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Abstract
We consider the wave equation on Reissner–Nordström–de Sitter and more 
generally Kerr–Newman–de Sitter black hole spacetimes with Λ > 0. The 
strength of the blue-shift instability associated to the Cauchy horizon of these 
spacetimes has been the subject of much discussion, since—in contrast to the 
asymptotically flat Λ = 0 case—the competition with the decay associated to 
the region between the event and cosmological horizons is delicate, especially 
as the extremal limit is approached. Of particular interest is the question 
as to whether generic, admissible initial data posed on a Cauchy surface 
lead to solutions whose local (integrated) energy blows up at the Cauchy 
horizon, for this statement holds in the asymptotically flat case and would 
correspond precisely to the blow up required by Christodoulou’s formulation 
of strong cosmic censorship. Some recent heuristic work suggests that the 
answer is in general negative for solutions arising from sufficiently smooth 
data, i.e. there exists a certain range of black hole parameters such that for 
all such data, the arising solutions have finite local (integrated) energy at the 
Cauchy horizon. In this short note, we shall show in contrast that, by slightly 
relaxing the smoothness assumption on initial data, we are able to prove the 
analogue of the Christodoulou statement in the affirmative, i.e. we show that 
for generic data in our allowed class, the local energy blow-up statement 
indeed holds at the Cauchy horizon, for all subextremal black hole parameter 
ranges. We present two distinct proofs. The first is based on an explicit mode 
construction while the other is softer and uses only time translation invariance 
of appropriate scattering maps, in analogy with our previous (Dafermos 
and Shlapentokh-Rothman 2017 Commun. Math. Phys. 350 985–1016). 
Both proofs use statements concerning the non-triviality of transmission 
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and reflexion, which are easy to infer by o.d.e. techniques and analyticity 
considerations. Our slightly enlarged class of initial data is still sufficiently 
regular to ensure both stability and decay properties in the region between the 
event and cosmological horizons as well as the boundedness and continuous 
extendibility beyond the Cauchy horizon. This suggests thus that it is finally 
this class—and not smoother data—which may provide the correct setting to 
formulate the genericity condition in strong cosmic censorship.

Keywords: black holes, strong cosmic censorship, cosmological constant

1.  Introduction

Penrose was the first to remark that the Cauchy horizon of the Reissner–Nordström and Kerr 
black hole solutions is subject to a blue-shift instability [Pen68]. As the Cauchy horizon 
delimits the region of spacetime determined uniquely by initial data, this instability provided a 
path to a possible resolution to one of general relativity’s most puzzling paradoxes: Observers 
crossing the Cauchy horizon experience failure of predictability in a supposedly determin-
istic classical-physics theory, without however manifestly exiting the domain of validity of 
the classical description. The blue-shift instability associated to the Cauchy horizon eventu-
ally led to the formulation of the strong cosmic censorship conjecture [Pen74], according to 
which, for generic initial data for the Einstein vacuum equations

Rµν [g] = 0,� (1)

or more general Einstein matter systems like the Einstein–Maxwell equations, the spacetime 
region (M, g) uniquely determined by initial data (i.e. the ‘maximal Cauchy development’) 
is suitably inextendible. A similar conjecture can be made for the vacuum equations with a 
cosmological constant:

Rµν [g] = Λgµν ,� (2)

which admit in the case Λ > 0 the so-called Kerr–de Sitter solutions, or for the more general 
Einstein–Maxwell equations with Λ > 0

Rµν [g] = Λgµν + 2
(

F λ
µ Fλν − 1

4
gµνFλκFλκ

)
, ∇νFµν = 0, ∇[µFνλ] = 0,� (3)

which admit the Reissner–Nordström–de Sitter solutions (in fact the Kerr–Newman–de Sitter 
solutions encompassing all of the previous), all again possessing Cauchy horizons inside of 
black holes. For the conjecture to be made precise, one must in particular stipulate in what 
sense M should be inextendible. The stronger the inextendibility condition, the more defini-
tive a resolution to the paradox the conjecture would provide. The most satisfying statement 
would be if the spacetime metric g itself could be shown to be generically inextendible merely 
as a continuous (C0) Lorentzian metric [Chr99a], i.e. without requiring further differentiabil-
ity. This is the so-called C0-formulation of strong cosmic censorship. This formulation would 
correspond to the inextendibility statement which indeed holds for Schwarzschild [Sbi18] 
across its r  =  0 singularity and is related to the property that observers approaching r  =  0 are 
‘torn apart’ by infinite tidal deformations, making the issue of their future (as classical observ-
ers) a moot point. The question of which (if any) formulation of strong cosmic censorship 
holds hinges in turn on the strength of the blue-shift instability.
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A proxy problem for understanding the above issue for (1) is to consider just the linear 
wave equation

�gψ = 0� (4)

on a fixed Reissner–Nordström or Kerr background. Remarkably, it has been shown that, for 
solutions to (4) arising from sufficiently regular and localised initial data posed on a Cauchy 
hypersurface, ψ remains uniformly bounded on the entire maximal Cauchy development, in 
particular, on the black hole interior, up to and including the Cauchy horizon, to which ψ in 
fact extends continuously [Fra16, Fra17]. See also [Hin17]. Thus, the amplitude of ψ is not 
affected by any blue-shift instability, which only acts on derivatives of ψ. Indeed, for solu-
tions arising from generic initial data in the above class, the derivative of ψ transversal to the 
Cauchy horizon has been proven [LO17a, DSR17] to blow up identically along the Cauchy 
horizon, in fact, ψ fails to be in the Sobolev space H1

loc. This means that extensions of ψ 
not only fail to solve (4) classically at the Cauchy horizon but cannot there be interpreted 
as ‘finite-energy’ weak solutions of (4). (For a previous conditional instability results, see 
[McN78b, Daf05].) To obtain the above statement, it was essential that the natural localisation 
assumption on data implies that solutions generically decay only inverse polynomially on the 
event horizon, which is then dwarfed by the blue-shift at the Cauchy horizon, governed by 
an exponential growth mechanism. The proof given in our [DSR17] was quite soft, exploit-
ing directly the translation invariance and non-trivial transmission properties of the scattering 
map, together with the properties of the Killing generator of the Cauchy horizon. An alterna-
tive approach has been given in [LS16], directly relating a lower bound on the event horizon 
to the blow up statement on the Cauchy horizon.

