology
in their own professional and cultural contexts. More specifi-
cally, we found that to motivate making this connection we
needed for workshop participants to identify a bug by seeing a
mismatch between what they know about pH and the behavior
of the program. They were then prompted to use backward
reasoning to locate and fix the bug so that the output matched
their existing knowledge. This is similar to learning processes
that many educational programming environments (e.g.,
Logo, Scratch, Snap!, etc.) help to facilitate: trial-and-error
problem solving based on a desired visual output, which is
immediately provided when the code is run. We found that the
majority of individuals or groups were able to engage with this
backward reasoning, though it was difficult for the group of
cosmetologists (#5) and, also, the solo librarian (#6) was al-
ready in the programming environment when she learned
about the bug.

Once the workshop participants were in the code, regard-
less of if they were working individually or in a group, they all
found the bug by going through the code from the top-down
and talked through the code aloud, actually reading it and/or
talking about it to people around them (paired partners, other
individuals or groups, and/or facilitators). In addition, the
groups with novices uniquely discussed programming specific
terms and ideas with their partners while trying to locate the
bug. Similar to previous research on the debugging practices



TechTrends

of'novices (e.g., Fitzgerald et al., 2008), the non-programmers
took more time finding the bug than fixing it. Yet, we found
that groups with novices did not match this prior research, as
they took more time fixing the bug than finding it. It may be
that since they were in groups with non-programmers they
took on a more mentoring role, but it is hard to say with our
limited data, which does not include groups of just novices. To
fix the bugs the non-programming groups and individuals
switched around the printed text, a path of least resistance to
obtaining the desired output. The groups with novices
changed the syntax and considered adding or actually added
additional lines of code to try and fix the bug.

How Do Cultural Experts and Educators Who Work
with them Talk about Technology after Experiencing
a CRC Workshop that Includes a Culturally Responsive
Debugging Activity?

After the workshop, there were generally positive attitudes
among the participants toward the technology used in the
workshop and about broadening participation efforts. Many
expressed increased confidence in engaging with computing.
In addition, each of the post-workshop discussion groups
spoke about how they might integrate technology, if not pro-
gramming specifically, into their professional practices. The
librarians considered extending their computer coding pro-
grams to adults, the farmers thought about what it would be
like to teach coding to youth at their outreach programs on the
farm, and the cosmetologists considered what technologies
could fit into their salon practices. Therefore, another way to
support cultural experts’ programming knowledge is to not
only introduce computing through relevant content (e.g.,
pH) but also then support explorations of how that knowledge
can be used in their own practices. There has been increased
interest among CRC researchers to not only support education
but also wealth generation in the local economy (e.g., Eglash
et al., 2020b; Robinson et al., 2020). This type of mutually
beneficial multi-directionality—where technologies and com-
puting education work in service of both traditional academic
knowledge and local sources of wealth generation (e.g., a
braiding shop, hair salon, urban farm, artisan textile stu-
dio)—is worthy of more research.

Limitations

The logic bug that we purposefully placed within the pH sen-
sor code was relatively simple and could be fixed without
changing any syntax or having more general knowledge of
programming. This was largely because we had assumed that
most of the workshop participants would be non-program-
mers—many of the cultural experts we work with are—and
we wanted them to be able to fix the bug with their knowledge
of pH. While our research provides a proof of concept, we are

limited in our ability to draw stronger conclusions about if our
CRD method would work with more advanced problems. For
example, maybe the output behavior only includes a print of
“high” for the whole pH scale; indicating the need to add
another case for “low,” if not “mid” as well. We were also
limited in our sample size and group make-ups. We could
have made stronger conclusions about the length of time it
took groups with novices to fix code if we could have had
groups consisting of only novice programmers.

Future Work

While our study provides a proof of concept for CRD, whether
this method could be used for sustained engagement with code
is hard to tell. What would a CRD activity look like when
designed for novice programmers or expert programmers?
Furthermore, what does CRD look like in professional set-
tings? For example, members of the Culturally Situated
Design Tool research team—who design programming envi-
ronments to explore the mathematics embedded in Indigenous
and vernacular designs (Eglash et al., 2006; Babbitt et al.,
2012; Bennett, 2016)—must often make negotiations between
the fidelity of cultural designs and the constraints of the soft-
ware or hardware that they are using to simulate and represent
the designs (Lachney, 2017a). What types of CRD practices
might these technologists engage in with cultural experts?
Future work might, therefore, not only consider CRD as an
educational method for supporting broadening participation
efforts, but also a method for working with artisans and other
cultural experts in the design of technologies that represent
their knowledges; in other words, CRD might be a domain-
specific form of computational thinking and problem solving
(Lachney et al., in press).

