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1. When general relativity met geometric analysis

Let us begin with a brief historic account on how the theory of general relativity
eventually met the branch of mathematics called geometric analysis.

Einstein’s theory of general relativity is largely built upon a Lorentzian man-
ifold, called spacetime. Despite its geometric framework, general relativity had
been for a long time viewed as a branch of physics. Almost a half century later
after Einstein published his first paper on general relativity, in 1973 a two-week
American Mathematical Society conference on differential geometry held at Stan-
ford University had included a session of general relativity. In this conference, the
theoretical physicist R. Geroch and mathematicians J. Kazdan and F. Warner sep-
arately posted problems from seemingly very different motivations. One problem
is a fundamental problem about positivity of energy/mass that is of interest to the
physics community, while the other is motivated by a broader intellectual curios-
ity about connections between topology and metrics of positive scalar curvature.
Nevertheless, both problems arrive at the same conjecture:

Geroch–Kazdan–Warner Conjecture. A three-dimensional torus cannot carry

a Riemannian metric of positive scalar curvature.

In 1979 Richard Schoen and Shing-Tung Yau proved this conjecture [5], using
ideas and innovative techniques interconnecting topology, minimal surface theory,
and nonlinear partial differential equations. They made fundamental contributions
and pioneered the discipline of mathematics called geometric analysis. Very soon
they extended the arguments to the Riemannian positive mass theorem [6] and, with
more new techniques, to the full positive energy conjecture [7].1 Those ideas intro-
duced by Schoen and Yau demonstrate amazing interconnections between analysis,
geometry, topology, and physics. Since then, general relativity has been a strong
driving force for the modern development of geometric analysis and itself eventually
becomes a vibrant branch of mathematics.

2. A slice of spacetime

A spacetime (N,g) is a four-dimensional Lorentzian manifold, where the metric
g is not positive definite but has one negative eigenvalue corresponding to the
time direction. The Einstein equation describes an explicit relation between the
spacetime curvatures and matter content:

Ric(g)− 1

2
R(g)g = matter model.

1We refer the reader to the expository article by M. Eichmair and the author [2, pp. 1352-1355]
on Schoen and Yau’s proof of the Geroch–Kazdan–Warner conjecture and its connections to the
positive mass theorems.
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As simple as the Einstein equation may look at first glance, those “null” directions
along which the metric g is degenerate lead to very distinct phenomena. Those
directions are physically significant as they are the directions where light travels.
The simplest example of spacetime is the Minkowski spacetime

g = −dt2 + dx2

1 + dx2

2 + dx2

3.

Minkowski spacetime is flat because all of its curvature tensors are zero. An iso-
lated gravitational system is modeled by spacetime that asymptotically approaches
Minkowski spacetime. We call such spacetime asymptotically flat.

An important physical conserved quantity of the spacetime called the ADM

mass (named after physicists Arnowitt, Deser, and Misner) can be defined for an
asymptotically flat spacetime and should measure the total mass content. The
positive mass theorem, in loose terms, says that the ADM mass of a “physically
reasonable” spacetime is always positive, except Minkowski spacetime which has
zero ADM mass.

The degeneracy in the null directions causes difficulties in studying spacetime
with great generality. A successful systematic approach is to study just one “slice”
of the spacetime and to retrieve some useful spacetime information from the slice.
Let M be a hypersurface in (N,g). As already accustomed to geometers since the
18th century, the geometry of the ambient space (N,g) can be largely read off from
the induced metric g on M and the induced second fundamental form k. Such
a triple (M, g, k) is called an initial data set ; see Figure 1. Alternatively, from a

Figure 1. A null cone indicates the directions along which the
spacetime metric g is zero or negative. An initial data set (M, g, k)
is a triple of a hypersurface M , the induced Riemannian metric g

(the tangential part of g), and the induced second fundamental
form k (the tangential part of the covariant derivative of the unit
normal n). An important special case, the so-called Riemannian
case, assumes k ≡ 0, and in this case the dominated energy con-
dition is reduced to the condition that the Riemannian manifold
(M, g) has nonnegative scalar curvature.
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Riemannian geometer’s aspect, one can think that an initial data set (M, g, k) is just
a Riemannian manifold (M, g) with added constraints on a symmetric 2-tensor k.

