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Abstract We review designs of a solar cell constructed from pn junctions, quantum dots and quantum
wells. In the first instance we show that quantum wells of varying size embedded in the depletion region
yields spatial variation of the energy gap that can be controlled. An advantage of the proposed structure
is efficient utilization of the broad solar spectrum, lessening of lattice matching problems and generation
of electron-hole pairs in narrow depletion regions which yields fast spatial separation of charges and, thus,
reduces recombination losses. In another model we show how quantum coherence can be used, in principle,
to eliminate radiative recombination and increase photocell power.

1 Reducing radiative recombination and
increasing photocell power

The fundamental limit to photovoltaic efficiency is
widely thought to be radiative recombination which
balances radiative absorption. However, it is possible to
break detailed balance via quantum coherence, which
yields, in principle, a quantum limit to photovoltaic
operation which can exceed the classical one [1].

The early p-n junction Si solar cells had an effi-
ciency of around 5%. Half a decade later, Shockley and
Quiesser [2] showed that the limit was more correctly
attributed to the fact that electron-hole pairs are often
lost due to radiative recombination. Here we review
a toy photocell illuminated by a monochromatic slice
of the solar spectrum [1] to show how we can miti-
gate radiative recombination and enhance efficiency via
quantum coherence (see Fig. 1).

In order to explore how quantum coherence could (in
principle) be used to mitigate radiative recombination
in a solar cell, let us first analyze the quantum dot cell
of Fig. 1, in which we inject monochromatic radiation
resonant with the energy εc − εv. The populations Nv

and Nc are described by the chemical potentials μv and
μc and the ambient temperature Ta so that

Nv

Nc
= exp

(
εc − εv − (μc − μv)

kBTa

)
, (1)

and the cell voltage is eV = μc − μv.
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The interaction Hamiltonian between the quantum
dots and the single mode cavity field is given by

V̂ =
∑

j

�gj |vj〉 〈cj | â† + adj. , (2)

where gj is the coupling constant between the jth quan-
tum dot, and the radiation field is described by the
creation (annihilation) operators â†(â). For the present
purposes we may model the problem assuming the den-
sity matrix for the field, ρ, evolves dynamically as

ρ̇ = −
∫ t

t0

dt′

�2

∑
j,αj

〈αj | [V̂ j(t, t0),

[V̂ j(t′, t0), ρ(t) ⊗ ρj ]] |αj〉 , (3)

where ρj is the density matrix for the jth dot. The
states of the dot are |αj〉 = |cj〉 or |vj〉 in the notation
of Fig. 1b, and t0 is the time that the jth dot is excited
by thermal photon excitation from the n type (donor) or
p type (acceptor) reservoir having chemical potential μc

or μv. Upon excitation to the states |cj〉 or |vj〉 the elec-
trons are modeled as decaying back to the n type or p
type reservoir at rate γ. We may include this process by
simply taking V̂ j(t, t0) → V̂ j(t, t0)e−γ(t−t0). The sum-
mation over dots is replaced by

∑
j = r

∫ t

−∞ dt0, then
Eqs. (1)–(3) yield

ρ̇(â, â†, t) = −κ
[
ρcc

(
ââ†ρ + ρââ† − 2â†ρâ

)
+ρvv

(
â†âρ + ρâ†â − 2âρâ†)] , (4)
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Fig. 1 a Schematic of photocell consisting of quantum dots
sandwiched between p and n regions. Solar radiation excites
electrons from the valence to conduction states in the quan-
tum dots. b The “built-in” field in the depletion layer sep-
arates electrons and holes; however, they can radiatively
recombine before being separated. Absorption in the bulk
semiconductor is avoided by ensuring that �ν < εg; e.g.,
in the figure we choose �ν = 1.8 eV and εg = 1.81 eV. c

The energy loss by phonon emission from electrons excited
well above the band edge can be essentially eliminated by
dividing the photon flux into frequency components, each of
which is directed to a cell with its band gap matched to the
incident light. For example, frequency sensitive beam split-
ters are here depicted as dividing the solar radiation into
red, green, and blue beams which are tuned to the three
cells with �νi < εi

g where i = R, G and B

where ρvv(ρcc) is the density matrix probability for find-
ing the valence (conduction) state occupied, r is the rate
of scattering of electrons (into and out of the dots) and
κ = −rg2/γ2.

The equation of motion for the average photon num-
ber n̄ is given by

dn̄

dt
= −(Rv − Rc)n̄ + Rc

= −R

[
1

e�ν/kBTS − 1
− 1

e(�ν−eV )/kBTa − 1

]
,

(5)

where Rv = κρvv, Rc = κρcc, R = Rc −Rv, and TS(Ta)
is the temperature of the solar radiation (ambient sur-
roundings).

In Eq. (5) we have replaced n̄ on the right-hand side
by its equilibrium value for solar radiation at tempera-
ture TS . The second term in the square bracket follows
from the fact that

Rv

Rc
= exp

(
�ν − eV

kBTa

)
(6)

since ρvv/ρcc = Nv/Nc as it appears in Eq. (1).
As an example of the utility of Eq. (5), we note

that at steady state, the second term in the square
bracket cancels the first term so that �ν/kBTS =
(�ν − eV )/kBTa, which yields Carnot efficiency [3]

eV = �ν

(
1 − Ta

TS

)
. (7)

Having seen that our toy model contains the essen-
tial features of monochromatic photocell operation, we
proceed to replace the state |c〉 by the doublet |c1〉, |c2〉
which is coupled by a resonant driving field with

Fig. 2 Quantum dots having upper level conduction band
states, |c1〉 and |c2〉, are coherently driven by a field such
that �ν0 = 1

2
(εc1 − εc2). The monochromatic solar photons

having energy �ν are tuned to the midpoint between the
upper levels. The host semiconductor system, in which the
quantum dots are embedded, has effective Fermi energies μc

and μv for the conduction and valence bands

�ν0 =
1
2

(εc1 − εc2) , (8)

as shown in Fig. 2.
We assume that coherent field drives the c1c2 tran-

sition in resonance with Rabi frequency Ω. Then we
transform the driving field away to obtain a new inter-
action Hamiltonian which treats Ω to all orders and
make the secular approximation. The new interaction
Hamiltonian reads