Conclusion

Broadening the participation of underrepresented, minoritized
youth in CS should not be done by schools alone. Indeed,
multiple teams of researchers and educators have made the
case that “it takes a village” to support equitable CS education
(Ryoo et al., 2015; Lachney et al., 2021a). To take this call
seriously, we have been exploring multi-directional strategies
for broadening participation, which do not only include en-
rolling traditional school employees and staff in CS education
but also local people with unique cultural and community
expertise who shape young people’s lives and experiences
out-of-school. Doing so may support local cultural experts’
knowledge of CS and diffuse CS ideas across culturally mean-
ingful locations (Lachney et al., 2019).

However, many of the cultural experts who we have
worked with are non-programmers. Therefore, we have
sought to introduce CRD as a method for supporting non-

. @ Springer



TechTrends

programmers’ early and meaningful engagement with code. In
providing a proof of concept for CRD, we found that it gen-
erally supported positive attitudes toward technology among
workshop participants and helped them connect technology to
their own contexts. We also found that supporting deeper
engagement with code for non-programmers may be helped
by pairing them up with novice programmers. While this pa-
per provided a relatively simple debugging challenge, future
work can explore if CRD might also be appropriate for the
education of novices and in supporting technologists’ more
nuanced engagement with code and culture.

Acknowledgements We would like to thank Science + Society @ State
and the John and Lucy Bates-Byers Educational Technology Endowment
for their support of this work.

Declarations

Ethical Approval All procedures in this study that involved human sub-
ject research were approved by Michigan State University’s Institutional
Review Board and conducted in accordance with the 1964 Helsinki dec-
laration and its later amendments or comparable standards.

Informed Consent Informed consent was obtained from every individ-
ual who participated in this study.

Conflict of Interest The authors declare no conflicts of interest.

References

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005, June). An analysis
of patterns of debugging among novice computer science students.
In proceedings of the 10th annual SIGCSE conference on innova-
tion and technology in computer science education (pp. 84-88).

Ashcraft, C., Eger, E. K., & Scott, K. A. (2017). Becoming technosocial
change agents: Intersectionality and culturally responsive peda-
gogies as vital resources for increasing girls’ participation in com-
puting. Anthropology & Education Quarterly, 48(3), 233-251.

Benjamin, R. (2019). Race after technology: Abolitionist tools for the new
Jim code. John Wiley & Sons.

Babbitt, B., Lyles, D., & Eglash, R. (2012). From Ethnomathematics to
Ethnocomputing: Indigenous algorithms in Traditional Context &
Contemporary Simulation. In S. Mukhopadhyay & W-M. Roth
(Eds)., Alternative forms of knowing (in) mathematics (pp. 205—
219). Brill Sense.

Bennett, A. G. (2016). Ethnocomputational creativity in STEAM educa-
tion: A cultural framework for generative justice. Teknokultura,
13(2), 587-612. https://doi.org/10.5209/rev_ TEKN.2016.v13.n2.
52843.

Brinkmann, S., & Kvale, S. (2015). Interviews: Learning the craft of

qualitative research interviewing (third edition / Svend
Brinkmann, Steinar Kvale). Thousand Oaks, CA: Sage.

Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computa-
tional thinking: A historical perspective. TechTrends, 64(1), 29-36.

Chmiel, R., & Loui, M. C. (2004). Debugging: From novice to expert.
ACM SIGCSE Bulletin, 36(1), 17-21.

Eglash, R., Babbitt, W., Bennett, A., Bennett, K., Callahan, B., Davis, J.,
etal. (2017). Culturally situated design tools: Generative justice as a

@ Springer

foundation for STEM diversity. In P. Tripathi & Y. Rankin (Eds.),
Moving students of color from consumers to producers of
technology (pp. 132—151). IGI Global.

Eglash, R., Gilbert, J. E., & Foster, E. (2013a). Toward culturally respon-
sive computing education. Communications of the ACM, 56(7), 33.
https://doi.org/10.1145/2483852.2483864.

