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ABSTRACT

Technological advancement goes hand in hand with economic ad-
vancement, meaning applied industries like manufacturing, medicine,
and retail are set to leverage new practices like human-autonomy
teams. These human-autonomy teams call for deep integration be-
tween artificial intelligence and the human workers that make up a
majority of the workforce. This paper identifies the core principles
of the human-autonomy teaming literature relevant to the integra-
tion of human-autonomy teams in applied contexts and research
due to this large scale implementation of human-autonomy teams.
A framework is built and defined from these fundamental concepts,
with specific examples of its use in applied contexts and the in-
teractions between various components of the framework. This
framework can be utilized by practitioners of human-autonomy
teams, allowing them to make informed decisions regarding the
integration and training of human-autonomy teams.
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1 INTRODUCTION

Rapid advancements in the Internet of Things (IoT), big data (data
visualization & sensemaking), and artificial intelligence (AI) are
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encouraging the advancement of several applied industries like
manufacturing, health care, and consumer services [43]. This shift
is, in part, enabled and inspired by advances in Al technology and its
democratization [1, 36]. As a consequence of this advancement, Al
is rapidly progressing towards playing a prominent role in applied
settings, utilizing other data-driven technologies to drive a safe,
productive, and situationally aware system no matter the industry.
Consequentially, there have been many calls to produce roadmaps,
models, frameworks, and implementations of Al for industry [18],
which has been met with a variety of different technically focused
models [22, 33]. However, a specific gap remains in developing a
theoretical model for integrating human-autonomy teams (HAT)
and their Al-powered teammates into applied industry settings.
This model is necessary as humans working alongside autonomous
agents face many potential pitfalls if those HATs are not correctly
integrated into the environment. The proposed model aims to help
bridge the gap between current human teams and HATs, which
share several vital differences.

Typical human teams are defined by two or more human mem-
bers working together towards a common goal interdependently
[35], while human-autonomy teams (HATs) have significant differ-
ences in team composition given the inclusion of an autonomous
agent. That autonomous agent should not be confused with a purely
automated agent, which does not qualify as an autonomous agent.
Whenever using the term autonomous agent, the paper is referring
to the following definition of autonomy. The autonomous agents
that makeup HATs are significantly different from those agents
that make up human-automation teams. Autonomous agents act
intelligently deciding their own courses of action through self-
government and pro-activity [8, 26]. Purely automated are defined
by their inability to independently partake in activities that benefit
the team without being pre-programmed to do so [30]. In addition
to autonomy requirements, a team does not become a HAT un-
less the autonomous agent is seen as a full member of the team,
performing a unique and distinct role .

These HATSs are going to be utilized in a variety of settings for
several reasons: (1) teams are one of the most common occurrences
in many people’s lives and are utilized to complete tasks in a variety
of contexts [34], (2) advances made in Als abilities [1], and (3) the
efficacy of these human-autonomy teams has been demonstrated
[40]. With such significant driving factors pushing industries to
utilize HATS, it becomes vital for practitioners to make informed
decisions when integrating these HATs in their facilities. This paper
presents a framework for implementing HATs in applied settings
to inform practitioners and users of HATs, complete with applied
examples of the frameworks use, and a discussion of its scalability.


https://doi.org/10.1145/3406499.3415077
https://doi.org/10.1145/3406499.3415077

Session 5A: HAI Model

The current framework addresses a gap in general HAT implemen-
tation caused by AI technology rapidly reaching an appropriate
level of maturity coupled with the democratization of Al devel-
opment resources [1, 36]. These two developments allow HATs
to be deployed in applied settings more than ever before, giving
researchers the ease of access to high-level technology necessary
to efficiently conduct human-Al interaction/teaming experiments
that were simply unavailable before.

