
Designing Human-Autonomy Teaming Experiments Through
Reinforcement Learning

Beau Schelble
Human-Centered Computing

Clemson University
821 McMillan Rd, Clemson, SC 29631

bschelb@g.clemson.edu

Lorenzo-Barberis Canonico
Human-Centered Computing

Clemson University
821 McMillan Rd, Clemson, SC 29631

lorenzo@g.clemson.edu

Nathan McNeese
Human-Centered Computing

Clemson University
821 McMillan Rd, Clemson, SC 29631

mcneese@g.clemson.edu

Jack Carroll
Human-Centered Computing

Clemson University
821 McMillan Rd, Clemson, SC 29631

jcarro5@g.clemson.edu

Casey Hird
Human-Centered Computing

Clemson University
821 McMillan Rd, Clemson, SC 29631

crhird@g.clemson.edu

This paper creates and defines a framework for building and implementing human-autonomy teaming
experiments that enable the utilization of modern reinforcement learning models. These models are used to
train artificial agents to then interact alongside humans in a human-autonomy team. The framework was
synthesized from experience gained redesigning a previously known and validated team task simulation
environment known as NeoCITIES. Through this redesign, several important high-level distinctions were
made that regarded both the artificial agent and the task simulation itself. The distinctions within the
framework include gamification, access to high-performance computing, a proper reward function, an
appropriate team task simulation, and customizability. This framework enables researchers to create
experiments that are more usable for the human and more closely resemble real-world human-autonomy
interactions. The framework also allows researchers to create veritable and robust experimental platforms
meant to study human-autonomy teaming for years to come.

INTRODUCTION

Research on human-autonomy teams (HATs) has been on

the rise for the past two decades. Many of the studies conducted
during this time were able to produce valuable results using the
Wizard of Oz (WoZ) methodology, which has a human
simulate the role of the AI in the HAT (Maulsby et al., 1993).
The usage of WoZ continues today as the use of true AI in HAT
research is not a commonplace practice as many studies
continue to positively utilize the WoZ methodology (Chen et
al., 2017; Fu & Zhou, 2020). This trend is a consequence of the
lack of computational power and proper artificial intelligence
(AI) development architectures. However, with the advent of
cloud services for high-performance computing (HPC) and the
release of accessible AI frameworks like TensorFlow and
TensorForce, the development and implementation of custom
AI for localized simulations is readily achievable (Abadi et al.,
2016; Schaarschmidt et al., 2017). With these new tools,
researchers are now able to create custom AI for HAT research,
significantly improving the validity and generalizability of their
results to genuine HATs. This paper creates a framework to
showcase how best to leverage these technologies to create
actual AI team members by using reinforcement learning (RL)
models and creating compliant simulated tasks. The redesign
provides an overview of creating the simulated task and agent,
with the framework being synthesized from that redesign. By
leveraging the technology outlined in this paper, the HAT field
can benefit from enhanced validity, generalizability, and the
potential for newfound interactions.

Team task simulations have long been used for
experiments in the human-human teaming (HHT) literature
(Gupta & Woolley, 2018; Smith-Jentsch, 2007). These
simulations were meant to create a variety of different task
situations and have produced a variety of meaningful results. A
strong example of such a simulation, that has long persisted and
remains scalable to this day is NeoCITIES. Created as an
innovative advancement to Wellens and Ergenr’s original
CITIES task (Wellens & Ergener, 1988), NeoCITIES serves to
provide a simulation for the study of teamwork and decision-
making within a command control, and computer-mediated
communication (C3) environment (McNeese et al., 2005).

HAT literature has historically utilized simulated team
tasks, much like the HHT literature has. Simulated tasks for
HATs have ranged from rearranging boxes around an
environment with a team to going through an entire UAV
mission simulation (Johnson et al., 2009; McNeese et al., 2018).
However, as previously stated, the use of true AI is not common
in much of this HAT simulated task research (Chen et al., 2017;
Fu & Zhou, 2020).