Eglash, R., Gilbert, J. E., Taylor, V., & Geier, S. R. (2013b). Culturally
responsive computing in urban, after-school contexts: Two ap-
proaches. Urban Education, 48(5), 629-656.

Eglash, R., Lachney, M., Babbitt, W., Bennett, A., Reinhardt, M., &
Davis, J. (2020a). Decolonizing education with Anishinaabe arcs:
Generative STEM as a path to indigenous futurity. Educational
Technology Research and Development, 68(3), 1569-1593.

Eglash, R., Bennett, A., O'donnell, C., Jennings, S., & Cintorino, M.
(2006). Culturally situated design tools: Ethnocomputing from field
site to classroom. American anthropologist, 108(2), 347-362.

Eglash, R., Robert, L., Bennett, A., Robinson, K. P., Lachney, M., &
Babbitt, W. (2020b). Automation for the artisanal economy:
Enhancing the economic and environmental sustainability of
crafting professions with human-machine collaboration. A/ &
SOCIETY, 1-15.

Emdin, C. (2016). For White Folks Who Teach in the Hood... and the Rest
of Y'all Too: Reality Pedagogy and Urban Education. Beacon Press.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B.,
Thomas, L., & Zander, C. (2008). Debugging: Finding, fixing and
flailing, a multi-institutional study of novice debuggers. Computer
Science Education, 18(2), 93-116.

Gay, G. (2018). Culturally responsive teaching: Theory, research, and
practice. Teachers College Press.

Geniusz, W. M. (2009). Our knowledge is not primitive: Decolonizing
botanical Anishinaabe teachings. Syracuse University Press.

Griffin, J. M. (2016). Learning by taking apart: deconstructing code by
reading, tracing, and debugging. In Proceedings of the 17th Annual
Conference on Information Technology Education (pp. 148—153).

Griffin, J., Kaplan, E., & Burke, Q. (2012). Debug'ems and other decon-
struction kits for STEM learning. In IEEE 2nd integrated STEM
education conference (pp. 1-4). IEEE.

Gross, P., & Kelleher, C. (2010a). Non-programmers identifying func-
tionality in unfamiliar code: Strategies and barriers. Journal of
Visual Languages & Computing, 21(5), 263-276.

Gross, P., & Kelleher, C. (2010b). Toward transforming freely available
source code into usable learning materials for end-users. In
Evaluation and usability of programming languages and tools
(pp. 1-6).

Gross, P., Yang, J., & Kelleher, C. (2011a, May). Dinah: An interface to
assist non-programmers with selecting program code causing graph-
ical output. In proceedings of the SIGCHI conference on human
factors in computing systems (pp. 3397-3400).

Gross, P., Kelleher, C., & Yang, J. (2011b, September). An investigation
of non-programmers' performance with tools to support output lo-
calization. In 2011 IEEE symposium on visual languages and
human-centric computing (VL/HCC) (pp. 55-58). IEEE.

Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014a).
A crafts-oriented approach to computing in high school: Introducing
computational concepts, practices, and perspectives with electronic
textiles. ACM Transactions on Computing Education (TOCE),
14(1), 1-20.

Kafai, Y., Searle, K., Martinez, & Brayboy, B. (2014b). Ethnocomputing
with electronic textiles: Culturally responsive open design to broad-
en participation in computing in American Indian youth and com-
munities. In proceedings of the 45th ACM technical symposium on
computer science education (pp. 241-246). ACM. https://doi.org/
10.1145/2538862.2538903.

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-
location strategies. Human-Computer Interaction, 3(4), 351-399.


https://doi.org/10.5209/rev_TEKN.2016.v13.n2.52843
https://doi.org/10.5209/rev_TEKN.2016.v13.n2.52843
https://doi.org/10.1145/2483852.2483864
https://doi.org/10.1145/2538862.2538903
https://doi.org/10.1145/2538862.2538903

TechTrends

Lachney, M. (2017a). Culturally responsive computing as brokerage:
Toward asset building with education-based social movements.
Learning, Media and Technology, 42(4), 420—439. https://doi.org/
10.1080/17439884.2016.1211679.

Lachney, M. (2017b). Computational communities: African-American
cultural capital in computer science education. Computer Science
Education, 27(3-4), 175-196. https://doi.org/10.1080/08993408.
2018.1429062.

Lachney, M., Babbitt, W., Bennett, A., & Eglash, R. (2019). Generative
computing: African-American cosmetology as a link between com-
puting education and community wealth. Interactive Learning
Environments, 1-21. https://doi.org/10.1080/10494820.2019.
1636087.