While Penrose’s blue-shift instability property is familiar to the wider relativity commu-
nity, the question of its precise strength has remained mostly confined to more specialist lit-
erature. Indeed, the amplitude stability and continuous extendibility result for (4) referred 
to above, first suggested by [McN78a] and proven finally in [Fra16], remained largely 
unknown—perhaps because it was originally thought that one could not extrapolate these lat-
ter stability statements to the fully nonlinear equation (1). Indeed, it was widely expected that 
the quadratic terms in (1) would lead to a highly non-linear behaviour once derivatives were 
sufficiently large, leading to a breakdown of the basic causal structure of the spacetime metric 
g associated to the Cauchy horizon, forming instead a spacelike singularity beyond which the 
metric g itself failed to be continuously extendible, just as in Schwarzschild. This expectation 
has been definitively falsified, however, in [DL17], where it has been proven, in the context of 
the fully nonlinear evolution under (1), without symmetry assumptions, that—assuming only 
the stability of the Kerr exterior region—then it follows that the Cauchy horizon persists as a 
null boundary of spacetime, and the metric indeed extends beyond continuously. (See [His81, 
PI89, Ori91, Daf05] for earlier work on model spherically symmetric problems and [Ori97] 
for an heuristic study of the problem without symmetry.) Thus, satisfying though it would 
have been, the C0-formulation of strong cosmic censorship, described at the beginning of this 
paper, is in fact false! This motivated Christodoulou’s reformulation of strong cosmic censor-
ship [Chr09], where ‘inextendibility’ is stated in the class of metrics not just merely continu-
ous but now also required to have locally square integrable Christoffel symbols. In analogy 
with the proxy problem (4), this formulation corresponds precisely to blow up in H1

loc, and 
represents the threshold for the standard notion of weak solution of the Einstein equation (1). 
Though this notion of inextendibility is not sufficient to ensure that classical observers are 
torn apart by infinite tidal deformations before exiting the domain of predictability, it still pro-
vides a definitive sense in which the classical-physics description can be said to locally break 
down whenever predictability fails, giving thus at least a partially satisfactory resolution to 
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the paradox of Cauchy horizons3. It remains an open problem to show that the Christodoulou 
formulation indeed holds, at the very least in a neighbourhood of Kerr, but there has been 
supporting recent work on spherically symmetric model problems [Daf05, LO17b, LO17c, 
VdM18] and for the vacuum without symmetry in [Luk18].

Turning to the case Λ > 0, already through the prism of the proxy problem (4), the issue 
of the nature of the blow-up for ψ on the Kerr–de Sitter and Reissner–Nordström–de Sitter 
spacetimes (satisfying (2) and (3) respectively) appears more delicate, and has been mired in 
confusion. See the discussion in [Daf14]. As opposed to the asymptotically flat spacetimes 
satisfying (1), where, for generic appropriate data, ψ decays inverse polynomially on the event 
horizon, in the latter two Λ > 0 cases, ψ decays exponentially [Bon08, Vas13]. On the one 
hand, this very fast decay is extremely fortuitous for proving non linear stability theorems. 
Indeed, exploiting this fast decay, the stability properties of the region between the event and 
cosmological horizon, under the full nonlinear evolution of (2) and more generally (3), have 
been inferred in the very slowly rotating case |a| � M, Q in the remarkable recent [HV16, 
Hin18]4. This exponential decay means in principle, however, that decay along the event hori-
zon is in direct competition with the blue-shift associated to the Cauchy horizon generating 
exponential growth. The precise exponential rates now matter!

For smooth initial data, the asymptotic behaviour of solutions in the region between the 
event and cosmological horizons should be governed by quasinormal modes [Cha83, Dya11, 
War15]. Thus, the question of whether the blue-shift wins appears to be connected to deter-
mining the ‘spectral gap’, the infimum of the imaginary parts of the quasinormal modes. 
For this, one must take into account phenomena connected to the event and cosmological 
horizons, slowly decaying solutions corresponding to trapped null geodesics, as well as other, 
more subtle slowly damped modes corresponding to the near-extremal limit in the superra-
diant case. The relevance of these for the problem at hand has been discussed in [BMM98, 
CCD+ 18, DERS18] respectively. (See also [Hod18] for the case of a spherically symmetric 
charged scalar field.) Remarkably, in the Kerr–de Sitter case, for all subextremal parameters, 
it has very recently been argued that the spectral gap is necessarily sufficiently small so as 
to expect the blue-shift effect to be strong enough so as for the H1

loc blow-up result to still 
hold [DERS18]. In the Reissner–Nordström–de Sitter case, however, there remains a range 
of black hole parameters for which the prospect of a relatively large spectral gap ‘survives’ 
all the above obstructions, suggesting in particular that solutions (4) do now extend to be H1

loc 
at the Cauchy horizon [CCD+ 18, DERS18]. The above discussion thus suggests the intrigu-
ing possibility that when Λ > 0, Christodoulou’s formulation of strong cosmic censorship is 
violated [Daf14, Rea18, CCD+ 18] (at least for (3) if not for (2)).

The above apparent failure of even Christodoulou’s revised formulation of strong cosmic 
censorship (already a weakening of the original C0-formulation!) would leave a rather dis-
comforting situation for general relativity in the presence of a positive cosmological constant 
Λ > 0: For if Cauchy horizons generically occur at which spacetime can moreover still be 
interpreted as a weak solution of the Einstein equations, then it is difficult to argue decisively 

3 There of course is an even weaker formulation of strong cosmic censorship, where inextendibilty is required in the 
sense of a C2 Lorentzian metric. We will take the point of view here, however, that the C2-formulation is manifestly 
unsatisfactory, given that strong local well posedness results have already been shown for (1) well below the C2 
threshold, for instance at the level of data which are H2 [KRS15]. This point of view is nicely explained also in 
CCD+ 18. Nonetheless, the C2 formulation is still very useful to consider as a test-case for what can be proven!
4 In particular, this allows one to unconditionally apply the analogue of [DL17] in the black hole interior to defini-
tively falsify the C0 formulation of strong cosmic censorship for (2) or more generally (3) in the Λ > 0 case. For 
work on a spherically symmetric non-linear toy model problem for understanding strong cosmic censorship with 
Λ > 0, see [CGNS17a, CGNS17b] and references therein. For the linear wave equation (4) in the black hole interior 
in the Λ > 0 case see [HV17].
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that the classical description has ‘broken down’, and thus, it would appear that the paradox 
persists of classical predictability failing without manifestly exiting the classical regime.