One of the leading examples of HATs utilization in applied set-
tings involves Industry 4.0 (I4.0) philosophy, which can potentially
implement hundreds of thousands of HATSs in numerous different
contexts around the world. Such a large-scale integration of Al
and humans coming together as teams necessitates careful con-
sideration of how to go about designing and implementing these
special teams. This paper delivers a framework for practitioners
and researchers that wish to integrate autonomous agents along-
side humans to create HATs in the workplace or within the lab.
This framework can help ensure efficient, safe, and productive in-
tegration of HATs throughout the spectrum of applied settings,
allowing practitioners to consider each facet that impacts human-
autonomy teaming, like transparency, autonomy level, reliability,
and individual differences, and training.

As 14.0 acts as a leading example of applied HATSs, the philos-
ophy is a driving force of the technologies that will allow HATs
to exist in a variety of other settings. Such technologies include:
(1) distributed interconnected devices that create the IoT, (2) the
utilization of Big Data, and (3) the utilization of Al to create more
flexible and adaptable systems [9, 17, 21, 24]. These technologies
are leveraged throughout the 14.0 literature to introduce cloud
manufacturing, cyber-physical systems, and smart factories. Cloud
manufacturing and cyber-physical systems are niche technologies
in advanced manufacturing but are important example use cases
for applied HATSs; however, the two technologies are driven by the
IoT, which plays an important role in applied HATs. The IoT in-
volves connecting each relevant component of the operation to the
internet to monitor it and collect data continuously [24]. That data
is collected and used to visualize and create meaning, otherwise
known as big data, which is utilized to drive things like predictive
maintenance, autonomous agent training, and increased financial
returns [24]. The technologies utilized for 14.0, like Big Data, the
IoT, and Al are the same technologies that will allow for the use of
HATSs in various other applied settings, making 14.0 a valid example
to apply the proposed framework in the context of this paper.

1.1 Framework Development

Conceptual works have been noted as critical contributions to the
vitality of other fields [25], with human-agent interaction (HAI) be-
ing no exception to this assertion, as shown in past papers [19, 20].
That being said, any useful theoretical framework has a basis in
established literature and methodology; thus, the current paper
utilizes the well-regarded methods of David Whetten [41], and
Deborah Maclnnis [25]. Whetten described conceptual contribu-
tions as identifying critical factors relevant to the author’s goal,
defining their relationship with one another, and highlighting the
underlying forces that drive the selection of factors and implied
relationships [41]. MacInnis further described the different types
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of conceptual contributions, whereas the current paper is defined
as an integration. Integration contributions highlight previously
published knowledge and attempt to draw connections between
the different phenomena to create a novel higher-order conceptu-
alization [25]. The current paper follows these methodologies and
past theoretical HAI papers [19, 20], by identifying critical concepts
relevant to applied HATSs, identifying relationships, and creating a
novel framework.

2 HUMAN-AUTONOMY TEAMS PLACE IN
APPLIED SETTINGS

Using I4.0 as an example industry, it is clear that autonomous agents
powered by Al are pivotal to the implementation of various aspects
of 14.0, and that AI will be brushing shoulders with a variety of
human teammates. Theoretical examples of HATs in applied 14.0
contexts involve humans and autonomous agents working together
to monitor, control, and make decisions for the manufacturing fa-
cility. For example, an autonomous agent tasked with ensuring the
facility does not suffer any significant downtime through predic-
tive maintenance. This autonomous agent would work with other
agents and other humans to collectively monitor and preemptively
make repairs to the facility before they become significant problems
[11]. The autonomous agent works by making decisions based upon
data coming from the interconnected devices (IoT), while the hu-
man makes decisions based on intuition, experience, and physical
awareness. Each tackles the problem in different but complemen-
tary ways, as the autonomous agent and human come together to
produce results more significant than each would alone. Interac-
tions like these are necessary to achieve the global goal of the 14.0
environment, as fruitful cooperation is required between all team
members, which includes humans and autonomous agents alike
[32].