V̂ = �g |v〉 〈c2| â† + adj. . (9)

We then obtain a photon rate equation
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dn̄

dt
= −R

[
1

e�ν/kBTS − 1
− 1

e(�ν+�ν0−eV )/kBTa − 1

]
,

(10)

which implies

eV = �ν

(
1 − Ta

TS

)
+ �ν0. (11)

That is, we now have a quantum efficiency which
exceeds the voltage given by Eq. (7). The preceding
coherent drive model illustrates the role of quantum
coherence in a simple way. One should mention that
it is possible to generate coherence without the use of
an external coherent drive. For example, coherence in
a photocell can be induced by incoherent solar radia-
tion which can enhance light absorption and increase
the cell power [4–6].

Finally we make contact with the quantum Carnot
engine [7], which is in some ways similar to the quantum
solar cell. In the photo-Carnot heat engine a field is
the working fluid. If the field is maintained at thermal
equilibrium by hot atoms injected into the cavity, then
the engine operates with the usual Carnot efficiency η =
1−Tc/Th, where Th and Tc are the temperatures of the
hot energy source and the cold entropy sink. However,
if the atoms are injected in a coherent superposition of
ground (b) and excited (a) states, the efficiency of this
quantum photon engine is given by [7]

ηQ = η − 3
Tc

Th
n̄|ρab| cos ϕ, (12)

where ϕ is the phase of the atomic coherence ρab. The
correspondence with the quantum photocell is clear:
In quantum photocell, we use quantum coherence to
enhance the transfer of solar energy to the quantum
dots. In the quantum photo-Carnot engine, we use
quantum coherence to maximize transfer of atomic
energy to the photons.

To summarize this section, we ask the question, “Can
radiation recombination be avoided?” The answer is
yes, in principle. By breaking detailed balance, radia-
tive recombination can be substantially reduced. This
can, in principle, enhance the efficiency of photocells,
e.g., photodetectors and solar cells; however this is not
our key point. It is important to understand the funda-
mental limits and that radiative recombination can be
mitigated.

Next we consider more realistic quantum dot and
quantum well solar cells. First we review basic energy
conversion processes in photocells and limitations on
their efficiency. Then we discuss novel cell designs uti-
lizing broad solar spectrum in Sects. 2.6 and 2.7.

2 Quantum dot and quantum well solar
convertors

An efficient cell must be able to convert most of solar
photons (with broad energy spectrum from 0.5 to 3.5
eV) into electric energy. Due to thermalization losses
and lack of absorption of photons with energy less than
band gap a single pn junction-type solar cell is not very
efficient [3]. Efficiency can be increased in tandem cells
by offering the solar cell only photons within the nar-
row energy interval and processing the other photons by
cells with a different band gap [8]. The upper limit for
the efficiency of an infinite tandem is 86% for concen-
trated radiation [3]. However, high-efficiency multiple-
junction solar cells can be fabricated only from a limited
set of materials that can provide lattice matching. The
most presently efficient (about 44−47%) solar cells are
multijunction devices [9–13]. Efficiency can be increased
by reducing absorption and thermalization losses pro-
vided that other possible limitations, e.g. internal resis-
tance, remain small.

Introduction of quantum wells, dots or nanocryastals
into solar cell physics is interesting and promising [14–
16]. Matching the electronic excitation energy (band
gap) to the solar spectrum is a central problem in semi-
conductor solar cells, see Fig. 3. Photovoltaic cells with
array of quantum wells or dots have been studied in
various publications. In particular, cell fabrication [17],
materials [18], performance [19,20] and charge trans-
port [21] are the subjects of recent investigation.

Here we propose a design of a tandem solar energy
convertor made of the same wide band gap semicon-
ductor with quantum wells (or dots) embedded in the
depletion region. Variation of the well (dot) size yields
spatial variation of the energy gap in the depletion
region. This differs from conventional tandem cells in
which energy gap is uniform in each pn junction. A
decrease in the energy gap in the depletion region
away from the photosensitive surface provides effective
absorption of photons in a certain energy range by each
element of the cascade resulting in a higher utilization
efficiency of solar radiation. In the proposed scheme,
electrons (holes) move through the depletion region by
quantum tunneling from one well (dot) to another.

Advantage of the proposed design is lessening of the
lattice matching problem since only two different mate-
rials (the bulk semiconductor and material for quan-
tum wells) are needed. In addition, in the present
design, generation of electron-hole pairs occurs in nar-
row depletion regions which yields fast spatial separa-
tion of charges and, thus, reduces recombination losses.

To put the present work in perspective we next review
limitations on the pn junction solar cell efficiency in
details.

2.1 Individual energy conversion processes in solar
cells

There are various contributions to the solar cell losses.
Some of them have been made small in the most effi-
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Fig. 3 a Electronic states in a bulk (3D) semiconductor
with gap Eg = Ec −Ev. A photon with energy E > Eg pro-
motes electrons from the valence to the conduction band.
Electrons move to the bottom of the conduction band via
phonon emission. Likewise holes raise to the top of the
valence band emitting phonons. b Electrons and holes on

a 2D quantum well have a discrete energies together with
free particle energy bands in directions parallel to the walls
of the well, which also involve phonon emission. c In a 1D
quantum dot only discrete energy are allowed and multiple
phonon emission is not involved

cient cells, e.g., surface reflection, internal resistance,
absorption in the inactive window layers, contact volt-
age, nonradiative recombination, etc. However, other
processes substantially limit the cell efficiency. Those
are shown in Figs. 4 and 5 and subject of the present
discussion. The overall efficiency η of the solar cell is
given by the product of the efficiencies of the individ-
ual energy conversion processes [3]

η = ηabsorption · ηthermalization · ηthermodynamic · FF,(13)

where the absorption efficiency ηabsorption is the fraction
of photons absorbed by the solar cell. It accounts for the
photons with energy smaller than the gap which are not
absorbed. η thermalization accounts for losses due to ther-
malization of the electron-hole pairs with energy greater
than the gap which loose the excess energy emitting
phonons. Thermodynamic efficiency ηthermodynamic and
Fill Factor FF appear due to finite temperature of the
cell T .