The purpose of this short note is to suggest a way out.

We will prove that, at the level of the proxy problem (4), there is indeed a way to retain the 
desirable generic H1

loc blowup at the Cauchy horizon: It suffices to consider a slightly less 
regular, but still well-motivated, class of initial data.

To formulate our result, let M̃  denote maximally extended subextremal Reissner–
Nordström–de Sitter spacetime (or more generally, Kerr–Newman–de Sitter spacetime). Let 
Σ̃ denote a complete spacelike hypersurface intersecting two cosmological horizons C+ as in 
figure 1. Initial data (Ψ,Ψ′) on Σ̃ give rise to a solution ψ on the future domain of dependence 
D+(Σ̃), with ψ|Σ̃ = Ψ, nΣ̃ψ|Σ̃ = Ψ′, where nΣ̃ denotes the future normal to Σ̃. The local 
energy flux of ψ along Σ̃ is of course computable in terms of initial data (Ψ,Ψ′), in particular 
ψ has finite local energy flux along Σ̃ if (Ψ,Ψ′) ∈ H1

loc(Σ̃)× L2
loc(Σ̃). For brevity, we will say 

in this case that the data (Ψ,Ψ′) have finite local energy along Σ̃.
Our main result is the following

Theorem 1.1.  Consider a subextremal Reissner–Nordström–de Sitter spacetime, or more 
generally, Kerr–Newman–de Sitter spacetime M̃ . For generic initial data (Ψ,Ψ′) with finite 
local energy along Σ̃, the resulting solution ψ of (4) in D+(Σ̃) has infinite local energy along 
hypersurfaces intersecting transversally the Cauchy horizon CH+, i.e. ψ in particular fails to 
extend H1

loc around any point of CH+.

The genericity statement can be understood as the following ‘co-dimension 1 property’: 
For all Cauchy data (Ψ0,Ψ′

0) which lead to a solution ψ0 of finite energy along hypersur-
faces transversally intersecting the Cauchy horizon CH+, the solution ψ corresponding to 

Figure 1.  Portion of maximally extended Reissner–Nordström–de Sitter and a 
hypersurface Σ̃.

M Dafermos and Y Shlapentokh-Rothman﻿Class. Quantum Grav. 35 (2018) 195010
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the Cauchy data (Ψ0 + cΨ1,Ψ′
0 + cΨ′

1) has infinite energy along hypersurfaces transversally 
intersecting CH+ for some (Ψ1,Ψ′

1) and every c ∈ R \ {0}. By linearity, it suffices to con-
struct a single (Ψ1,Ψ′

1) in the case (Ψ0,Ψ′
0) = (0, 0). Note that this is analogous to the notion 

of genericity used by Christodoulou in his proof of weak cosmic censorship for the spherically 
symmetric Einstein-scalar-field system [Chr99b, Chr99a]. (We also observe that one can show 
that the initial data leading to the desired Cauchy horizon blow-up form a set of Baire second 
category within the class of all initial data. However, since smooth solutions are dense in H1, 
in light of [Daf14, Rea18, CCD+ 18] referred to above, we do not expect to show that the set 
of Cauchy data leading to H1

loc-blow up at CH+ is open.)
In fact, one can take generic initial data (Ψ,Ψ′) in a slightly more regular class, i.e. one 

can replace the assumption that ψ merely has finite local energy on Σ̃ (i.e. corresponding to 
data lying in the Sobolev space H1

loc(Σ̃)× L2
loc(Σ̃)), with the assumption that the data lie in 

H1+ε
loc (Σ̃)× Hε

loc(Σ̃), with ε → 0 however as extremality is approached.
Recall from the above discussion that, by linearity, to obtain the above theorem it suf-

fices to produce a single solution ψ, arising from data in the admissible space, satisfying 
the claimed blow up. In the Reissner–Nordström–de Sitter case, we can in fact construct a 
spherically symmetric such ψ, or more generally, a ψ whose angular frequency is supported 
on an arbitrary fixed spherical harmonic number �. This means we can replace the space 

H1(+ε)
loc (Σ̃)× H0(+ε)

loc (Σ̃) in the above statement with a space (let us call it D) with arbitrary 
additional regularity in the angular directions. Solutions ψ of (4) arising from data in D would 
then share the same positive qualitative features of smooth C∞ solutions (in particular, in view 
of the norms of [DR07], the analogue of the results of [Fra16] still apply). Moreover, the fact 
that one formulates strong cosmic censorship in terms of inextendibility with low regularity 
strongly suggests that one should also allow similarly low regularity initial data (see the role 
of low regularity in the genericity assumption in the proof of weak cosmic censorship under 
spherical symmetry [Chr99b]). One can thus argue that there is no particular reason to prefer 
smoother initial data, and perhaps the above class of data indeed provides a more appropriate 
setting in which to consider the genericity assumption of strong cosmic censorship. We shall 
discuss this further in section 6.