With the technology and framework outlined here in this
paper, researchers can implement true AI into their HAT
experiments. With this change, there is a great deal of potential
for the discovery of new interactions between humans and
artificial agents. This paper creates a framework based on
lessons learned from an actual redesign of a validated team-
based simulation (NeoCITIES) that enabled true AI integration.
The framework outlines the core and sub-concepts that
researchers can follow to create their task simulations that
utilize true AI as well as the differences of HATs as compared

C
op

yr
ig

ht
 2

02
0

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

06
41

34
0

Proceedings of the 2020 HFES 64th International Annual Meeting 1426

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1071181320641340&domain=pdf&date_stamp=2021-02-09

to HHTs. Through the outline of the task simulation redesign,
we give a clear example of what goes into such a redesign or
build, then pull the core concepts that are required to integrate
true RL AI into HAT experiments to form the framework. The
ability of the framework to scale, maintain customizability, and
have more extensive applications beyond only HAT specific
work is then discussed.

NEOCITIES REDESIGN

The culmination of years of enhancements has made
NeoCITIES a modular and reliable simulated environment to
study teamwork. This fundamental resource allocation task
setup has historically led to multiple findings in information
science, psychology, and geographical sciences (McNeese et
al., 2014). Furthermore, through the repeated use of established
measures and metrics, NeoCITIES enables researchers to
investigate specific aspects of team cognition and other critical
factors in teamwork (Mohammad et al., 2010).

Recently, NeoCITIES was redesigned to integrate RL AI
into the overall teamwork simulation. The NeoCITIES redesign
is covered in extensive detail in order to potentially aid other
researchers in the development of their simulated tasks that
support AI integration. These specific details of the redesign
empower other individuals to extract the details and lessons
learned from this redesign and apply them to their platforms.
This redesign also provides context to the framework and its
generalizability, with each component stemming from the
redesign.

The NeoCITIES simulation has participants respond to a
series of emergency events with local government resources,
with each event occurring around a fictitious college town
(McNeese et al., 2014). The simulation requires a team of three
actors, each operating a different government department
(police, fire, and hazardous material response). Participants are
tasked with assessing each event and appropriately allocating
scarce resources. Here, the prior version of NeoCITIES is
compared and contrasted to the redesigned version, which
consisted of inclusions and advancements to the backend
architecture, interface, and AI development & training.

Backend Architecture

Concerning its backend architecture, the prior version of
NeoCITIES used a client-server model to display information
generated by a simulation engine developed with Java and
Adobe technologies. It was a multi-threaded application that
handles the event and resource data, maintains the state of the
world, and calculates event scores (Hellar & McNeese, 2010).
A downside of this design was that it did not support multiple
simulations simultaneously, and thus limited researchers to
running one simulation at a time in their local environment. A
cloud-based design was implemented to rectify this problem,
and updates are pushed out to a cloud-based server (Firebase by
Google) by clients (participants) on each change in the global
state. All clients then see these changes, which are
automatically made in real-time via the global state, which each
client is listening to through a REST API. Naturally, any time
changes are made to the server, the state of the simulation is

updated, and each clients’ local machine reflects those changes
in real-time.

Figure 1. Prior NeoCITIES Design

The Firebase server supports a vast amount of

simultaneous sessions because each session is managed by a
child in the database’s JSON tree, preventing the clients from
accidentally updating the wrong session. The last significant
way in which the new architecture advances NeoCITIES is by
creating an API layer that enables AI agents to interact with the
human participants easily, thereby enabling the platform to
support HATs for the first time. Specifically, the AI agents can
request the state of the simulation through the REST API on
Firebase and push actions to the database. This action enables
the agents to participate in the simulations in an asynchronous
manner similar to human players. Overall, the new architecture
is designed to be very modular and thus supports a variety of
scenarios with different roles, resources, and the number of
players, all controlled by parameters within the JSON structure.