In more general research studies that analyze HATs in applied
settings, various contexts have been used. Settings involving air
traffic control, unmanned aerial vehicle (UAV) operation, and re-
source allocation for emergency response [26, 37, 39]. Each teaming
context that the autonomous agent was utilized differs from the
last, highlighting the generalizability that HATs possess. Addition-
ally, it has been shown that properly implemented HATSs result
in better performance than autonomy working alone [43]. These
improvements are seen as humans, and autonomous agents are
coming together to increase essential business outcomes in many
industries like auto manufacturing, casino management, and dis-
ease prediction [43]. With humans and autonomous agents teaming
up successfully in such varied contexts, it is clear that the addition
of HATs in applied settings truly complements the human workers
and business itself in a meaningful manner.

3 FRAMEWORK FOR INTEGRATING
HUMAN-AUTONOMOUS AGENT TEAMS
INTO APPLIED CONTEXTS

The framework is shown in Figure 1 and identifies the crucial and
relevant factors that relate to HAT integration in applied settings.
This framework can also serve as a guide to inform proper method-
ologies in human-Al interaction/teaming experiments. Each factor
is detailed and related to specific applied HAT use cases and other
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factors within the framework. At a high level, the framework in-
teracts with other components in two distinct domains and one
outcome factor (green). The first domain of factors are human-
specific factors (dark grey), and the second is autonomous agent-
specific factors (light grey) with the bi-directional transparency
facet (light blue) acting as a bridge between the two teammate
types. Additionally, Figure 2 identifies the order in which each fac-
tor is implemented and or assessed by applied HAT practitioners,
while Figure 1 is meant to convey information and relationships.
With these facets identified and related to one another, the frame-
work can come together as a generalizable tool to inform HAT
integration in various applied settings.

3.1 Effects of Individual Differences

Individual differences refer to the variability of human characteris-
tics across individuals, such as culture, working memory, and past
experiences. A range of effects for individual differences have been
noted in the literature involving things like personality, culture, and
prior experiences. For example, if a virtual autonomous agent has
similar personality traits to the human members of the HAT, the
human teammates will benefit from an increased ability to develop
shared mental models [14]. Human team members’ general cultural
viewpoints also appear to affect trust in the autonomous agent, with
horizontal collectivism and individualism being viewpoints that
generally lend themselves to higher trust in autonomous systems
[15]. Finally, prior experiences affect individuals who have had
positive prior experiences with autonomous systems saw higher
levels of trust [12, 13], and those with prior video game experience
benefit from enhanced performance in tasks that involve spatial
ability [3].

The consideration of individual differences comes into play when
determining how and where to best implement the autonomous
agents within the facility and training individuals for HATs. For
example, if employees have had a positive experience with auto-
mated systems in the facility in the past, the prior experience will
likely result in increased trust and a more efficient transition. Addi-
tionally, the effect seen from prior experience playing video games
can be implemented in training for HATs in 14.0 settings. Many
HATs will be working in spatially demanding tasks, which means
increased performance can be produced if training is implemented
that simulates that spatial component in a virtual environment. Ad-
ditionally, the autonomous agents used in training will work with
many individuals human teammates, exposing it to any number
of individual differences. This autonomous agent can be specially
trained to identify individual differences in team members and
adapt their policy to accommodate the effects of those differences
as outlined previously.

In research settings, accounting for individual differences should
focus on controlling for the critical individual differences high-
lighted in this review. Individual differences regarding past experi-
ences that affect spatial ability (past video game experience) and
positive or negative experiences with past autonomous agents can
easily be collected from a pre-task survey and controlled for in
an ANCOVA if necessary. Other individual differences related to
culture like nationality may be more challenging to assess. This
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difficulty is because culturalistic viewpoints cannot readily be as-
sumed based on nationality, and the measures tend to take more
time, requiring more extensive planning to determine if the effects
of the individual difference will impact the results of the study.