We shall here carry out the proof of theorem 1.1 in detail only in the Reissner–Nordström–
de Sitter case, as already in this case, the H1

loc blowup shown here is thought to fail for smooth 
data if the black hole parameters are suitably close to extremality [Daf14, CCD+ 18]. To make 
this paper self-contained, we will give an explict construction of the Reissner–Nordström–de 
Sitter metric in the relevant region M (see section 2). The theorem easily reduces to theorem 
3.1 (see section  3), concerning only region M, which is the precise formulation we shall 
prove. We shall in fact provide two distinct proofs. Our first proof (see section 4) is explicit 
and constructs a solution suitably blowing up at the Cauchy horizon as a mode solution whose 
time frequency has negative imaginary part, related to the regularity at the event horizon. We 
note that this imaginary part may be less than the spectral gap associated to smooth data; thus 
one sees how the problem posed by determining the precise spectral gap is completely circum-
vented by passing to lower regularity. This essential insight already appears in [War15] (see 
definition 3.19 given in [War15] for an Hk-quasinormal mode and also the example discussed 
in section 6 of that paper). Our second proof (see section 5) is softer, and appeals directly to 
the time translation invariance properties of scattering maps. In both proofs, the fundamental 
inequality κ− > κ+ connecting the surface gravities of the Cauchy and event horizons plays 
an essential role. In addition, both proofs require appealing to the nonvanishing of transmis-
sion and reflexion of suitable scattering maps for a certain open set of frequencies; this is here 
inferred exploiting analyticity properties. As is clear from the second proof, equation (4) can 
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be replaced by a wide class of translation-invariant wave-type equations, on spacetimes shar-
ing only the basic qualitative properties of the respective horizons. We shall leave, however, 
such further generalisations of our result to another occasion.

2. The Reissner–Nordström–de Sitter metrics

In this section  we will quickly review the structure of the Reissner–Nordström–de Sitter 
spacetime and introduce the relevant notation.

We will eventually define a manifold (M, g) with stratified boundary corresponding to 
the union of a static region Mstatic (bounded by a bifurcate event horizon H+

A ∪H− and cos-
mological horizon C+) and a black hole interior region Mint (bounded by a bifurcate event 
horizon H+

B ∪H+
A  and Cauchy horizon CH+

B ∪ CH+
A ). See already figure 2. We review this 

construction explicitly here, as we shall make use of the properties of the various underlying 
coordinate systems.

Note that the above (M, g) is itself still only a subset of the maximally extended (M̃, g̃) 
Reissner–Nordström–de Sitter referred to in section 1. Since theorem 1.1 quickly reduces to 
a statement on (M, g), we shall not discuss the explict construction of M̃  here (see already 
section 3).

2.1.  Schwarzschild coordinates and the static patch Mstatic

We say that a three-tuple of positive constants (M, e,Λ) is non-degenerate if the function

1 − 2M
r

+
e2

r2 − Λ

3
r2

has three distinct positive zeros, which we then label

0 < r− < r+ < rc < ∞.� (5)

Henceforth, we shall always consider a fixed choice of such (M, e,Λ).

Figure 2.  The manfiold-with-stratified-boundary M.

M Dafermos and Y Shlapentokh-Rothman﻿Class. Quantum Grav. 35 (2018) 195010
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We define the static region of Reissner–Nordström–de Sitter with parameters (M, e,Λ) to be 
the manifold Mstatic defined by the coordinate range (t, r, θ,φ) ∈ R× (r+, rc)× S2 .

= Mstatic  
with metric given by

g .
= −

(
1 − 2M

r
+

e2

r2 − Λ

3
r2
)

dt2 +

(
1 − 2M

r
+

e2

r2 − Λ

3
r2
)−1

dr2 + r2dσS2 ,

�

(6)

where dσS2 = dθ2 + sin2 θdφ2 denotes the round metric on S2. We call the above coordinates 
Schwarzschild coordinates. Note that the metric (6) is manifestly stationary and spherically 
symmetric, with Killing fields T .

= ∂t and Ω1,Ω2,Ω3, where Ωi  denote the standard angular 
momentum operators in (θ,φ) coordinates.

There exists a one parameter family of stationary spherically symmetric two-forms Fµν  
on Mstatic so that the triple (Mstatic, g, F) is now a solution to the Einstein–Maxwell equa-
tions with a positive cosmological constant Λ > 0 (3) (see [Car73]). The choice of electro
magnetic field will have no relevance in this paper; in what follows, we shall only refer to the 
underlying metric (6).

We will time orient (Mstatic, g) with the timelike vector field T = ∂t.

2.2.  Outgoing Eddington–Finkelstein coordinates attaching CH+
B ∪Minterior ∪H+

A  and C−

The metric g defined by (6) can be smoothly extended to a larger manifold; we now succinctly 
review the construction.

First, it is convenient to introduce a function r*(r) by setting

dr∗

dr
=

(
1 − 2M

r
+

e2

r2 − Λ

3
r2
)−1

, r∗
(

r+ + rc

2

)
= 0.� (7)

Note that the range r ∈ (r+, rc) corresponds to r∗ ∈ (−∞,∞). Then we may define v
.
= t + r∗, 

and one finds that in the outgoing Eddington–Finklestein coordinates (v, r, θ,φ), the metric g 
defined by (6) becomes

g = −
(

1 − 2M
r

+
e2

r2 − Λ

3
r2
)

dv2 + 2dvdr + r2dσS2 .� (8)

The manifold Mstatic corresponds to the coordinate range (v, r, θ,φ) ∈ R× (r+, rc)× S2.
It is now manifest that the expression (8) in fact also defines a smooth Lorentzian 

metric on the manifold with boundary M0 defined by the coordinate range 
(v, r, θ,φ) ∈ R× [r−, rc]× S2 .

= M0. The manifold Mstatic is thus an open submanifold of 
M0 corresponding to the subset r+ < r < rc . Note that defining T = ∂v with respect to the 
above coordinates, T is a Killing field on M0 smoothly extending the definition from Mstatic.

Let us define the black hole interior region to be the open subset 
Minterior

.
= { p ∈ M0 : r− < r( p) < r+} and the outgoing future event horizon to be the 

hypersurface H+
A = { p ∈ M0 : r( p) = r+}. Note that T is spacelike on Minterior and null 

and tangent to H+
A . In particular, H+

A  is a null hypersurface.
The boundary of M0 (as a manifold with boundary) consists of two components 

∂M0 = CH+
B ∪ C− defined by

CH+
B

.
= { p ∈ M0 : r( p) = r−}, C− .

= { p ∈ M0 : r( p) = rc}.

The vector field T is null and tangential to these hypersurfaces which are in particular thus 
null and Killing horizons. We shall call CH+

B  the outgoing Cauchy horizon and C− the past 
cosmological horizon.
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Finally let us note that the future orientation defined by T on Mstatic extends to a unique 
future orientation on M0. According to this, the vector field T is future directed null on H+

A , 
CH+

B  and C−.