2.2 Thermodynamic limit on solar cell efficiency

Laws of thermodynamics impose an upper limit on volt-
age at which solar cell can operate constraining the cell
efficiency (ηthermodynamic in Eq. (13)). The voltage is
maximum for open circuit. Next we estimate the max-
imum value of the open circuit voltage Voc. When an
electron undergoes transition from the conduction band
to the valence band, the Helmholtz free energy released
is equal to eV

eV = Eg − TΔS, (14)

where V is the voltage across the pn junction, Eg and
ΔS are the internal energy and entropy lost by the semi-

conductor. To find ΔS one can assume that under open
circuit condition the electron goes from the conduction
band to the valence band by recombination with a hole
and emitting a photon. Then ΔS is equal to increase in
the entropy of the photon gas

S = kB

∑
k

[(nk + 1) ln(nk + 1) − nk ln(nk)] , (15)

where summation is over all possible photon modes k
and nk is the number of photons in mode k. When an
additional photon of energy Eg is added to the mode k
the change in entropy is

ΔS = kB ln
(

1 +
1
nk

)
. (16)

Substituting Eq. (16) into Eq. (14) we obtain

eV = Eg − kBT ln
(

1 +
1
nk

)
, (17)

or

nk =
1

exp[(Eg − eV )/kBT ] − 1
, (18)

where T is the semiconductor temperature.
Let us assume that we decompose the incident light

into narrow spectral intervals and treat each spectral
component separately. For monochromatic light with
frequency ω one can choose material with band gap
Eg = �ω to avoid absorption and thermalization losses.
The radiative current (due to electron-hole recombina-
tion) and current due to absorbed solar light are
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Fig. 4 Main contributions to solar cell losses: (1) Pho-
tons with energy less then gap are not absorbed (absorption
losses); (2) Electrons (holes) with excess energy are quickly
relaxing to the bottom (top) of the conduction (valence)

band by phonon emission (thermalization losses); (3) Losses
due to finite temperature of the cell (thermodynamic losses
and Fill Factor)

Jrad ∝
∑
k

nk ∝ Ωemit

exp[(Eg − eV )/kBT ] − 1
, (19)

JSun ∝ ΩSun

exp[Eg/kBTS ] − 1
, (20)

where Ωemit and ΩSun are the solid angle of the emit-
ted radiation and the solid angle of the Sun viewed from
the cell, TS is the temperature of the solar surface. The
factors Ωemit and ΩSun appear due to summation over
degenerate photons modes k with energy Eg. For open
circuit Jrad = JSun which yields the following expres-
sion for the open circuit voltage

eVoc = Eg − kBT

ln
[
1 +

Ωemit

ΩSun

(
exp

(
Eg

kBTS

)
− 1

)]
. (21)

Thus the thermodynamic efficiency for the narrow spec-
tral interval is

ηthermodynamic =
eVoc

Eg
= 1 − kBT

Eg

ln
[
1 +

Ωemit

ΩSun

(
exp

(
Eg

kBTS

)
− 1

)]
. (22)

Without light focusing ΩSun = 6.8×10−5. If Ωemit = 4π,
Eg = 1.35 eV, kBTs = 0.5 eV and kBT = 0.0259 eV we
find Voc = 0.97 Volts and

ηthermodynamic = 0.72. (23)

Focusing solar radiation increases ΩSun. This is the
case because during passage through a nonabsorbing
and nonemitting ideal imaging system, the energy cur-
rent density per solid angle remains unchanged. Thus,
if light intensity increases the solid angle also increases.
Maximum efficiency is achieved for ΩSun = Ωemit and

Fig. 5 Graphical representation of single junction solar
cell losses. Solid curve shows number of solar photons Nph

per unit area and unit time with energy greater then E as
a function of E. Area under the curve is equal to the total
solar power density. Various contributions to the cell losses
are shown as hatched areas

Eq. (22) yields the Carnot efficiency

ηthermodynamic = 1 − T

TS
(24)

which is independent of the photon energy.

2.3 Fill Factor FF

One of the limitations on the solar cell efficiency is the
Fill Factor which determines what fraction of the stored
chemical energy the solar cell can deliver operating at
the maximum power point

FF =
jmpVmp

jscVoc
, (25)
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where jmp and Vmp are the current and voltage at the
maximum power point, jsc is the short-circuit current
and Voc is the open-circuit voltage.

For pn junction the current-voltage characteristic
reads

j = jS

[
exp

(
eV

kBT

)
− 1

]
+ jsc, (26)

where jS is the reverse saturation current. Eq. (26) gives
the following relation between jsc and Voc

jsc
jS

= 1 − exp
(

eVoc

kBT

)
. (27)

The condition of maximum power yields

d(jV ) = 0, (28)

or

dj

dV
= − j

V
. (29)

Taking into account Eq. (26) we find

ejS

kBT
exp

(
eVmp

kBT

)
= − jmp

Vmp
, (30)

which using Eqs. (27) and (26) yields

Vmp =
kBT

e

[
exp

(
e(Voc − Vmp)

kBT

)
− 1

]
, (31)

or

Vmp = Voc − kBT

e
ln

[
1 +

eVmp

kBT

]
. (32)

Approximately one can replace Vmp by Voc under the
logarithm and obtain

Vmp ≈ Voc − kBT

e
ln

[
1 +

eVoc

kBT

]
. (33)

One can see that Vmp depends only on Voc and temper-
ature T .