Lachney, M., Babbitt, W., Bennett, A., & Eglash, R. (2020). “A voice to
talk about it”: Cosmetologists as STEM experts in educational tech-
nology design and implementation. European Journal of Open,
Distance and E-Learning, 22(2), 41-55. https://doi.org/10.2478/
eurodl-2019-0009.

Lachney, M., Bennett, A. G., Eglash, R., Yadav, A., & Moudgalya, S.
(2021a). Teaching in an open village: A case study on culturally
responsive computing in compulsory education. Computer Science
Education, 1-27. https://doi.org/10.1080/08993408.2021.1874228.

Lachney, M., Eglash, R., Bennett, A., Babbitt, W., Foy, L., Drazin, M., &
Rich, K. M. (2021b). pH empowered: Community participation in
culturally responsive computing education (pp. 1-22). Learning.
https://doi.org/10.1080/17439884.2021.1891421.

Lachney, M., Green, B., Allen, M. C., & Foy, L. (in press).
Ethnocomputing and computational thinking. In A. Yadav & U.
Dalvad Berthelsen (Eds.), Computational thinking in education: A
pedagogical perspective. Routledge.

Lachney, M., & Yadav, A. (2020). Computing and community in formal
education. Communications of the ACM, 63(3), 18-21.

Ladson-Billings, G. (1995). Toward a theory of culturally relevant peda-
gogy. American Educational Research Journal, 32(3), 465-491.
https://doi.org/10.3102/00028312032003465.

Latour, B., & Woolgar, S. (1979). Laboratory life: The construction of
scientific facts. Princeton University Press.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm,
M., etal. (2004). A multi-national study of reading and tracing skills
in novice programmers. ACM SIGCSE Bulletin, 36(4), 119-150.

Margolis, J., Estrella, R., Goode, J., Holme, J., & Nao, K. (2008). Stuck in
the shallow end: Race, education, and computing. MIT Press.

McGee, E. O. (2020). Black, Brown. How Racialized STEM Education
Stifles.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B.,
Thomas, L., & Zander, C. (2008). Debugging: A review of the
literature from an educational perspective. Computer Science
Education, 18(2), 67-92. https://doi.org/10.1080/
0899340080211458]1.

Noble, S. U. (2018). Algorithms of oppression: How search engines
reinforce racism. NYU Press.

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful
ideas. Basic books.

Papert, S. A. (1993). The children's machine: Rethinking school in the
age of the computer. Basic Books.

Paris, D. (2012). Culturally sustaining pedagogy: A needed change in
stance, terminology, and practice. Educational Researcher, 41(3),
93-97.

Richards, B. (2000). Bugs as features: Teaching network protocols
through debugging. In proceedings of the thirty-first SIGCSE tech-
nical symposium on computer science education (pp. 256-259).

Robinson, K. P., Eglash, R., Bennett, A., Nandakumar, S., & Robert, L.
(2020). Authente-Kente: enabling authentication for artisanal econ-
omies with deep learning. A/ & SOCIETY, 1-11.

Rogalski, J., & Samurgay, R. (1990). Acquisition of programming knowl-
edge and skills. In Psychology of programming (pp. 157-174).
Academic press.

Ryoo, J., Goode, J., & Margolis, J. (2015). It takes a village: Supporting
inquiry-and equity-oriented computer science pedagogy through a
professional learning community. Computer Science Education,
25(4), 351-370.

Saldafia, J. (2016). The coding manual for qualitative researchers (3rd
ed.). Sage.

Scott, K. A., Sheridan, K. M., & Clark, K. (2015). Culturally responsive
computing: A theory revisited. Learning, Media and Technology,
40(4), 412-436.

Scott, K. A., & White, M. A. (2013). COMPUGIRLS’ standpoint:
Culturally responsive computing and its effect on girls of color.
Urban Education, 48(5), 657-681.

Searle, K. A., & Kafai, Y. B. (2015). Boys' needlework: Understanding
gendered and indigenous perspectives on computing and crafting
with electronic textiles. In /CER (pp. 31-39).

Searle, K. A., Litts, B. K., & Kafai, Y. B. (2018). Debugging open-ended
designs: High school students’ perceptions of failure and success in
an electronic textiles design activity. Thinking Skills and Creativity,
30, 125-134.