2.3.  Ingoing Eddington–Finkelstein coordinates on Mstatic attaching H− and C+

Returning to (Mstatic, g), we can set u .
= t − r∗ and similarly define ingoing 

Eddington–Finklestein coordinates (u, r, θ,φ). The manifold Mstatic corresponds to 
(u, r, θ,φ) ∈ R× (r+, rc)× S2. The metric now takes the form

g = −
(

1 − 2M
r

+
e2

r2 − Λ

3
r2
)

du2 − 2dudr + r2σS2 .� (9)

Similarly to the previous section, it is immediately clear that the metric g extends to 
a smooth Lorentzian manifold with boundary M̂static defined by the coordinate range 
(u, r, θ,φ) ∈ R× [r+, rc]× S2 .

= M̂static. The boundary ∂M̂static = H− ∪ C+ of this mani-
fold consists of the hypersurfaces

H− .
= { p ∈ M̂static : r( p) = r+}, C+ .

= { p ∈ M̂static : r( p) = rc}

which we shall refer to respectively as the past event horizon and the future cosmological 
horizon. Note that the Killing vector field T of the static region extends to this new manifold 
with boundary by T = ∂u, and this is tangential and null on H− and C+. These are thus null 
and Killing horizons.

We may already now attach the above null hypersurfaces H− and C+ as additional boundary 
to the manifold with boundary M0 to obtain a manifold with boundary M1 = M0 ∪H− ∪ C+ 
on which T is globally defined. Note that M1 inherits the time orientation from M0 and T is 
future-directed on H− and C+.

2.4.  Ingoing Eddington–Finkelstein coordinates on Minterior attaching CH+
A  and H+

B

Next we will define similar ingoing Eddington–Finkelstein coordinates on Minterior, which 
allow us to attach two additional null hypersurfaces.

In analogy with (7), we define the function r*(r) in the region Minterior by

dr∗

dr
=

(
1 − 2M

r
+

e2

r2 − Λ

3
r2
)−1

, r∗
(

r− + r+
2

)
= 0.� (10)

We have r∗(r−, r+) = (−∞,∞). (Note, however, that dr∗
dr < 0.) Now, analogously to the 

region Mstatic, we can define ũ = r∗ − t  in Minterior and then cover Minterior with coor-
dinates (ũ, r, θ,φ) ∈ R× (r−, r+)× S2. Just as before, the metric extends smoothly to 

(ũ, r, θ,φ) ∈ R× [r−, r+]× S2 .
= M̂interior , and this leads to the definition of the boundary 

hypersurfaces

H+
B

.
= { p ∈ M̂interior : r( p) = r+}, CH+

A
.
= { p ∈ M̂interior : r( p) = r−}

which we may now attach to obtain a manifold with boundary M2 = M1 ∪H+
B ∪ CH+

A , 
which has the additional boundary components H+

B  and CH+
A . We will refer to these as the 

ingoing future event horizon and the ingoing Cauchy horizon, respectively.
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This new manifold M2 with boundary again inherits a time orientation. The Killing field T 
extends globally to M2 and is again null on (and tangential to) H+

B  and CH+
A . Note however 

that T is now past-directed on both H+
B  and CH+

A .

2.5. The surface gravities κ+, κ− and κc and the inequality κ− > κ+

Before further extending the metric to obtain our final M, let us discuss further the behaviour 
of the Killing field T on the horizons.

One can infer immediately from the spherical symmetry of the metric and the fact that T is 
the Killing null generator of the various Killing horizons C±, H+

A , H−, H+
B , CH+

B  and CH+
A , 

that there exist constants κc, κ+ and κ− so that

∇TT|H+
A
= κ+T , ∇TT|C+ = κcT , ∇TT|CH+

B
= −κ−T ,

∇TT|H− = −κ+T , ∇TT|H+
B
= κ+T , ∇TT|C− = −κcT , ∇TT|CH+

A
= κ−T .

These constants κ+, κ− and κc are the various surface gravities of the horizons. In order to 
calculate the surface gravities it is useful to observe that

1 − 2M
r

+
e2

r2 − Λ

3
r2 = − Λ

3r2 (r − r−)(r − r+)(r − rc)(r − r̃c),

where

r̃c = −r− − r+ − rc < 0.

Then, using that

κc = −1
2
∂

∂r

(
1 − 2M

r
+

e2

r2 − Λ

3
r2
)
|r=rc , κ+ =

1
2
∂

∂r

(
1 − 2M

r
+

e2

r2 − Λ

3
r2
)
|r=r+ ,

κ− = −1
2
∂

∂r

(
1 − 2M

r
+

e2

r2 − Λ

3
r2
)
|r=r− ,

we obtain

κc =
Λ

6
(rc − r+)(rc − r−)(rc − r̃c)r−2

c , κ+ =
Λ

6
(r+ − r−)(rc − r+)(r+ − r̃c)r−2

+ ,

κ− =
Λ

6
(r+ − r−)(rc − r−)(r− − r̃c)r−2

− .

Thus we see that κc, κ+ and κ− are all positive. The following well-known inequality (which 
the reader can readily verify) is of fundamental importance for our main results:

Lemma 2.5.1.  For each tuple (M, e,Λ) of non-degenerate constants, we have

κ− > κ+.

2.6.  Kruskal coordinates attaching the bifurcation spheres B+, B− and Bc

Finally, we shall introduce Kruskal coordinates allowing us to extend our manifold to include 
the three bifurcation spheres Bc, B+, and B−.
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We start with the coordinates which will define Bc. We define two functions Uc(t, r) and 
Vc(t, r) in Mstatic by

Uc (t, r) .
= exp (κc (t − r∗)) , Vc (t, r) .

= − exp (−κc (t + r∗)) .

