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This paper creates and defines a framework for building and implementing human-autonomy teaming 
experiments that enable the utilization of modern reinforcement learning models. These models are used to 
train artificial agents to then interact alongside humans in a human-autonomy team. The framework was 
synthesized from experience gained redesigning a previously known and validated team task simulation 
environment known as NeoCITIES. Through this redesign, several important high-level distinctions were 
made that regarded both the artificial agent and the task simulation itself. The distinctions within the 
framework include gamification, access to high-performance computing, a proper reward function, an 
appropriate team task simulation, and customizability. This framework enables researchers to create 
experiments that are more usable for the human and more closely resemble real-world human-autonomy 
interactions. The framework also allows researchers to create veritable and robust experimental platforms 
meant to study human-autonomy teaming for years to come. 

 
INTRODUCTION 

 
Research on human-autonomy teams (HATs) has been on 

the rise for the past two decades. Many of the studies conducted 
during this time were able to produce valuable results using the 
Wizard of Oz (WoZ) methodology, which has a human 
simulate the role of the AI in the HAT (Maulsby et al., 1993). 
The usage of WoZ continues today as the use of true AI in HAT 
research is not a commonplace practice as many studies 
continue to positively utilize the WoZ methodology (Chen et 
al., 2017; Fu & Zhou, 2020). This trend is a consequence of the 
lack of computational power and proper artificial intelligence 
(AI) development architectures. However, with the advent of 
cloud services for high-performance computing (HPC) and the 
release of accessible AI frameworks like TensorFlow and 
TensorForce, the development and implementation of custom 
AI for localized simulations is readily achievable (Abadi et al., 
2016; Schaarschmidt et al., 2017). With these new tools, 
researchers are now able to create custom AI for HAT research, 
significantly improving the validity and generalizability of their 
results to genuine HATs. This paper creates a framework to 
showcase how best to leverage these technologies to create 
actual AI team members by using reinforcement learning (RL) 
models and creating compliant simulated tasks. The redesign 
provides an overview of creating the simulated task and agent, 
with the framework being synthesized from that redesign. By 
leveraging the technology outlined in this paper, the HAT field 
can benefit from enhanced validity, generalizability, and the 
potential for newfound interactions. 

Team task simulations have long been used for 
experiments in the human-human teaming (HHT) literature 
(Gupta & Woolley, 2018; Smith-Jentsch, 2007). These 
simulations were meant to create a variety of different task 
situations and have produced a variety of meaningful results. A 
strong example of such a simulation, that has long persisted and 
remains scalable to this day is NeoCITIES. Created as an 
innovative advancement to Wellens and Ergenr’s original 
CITIES task (Wellens & Ergener, 1988), NeoCITIES serves to 
provide a simulation for the study of teamwork and decision-
making within a command control, and computer-mediated 
communication (C3) environment (McNeese et al., 2005).  

HAT literature has historically utilized simulated team 
tasks, much like the HHT literature has. Simulated tasks for 
HATs have ranged from rearranging boxes around an 
environment with a team to going through an entire UAV 
mission simulation (Johnson et al., 2009; McNeese et al., 2018). 
However, as previously stated, the use of true AI is not common 
in much of this HAT simulated task research (Chen et al., 2017; 
Fu & Zhou, 2020).  

With the technology and framework outlined here in this 
paper, researchers can implement true AI into their HAT 
experiments. With this change, there is a great deal of potential 
for the discovery of new interactions between humans and 
artificial agents. This paper creates a framework based on 
lessons learned from an actual redesign of a validated team-
based simulation (NeoCITIES) that enabled true AI integration. 
The framework outlines the core and sub-concepts that 
researchers can follow to create their task simulations that 
utilize true AI as well as the differences of HATs as compared 
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to HHTs. Through the outline of the task simulation redesign, 
we give a clear example of what goes into such a redesign or 
build, then pull the core concepts that are required to integrate 
true RL AI into HAT experiments to form the framework. The 
ability of the framework to scale, maintain customizability, and 
have more extensive applications beyond only HAT specific 
work is then discussed. 
 