3.2 Training

An essential component of integrating autonomous agents into
14.0 facilities will be training employees to work with autonomous
agents and vice versa. As would be expected, training with au-
tonomous agents before performing a team task has positive results
[7]. For example, a specific type of training known as cross-training
displays a great deal of success in HATs [28]. This type of training
has the human and autonomous agent switch roles in order to learn
more about the other’s job (if they are complementary). A variety
of benefits were elicited through this training, such as performance,
trust, and a faster learning rate for the autonomous agent [28]. A
reproducible model for this type of human-autonomous agent team
training has been developed and reviewed with these positive re-
sults and can be refactored to other contexts [29]. While training
will vary widely from industry to industry, 14.0 provides a generaliz-
able example for training with HATs known as "learning factories."
These learning factories are meant to simulate future 14.0 factories
and extend the skills currently held by employees [24]. The type of
training should focus on cross-training if possible; however, merely
exposing the user to the autonomous agent in a simulated work
setting and making it clear how the autonomous agent is reaching
its decisions should suffice. Training should also occur before any
meaningful work is to be conducted, or if the user is working with
an autonomous agent they have never worked with before.

As for human-Al interaction/teaming researchers, the primary
point of training should be to familiarize the participant with the Al,
giving them foundational transparency into how the autonomous
agent makes decisions. This assertion applies to all research exper-
iments that do not have training as a manipulated variable. The
need to train participants (users) with the autonomous agent is
necessary as past empirical work, and current industry operators
have found it fundamental, making the application of any research
results without training dubious.

Training is also heavily integrated with other core components
of the framework, such as transparency, individual differences, and
autonomy levels. Training can be utilized to complement individual
differences by exposing human team members to well-designed
autonomous agents, giving them a positive prior experience with
an autonomous agent [12, 13], coupled with spatially based virtual
training can give improved performance and trust in HATs [3].
Training is also a significant determining factor of transparency
levels for the autonomous agent in HATS, as the training process fa-
miliarizes the human team member about its capabilities, functions,
and tendencies. Finally, autonomous agents can benefit from proper
training in these learning factories too [28]. The cross-training
method enables autonomous agents to learn at rates faster and more
efficient than those achievable using traditional learning models
[28, 29]. Finally, the cross-training is a vital part of the framework,
providing each member of the team with knowledge and expecta-
tions for each role. This training makes the "mental model" held
by the autonomous agent much more accurate. This improvement
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Figure 1: A conceptual framework for the design & implementation of autonomous agents in 14.0 applications

is because the autonomous agent’s mental model becomes more
global, containing knowledge about the entire team rather than
its singular task. This training implementation is the driving force
behind the bi-directional transparency concept in Figure 1, as train-
ing is capable of teaching the agent what actions and decisions to
expect from the human and vice versa.

3.3 Bi-Directional Transparency

Bi-directional transparency is similar to bi-directional communi-
cation in HATS, as each concept shares the goal of communicat-
ing intent, current beliefs, goals, and potential obstacles [38]. The
primary factor distinguishing the two concepts is bi-directional
communications reliance on verbal or textual interaction, while the
aforementioned bi-directional transparency does not rely on verbal
or textual communication. Bi-directional transparency instead is
implemented using various training methodologies, user interface
design features, general inputs from the human, and general inputs
from the autonomous agent. Bi-directional transparency is more
applicable than bi-directional communication, given the current
shortcomings of natural language processing (NLP) [16]. However,
training methodologies like cross-training (see [28]), contribute to
bi-directional transparency by allowing the agent to at least under-
stand their team and potentially act in other roles if necessary.
The construct of bi-directional transparency asks that both the
human and autonomous agent are transparent to the other. Trans-
parency of the autonomous agent to the human should consist of
the typical modalities like providing explanations of its actions and
goals [23]. The autonomous agent should also be conveying consis-
tent updates on intentions as any given situation or task progresses.
Conversely, the human should provide similar information to the
agent to enhance their transparency. This transparency could occur
through physiological sensor readouts and generic inputs tied to
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context, given throughout the task execution. Psychophysiological
sensor readouts have been suggested for use in adaptive automa-
tion in the past [2] and can be implemented here for enhancing
transparency into the human decision-making process.