Then Mstatic corresponds to the range {(Uc, Vc, θ,φ) ∈ (0,∞)× (−∞, 0)× S2}. It then 
turns out that the metric extends to a smooth Lorentzian metric with stratified boundary on 
{(Uc, Vc, θ,φ) ∈ [0,∞)× (−∞, 0]× S2} (the explicit form that the metric takes in these coor-
dinates will not be relevant for this paper). The hypersurface {{Uc = 0} × {V ∈ (−∞, 0} × S2} 
may be identified with C− and the hypersurface {{Vc = 0} × {U ∈ (0,∞}× S2} may be 
identified with C+. However, we obtain a new sphere Bc

.
= {{Uc = 0} × {Vc = 0} × S2}.

The vector field T smoothly extends to Bc where it vanishes, and we have the following 
formulae:

∂

∂Uc

∣∣∣
C+

= e−κcuT ,
∂

∂Vc

∣∣∣
C−

= eκcvT .

The bifurcation spheres B+ and B− are defined in an analogous fashion and end up corre
sponding to the common boundary of H+

A  and H− and CH+
B  and CH+

A  respectively. The asso-
ciated Kruskal coordinates can be constructed from

U+ (t, r) |Mstatic

.
= − exp (−κ+ (t − r∗)) , V+ (t, r) |Mstatic

.
= exp (κ+ (t + r∗)) ,� (11)

U− (t, r) |Minterior

.
= − exp (−κ− (r∗ − t)) , V− (t, r) |Minterior

.
= − exp (−κ− (t + r∗)) .� (12)

As with Bc, T extends smoothly to B+ and B− where it vanishes and we have the formulas:

∂

∂U+
|H− = eκ+uT ,

∂

∂V+
|H+

A
= e−κ+vT ,

∂

∂V−
|CH+

B
= eκ−vT ,

∂

∂U+
|CH+

A
= eκcuT .

� (13)
We finally define

M = M2 ∪ B− ∪ Bc ∪ B+� (14)

with differential structure defined by the above charts. It follows that the above is a manifold 
with stratified boundary on which g extends smoothly as a time-oriented Lorentzian metric. 
Note that the interior of M is given by Minterior ∪H+

A ∪Mstatic and the boundary ∂M is given 
by the union

(
H+

B ∪ B+ ∪H−)⋃(
CH+

B ∪ B− ∪ CH+
A

)⋃(
C+ ∪ Bc ∪ C−) .� (15)

We note that 
(
H+

B ∪ B+ ∪H−) is a smooth boundary hypersurface, but the other two sets in 
brackets in (15) are unions of transversally intersecting smooth hypersurfaces-with-boundary, 
with common boundary B−, Bc respectively, e.g.

(
CH+

B ∪ B− ∪ CH+
A

)
= (CH+

B ∪ B−) ∪ (B− ∪ CH+
A )

with CH+
B ∩ CH+

A = ∅.
In figure 2 we depict the standard Penrose diagram for (M, g).
We note finally that the electromagnetic tensor Fµν  on Mstatic extends to an electromagnetic 

tensor Fµν  on M so that the triple (M, g, Fµν) still satisfies (3).

M Dafermos and Y Shlapentokh-Rothman﻿Class. Quantum Grav. 35 (2018) 195010



12

3.  Precise statement of the main theorem

In this section, we will give a precise statement of the main result of this paper as theorem 
3.1 (see section 3.1). This formulation only refers to the region M constructed explicitly in 
the previous section. We shall then explain (see section 3.2) how theorem 1.1 of section 1 can 
immediately be reduced to this statement.

3.1.  Statement of theorem 3.1

Let M be defined by (14). We will consider below hypersurfaces-with-boundary Σ ⊂ M\H+
B  

which are connected, spacelike and compact, transversally intersect C+ and H+
A  and have 

boundary consisting of a single sphere in Minterior and a single sphere in C+. (We shall soon 
specialise to the case where Σ is itself spherically symmetric.)

A solution ψ to the wave equation  is uniquely determined in D+
M (Σ), the domain of 

dependence of Σ, by its corresponding Cauchy data along Σ. In particular, we have the fol-
lowing well-known proposition.

Proposition 3.1.1.  Given Cauchy data (Ψ,Ψ′) ∈ Hs(Σ)× Hs−1(Σ), there exists a 
weak solution ψ to the wave equation (4) in D+

M(Σ) uniquely defined by the property that 
(ψ, nSψ) ⊂ Hs

loc(S)× Hs−1
loc (S) for any spacelike hypersurface S ∈ D+

M(Σ) and that 
(ψ|Σ, nΣψ|Σ) = (Ψ,Ψ′). Furthermore, if Σ is spherically symmetric and the data (Ψ,Ψ′) are 
spherically symmetric, then the solution ψ is also spherically symmetric.

Our main result is the following theorem.

Theorem 3.1.  Fix a non-degenerate tuple (M, e,Λ) and consider the corresponding Reiss-
ner–Nordström–de Sitter metric (M, g) and let Σ denote a spherically symmetric hypersur-
face as above. Then there exists ε = ε(M, e,Λ) > 0 and spherically symmetric Cauchy data 
(Ψ,Ψ′) ∈ H1+ε(Σ)× Hε(Σ) such that the corresponding solution ψ to the wave equation (4) 
obtaining the Cauchy data satisfies

‖ψ‖Ḣ1(N ) = ∞,� (16)

i.e. ψ �∈ H1(N ), where N  is any constant U− hypersurface emanating from a sphere in 
D+(Σ) ∩Minterior and terminating on a sphere of CH+

A .

In figure 3 we have depicted the hypersurface Σ, its future domain of dependence D+(Σ) 
and a choice of hypersurface N . The square of the homogeneous Sobolev norm Ḣ1(N ) can 
be interpreted as the energy flux measured by a family of local observers on N . Note that the 
statement (16) is independent of the choice of induced volume form on N .

We will provide two proofs of this result. The first proof, given in section 4, will be a direct 
construction based on individual mode solutions. The second proof, given in section 5 will be 
based on the time translation invariance of the spacetime and is an adaption to the cosmologi-
cal setting of our arguments from [DSR17].

We note that, it will be immediate from either proof that instead of spherically symmetric 
(Ψ,Ψ′) in theorem 3.1, we can take data supported instead on an arbitrary fixed higher spheri-
cal harmonic number � � 1.
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3.2.  Reduction of theorem 1.1 to theorem 3.1

We now explain how theorem 1.1 can be inferred from theorem 3.1.
First of all, we observe that by local existence considerations similar to proposition 3.1.1, it 

clearly suffices to establish theorem 1.1 for a spherically symmetric Σ̃. In the rest of this sec-
tion we shall thus work with spherically symmetric hypersurfaces. Next, we note that (M′, g) 
is isometric to (M, g), where we define M′ .