Frontend & Interfaces

The next significant aspect of NeoCITIES consisted of
updating the frontend interface. The redesign of the interface
sought to preserve many vital features (drag & drop resource
allocation, recall, chat, event briefs) seen in Figure 1, while also
altering it to more effectively support AI agents & HAT. To
start with, Figure 2 shows the default view of the human
participants’ interface in the redesign. The left side of the UI
displays the resources available to the user, while the right side
houses the chat suite, which implements a feature that
automatically scrolls to the bottom of the chat with each new
message. The middle contains the tasks and events currently
active, each represented with a card containing various
information like required resources, and time remaining. A far
more significant change, however, is the implementation of a
map locating events and resources. This redesign of
NeoCITIES includes a map specifically because AI agents
perceive the world through a matrix of numbers that give them
a view of the task in its entirety. Meaning that if a map were not
included, the autonomous agents would perceive the simulated
task in an entirely different manner than their human
teammates, with full spatial awareness. This difference would
then prevent any accurate or meaningful direct comparisons
between HHTs and HATs.

C
op

yr
ig

ht
 2

02
0

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

06
41

34
0

Proceedings of the 2020 HFES 64th International Annual Meeting 1427

Figure 2. Updated NeoCITIES Design

Development of AI Agents and Training

For the first time, NeoCITIES supports AI agents. The
agents are based on RL, which creates its model by making an
action based on a state and then receiving a reward. This
learning model is a framework within AI training/creation and
has received acclaim for superhuman performance in games
such as Go, and various Atari games (Hu et al., 1998, p. 199;
Mnih et al., 2013). Utilizing RL enables NeoCITIES, and any
platform leveraging RL, to access and use some of the most
advanced AI algorithms available. RL also allows the artificial
agents to work in a variety of different parameters within the
simulation it is trained to accomplish. The RL agents used for
this redesign were created with TensorForce, which is an open-
source RL framework with the goals of delivering usable APIs,
code readability, and powerful modularization to develop RL
solutions in a variety of applications (Schaarschmidt et al.,
2017b, 2018). Part of creating RL agents involves developing a
task-specific training environment. The training environment
must replicate the specific task mathematically using the
Python scripting language. The training environment allows
each agent to learn the task through self-play, which in the
NeoCITIES redesign, was as part of a three agent team with
each agent taking on one of the three available roles within the
simulation. More specifically, to the NeoCITIES task, the
training environment conveys NeoCITIES to the RL agent as a
series of matrices that represent the state of the game as it
changes in real-time. This representation of the game in
matrices is a vital point to consider in designing these
experiments as well as in applied settings as humans and
autonomous agents perceive the environments they exist within
in radically different ways (the autonomous agent understands
through linear algebra representations, while the human
perceives using biological mechanisms). In practice, once
trained, the environment the agent receives can be slightly
tweaked for experiment customizability.

During training, the state of the environment is sent to the
agent as a 50x50 matrix containing data on various simulation
details like ongoing events, coordinates, & available resources.
After receiving the state, the agent responds with an action
(which resource to send to which event). This action is then
received and executed by the training simulation, with all
relevant simulation factors being updated. This new state is then
used to determine the reward for the agent, which is based on
how much closer necessary resources are to their corresponding
event as compared to the previous state. Training the agents

takes a considerable amount of time and compute power (CPU
compute) as the game must be simulated many times over.
Agent models should be saved at regular intervals (5000
iterations for this redesign) and continue until reaching a
predetermined number of iterations (200000 for this redesign).
The total number of training iterations will increase with things
like complex tasks or inadequate reward functions. Once the
agent was trained for the NeoCITIES redesign, an API was
developed that enabled the trained agent to communicate with
the NeoCITIES simulation in much the same way that it
communicated with the training environment. This API allows
for seamless integration with the user-facing NeoCITIES
simulation and thus enables full AI integration. A further
potential step in AI training may serve to make the AI more
responsive to human actions by logging decisions and actions
of trials played by humans and using those trials as part of the
simulation the AI uses in training, exposing it to human
decision making.

FRAMEWORK FOR HAT EXPERIMENTAL

PLATFORMS

As previously mentioned, this framework shown below in
Figure 3, is created from the various lessons learned in a
redesign of NeoCITIES to support genuine RL AI agents.