Eqs. (25), (26), (27) and (33) yield

FF =
x − ln(1 + x)

1 + x
, where x =

eVoc

kBT
. (34)

That is Fill Factor also depends only on Voc and T . For
Voc = 0.97 Volt and T = 300 K we find x = 39 and
FF = 0.88.

Using Eq. (22) we obtain

ηthermodynamic · FF = 0.63 (35)

which gives an upper limit on efficiency of a monochco-
matic light cell without radiation focusing.

For fully focused solar light eVoc = Eg(1 − T/TS) =
1.35 · 0.95 = 1.28 eV. Thus FF = 0.90 and

ηthermodynamic · FF = 0.86 (36)

which is maximum efficiency of a cell for concentrated
monochcomatic radiation.

2.4 Absorption efficiency and thermalization losses

If electron-hole pairs are created with the energy E
greater than band gap Eg the excess energy E − Eg is
lost due to fast electron-phonon collisions (thermaliza-
tion losses). Assuming black-body solar spectrum this
yields

ηthermalization =
Eg

∫ ∞
Eg

dE E2

exp(E/kBTS)−1∫ ∞
Eg

dE E3

exp(E/kBTS)−1

. (37)

In addition, solar photons with energy E < Eg are
not absorbed, thus

ηabsorption =

∫ ∞
Eg

dE E3

exp(E/kBTS)−1∫ ∞
0

dE E3

exp(E/kBTS)−1

(38)

and, therefore,

ηabsorption · ηthermalization=
Eg

kBTS

∫ ∞
Eg/kBTS

dx x2

exp(x)−1∫ ∞
0

dx x3

exp(x)−1

.

(39)

The right hand side of Eq. (39) is maximum for
Eg = 2.17kBTS = 1.09 eV which gives the maxi-
mum absorption-thermalization efficiency for a single
pn junction cell

ηabsorption · ηthermalization = 0.44. (40)

Thus, a single pn junction solar cell cannot have effi-
ciency exceeding 44% even if cell operates at zero tem-
perature. Taking into account η thermodynamic and Fill
Factor for T = 300 K reduces the net limiting efficiency
to (cf. Ref. [2])

η = 0.265 (41)

for unconcentrated solar radiation (optimum gap is
Eg = 2.76kBTS = 1.38 eV) and to

η = 0.37 (42)

for full concentration (optimum gap is Eg = 2.30kBTS =
1.15 eV).
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It is worth to note that efficiency experimentally
achieved for a champion single pn junction cell (GaAs
cell with Eg = 1.41 eV) and AM1.5 solar spectrum is
η = 0.253 [22] which is very close to the answer given
by Eq. (41). Such agreement indicates that losses not
included into the present discussion give much smaller
contribution.

One can improve the absorption efficiency and reduce
thermalization losses in tandem cells by offering each pn
junction only photons within the narrow energy inter-
val and processing the other photons by materials with
a different band gap [8]. Tandem cells made of semicon-
ductors with different band gaps are used in satellites
where high cell efficiency is required.

2.5 Triple-junction tandem solar cell

Monolithic multijunction solar cells have produced the
highest efficiencies practically achievable. In particu-
lar, Sharp Corporation is claiming an efficiency record
of a triple-junction compound semiconductor device
that boasts a 37.9% efficiency for unconcentrated light
and 44.4% efficiency using concentrator systems [23].
Six-junction solar cells demonstrated 47.1% conversion
efficiency under 143 Suns concentration and 39.2% for
unconcentrated light [13].

Next we discuss maximum efficiency of a solar cell
made of three pn junctions (with energy gaps Eg1 >
Eg2 > Eg3) connected in series. The top junction
absorbs photons with energy E > Eg1, while the other
two junctions utilize photons with Eg2 < E < Eg1 and
Eg3 < E < Eg2 respectively. To match current through
the junctions we must impose a constraint that each
junction absorbs the same number of photons, which
gives two equations on the three unknown values Eg1,
Eg2 and Eg3

∫ Eg2

Eg3

dE
E2

exp
(

E
kBTS

)
− 1

=
∫ Eg1

Eg2

dE
E2

exp
(

E
kBTS

)
− 1

=
∫ ∞

Eg1

dE
E2

exp
(

E
kBTS

)
− 1

. (43)

Maximization of the ηabsorption ·η thermalization efficiency
yields the third constraint

ηabsorption · ηthermalization

=
(Eg1 + Eg2 + Eg3)

Ea

∫ ∞
Eg1

dE E2

exp(E/kBTS)−1∫ ∞
0

dE E2

exp(E/kBTS)−1

= max,

(44)

where Ea = 1.35 eV is the average energy of solar pho-
tons. Eqs. (43 ) and (44) give the following optimum
parameters

Eg1 = 1.77 eV, Eg2 = 1.12 eV,

Eg3 = 0.61 eV, ηabsorption · ηthermalization = 0.69.

(45)

To account for the thermodynamic efficiency and Fill
Factor we must multiply each Egi by ηthermodynamic ·FF
which gives an extra factor

eV

Eg1 + Eg2 + Eg3
=

3∑
i=1

Egi · ηthermodynamic · FF

Eg1 + Eg2 + Eg3
.

(46)

Here ηthermodynamic · FF depend on Egi and given by

ηthermodynamic · FF

=
(

1 − kBT

Egi
ln

[
1 +

Ωemit

ΩSun

(
exp

(
Egi

kBTS

)
− 1

)])

·
(

xi − ln(1 + xi)
1 + xi

)
, (47)

where

xi =
Egi

kBT
− ln

[
1 +

Ωemit

ΩSun

(
exp

(
Egi

kBTS

)
− 1

)]
.