Shargabi, A., Aljunid, S. A., Annamalai, M., Shuhidan, S. M., & Zin, A.
M. (2015). Tasks that can improve novices' program comprehen-
sion. In 2015 IEEE conference on e-learning, e-management and e-
services (IC3e) (pp. 32-37). IEEE.

Shen, J., Chen, G., Barth-Cohen, L., Jiang, S., & Eltoukhy, M. (2020).
Connecting computational thinking in everyday reasoning and pro-
gramming for elementary school students. Journal of Research on
Technology in Education, 1-21.

Spring, J. (2016). Deculturalization and the struggle for equality: A brief
history of the education of dominated cultures in the United States.
Routledge.

Tenenberg, J. (2019). Qualitative methods for computing education. In S.
A. Fincher & A. V. Robins (Eds.), The Cambridge handbook of
computing education research. Cambridge University Press.

Traweek, S. (1988). Beamtimes and lifetimes: The world of high energy
physicists. Harvard University Press.

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and
voices within the computer culture. Signs: Journal of Women in
Culture and Society, 16(1), 128—157.

United States Census Bureau (2010). United States Census Bureau.
Accessed Dec. 28th 2020, https://www.census.gov/

Vithal, R., & Skovsmose, O. (1997). The end of innocence: a critique
of'ethnomathematics’. Educational Studies in Mathematics, 34(2),
131-157.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking
for all: Pedagogical approaches to embedding 21st century problem
solving in K-12 classrooms. TechTrends, 60(6), 565-568.

Zuboft, S. (2019). The age of surveillance capitalism: The fight for a
human future at the new frontier of power. Profile Books.

Zweben, S. B., & Bizot. (2020). 2019 Taulbee survey. Computing
Research News, 32(5), 3-63.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Michael Lachney is an Assistant Professor at Michigan State University
in the Educational Psychology and Educational Technology program. His
research is on the cultural politics of educational technology design and
implementation in both school and out-of-school settings.

Aman Yadav is a Professor of Educational Psychology and Educational
Technology at Michigan State University. His research and teaching focus

. @ Springer


https://doi.org/10.1080/17439884.2016.1211679
https://doi.org/10.1080/17439884.2016.1211679
https://doi.org/10.1080/08993408.2018.1429062
https://doi.org/10.1080/08993408.2018.1429062
https://doi.org/10.1080/10494820.2019.1636087
https://doi.org/10.1080/10494820.2019.1636087
https://doi.org/10.2478/eurodl-2019-0009
https://doi.org/10.2478/eurodl-2019-0009
https://doi.org/10.1080/08993408.2021.1874228
https://doi.org/10.1080/17439884.2021.1891421
https://doi.org/10.3102/00028312032003465
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993400802114581
https://www.census.gov/

TechTrends

on improving student experiences and outcomes in computer science and
engineering at K-16 levels.

Matt Drazin is an Educational Psychology and Educational Technology
doctoral student at Michigan State University. His research is on how

youth use methods of critical investigation within makerspaces.

Madison C. Allen is a Ph.D. student in the Educational Psychology and
Educational Technology program at Michigan State University.

@ Springer

Madison’s doctoral research focuses on the intersections of culture, tech-
nology, and education. Her scholarship examines these intersections
through theories of culturally responsive computing and critical theories
of education.

William Babbitt is a Research Associate at the Rensselaer Polytechnic
Institute in the Science and Technology Studies Department. His research
focuses on educational technology design and implementation strategies
to improve outcomes in computer science education.



	Culturally Responsive Debugging: a Method to Support Cultural Experts’ Early Engagement with Code
	Abstract
	Introduction
	Literature Review
	Context and Methods
	Background
	Workshop and Participants
	Research Questions
	Data Collection and Analysis

	Findings
	Culturally Responsive Debugging in Action
	Post-Workshop Reflections on Technology

	Discussion
	How Do we Support Cultural Experts’ Knowledge of Programming in Ways that Are Motivated by and Affirming of their Cultural Expertise?
	How Do Cultural Experts and Educators Who Work with them (e.�g., Teachers and Librarians) Solve Computational Problems that Make Explicit Connections between Computing and Cultural Expertise?
	How Do Cultural Experts and Educators Who Work with them Talk about Technology after Experiencing a CRC Workshop that Includes a Culturally Responsive Debugging Activity?
	Limitations
	Future Work

	Conclusion
	References