Figure 3. HAT Experiment Platform Framework

The framework consists of various specific design qualities

that come together to create the significant core components of
the framework. These relationships and distinctions are
displayed in the framework with high-performance computing
being shown as an enabling factor (green) contributing to the
team task simulation, which serves as one of the four core
components of the framework. Team task simulation then
determines how the simulation will be gamified, which in turn
determines how the reward function is designed, and finally
customizability of the simulation. Each of the four core
components of the framework is interrelated and dependent
upon each other, demonstrated in the specific design qualities
that each factor within the framework displays, such as the
reward function being specific to the task and dependent upon

C
op

yr
ig

ht
 2

02
0

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

06
41

34
0

Proceedings of the 2020 HFES 64th International Annual Meeting 1428

the team task simulation. This framework conveys the explicit
guidelines, standards, and techniques that allow others to
complete related projects that provide valuable research
outcomes and leverage the potential differences seen in HATs
using true AI.

Gamification. A significant feature of RL agents lies in the
simulation of the task, which often revolves around learning a
game (Mnih et al., 2013; Sun et al., 2019). These agents require
a reward function in order to train their algorithms correctly,
which means that any task an individual creates must center
around a gamified component. There must be a win and loss
metric, an ending, and good or bad performance that can be
quantified. The fundamental nature of RL makes this
component necessary and is also required as the task must be
simulated programmatically, using matrices of numbers.

High-performance computing. The need for access to high-
performance computing (HPC) was an enormous lesson learned
for this project as training agents with 200,000 iterations of the
simulated task is very computationally taxing. While these
processes can be run and completed on a typical laptop, they
take multiple days to complete, and the machine is mostly
unusable during that period. Access to HPC machines exists at
some universities, but those universities are in the minority. At
this point, the benefits of modern cloud services step in with
Amazon, IBM, and others offering HPC solutions at scaling
costs (High-Performance Computing on IBM Cloud, 2019;
HPC at Scale | Amazon Web Services, 2019). These services
allow users to test their simulations with the agent on their local
machine for free and then send the agent off to train in the HPC
cloud service.

Reward function. The reward function serves to indicate to
the agent how successful or appropriate their decision was. The
reward function must be written to ensure that the agent does
not begin to take advantage of the game, as their base function
is to maximize the received reward (Schulman et al., 2017). For
example, in early iterations of the NeoCITIES agents’ reward
function, agents never fully completed the event. Agents would
have the resource remain close to the event to maximize their
score artificially without truly completing the task. This issue
was resolved by implementing a special reward once an event
was completed to disincentivize this type of action.

Additionally, agents are known to enter a relative state of
death or self-extinction under the wrong reward conditions
(Martin et al., 2016). Such conditions may occur when the agent
is unable to find any positive reward and will make as many
actions as it takes to end the current iteration of the game as
quickly as it can to minimize the negative rewards it receives.
Thus, it is essential to be thoughtful in writing a reward
function, ensuring it is advised by these examples and allows
the agent to be successfully trained in a reasonable amount of
time. Any reward function is also highly dependent upon the
gamification of the task simulation, as, without proper
gamification, the reward function will be incredibly difficult, if
not impossible, to write.

Team task simulation. Creating a simulation that follows
the previously mentioned gamification principle while retaining
a level of realism or graspable metaphor is vital in HAT, which
includes making the task as simple as possible within the

bounds of answering the research question. Ensuring that the
simulated task meets these tenants allows experimenters to
meet the core principles of a team, retain ecological validity,
and have participants easily understand the task. Additionally,
these types of simulations allow experimenters to easily
replicate the game in a mathematical environment for AI
integration. Utilizing a realistic and or understandable metaphor
for the task simulation enables reliable data that retains
ecological validity.

Additionally, with an easily understood game, there is a
reduced need for participant training and a reduction in errors.
A simple game also translates to reduced time spent coding task
simulations, as well as a reduction in time spent training the
agent. Examples of such tasks meeting these tenants and
utilizing artificial agents are Blocks World for Teams (Johnson
et al., 2009), and a treasure-hunting task (Luo et al., 2019).
These tasks serve as straightforward examples of simulations
that are not too complex for participants, retain
realism/graspable metaphor, meet the criteria for a team, and
integrate gamification, allowing the integration of true AI for
HAT experiments. Gamification is also very interdependent
with the team task simulation, and as for the task design, it is
entirely dependent upon how the researcher chooses to gamify
that task. However, the reward function is entirely dependent
upon both of these core concepts, making it a consequence of
the decisions made regarding the team task simulation, and the
way the task was gamified.