(48)

This yields for unconcentrated light the net efficiency

η = 0.41. (49)

For full concentration we obtain

η = 0.58, (50)

while for partial focusing, ΩSun = 500 × 6.8 × 10−5, we
find

η = 0.51. (51)

It is interesting to note that the record efficiency
achieved for the triple-junction solar cell for unconcen-
trated light is only a few percent less than the limiting
value given by Eq. (49). Such a cell is made of InGaP
(top layer), GaAs (middle layer) and InGaAs (bottom
layer) [23]. The corresponding energy gaps are 1.87 eV,
1.4 eV and 1.0 eV respectively [24]. However, according
to Eq. (45), combination of band-gaps for this triple-
junction structure is not optimal. One can optimize
band-gaps of the triple-junction cell by reducing band-
gaps of top and middle cells. So, band-gap combination
of 1.7 eV (AlGaAs), 1.2 eV (InGaAs) and 0.65 eV is
the optimal structure including Ge bottom cell [24].

In principle, by increasing the number of pn junctions
with different gaps in the tandem one can further reduce
absorption and thermalization losses. However, use of
different materials yields the lattice matching problem.
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Fig. 6 Proposed
structure of a solar cell
element with quantum
wells (dots) embedded in
the depletion region of pn
junction. Energy gap first
gradually decreases and
then increases upto its
initial value inside the
depletion region

If lattice constants are not matched the internal stress
develops at the interfaces resulting in appearance of
cracks and defects which, in turn, increase the cell inter-
nal resistance. The increased resistance becomes a lim-
iting factor of multi junction devices constraining fur-
ther improvement of the cell performance.

Next we discuss a possible design of tandem cells
with quantum wells (dots) in the depletion region which
lessens the lattice matching problem by using only two
different materials (the bulk semiconductor and mate-
rial for quantum wells).

2.6 Cell design utilizing broad solar spectrum

The proposed structure of the solar cell element is
shown in Fig. 6. The element is made of a wide band gap
semiconductor (e.g., GaN, with Eg = 3.4 eV) so that
practically no solar photons have energy larger than the
gap. The depletion region of the pn junction is filled
with quantum wells (dots). The well (dot) size gradu-
ally changes across the junction yielding energy levels
shown in Fig. 6. Each quantum well (dot) is made of
the same material in which energy of the conduction
and valence bands is controlled by varying the well size.
Value of the chemical potential in each well can be con-
trolled independently by doping.

Solar energy convertor is a tandem of several (about
10) pn junctions made of the same semiconductor and
connected in series (see Fig. 7). Each cell element uti-
lizes a certain portion of the solar spectrum. Light
first enters the p-layer as sketched in the Fig. 7. High

energy photons are absorbed in the first pn deple-
tion region and produce electron-hole pairs in quantum
wells (dots). Namely, all photons with energy E > Eg1

are absorbed, where Eg1 is determined by the small-
est value of the gap in the depletion region. Electrons
(holes) move through the depletion region by quantum
tunneling from one well (dot) to another. In Appendix
A we show that in order to have necessary tunneling
rate the spacing between wells (dots) should be less
than about 1 nm. Energy levels in adjacent wells (dots)
are separated by some amount so that electrons flow
from higher to lower energy level. The energy separation
should be smaller than the Debye energy ED which is
typically a few 0.01 eV. In such a case the excess energy
goes into emission of acoustic phonons which is an effi-
cient mechanism of energy sink. At zero temperature
the voltage across the first pn junction would be about
eV1 = Eg1. Electron-hole pairs generated with energy
larger than Eg1 loose the excess energy during propaga-
tion through the depletion region by emitting phonons.
Electrons and holes flow in the opposite directions and
become spatially separated (electrons are accumulated
in the conducting band of n-region and holes are in the
valence band of p-region).

Electrons flowing out of the n-layer of the left pn
junction and holes flowing out of the p-layer of the right
pn junction recombine in a tunnel junction as shown in
Fig. 7. Usually tunnel junction is made of a heavily
doped semiconductor [25]. Tunnel barrier allows us to
avoid a negative voltage at the np interface which would
reduce the cell efficiency. In the tunnel junction, elec-
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Fig. 7 Structure of solar
energy convertor with
series pn junction layers
containing quantum wells
(dots) in the depletion
regions. n and p-type
layers are connected by a
tunnel junction

trons and holes belong to the same Fermi distribution
and recombination proceeds without a difference in the
chemical potentials.

In the second pn junction the minimum gap of quan-
tum wells is Eg2 < Eg1 and all photons with energy
Eg2 < E < Eg1 are absorbed in that region. Voltage
across the second junction is about eV2 = Eg2. And so
on, until the whole solar spectrum is covered. Because
junctions are connected in series the electric current
through each junction is the same. As a result, energy
intervals [Eg,n+1, Egn] must be chosen such that the
numbers of solar photons in each interval are equal. For
a black-body spectrum with temperature kBTS = 0.5
eV the number of photons in the interval [Eg,n+1, Egn]
is proportional to

ΔN ∝
∫ Egn

Eg,n+1

dE
E2

exp
(

E
kBTS

)
− 1

. (52)

As an example we next discuss 9-junction solar cell.

2.7 9-junction solar cell

If each pn junction captures 10% of the solar photons
then spectral energy range captured by the junctions
should be (in eV): [2.5,∞], [2, 2.5], [1.66, 2], [1.4, 1.66],
[1.18, 1.4], [0.98, 1.18], [0.79, 0.98], [0.6, 0.79], [0.39, 0.6].
That is the smallest value of the quantum wells (dots)
gap in the junction depletion region should be 2.5, 2,
1.66, 1.4, 1.18, 0.98, 0.79, 0.6, and 0.39 eV respectively.
If the cell temperature is zero the net voltage across the
cell will be (in eV)

eV = Eg1 + Eg2 + . . . + Eg9

= 2.5 + 2 + 1.66 + 1.4 + 1.18 + 0.98 + 0.79
+0.6 + 0.39 = 11.5 eV. (53)

The average energy of solar photons is Ea = 1.35 eV.
Thus efficiency of a solar cell containing 9 pn junctions
cannot be larger than

η =
0.1 · 11.5

1.35
= 0.85. (54)