= M′
static ∪H+

B ∪Minterior  (see figure 4). Hence 
we obtain the analogue of theorem 3.1 for the region M′.

Next, using the finite speed of propagation, we immediately are able to obtain a solution ψ 
arising from Cauchy data (Ψ,Ψ′) ∈ H1+ε(Σ̃)× Hε(Σ̃) such that ||ψ||H1(N ) = ||ψ||H1(N ) = ∞, 
where N  is a null hypersurface transversally intersecting CH+

B  and N  is a null hypersurface 
transversally intersecting CH+

A .
Finally, it remains to show that the solution has an infinite H1 norm along hypersurfaces 

transversally intersecting CH+ which lie outside the shaded region. This follows from a 
straightforward propagation of singularities argument, using however also the local finiteness 
of the energy flux of ψ along CH+

A,B, a result proven in [Fra16].

4.  First proof of theorem 3.1: an explicit mode-solution construction

In this section, we will give our first proof of theorem 3.1 by constructing the desired solution 
ψ via direct o.d.e. analysis.

We start in section 4.1 by reviewing the separation of variables for the wave equation (4). In 
section 4.2 we carry out an asymptotic analysis of the radial o.d.e. at its singular points. Next, 
in section 4.3 we establish two o.d.e. lemmata which have the interpretation as statements of 
non-triviality of reflection and transmission. These lemmata will also be used in section 5. 
Finally, in section 4.4 we give the proof of theorem 3.1.

Figure 3.  The manifold M with hypersurfaces Σ, N  and shaded domain of influence 
of Σ.
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4.1.  Separation of variables on the Reissner–Nordström–de Sitter spacetime

In this section we will review the procedure for separation of variables for the wave equa-
tion (4) on the Reissner–Nordström–de Sitter spacetime.

We say that a spherically symmetric ψ : Mstatic → C in the static region is a mode solution 
if ψ satisfies (18) and there exists ω ∈ C so that

ψ(t, r) = e−itωR(r).� (17)

Note that a spherically symmetric function ψ(t, r) satisfies the wave equation (4) in Mstatic if 
and only if

∂2
t ψ − r−2µ(r)∂r

(
r2µ(r)∂rψ

)
= 0,� (18)

where we have defined

µ(r) .
= 1 − 2M

r
+

e2

r2 − Λ

3
r2.

In particular, in the case of a mode solution, the function R(r) from (17) will satisfy5 the radial 
o.d.e.:

r−2µ(r)
d
dr

(
r2µ(r)

dR
dr

)
+ ω2R = 0, r ∈ (r+, rc).� (19)

Finally, we also obtain a definition, mutatis mutandis, for spherically symmetric mode 
solutions ψ : Minterior → C in the interior region, where the r-range of (19) is replaced by 
r ∈ (r−, r+).

4.2.  Asymptotic analysis of the radial o.d.e., basis solutions and analyticity properties

The o.d.e. (19) has regular singular points at r  =  rc, r  =  r+ and r  =  r−. In particular, if R satis-
fies (19), then we will have

Figure 4.  The manifold M′ ∪M with the hypersurfaces Σ̃, N  and N .

5 For the analysis of solutions supported on a fixed higher spherical harmonic number �, one must simply replace 
use of (19) everywhere in what follows by the resulting o.d.e. depending on �.
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d2R
dr2 +

(
1

r − rc
+ O (1)

)
dR
dr

+

(
ω2κ−2

c

4(r − rc)2 + O
(
(r − rc)

−1)
)

R = 0, for |r − rc| � 1,� (20)

d2R
dr2 +

(
1

r − r+
+ O (1)

)
dR
dr

+

(
ω2κ−2

+

4(r − r+)2 + O
(
(r − r+)−1)

)
R = 0, for |r − r+| � 1,

� (21)

d2R
dr2 +

(
1

r − r−
+ O (1)

)
dR
dr

+

(
ω2κ−2

−
4(r − r−)2 + O

(
(r − r−)−1)

)
R = 0, for |r − r−| � 1.

� (22)
Then the theory of o.d.e.’s with regular singular points (see [Olv97] and also appendix A 

of [SR14]) immediately yields the following lemma.

Lemma 4.2.1.  Let U = {0} ∪ {ω ∈ C : Im (ω) �∈ κcZ ∪ κ+Z ∪ κ−Z}. Then for every 
ω ∈ U  there exist six solutions Rin,+ (ω, r), Rout,+ (ω, r), Rin,c (ω, r), Rout,c (ω, r), Rin,− (ω, r) 
and Rout,− (ω, r) to (19) defined by

	 1.	�Rin,+(ω, r) = (r − r+)
− iω

2κ+ R̂in,+ (ω, r) , where R̂in,+ (ω, r) is analytic for r ∈ (r−, rc) 

and satisfies R̂in,+ (ω, r+) = 1.

	 2.	�Rout,+(ω, r) = (r − r+)
iω

2κ+ R̂out,+ (ω, r) , where R̂out,+ (ω, r)is analytic for r ∈ (r−, rc) 

and satisfies R̂out,+ (ω, r+) = 1.
	 3.	�Rin,c(ω, r) = (r − rc)

− iω
2κc R̂in,c (ω, r) , where R̂in,c (ω, r) is analytic for r ∈ (r+, rc] and 

satisfies R̂in,c (ω, rc) = 1.
	 4.	�Rout,c(ω, r) = (r − rc)

iω
2κc R̂out,c (ω, r) , where R̂out,c (ω, r) is analytic for r ∈ (r+, rc] and 

satisfies R̂out,c (ω, rc) = 1.

	 5.	�Rin,−(ω, r) = (r − r−)
− iω

2κ− R̂in,− (ω, r) , where R̂in,− (ω, r) is analytic for r ∈ [r−, r+) 
and satisfies R̂in,− (ω, r−) = 1.