Customizability. The task simulation must also integrate a
level of customizability in several key areas to enhance its role
as an experimental simulation. The level of autonomy should
be customizable based on the role the AI plays within the game.
Team composition should also be customizable in order to
study different compositions of HATs, on any number of
dependent variables. Finally, the task simulation itself must be
customizable based on different scenarios. As previously stated,
the NeoCITIES scenario accomplishes this through a simple
JSON tree within Firebase specifying different lengths of time,
number of emergencies, and the resources required for each
emergency. This customizability allows for future scalability in
the experimental platform for future applications. With high
levels of customizability along each of these facets, any task
simulation can benefit from a long life span and produce a
considerable amount of meaningful results.

DISCUSSION OF FRAMEWORK & WIDER
APPLICATIONS

The NeoCITIES redesign gives rise to a framework that

engenders several things to the HAT research community. The
first being the ability to integrate AI and study human-
autonomy teaming in greater detail and with increased validity.
The ability to implement UI design changes that accommodate
for differences in the way humans and AI perceive the world.
Emphasizing the scalability of research platforms to ensure
long life and high research output, as well as providing a
framework that can extend and generalize to other applications
and fields. These contributions are discussed at length through
the addition of genuine AI agents, changes in design to

C
op

yr
ig

ht
 2

02
0

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

06
41

34
0

Proceedings of the 2020 HFES 64th International Annual Meeting 1429

accommodate humans in HATs, and its potential impact on
other fields through its scalability.

Addition of AI agents. The redesigned NeoCITIES presents
an unprecedented opportunity to study interactions of humans
and AI agents. The framework supports and encourages
essential components of AI integration, highlighting the
specific needs of the AI. These include a task framed as a game,
a proper reward function that incentivizes the agents to perform
the game in the desired way, and HPC to train the agent within
a reasonable amount of time. Thus, with the added ability to
evaluate teams working with real AI, researchers can then ask
questions that address the quality of interactions in a team and
how to best leverage the potential differences between HATs
and HHTs.

Human design elements with AI. The newly redesigned
NeoCITIES also presents the advantage of more modern and
informed design. The updates to the chat interface and the
implementation of the map make the NeoCITIES interface
much more familiar for modern users. These changes allow for
studies that more accurately reflect the current use of
technology and the way that humans and autonomous agents
interact. This modern UI goes hand in hand with the realism of
the task and or having a simple metaphor, enabling the
simulation to be readily understood by human and autonomous
participants alike.

Broader impacts on other fields. The framework can also
be extended to other fields, such as industrial-organizational
psychology research, which can incorporate AI agents into
organizational teams to investigate performance in uncertain
situations. The framework has applications even to less obvious
fields like cell biology, which may consider a team task
simulation to frame how microorganisms interact or use the
concept of a reward function to understand, or perhaps replicate
the incentives of cells. This is accomplished with the
customizability emphasized by the framework allowing many
fields to benefit incorporating AI agents.

CONCLUSION

HAT, while similar to HHT, is still fundamentally different
in a variety of ways, and there is not a one to one fit between
the two. The design and application differences in HATs need
to be considered in the simulations that will form the basis of
future research. Differences in team cognition, performance,
situational awareness, and processing are a few that must be
considered in future research. The framework allows such
differences to be recognized and even leveraged in
experimental research. This quality makes the framework a
valuable tool to use as a springboard for future HAT research,
helping to continue driving the field forward.

ACKNOWLEDGMENTS
This research is funded under NSF Award #1829008.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., & Isard, M. (2016). Tensorflow: A system for
large-scale machine learning. 12th ${$USENIX$}$ Symposium on
Operating Systems Design and Implementation (${$OSDI$}$ 16), 265–

283.
Chen, J. Y., Barnes, M. J., Wright, J. L., Stowers, K., & Lakhmani, S. G. (2017).

Situation awareness-based agent transparency for human-autonomy
teaming effectiveness. Micro-and Nanotechnology Sensors, Systems, and
Applications IX, 10194, 101941V.