Eq. (54) describes only contribution to the efficiency
due to absorption and thermalization losses. To account
for the finite cell temperature T (thermodynamic effi-
ciency and Fill Factor) we must multiply each Egi in
Eq. (53) by ηthermodynamic · FF given by Eq. (47). We
assume that at maximum power the current through
each pn junction is equal to jsc, which is a good approx-
imation. Thus the maximum power current is approx-
imately the same for all junctions. For unconcentrated
light we take ΩSun = 6.8×10−5, Ωemit = 4π, kBTs = 0.5
eV, kBT = 0.0259 eV and obtain

eV = 2.5 · 0.77 + 2 · 0.73 + 1.66 · 0.68
+1.4 · 0.64 + 1.18 · 0.59 +
0.98 · 0.52 + 0.79 · 0.44 + 0.6 · 0.3
+0.39 · 0.07 = 7.17 eV, (55)

so that the net efficiency of a solar cell containing 9 pn
junctions without light concentration is

η = 0.53. (56)
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For full concentration Ωemit = ΩSun and we obtain

eV = 2.5 · 0.89 + 2 · 0.88 + 1.66 · 0.87
+1.4 · 0.86 + 1.18 · 0.85 +
0.98 · 0.83 + 0.79 · 0.81
+0.6 · 0.78 + 0.39 · 0.72 = 9.84 eV, (57)

so that the net efficiency is

η = 0.73. (58)

For partial focusing, e.g. 500 Suns, we find

η = 0.63. (59)

2.8 Infinite tandem

In an ideal case of infinite number of pn junctions there
are no absorption and thermalization losses and the net
efficiency is given by

η =

∫ ∞
0

dE E3

exp(E/kBTS)−1 · ηthermodynamic · FF∫ ∞
0

dE E3

exp(E/kBTS)−1

, (60)

where ηthermodynamic ·FF as a function of E is given by
Eq. (47). Integration of Eq. (60) yields for unconcen-
trated light

η = 0.65. (61)

For full concentration we obtain

η = 0.86, (62)

while for 500 × 6.8 × 10−5 Suns

η = 0.76. (63)

3 Discussion

We here present a (potentially) realizable design
which can yield efficiencies better than 80% for focused
solar radiation. The present scheme involves making
quantum well or quantum dot structures with specific
energy levels. In the case of a semiconductor quantum
dot, the effective gap is given in the conventional nota-
tion by

Eg
∼= Ebulk

g +
k2π2

8r2

(
1

m∗
e

+
1

m∗
h

)
(64)

where m∗
e(m

∗
h) is the effective mass of the electron

(hole), r is the dot radius and k is an integer. Thus
effective gap can be controlled by changing size of the
quantum dot (or size of the quantum well). Accurate

selection of quantum dots with specific gap values is
crucial for the proposed design. We discus a possible
way of quantum dot processing with high precision in
Appendix B.

Several points concerning the photovoltaics should
be noted. For example, photon absorption only takes
place in the quantum wells (dots). Those are located in
the depletion region where the pn junction “built in”
electric field acts to drive holes into the p doped and
electrons into the n doped regions. Furthermore, the
electron-hole pairs will be swept from the junction in a
time short compared to the recombination time so there
will be no recombination of electrons and holes in the
depletion layer. Absorption in the bulk n and p type
materials to the left and right of the depletion region
is undesirable as the electrons and hole excitons will
tend to recombine before they can be separated. Such
absorption is avoided by tailoring the p and n regions
to have a wide energy gap.

Proceeding to analyze the absorption of a beam of
intensity I0 as it passes through the layer of quantum
dots of thickness z we write [26]

I = I0e
−z/labs , (65)

where the absorption length labs is given by

1
labs

∼= 3m

8π
Nλ2 Δνrad

Δνtot
, (66)

m (
 4) is the number of excitons per dot, N is the
dot concentration (dots/cm3), λ is the radiation wave-
length, while Δνrad and Δνtot are the radiative and
total linewidths. We may estimate labs by considering a
uniform layer filled with 5 nm dots, having a concentra-
tion N ∼= 1018cm−3. Other parameters are λ = 1μm,
Δνrad 
 107 s−1. The total linewidth is primarily gov-
erned by phase diffusion. At the room temperature, as
is shown in [27,28] Δνtot ∼= 1012 s−1 = 0.004 eV. Using
the preceding estimates this yields labs ≈ 0.2 μm.

Thus, the depletion region of L = 1 μm width filled
with quantum dots can absorb spectrum in the energy
range ΔE ∼ ΔνtotL/labs = 0.02 eV. Therefore, in order
to cover the 3 eV wide solar spectrum we need to make
about 150 pn junctions with quantum dots. In the case
of quantum wells the number of junctions can be much
smaller. The point is that each quantum well can absorb
radiation with the energy above the well’s gap and,
thus, the energy range is not limited by the linewidth.
Above the gap, radiation is absorbed within the length
l abs which is typically of the order of or smaller than
the size of the depletion region. Hence, the whole solar
spectrum can be covered with only a few pn junctions
with quantum wells embedded in the depletion regions.
Due to better absorption efficiency of light by quantum
wells their use in the proposed design is more promis-
ing.

In Appendix D we discuss absorption of light by
quantum wells and estimate absorption length labs. It
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Fig. 8 Proposed
structure of a solar cell
element with quantum
wells embedded in the
depletion region of pn
junction. Energy gap is
constant inside the
depletion region which
yields efficient absorption
of solar photins with
E > Emin by each part of
the depletion region

turns out that labs for bulk materials can be used as a
good estimate of absorption in quantum well structures.
The necessary number of QWs can be then obtained
simply by dividing the bulk absorption length by the
QW thickness. Most materials (e.g., GaAs or InP) have
absorption length of the order of 1 μm in the vicin-
ity of the band gap (that is in the energy range useful
for photovoltaic). Thus, for 5 nm thick wells in order
to have efficient absorption one should put about 200
QWs in each pn junction. Such stack of wells matches
the absorption length. Only materials with wide bang
gap (such as GaN) have substantially shorter absorp-
tion length (about 0.1 μm).