NEOCITIES REDESIGN 
 

The culmination of years of enhancements has made 
NeoCITIES a modular and reliable simulated environment to 
study teamwork. This fundamental resource allocation task 
setup has historically led to multiple findings in information 
science, psychology, and geographical sciences (McNeese et 
al., 2014). Furthermore, through the repeated use of established 
measures and metrics, NeoCITIES enables researchers to 
investigate specific aspects of team cognition and other critical 
factors in teamwork (Mohammad et al., 2010). 

Recently, NeoCITIES was redesigned to integrate RL AI 
into the overall teamwork simulation. The NeoCITIES redesign 
is covered in extensive detail in order to potentially aid other 
researchers in the development of their simulated tasks that 
support AI integration. These specific details of the redesign 
empower other individuals to extract the details and lessons 
learned from this redesign and apply them to their platforms. 
This redesign also provides context to the framework and its 
generalizability, with each component stemming from the 
redesign. 

The NeoCITIES simulation has participants respond to a 
series of emergency events with local government resources, 
with each event occurring around a fictitious college town 
(McNeese et al., 2014). The simulation requires a team of three 
actors, each operating a different government department 
(police, fire, and hazardous material response). Participants are 
tasked with assessing each event and appropriately allocating 
scarce resources. Here, the prior version of NeoCITIES is 
compared and contrasted to the redesigned version, which 
consisted of inclusions and advancements to the backend 
architecture, interface, and AI development & training. 
 
Backend Architecture 
 
Concerning its backend architecture, the prior version of 
NeoCITIES used a client-server model to display information 
generated by a simulation engine developed with Java and 
Adobe technologies. It was a multi-threaded application that 
handles the event and resource data, maintains the state of the 
world, and calculates event scores (Hellar & McNeese, 2010). 
A downside of this design was that it did not support multiple 
simulations simultaneously, and thus limited researchers to 
running one simulation at a time in their local environment. A 
cloud-based design was implemented to rectify this problem, 
and updates are pushed out to a cloud-based server (Firebase by 
Google) by clients (participants) on each change in the global 
state. All clients then see these changes, which are 
automatically made in real-time via the global state, which each 
client is listening to through a REST API. Naturally, any time 
changes are made to the server, the state of the simulation is 

updated, and each clients’ local machine reflects those changes 
in real-time. 
 

 
Figure 1. Prior NeoCITIES Design 

 
The Firebase server supports a vast amount of 

simultaneous sessions because each session is managed by a 
child in the database’s JSON tree, preventing the clients from 
accidentally updating the wrong session. The last significant 
way in which the new architecture advances NeoCITIES is by 
creating an API layer that enables AI agents to interact with the 
human participants easily, thereby enabling the platform to 
support HATs for the first time. Specifically, the AI agents can 
request the state of the simulation through the REST API on 
Firebase and push actions to the database. This action enables 
the agents to participate in the simulations in an asynchronous 
manner similar to human players. Overall, the new architecture 
is designed to be very modular and thus supports a variety of 
scenarios with different roles, resources, and the number of 
players, all controlled by parameters within the JSON structure. 
 
Frontend & Interfaces 
 

The next significant aspect of NeoCITIES consisted of 
updating the frontend interface. The redesign of the interface 
sought to preserve many vital features (drag & drop resource 
allocation, recall, chat, event briefs) seen in Figure 1, while also 
altering it to more effectively support AI agents & HAT. To 
start with, Figure 2 shows the default view of the human 
participants’ interface in the redesign. The left side of the UI 
displays the resources available to the user, while the right side 
houses the chat suite, which implements a feature that 
automatically scrolls to the bottom of the chat with each new 
message. The middle contains the tasks and events currently 
active, each represented with a card containing various 
information like required resources, and time remaining. A far 
more significant change, however, is the implementation of a 
map locating events and resources. This redesign of 
NeoCITIES includes a map specifically because AI agents 
perceive the world through a matrix of numbers that give them 
a view of the task in its entirety. Meaning that if a map were not 
included, the autonomous agents would perceive the simulated 
task in an entirely different manner than their human 
teammates, with full spatial awareness. This difference would 
then prevent any accurate or meaningful direct comparisons 
between HHTs and HATs. 
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Figure 2. Updated NeoCITIES Design 