Fu, Z., & Zhou, Y. (2020). Research on human–AI co-creation based on
reflective design practice. CCF Transactions on Pervasive Computing
and Interaction, 1–9.

Gupta, P., & Woolley, A. W. (2018). Productivity in an era of multi-teaming:
The role of information dashboards and shared cognition in team
performance. Proceedings of the ACM on Human-Computer Interaction,
2(CSCW), 1–18.

Hellar, D. B., & McNeese, M. (2010). NeoCITIES: A simulated command and
control task environment for experimental research. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 54, 1027–1031.

High-Performance Computing on IBM Cloud. (2019, May 29).
https://www.ibm.com/cloud/hpc

HPC at Scale | Amazon Web Services. (2019, May 29). Amazon Web Services,
Inc. https://aws.amazon.com/hpc/campaigns/hpc-at-scale/

Hu, J., Wellman, M. P., & others. (1998). Multiagent reinforcement learning:
Theoretical framework and an algorithm. ICML, 98, 242–250.

Johnson, M., Jonker, C., Van Riemsdijk, B., Feltovich, P. J., & Bradshaw, J. M.
(2009). Joint activity testbed: Blocks world for teams (BW4T).
International Workshop on Engineering Societies in the Agents World,
254–256.

Luo, R., Du, N., Huang, K. Y., & Yang, X. J. (2019). Enhancing Transparency
in Human-autonomy Teaming via the Option-centric Rationale Display.
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 63, 166–167.

Martin, J., Everitt, T., & Hutter, M. (2016). Death and suicide in universal
artificial intelligence. International Conference on Artificial General
Intelligence, 23–32.

McNeese, M. D., Bains, P., Brewer, I., Brown, C., Connors, E. S., Jefferson Jr,
T., Jones Jr, R. E., & Terrell Jr, I. (2005). The NeoCITIES simulation:
Understanding the design and experimental methodology used to develop
a team emergency management simulation. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 49, 591–594.

McNeese, M. D., Mancuso, V. F., McNeese, N. J., Endsley, T., & Forster, P.
(2014). An integrative simulation to study team cognition in emergency
crisis management. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 58, 285–289.

McNeese, N. J., Demir, M., Cooke, N. J., & Myers, C. (2018). Teaming with a
synthetic teammate: Insights into human-autonomy teaming. Human
Factors, 60(2), 262–273.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., & Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. ArXiv Preprint ArXiv:1312.5602.

Schaarschmidt, M., Kuhnle, A., Ellis, B., Fricke, K., Gessert, F., & Yoneki, E.
(2018). Lift: Reinforcement learning in computer systems by learning
from demonstrations. ArXiv Preprint ArXiv:1808.07903.

Schaarschmidt, M., Kuhnle, A., & Fricke, K. (2017a). TensorForce: A
TensorFlow library for applied reinforcement learning. Web Page.

Schaarschmidt, M., Kuhnle, A., & Fricke, K. (2017b). TensorForce: A
TensorFlow library for applied reinforcement learning. Web Page.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms. ArXiv Preprint
ArXiv:1707.06347.

Smith-Jentsch, K. A. (2007). The impact of making targeted dimensions
transparent on relations with typical performance predictors. Human
Performance, 20(3), 187–203.

Sun, Y., Khan, A., Yang, K., Feng, J., & Liu, S. (2019). Playing First-Person-
Shooter Games with A3C-Anticipator Network Based Agents Using
Reinforcement Learning. International Conference on Artificial
Intelligence and Security, 463–475.

Wellens, A. R., & Ergener, D. (1988). The CITIES game: A computer-based
situation assessment task for studying distributed decision making.
Simulation & Games, 19(3), 304–327.

C
op

yr
ig

ht
 2

02
0

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

06
41

34
0

Proceedings of the 2020 HFES 64th International Annual Meeting 1430