To improve absorption efficiency by quantum wells
one can design cell elements to have a constant energy
gap Eg in the depletion region as shown in Fig. 8. In
such a design, all photons with energy E > Eg are
absorbed by each part of the depletion region which
reduces the number of quantum wells necessary to
absorb solar radiation. Also, if quantum wells (dots)
are the same, then such an element is easier to manu-
facture. However, for such a design the tunneling barrier
between quantum wells is higher than for the varying
gap design of Fig. 6.
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Appendix A Flow of electrons through
depletion region

Electrons (holes) generated in quantum wells (dots) by pho-
ton absorption can propagate through the depletion region
by quantum tunneling mechanism. Namely, electrons (holes)
flow from one quantum well (dot) to another by tunneling
through the potential barrier in the region between adjacent
wells or dots (see Fig. 9). Next we estimate spacing between
wells (dots) for which tunneling is efficient.

To estimate electron tunneling rate we approximate spac-
ing between wells (dots) as one dimensional potential bar-
rier

V (x) =

{
U, 0 < x < a
0, otherwise

. (A1)

Fig. 9 Electron tunneling between quantum wells
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Tunneling probability for electron is given by

D =
1

1 + U2

4εΔ
sinh2

(√
2mΔa

�

) , (A2)

where m is the electron mass, Δ = U − ε is the height of
the potential barrier and ε is the electron energy in the dot.
For a � �/

√
2mΔ Eq. (A2) yields

D ≈ 16εΔ

U2
exp

(
−2

√
2mΔ

�
a

)
. (A3)

One can think about the electron bouncing back and forth
within the potential well of the dot with an average veloc-
ity v =

√
2ε/m . The average time between its collisions

with the “wall” of the potential is approximately 2l/v, so
the frequency of collisions is v/2l, where l is the size of the
quantum dot (well). The probability that the electron tun-
nels during any particular collision is D, so the probability
of tunneling at any given time is vD/2l. Thus the tunneling
time of electron from one dot to another is about

τ =
2l

vD
∼ τcoll · U2

16εΔ
exp

(
2
√

2mΔ

�
a

)
, (A4)

where

τcoll = 2l

√
m

2ε
(A5)

is the collision time of electron with the walls of the dot.
For l = 8 nm and ε = 0.1 eV we obtain τcoll = 0.85 × 10−13

s.
The tunneling time τ should be much smaller than time

of electron-hole recombination in the quantum dot

τ � τrec (A6)

which yields limitation

a � �

2
√

2mΔ
ln

(
τrec

τcoll

16εΔ

U2

)
. (A7)

For ε = 0.1 eV, Δ = 0.9 eV, U = 1 eV, τcoll = 10−13 s and
τrec = 10−8 s Eq. (A7) yields

a � 1 nm. (A8)

So, in order to have efficient tunneling the quantum wells
(dots) must be very close to each other.

Appendix B High precision quantum dot
processing

Semiconductor quantum dot nanocrystals are prepared by
a variety of techniques and are available commercially. For
example, solutions of CdS quantum dots covering the spec-
trum from 360 nm to 460 nm and CdSe dots going from 460
nm to 650 nm can be purchased. For some quantum solar
cells it may suffice to use these semiconductor quantum dots
“as-is”. However, in the case we envision, it will be useful
to have a finer control on the dot sizes.

We here present a simple and potentially inexpensive
means of precision sorting of an ensemble of quantum dots.

Fig. 10 Laser deflection of falling quantum dots according
to optical resonant energy �ν = εg

In Fig. 10 we show an inhomogeneous powder of quan-
tum dots having a wide distribution of sizes. The dots are
dropped in vacuum or other medium (e.g. inert gas) and
subjected to a dot band gap sequence of (e.g. semiconductor
diode) laser beams tuned to a particular quantum resonant
frequency.

Now when a dot absorbs or emits a photon of frequency
ν from a light beam, a transfer of recoil momentum Δp =
�k = �ν/c takes place between the dot and the field. If
absorption is followed by spontaneous emission, there is a
net momentum transfer to the dot as the spontaneous emis-
sion goes in 4π steradians and gives no average contribution.
Hence, as shown in Appendix C, the force on a dot due to
this absorption and emission of laser photons is given by

F =
1

2
Γ�k , (B1)

where Γ is the radiative decay rate and �k is the momentum
of a photon of wave vector k.

Then, as is shown in the following example, a substantial
deflect of ≈ 1 cm can be achieved with inexpensive diode
lasers.

To estimate the deflection we note that the vertical posi-
tion of a quantum dot falling in vacuum in the earth’s grav-
itational field is given by 1

2
gt2 and the deflection is then

x = 1
2

F
m

t2 = F
m

y
g
. Hence, using Eq. (B1) for F , we obtain

x =
Γ�k

2mg
y. (B2)

The buffer gas molecules would exert a viscous force on
the quantum dot proportional to the quantum dot velocity.
This changes x(t) and y(t), but not the ratio x(t)/y(t). As a
consequence, presence of the viscous force does not change
Eq. (B2).
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We may then calculate the deflection from Eq. (B2) by
taking the reasonable case of a 10 nm dot of CdSe having
mass m � 10−19 kg, g � 10 m/s2, Γ ∼ 108 s−1 and a 500 nm
photon having momentum �k � 1

2
10−27 kg · m/s for which

the ratio of radiation to gravitational force is of order 10−2.
Hence we find a substantial 1 cm deflection when falling
1 m due to its interaction with an array of 100 milliwatt
lasers each focused to 1 mm2 for which the Rabi frequency
ΩR > Γ. We note that this is well within the state of the
art using inexpensive semiconductor diode lasers.

One should mention that non-destructive dispersion of
quantum dots into a buffer gas has been experimentally
demonstrated by Kumakura et al. [29], while size-separation
of quantum dots by laser ablation has been demonstrated
in liquid helium [30].

Appendix C Radiative pressure on a
quantum dot

Upon absorbing a laser photon a dot experiences a momen-
tum recoil of δp = �k upon each event and the force on the
dot F is given by

F = r�k, (C1)

in which r is the rate of radiation decay given by

r = Γρee, (C2)

where Γ is the spontaneous emission rate from the excited
state |e〉 to the ground state |g〉.