The advantage to working with (M, g, k) is that we can start to use a large “tool-
box” from Riemannian geometry. A very important special case of k ≡ 0 is called
the Riemannian case. In this case, the problems arising in general relativity can be
described purely in terms of differential geometry. The dominant energy condition

from physics becomes the geometric condition that (M, g) has nonnegative scalar
curvature.

Our intellectual desire to understand the large-scale structure of the universe
has motivated countless questions to be answered. These motivations from general
relativity have been a strong driving force for the modern development in geometry
and analysis.

3. Minimal surfaces and black holes

Perhaps the most intriguing topic in Riemannian geometry that appears (unex-
pectedly!) in general relativity is the topic of minimal surfaces. Minimal surface
theory originated from the curiosity about soap bubbles—a household object that
we surely love to play with. On the other hand, the theory of gravity is to describe
large-scale, celestial objects, such as stars, galaxies, and black holes. Over the past
few decades, remarkable progress has led to the astonishing realization that black
holes are governed by the same mathematical principles that describe minimal sur-
faces. In fact, in some idealized situations, such as the Riemannian case defined
earlier, the “boundary” of a black hole is modeled by a minimal surface.

Here we illustrate how the large toolbox of Riemannian geometry helps us to un-
derstand general relativity. We will discuss some of the essential ideas of Hawking’s
black hole topology theorem, which says that the two-dimensional cross-section of
the boundary of a black hole must be topologically a 2-sphere. Those ideas also
appear in Schoen and Yau’s proof of the Geroch–Kazdan–Warner conjecture.

Let (M, g) be a three-dimensional Riemannian manifold. For a two-sided com-
pact surface without boundary Σ ⊂ M , let ν be a unit normal vector on Σ. We
define the second fundamental form A as the tangential part of the covariant de-
rivative ∇ν on Σ. The mean curvature of Σ, denoted H, is the scalar function on
Σ obtained by taking the trace of A.

Let Φt : Σ → M be a smooth one-parameter family of immersions with a param-
eter t ∈ (−ε, ε). Suppose that Σ = Φ0(Σ). By tracking the trajectory of each point
of Σ with change of t, the velocity of Φt is expressed by the deformation vector X.
Namely,

∂Φt

∂t

∣

∣

∣

∣

t=0

= X.

Suppose X is normal to Σ and we write X = ην. Denote by Σt := Φt(Σ). The
areas of Σt, area(Σt), is a scalar function in t. Computing the first derivative of
the area function gives

d

dt
area(Σt)

∣

∣

∣

∣

t=0

=

∫

Σ

Hη dμ.

We say that Σ is a minimal surface if its mean curvature H ≡ 0; i.e., Σ is a
critical point of the area function. If Σ is a minimal surface, computing the second
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derivative of the area functional gives

d2

dt2
area(Σt)

∣

∣

∣

∣

t=0

=

∫

Σ

−
[

ΔΣη + (Ric(ν, ν) + |A|2)η
]

η dμ,

where ΔΣ is the Laplace–Beltrami operator on Σ and Ric is the Ricci curvature
of g. A minimal surface Σ is said to be stable if the second derivative of the area
function is nonnegative for all such deformation vectors X. Equivalently, we can
say that a minimal surface Σ is stable if there is a real number λ1 ≥ 0 and a positive
function η on Σ such that

Lη := −
[

ΔΣη + (Ric(ν, ν) + |A|2)η
]

= λ1η,

that is, the first eigenvalue of the operator L is nonnegative.
Now, suppose that (M, g) has scalar curvature Rg ≥ 0 and that Σ is a stable

minimal surface. By letting u = log η, we can rewrite the above equation Lη ≥ 0
as

ΔΣu+ |∇u|2 + (Ric(ν, ν) + |A|2) ≤ 0.