Development of AI Agents and Training 
 

For the first time, NeoCITIES supports AI agents. The 
agents are based on RL, which creates its model by making an 
action based on a state and then receiving a reward. This 
learning model is a framework within AI training/creation and 
has received acclaim for superhuman performance in games 
such as Go, and various Atari games (Hu et al., 1998, p. 199; 
Mnih et al., 2013). Utilizing RL enables NeoCITIES, and any 
platform leveraging RL, to access and use some of the most 
advanced AI algorithms available. RL also allows the artificial 
agents to work in a variety of different parameters within the 
simulation it is trained to accomplish. The RL agents used for 
this redesign were created with TensorForce, which is an open-
source RL framework with the goals of delivering usable APIs, 
code readability, and powerful modularization to develop RL 
solutions in a variety of applications (Schaarschmidt et al., 
2017b, 2018). Part of creating RL agents involves developing a 
task-specific training environment. The training environment 
must replicate the specific task mathematically using the 
Python scripting language. The training environment allows 
each agent to learn the task through self-play, which in the 
NeoCITIES redesign, was as part of a three agent team with 
each agent taking on one of the three available roles within the 
simulation. More specifically, to the NeoCITIES task, the 
training environment conveys NeoCITIES to the RL agent as a 
series of matrices that represent the state of the game as it 
changes in real-time. This representation of the game in 
matrices is a vital point to consider in designing these 
experiments as well as in applied settings as humans and 
autonomous agents perceive the environments they exist within 
in radically different ways (the autonomous agent understands 
through linear algebra representations, while the human 
perceives using biological mechanisms). In practice, once 
trained, the environment the agent receives can be slightly 
tweaked for experiment customizability. 

During training, the state of the environment is sent to the 
agent as a 50x50 matrix containing data on various simulation 
details like ongoing events, coordinates, & available resources. 
After receiving the state, the agent responds with an action 
(which resource to send to which event). This action is then 
received and executed by the training simulation, with all 
relevant simulation factors being updated. This new state is then 
used to determine the reward for the agent, which is based on 
how much closer necessary resources are to their corresponding 
event as compared to the previous state. Training the agents 

takes a considerable amount of time and compute power (CPU 
compute) as the game must be simulated many times over. 
Agent models should be saved at regular intervals (5000 
iterations for this redesign) and continue until reaching a 
predetermined number of iterations (200000 for this redesign). 
The total number of training iterations will increase with things 
like complex tasks or inadequate reward functions. Once the 
agent was trained for the NeoCITIES redesign, an API was 
developed that enabled the trained agent to communicate with 
the NeoCITIES simulation in much the same way that it 
communicated with the training environment. This API allows 
for seamless integration with the user-facing NeoCITIES 
simulation and thus enables full AI integration. A further 
potential step in AI training may serve to make the AI more 
responsive to human actions by logging decisions and actions 
of trials played by humans and using those trials as part of the 
simulation the AI uses in training, exposing it to human 
decision making. 

 
FRAMEWORK FOR HAT EXPERIMENTAL 

PLATFORMS 
 

As previously mentioned, this framework shown below in 
Figure 3, is created from the various lessons learned in a 
redesign of NeoCITIES to support genuine RL AI agents.  