The interaction with a radiation field of frequency ν is
described by the following set of equations for the density
matrix of an effective two level atom describing the quantum
dot exciton

ρ̇eg = −
(

iΔ +
Γ

2

)
ρeg + iΩRρee − i

2
ΩR, (C3)

ρ̇ee = −Γρee +
iΩR

2
(ρeg − ρge), (C4)

ρ̇ge =

(
iΔ − Γ

2

)
ρge − iΩRρee +

i

2
ΩR, (C5)

where the detuning Δ = ω − ν and ω is the transition fre-
quency. Here ΩR is the Rabi frequency associated with the
intensity of the light beam and the matrix element coupling
states e and g. The steady-state solution of Eqs. (C3)-(C5)
in the saturated limit ΩR >> Γ is

ρee =
Ω2

R

4Δ2 + Γ2 + 2Ω2
R

→ 1

2
(C6)

and from Eqs. (C1), (C2) and (C6) the absorptive force is
found to be

F =
1

2
�kΓ, (C7)

which is in the same direction as the deflecting laser.

Appendix D Light absorption by quantum
wells

Absorption and emission of light by quantum wells have
been studied in details in connection with quantum well
lasers. In particular, formulas obtained for the laser gain g
(in cm−1) can be used to estimate light absorption since
absorption length labs is related to gain as labs = −1/g.
When gain is negative the incident light is being absorbed
by the medium.

Here we estimate labs using Eq. (35) on page 36 of Ref.
[31] which gives a general answer for gain valid for bulk semi-
conductors and quantum wells. In terms of the absorption
length this equation reads

1

labs
=

1

�ω

π�e2

ε0cm2
e

n̄g

n̄2
|MT |2ρred(fv − fc), (D1)

where e is the electron charge, me is the mass of bare elec-
tron, ε0 is the permittivity of free space, c is the speed of
light in vacuum, n̄ is the index of refraction in the crystal,
n̄g is the group index of refraction

n̄g = n̄ + ω
dn̄

dω
, (D2)

MT is the transition matrix element, ρred is the reduced
density of states at the energy E = �ω − Eg:

1

ρred
=

1

ρc
+

1

ρv
, (D3)

fc and fv are Fermi-Dirac distribution factors for electrons
in the conduction and valence bands

fc =
1

1 + exp
(

Ee−Ef

kBT

) , (D4)

fv =
1

1 + exp
(

Eh−Ef

kBT

) . (D5)

For parabolic conduction and valence bands the electron
(hole) energy reads

Ee = Ec +
�
2k2

e

2mc
, (D6)

Eh = Ev − �
2k2

h

2mv
, (D7)

where Ec and Ev are the band edge energies, mc and mv

are the effective masses in the two bands and ke, kh are the
magnitudes of the wavevectors of a given electron or hole.

For parabolic conduction and valence bands the reduced
density of states ρred for a bulk 3D material is [31]

ρred =

(
2mred

�2

)3/2 √
E

4π2
, (D8)

where mred is the reduced mass

1

mred
=

1

mc
+

1

mv
, (D9)

while for a quantum well (2D)

ρred =
mred

2π�2

1

LQW
, (D10)
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where LQW is the quantum well thickness.
To estimate the absorption length one can take fv ≈ 1,

fc ≈ 0 and n̄g ≈ n̄. Then Eq. (D1) reduces to

1

labs
=

α

n̄

|MT |2
�ωme

4π2
�
2ρred

me
, (D11)

where α is the fine-structure constant

α =
e2

4πε0�c
≈ 1

137
.

Substituting ρred for quantum well from Eq. (D10) we
obtain

1

labs
=

2πα

n̄

|MT |2
�ωme

mred

me

1

LQW
. (D12)

So that the number of wells necessary to absorb incident
light is independent of well thickness and given by

labs

LQW
=

n̄

2πα

me

mred

�ωme

|MT |2 . (D13)

Let us consider quantum wells made of GaAs. We approx-
imate |MT |2 by its bulk value (see Table 2 on page 49 of
Ref. [31])

2|MT |2
me

≈ 29 eV, (D14)

and take mc = 0.067me, mv = 0.082me (that is mred =
0.037me). Then for �ω = 1.6 eV photons (n̄ = 3.7) we
obtain that the necessary number of GaAs wells is

labs

LQW
= 240 (D15)

which for 5 nm thick wells gives the absorption length of
1.2μm. Thus, the absorption length is of the order of the
size of the depletion region.

For InP

2|MT |2
me

≈ 20 eV, (D16)

mc = 0.077me, mv = 0.64me (mred = 0.069me). Then for
�ω = 1.6 eV photons (n̄ = 3.7) the necessary number of InP
wells is

labs

LQW
= 187 (D17)

which for 5 nm thick wells gives the absorption length of
0.9μm.

Absorption of photons by a bulk semiconductor is differ-
ent due to different value of the density of states. However,
difference is not substantial. Indeed, Eqs. (D8) and (D10)
give that the ratio of the density of states for a bulk material
and a quantum well is given by

ρbulk

ρQW
=

√
�ω − Eg

EQW
, (D18)

where

EQW =
π2

�
2

2mredL2
QW

. (D19)

For 5 nm thick well with mred = 0.069me Eq. (D19) yields
EQW = 0.2 eV. Therefore, e.g., for �ω − Eg = 0.5 eV Eq.
(D18) gives

ρbulk

ρQW
= 1.6, (D20)

that is absorption cross section of a bulk material is of the
same order of magnitude as for quantum wells. The absorp-
tion length we estimated for GaAs (1.2 μm) and InP (0.9
μm) quantum wells of 5 nm thickness approximately agrees
with those measured for the bulk materials near the absorp-
tion edge. One can say roughly that in order to absorb light
by quantum wells the length of QW stack must match the
absorption length of the bulk material.
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