Such information would give autonomous agents enhanced visi-
bility into things like stress levels and workload [2], which, when
coupled with location information from GPS sensors, can give the
autonomous agent information regarding where the human is in
the task process and how well they are doing. Parasuramann and
colleagues have already theorized such a feature in the form of
adaptive automation. Adaptive automation features dynamically
changing levels of independence and task load for the autonomous
agent dependent on the human operator’s psychophysiological
state ([2]). The more stress and or workload the human operator
is experiencing, the more ancillary work the autonomous agent
would take, allowing the human operator to focus on their primary
task. This psychophysiological information is then coupled with
generic inputs from the human teammate that have the same oper-
ational goal as the updates from the agent about their respective
decision-making process. These outputs come together to serve the
function of explaining deviations from more expected actions based
on the cross-training received by each team member. Providing
these updates and information ensures the team mental model is
updated rationally and with the necessary information behind it.
Transparency is also highly beneficial for the human teammates,
as outlined in Chen and colleague’s 2018 work [6], and detailed
further in the subsequent section on transparency.

Implementing bi-directional transparency for researchers in an
experimental setting depends upon the unique circumstances of
the experiment in question. For example, the human should have a
transparent agent from prior training and interface elements, like
those seen in Mercado and colleague’s study, which implemented
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Figure 2: An order of the implementation & assessment of the relevant factors of human-autonomy teaming as outlined by

the conceptual framework.

transparent icons to convey the certainty of the autonomous agent’s
decision making ([27]). The transparency for the agent will look
much different depending on the experiment and could include
things like the participant’s current location (in a game), their
heart rate and galvanic skin response (for stress) ([2]), virtually any
information about the human teammate(s) that the autonomous
agent may find useful in decision making. It should also be noted
that for the human’s transparency to take effect, the information
must be included in the training cycle for the Al allowing it to
learn to use it in its decision-making process. This bi-directional
transparency in experimental settings would be novel to the human-
Al interaction/teaming literature in terms of its effects, as it has
mostly focused on bi-directional communication up to this point
[38]. However, results should show similar effects to bi-directional
communication, which include enhancing the team’s awareness,
shared understanding, and making the system less brittle and more
generalizable [38]. However, such effects could be gained without
the effort and hassle of developing a true shared language between
humans and AI with NLP but with physical information about the
human, interface design decisions, and training.

3.4 Autonomy Transparency

Autonomous agent transparency is the knowledge the human in
the human-automation team has about the agent, such as how ac-
curate and informed the human is on the agent’s ability, intent,
decision-making process, and situational parameters [23]. Auton-
omy transparency extends this and encompasses what information
an operator wants or needs under the various work and situational
contexts [23]. Literature shows that transparency, in general, can
produce positive results in outcomes such as performance, trust,
trust calibration, perceived usability, and agreement [5, 27, 44]. Ad-
ditionally, these favorable results to the human team members were
yielded without penalty to their workload or response times [27].
That being said, transparency is still prone to induce detrimental
effects on human team members in specific contexts. There is evi-
dence that higher levels of transparency produce adverse outcomes
on human team members, indicating potential diminishing returns
or negative returns at extremely high levels [44].

HAT practitioners must take autonomous agent transparency
seriously when implementing their HATS, as the construct interacts
with many of the other constructs presented in the current model.
Practitioners must engender appropriate levels of transparency in
their HATs, which has much to do with the construct of training
and how it is carried out. Training is a primary means to manipulate
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transparency, especially when coupled with user interface design
features. The connection between training and transparency and
its relationship with reliability, discussed in the subsequent section,
makes transparency a critical factor affecting HAT outcomes. Thus,
to ensure practitioners are reaping the positive benefits of trans-
parency, the information overload that occurs at the highest levels
of transparency must be avoided at all costs. Human teammates
must know as much about the autonomous agent and its operation
under a variety of contexts as relevant to their shared goal; anything
more is just contributing to information overload and is unneces-
sary. Autonomous agent transparency is primarily created through
the training and knowledge that human team members receive
about their autonomous teammate and the subsequent hands-on
training with the autonomous teammate. However, autonomous
agents continuously learn and can change their behavior, meaning
human teammates’ mental models may become inaccurate over
time. Accounting for changes in the autonomous agent’s model
can be done by implementing the bi-directional transparency seen
in the framework (Figure 1). This bi-directional transparency is
necessary as it gives insight into the decision-making process of
the autonomous agent for the human, but the autonomous agent is
also given insight into the human’s decisions. This level of informa-
tion sharing offers the benefits of transparency to the human and
the agent, enhancing the team’s ability to understand and operate
with one another. This bi-directional transparency is brought on
by various factors that include training, task-relevant inputs from
the human, and task-relevant inputs from the autonomous agent,
each covered in detail in its respective section.