 

 
Figure 3.  HAT Experiment Platform Framework 

 
The framework consists of various specific design qualities 

that come together to create the significant core components of 
the framework. These relationships and distinctions are 
displayed in the framework with high-performance computing 
being shown as an enabling factor (green) contributing to the 
team task simulation, which serves as one of the four core 
components of the framework. Team task simulation then 
determines how the simulation will be gamified, which in turn 
determines how the reward function is designed, and finally 
customizability of the simulation. Each of the four core 
components of the framework is interrelated and dependent 
upon each other, demonstrated in the specific design qualities 
that each factor within the framework displays, such as the 
reward function being specific to the task and dependent upon 
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the team task simulation. This framework conveys the explicit 
guidelines, standards, and techniques that allow others to 
complete related projects that provide valuable research 
outcomes and leverage the potential differences seen in HATs 
using true AI.  

Gamification. A significant feature of RL agents lies in the 
simulation of the task, which often revolves around learning a 
game (Mnih et al., 2013; Sun et al., 2019). These agents require 
a reward function in order to train their algorithms correctly, 
which means that any task an individual creates must center 
around a gamified component. There must be a win and loss 
metric, an ending, and good or bad performance that can be 
quantified. The fundamental nature of RL makes this 
component necessary and is also required as the task must be 
simulated programmatically, using matrices of numbers. 

High-performance computing. The need for access to high-
performance computing (HPC) was an enormous lesson learned 
for this project as training agents with 200,000 iterations of the 
simulated task is very computationally taxing. While these 
processes can be run and completed on a typical laptop, they 
take multiple days to complete, and the machine is mostly 
unusable during that period. Access to HPC machines exists at 
some universities, but those universities are in the minority. At 
this point, the benefits of modern cloud services step in with 
Amazon, IBM, and others offering HPC solutions at scaling 
costs (High-Performance Computing on IBM Cloud, 2019; 
HPC at Scale | Amazon Web Services, 2019). These services 
allow users to test their simulations with the agent on their local 
machine for free and then send the agent off to train in the HPC 
cloud service. 

Reward function. The reward function serves to indicate to 
the agent how successful or appropriate their decision was. The 
reward function must be written to ensure that the agent does 
not begin to take advantage of the game, as their base function 
is to maximize the received reward (Schulman et al., 2017). For 
example, in early iterations of the NeoCITIES agents’ reward 
function, agents never fully completed the event. Agents would 
have the resource remain close to the event to maximize their 
score artificially without truly completing the task. This issue 
was resolved by implementing a special reward once an event 
was completed to disincentivize this type of action. 

Additionally, agents are known to enter a relative state of 
death or self-extinction under the wrong reward conditions 
(Martin et al., 2016). Such conditions may occur when the agent 
is unable to find any positive reward and will make as many 
actions as it takes to end the current iteration of the game as 
quickly as it can to minimize the negative rewards it receives. 
Thus, it is essential to be thoughtful in writing a reward 
function, ensuring it is advised by these examples and allows 
the agent to be successfully trained in a reasonable amount of 
time. Any reward function is also highly dependent upon the 
gamification of the task simulation, as, without proper 
gamification, the reward function will be incredibly difficult, if 
not impossible, to write. 

Team task simulation. Creating a simulation that follows 
the previously mentioned gamification principle while retaining 
a level of realism or graspable metaphor is vital in HAT, which 
includes making the task as simple as possible within the 

bounds of answering the research question. Ensuring that the 
simulated task meets these tenants allows experimenters to 
meet the core principles of a team, retain ecological validity, 
and have participants easily understand the task. Additionally, 
these types of simulations allow experimenters to easily 
replicate the game in a mathematical environment for AI 
integration. Utilizing a realistic and or understandable metaphor 
for the task simulation enables reliable data that retains 
ecological validity. 