The Ricci curvature term Ric(ν, ν) relates the Gauss curvature of Σ, denoted RΣ,
by the Gauss equation, so we get Ric(ν, ν) + |A|2 = 1

2
(Rg − RΣ + |A|2), where we

have also used H = 0. The above inequality then takes the following form:

ΔΣu+ |∇u|2 + 1

2
(Rg −RΣ + |A|2) ≤ 0.

We integrate the above inequality, invoke the Gauss–Bonnet theorem, and drop
nonnegative terms to conclude that

0 ≥

∫

Σ

|∇u|2 + 1

2
(Rg −RΣ + |A|2) ≥ −2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ. This shows that the Euler characteristic
of Σ is either negative or zero, which implies that topologically Σ is either a sphere
or a torus. In fact, if Σ is a torus (i.e., the borderline case that χ(Σ) = 0), we have
strong consequences that Rg,Ric(ν, ν), A must all vanish along Σ.

As it was mentioned earlier, this argument has originally appeared in Hawking’s
and in Schoen and Yau’s work. With an extra argument by perturbing the surfaces
in the spacetime, Hawking was able to exclude the borderline case and thus to
conclude the black hole topology theorem. The ideas displayed in this argument
have driven many more techniques and led to amazing applications in the study of
minimal surfaces, scalar curvature, and the positive mass theorems.

4. The book

What we have described in the previous section is just a snapshot of many
profound and intriguing ideas that interconnect several branches of mathematics
and physics. The book Geometric relativity will guide the reader through a tour
of the beautiful geometric, analytical, topological wonderland that was developed
to answer the positive mass theorem and related questions. Dan Lee has made
fundamental contributions in this research area; see, e.g., [1, 3, 4]. He is also a
very skilled writer who did an exceptional job in this book of explaining intuitive
concepts while providing the right amount of technical details.

The book consists of two main parts. In the first part, the book focuses on the
Riemannian case. In this setting, most of the results can be formulated in terms of
questions in Riemannian geometry. Those results motivated by general relativity
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also advance our understanding of connections between scalar curvature and min-
imal hypersurfaces. The author has selected a wide range of topics that include
scalar curvature rigidity, the Riemannian positive mass theorem, the Riemannian
Penrose inequality, and quasi-local masses of Bartnik and of Brown and York. It
is a unique feature of this book that Schoen and Yau’s minimal surface approach
and Witten’s spin approach to the Riemannian positive mass are both presented in
detail.

In the second part, the book is aimed at discussing more recent developments
on initial data sets, in particular the full positive mass theorem, also known as
the spacetime positive mass theorem. Studying geometry of initial data sets is of
physical significance as it would advance our understanding of spacetime geometry.
On the other hand, this is a topic that very few textbooks in differential geometry
have touched upon. The starting chapter of the second part, Chapter 7, provides
a concise introduction to spacetime geometry, trapped surfaces, and the famous
Penrose incompleteness theorem. After those, the reader will find detailed proofs
to the positivity part of the spacetime positive mass theorem, including density
theorems for initial data sets that are useful in other problems.

Despite the extended breadth of this book, several research topics that would fit
well in the category of “geometric relativity” are not discussed in it. Some of those
topics include the gluing construction of initial data sets, asymptotically hyperbolic
manifolds, and the corresponding hyperbolic positive mass theorems.

It should also be noted that the book is not intended to be completely self-
contained. The book may be used as a textbook for a graduate topic course after a
semester course on differential geometry (even better with another semester course
on partial differential equations), but proofs of several results presented in this book
are only sketched, left as exercises with hints, or are not present at all in some cases.
As the author has expressed in the introduction of the book “our goal is less to
give a complete proof than to give the reader a guide for how to understand those
proofs.” The more advanced reader who is seeking more thorough and in-depth
understanding can find the original research papers which are clearly referred in
the book.

To my knowledge, this is the only textbook aimed at the graduate level that
includes most current research topics in mathematical relativity on the spacetime
positive mass theorem and marginally outer trapped surfaces. It may be also the
only textbook that compares side-by-side both the minimal surface approach and
the spinor approach to the positive mass theorems. The book is a useful resource
for graduate students and researchers who want to enter this active research area
that is continuing to thrive.
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