Researchers in human-Al interaction/teaming should always en-
sure that transparency is installed into their experimental settings
unless it is a variable of interest. At the minimum level, researchers
should implement a training period described in the previous train-
ing subsection to ensure humans understand how to work with the
agent and get an idea of how it’s decisions are made. Bi-directional
transparency should also be implemented if possible in the au-
tonomous agent’s training, offering simulated human inputs.

3.5 Autonomy Reliability

The matter of autonomous agent reliability is straightforward, as
research has found, the more reliable the autonomous agent, the
more positive every outcome examined will be [4, 10]. In this re-
search, levels of reliability purely involved the error rate of the
autonomous agent. A similar metric also allows for autonomous
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agent transparency to be conveyed to the human teammate by dis-
playing the agent’s confidence in their decision. However, what
makes autonomous agent reliability a critical facet to integrate
within this framework is its interaction with autonomous agent
transparency. Research has shown that autonomous agents with a
reliability level below 70% produce such negative results that not
implementing any autonomous agent is better [42]. However, if the
autonomous agent’s reliability is well known and communicated
beforehand to the humans (i.e., proper transparency), the human
team members will calibrate their trust accordingly. This calibration
in trust then offsets these adverse outcomes to produce positive re-
sults despite the lower reliability of the autonomous agent [10, 27].
Thus, this effect allows practitioners to implement HATs within
their facilities to make better decisions on whether or not to im-
plement specific autonomous agents based on their reliability. If
an autonomous agent has a reliability of 60%, but there are time
and resources for proper training of its human teammates, then the
benefits of that autonomous agent can still be realized. However,
if there is not enough time or resources to train the human team
members, the call can be made to keep that autonomous agent in a
shadowing role until it can adapt its model and achieve a higher
level of reliability. Finally, for research-oriented HATSs, autonomy
reliability should always be as high as possible unless it is a variable
of interest.

3.6 Levels of Autonomy

Levels of autonomy refer to the degree to which an autonomous
agent will make decisions and or take action with or without human
input [31]. These autonomy levels, as operationalized by Parasura-
man and colleagues, consist of ten different levels of automation
[31]. In this scale, an autonomous agent operating at level 10 acts as
a fully autonomous agent that makes each decision without human
input and even ignores humans outright, while a level 1 agent is
manual system operation by a human. Level 6 is where automation
turns into autonomy, and systems begin to exert control over their
own decisions, responding to changing contexts, and showcasing
independent operation. Past research shows that a moderate level
of autonomy produces the best balance in terms of performance
and decreased situational awareness [45]. However, this scale has
since been adapted by O’Neill and colleagues for a review of rel-
evant human-AI teaming literature, which now states that levels
1 through 4 are no-autonomy/manual control, levels 5 and 6 are
partial autonomy, and levels 7 through 10 constitute high autonomy.
However, this modified scale still retains the verbiage describing
each level, just as Parasuraman and colleagues did. For example,
level 5 partial autonomy allows the computer to suggest a decision
to the human, which the human will then accept or deny, while
level 6 autonomy suggests a decision and will execute the decision
unless the human vetos it in a pre-defined amount of time. High
levels of autonomy begin with level 7 and are characterized by the
agent making decisions without any human input at all, while no
autonomy in level 4 and below are generally characterized by the
agent merely making suggestions but never executing.