Additionally, with an easily understood game, there is a 
reduced need for participant training and a reduction in errors. 
A simple game also translates to reduced time spent coding task 
simulations, as well as a reduction in time spent training the 
agent. Examples of such tasks meeting these tenants and 
utilizing artificial agents are Blocks World for Teams (Johnson 
et al., 2009), and a treasure-hunting task (Luo et al., 2019). 
These tasks serve as straightforward examples of simulations 
that are not too complex for participants, retain 
realism/graspable metaphor, meet the criteria for a team, and 
integrate gamification, allowing the integration of true AI for 
HAT experiments. Gamification is also very interdependent 
with the team task simulation, and as for the task design, it is 
entirely dependent upon how the researcher chooses to gamify 
that task. However, the reward function is entirely dependent 
upon both of these core concepts, making it a consequence of 
the decisions made regarding the team task simulation, and the 
way the task was gamified. 

Customizability. The task simulation must also integrate a 
level of customizability in several key areas to enhance its role 
as an experimental simulation. The level of autonomy should 
be customizable based on the role the AI plays within the game. 
Team composition should also be customizable in order to 
study different compositions of HATs, on any number of 
dependent variables. Finally, the task simulation itself must be 
customizable based on different scenarios. As previously stated, 
the NeoCITIES scenario accomplishes this through a simple 
JSON tree within Firebase specifying different lengths of time, 
number of emergencies, and the resources required for each 
emergency. This customizability allows for future scalability in 
the experimental platform for future applications. With high 
levels of customizability along each of these facets, any task 
simulation can benefit from a long life span and produce a 
considerable amount of meaningful results. 
 

DISCUSSION OF FRAMEWORK & WIDER 
APPLICATIONS 

 
The NeoCITIES redesign gives rise to a framework that 

engenders several things to the HAT research community. The 
first being the ability to integrate AI and study human-
autonomy teaming in greater detail and with increased validity. 
The ability to implement UI design changes that accommodate 
for differences in the way humans and AI perceive the world. 
Emphasizing the scalability of research platforms to ensure 
long life and high research output, as well as providing a 
framework that can extend and generalize to other applications 
and fields. These contributions are discussed at length through 
the addition of genuine AI agents, changes in design to 
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accommodate humans in HATs, and its potential impact on 
other fields through its scalability. 

Addition of AI agents. The redesigned NeoCITIES presents 
an unprecedented opportunity to study interactions of humans 
and AI agents. The framework supports and encourages 
essential components of AI integration, highlighting the 
specific needs of the AI. These include a task framed as a game, 
a proper reward function that incentivizes the agents to perform 
the game in the desired way, and HPC to train the agent within 
a reasonable amount of time. Thus, with the added ability to 
evaluate teams working with real AI, researchers can then ask 
questions that address the quality of interactions in a team and 
how to best leverage the potential differences between HATs 
and HHTs. 

Human design elements with AI. The newly redesigned 
NeoCITIES also presents the advantage of more modern and 
informed design. The updates to the chat interface and the 
implementation of the map make the NeoCITIES interface 
much more familiar for modern users. These changes allow for 
studies that more accurately reflect the current use of 
technology and the way that humans and autonomous agents 
interact. This modern UI goes hand in hand with the realism of 
the task and or having a simple metaphor, enabling the 
simulation to be readily understood by human and autonomous 
participants alike. 

Broader impacts on other fields. The framework can also 
be extended to other fields, such as industrial-organizational 
psychology research, which can incorporate AI agents into 
organizational teams to investigate performance in uncertain 
situations. The framework has applications even to less obvious 
fields like cell biology, which may consider a team task 
simulation to frame how microorganisms interact or use the 
concept of a reward function to understand, or perhaps replicate 
the incentives of cells. This is accomplished with the 
customizability emphasized by the framework allowing many 
fields to benefit incorporating AI agents. 

CONCLUSION 
 

HAT, while similar to HHT, is still fundamentally different 
in a variety of ways, and there is not a one to one fit between 
the two. The design and application differences in HATs need 
to be considered in the simulations that will form the basis of 
future research. Differences in team cognition, performance, 
situational awareness, and processing are a few that must be 
considered in future research. The framework allows such 
differences to be recognized and even leveraged in 
experimental research. This quality makes the framework a 
valuable tool to use as a springboard for future HAT research, 
helping to continue driving the field forward. 
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