However, taking the time to choose a level of autonomy that
allows the operator (dyad) and or teammates (triad or more) to
maintain a sense of inclusion and engagement is of the utmost
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importance. Taking this extra time ensures the humans success-
fully remain in the loop and do not suffer from a lack of situational
awareness, task/team complacency, and human error. Such adverse
effects are typically seen at the highest levels of autonomy, indicat-
ing that these autonomy levels are not suited for any HAT scenario.
Autonomous agents with such high levels of autonomy are designed
in ways that inherently make them bad teammates; as previously
mentioned, level 10 autonomy ignores human input outright. Ap-
plied HATs will employ a range of autonomy levels between these
two extremes meaning autonomous agents working with humans
must be designed with a level of autonomy that complements the
context they operate within. For example, a HAT working in 14.0
predictive maintenance operating at level 7 (executes automatically
and informs the human teammate) allows the human to remain
in the loop, ensuring the human can keep their mental model of
the facility accurate while reducing cognitive load compared to
level 6 agent autonomy. This awareness enhances their ability to
predict future faults by experience, enabling the human to utilize
intuition to make suggestions back to the autonomous agent, im-
proving the team as a whole. These various levels have significant
differences between them and play a crucial role in implementing
human-AI teams in practice or research settings. For example, level
7 autonomy informs the human of the decision it has made and
executed, while level 8 informs the human only if they ask. There is
a significant difference between these two, and the specific contexts
where a variety of level 7 works well, a level 8 implementation may
be entirely inappropriate, reduce performance, and possibly even
dangerous.

3.7 Framework Interactions

As a framework, each component is reactive to other components,
shown by the arrows in Figure 1, and briefly addressed in the discus-
sion of each. As the framework is divided into three distinct com-
ponents, the interactions will be outlined accordingly. The human-
specific factors are individual differences and training, grouped
as they focus on the human within the team and are up to the
practitioner to design and implement. For example, individual dif-
ferences can be leveraged by designing proper training techniques
to engender more initial trust in the employees’ eventual HATs,
and this can be done by fostering a positive experience with au-
tonomous agents during any training period. Training is another
human-specific factor of the framework but is highly connected
to autonomy transparency and bi-directional transparency, which
serves as the bridge to the second domain of factors focusing on
the autonomous agent.

The bi-directional transparency component acts as a bridge be-
tween these human-related and autonomous agent related factors.
The training of both the human and the autonomous agent serves
as a critical driver to bi-directional transparency, ensuring an under-
standing of each distinct role within the team. Accomplishing this
training for the autonomous agent can be accomplished through
the autonomous agent’s model training, shown in Schelble and
colleagues 2020 work [37]. In this implementation, an agent was
trained to successfully perform all three roles of a team-based task,
ensuring the autonomous agent knew what to expect from each
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member of the team. However, to further improve upon this train-
ing, human team members must also be trained in as many roles
as possible. Autonomous agent-specific factors, on the other hand,
include the facets of autonomy transparency, reliability, and auton-
omy level. Autonomy reliability is then moderated by autonomy
transparency, where an autonomous agent below 70% reliability
can still be useful if the autonomy is appropriately transparent
to the humans within the team. The level of autonomy that the
autonomous agent takes on is then determined and informed by
its reliability and transparency. Outcomes are then a result of the
successful use of the framework and push a positive feedback loop,
as proper transparency levels from training results in enhanced
shared mental models that contribute to individual differences as
past experiences.

4 CONTEXTUALIZING THE FRAMEWORK
TO APPLIED HUMAN-AUTONOMY TEAMS

This paper identified the core factors that relate to HAT integration
in applied settings. From this, a framework was created that was
supported by the literature, its applications to applied HAT settings
detailed, and interaction between factors outlined. This discussion
then details how the framework can be leveraged in its entirety
for use in applied HAT integration, how its utilization stands to
increase trust in HATs, and how the framework is scalable based
on the growth of applied HAT settings. This discussion allows
the framework to be better understood in its usage and how it
is forward-facing and implements scalability for various contexts
throughout the growing HAT environment.

4.1 Example of Framework Usage for
Enhancing Trust

The framework’s actual benefits are seen from in-depth analysis
and investment of effort and time into using or studying the human-
Al team’s interactions. When the framework’s specific factors are
considered carefully, such as the individual differences of the hu-
man teammates, their training with the autonomous agent, variable
transparency based on autonomous agent reliability, and level of
autonomy, careful planning and manipulation can take these vari-
ous facets and produce a strong, well developed human-AI team.
For example, one of the most basic goals for those implementing
and or designing autonomous agents for HAT is trust, which is an
excellent example factor for the presented framework to maximize.
Starting with individual differences, positive prior experiences with
autonomous systems lead to enhanced trust [12, 13]. These positive
experiences with autonomy can be fostered during training [28],
along with autonomy transparency and bi-directional transparency.
This enhanced transparency engenders increased trust, enhanced
trust calibration, and performance from the team [5, 27, 44], while
also minimizing the effects of lower reliability autonomy [10, 27].
As an additional note, while proper training lends itself to increased
trust and performance in teams that participate in cross-training,
these effects are not limited to this single form of training, as seen
in Cohen & Imada’s 2005 work [7]. Putting all this together allows
practitioners to design and implement their HATSs properly. Here,
the framework’s benefits are highlighted for an applied HAT prac-
titioner seeking to maximize trust in an already existing HAT or
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soon to exist HAT. The relationships between each of the factors are
clearly defined and interact with one another to create a positive
HAT assessment and implementation life cycle.

4.2 Scaling and Extending the Framework

This framework also can adapt and grow based on new advances in
technology. For example, a potential future for autonomy is likely
to include levels of autonomy that are much more specific than
the standard scale used here. As autonomy advances into things
like cars, smart homes, and applied facilities like medicine [40],
this scale will likely be advanced or further adapted in the future.
This framework will be enhanced by such changes as it can be
extended to include general levels of autonomy and potential new
and more specific levels of autonomy. This enhancement would
accommodate small and medium enterprises with fewer resources
for advanced autonomy in addition to encompassing any new and
advanced levels of autonomy for larger enterprises. These adapta-
tions are made by extending and enhancing the concepts within
the framework, integrating new knowledge, and showcasing the
framework’s ability to act dynamically over time. This adaptability
and scalability also applies to extremely context-specific applica-
tions of the framework, which could potentially be seen when
applying it to highly dichotomous manufacturing facilities (vehicle
production facility vs. silicon foundry). One facility may utilize
mostly automation-based agents, while the other strictly utilizes
autonomy-based agents. This difference introduces the potential to
adapt the framework into a hybrid that takes on more aspects that
specifically relate to human-automation teaming than the current
focus on human-autonomy teaming.

5 CONCLUSION

The framework presented in this paper encompasses two decades of
HAT research related to the interests of applied HAT practitioners.
The framework informs those same practitioners on integrating
HATSs in applied settings, providing a meaningful theoretical con-
tribution as HATs are on the cusp of being deployed across an
innumerable number of settings around the world. With this frame-
work, users of HATs can make informed decisions that have the
potential to directly impact outcomes by ensuring HATSs are trained,
deployed, and integrated in such a fashion that enables both the
humans and the autonomous agents to reach their full potential.
As each facet of the framework is backed by specific prior HAT
research, it can engender a variety of benefits. The framework is
capable of targeting a variety of different end goals such as en-
hanced trust through proper training, accurate trust calibration
via appropriate transparency, better performance based on accom-
modating prior experiences in the learning factories, or human
teammates that remain in the loop because their artificial teammate
utilizes the correct level of autonomy. As such, the framework al-
lows practitioners of HATs to make informed decisions about their
implementation that will make it smoother, more productive and
accommodating.
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