	 6.	�Rout,−(ω, r) = (r − r−)
iω

2κ− R̂out,− (ω, r) , where R̂out,− (ω, r) is analytic for r ∈ [r−, r+) 
and satisfies R̂out,− (ω, r−) = 1.

Furthermore, considered as functions of ω, R̂in,+ (ω, r), R̂out,+ (ω, r), R̂in,c (ω, r), 
R̂out,c (ω, r), R̂in,− (ω, r) and R̂out,− (ω, r) are holomorphic for ω ∈ U .

Finally, it is immediate that when ω ∈ U \ {0}, Rin,+(ω, r) and Rout,+(ω, r) are linearly 
independent. Similarly, Rin,c(ω, r) and Rout,c(ω, r) are linearly independent and Rin,−(ω, r) 
and Rout,−(ω, r) are linearly independent.

Proof.  The expressions (20)–(22) imply that the indicial roots near rc, r+ and r− are ± iω
2κc

, 
± iω

2κ+
 and ± iω

2κ−
respectively. The desired solutions may be then constructed by explicit power 

series (see [Olv97] and also appendix A of [SR14]) as long we do not allow ω to enter a region 
where the difference of two indicial roots is a non-zero integer. We immediately see that the 
constructed solutions are valid for ω ∈ U .� □ 

Remark 4.1.  When ω = 0, the final statement of above lemma does not apply. This fact 
plays no role in the proof of theorem 3.1; nevertheless, we note that one could construct addi-
tional linearly independent solutions which must, however, contain logarithmic singularities.

Though it is also not relevant for the proof of theorem 3.1; we note that at ω = iκ+, the 
solution Rout,+(ω, r) has a simple pole, and that at ω = −iκ+, the solution Rin,+ (ω, r) has 
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a simple pole (see the analysis of the reflexion and transmission coefficients considered in 
[CH82]). Analogous statements hold for Rout,c(ω, r), Rin,c(ω, r), Rout,−(ω, r) and Rin,−(ω, r).

The following lemma will be useful.

Lemma 4.2.2.  There exist holomorphic functions A : U \ {0} → C, B : U \ {0} → C, 
Ã : U \ {0} → C and B̃ : U \ {0} → C so that for all r �∈ {r−, r+, rc} and ω ∈ U \ {0} we 
have

Rin,c (ω, r) = A(ω)Rin,+ (ω, r) +B(ω)Rout,+ (ω, r) ,� (23)

Rin,+ (ω, r) = Ã(ω)Rin,−(ω, r) + B̃(ω)Rout,−(ω, r).� (24)

Proof.  The fact that the expressions (23) and (24) hold for functions A , B, Ã  and B̃ of 
unspecified regularity is an immediate consequence of the statement from lemma 4.2.1 that 
Rin,+ (ω, r) and Rout,+ (ω, r) are linearly independent and Rin,−(ω, r) and Rout,−(ω, r) are lin-
early independent when ω ∈ U \ {0}.

In order to analyse the regularity of A , B, Ã  and B̃, we use the Wronskian W. Given two 
functions f (r) and g(r) we define the Wronskian:

W ( f , g) (r) .
= r2µ(r)

df
dr

g − r2µ(r)
dg
dr

f .

A key fact is that if f and g satisfy the radial o.d.e., then

dW
dr

= 0.� (25)

Let r0 = r++rc
2 . Using (25) and the observation that W ( f , f ) = 0, one may establish the 

formula

A (ω) =
W (Rin,c (ω, r0) , Rout,+ (ω, r0))

W (Rin,+ (ω, r0) , Rout,+ (ω, r0))
.� (26)

The asymptotic behavior of Rin,+ and Rout,+ and (25) imply that 
W (Rin,+ (ω, r0) , Rout,+ (ω, r0)) �= 0. Thus, (26) and lemma 4.2.1 yield that A  is holomorphic. 
The arguments for B, Ã  and B̃ are analogous.� □ 

4.3.  Non-triviality of reflexion and transmission

Before giving the proof of theorem 3.1, we need two final preparatory lemmata which can be 
interpreted as the statement that neither the reflexion map in the static region nor the transmis-
sion map in the black hole interior region can vanish identically (see the proof of theorem 10 
of [DRSR18] and the results of [KSR18]).

Lemma 4.3.1.  There exists ω ∈ R so that the solutions Rout,+ (ω, r) and Rin,c (ω, r) are  
linearly independent.

Proof.  Suppose, for the sake of contradiction, that for every ω ∈ R there is some a(ω) ∈ C 
so that Rout,+ (ω, r) = a(ω)Rin,c (ω, r).
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Set R (r) .
= Rout,+ (ω, r). We have that R will satisfy the radial o.d.e. (19). It is convenient 

to define a new ̃r(r) coordinate by

dr̃
dr

=
(
r2µ

)−1
, r̃

(
r+ + rc

2

)
= 0.

Then (19) becomes

d2R
dr̃2 + r4ω2R = 0.� (27)

Now define

QT
.
= Im

(
dR
dr̃

R
)

.

We clearly have

dQT

dr̃
= 0.

In particular, using the fundamental theorem of calculus, we obtain

0 = lim
r→rc

QT (r)− lim
r→r+

QT (r) .� (28)

Let us now compute limr→rc QT (r):

lim
r→rc

Im
(

dR
dr̃

R
)

= lim
r→rc

Im
(

r2µ(r)
dR
dr

R
)

= −2r2
cκc |a|2 lim

r→rc
Im

(
(r − rc)

d
dr

(
(r − rc)

−iω
2κc

)
(r − rc)

iω
2κc

)

= r2
cω |a|2 .

�
(29)

Similarly, we may compute

lim
r→r+

Im
(

dR
dr̃

R
)

= r2
+ω.� (30)

Combining (28)–(30) yields, when ω �= 0,

|a|2 =
r2
+

r2
c
< 1.� (31)

However, since a must be smooth in ω, by continuity we also have (31) when ω = 0.
On the other hand, when ω = 0, the o.d.e. (32) can be easily solved explicitly and we see 

that

R (0, r) = 1 ⇒ a(0) = 1.

This contradicts (31), completing the proof.� □ 

Lemma 4.3.2.  For every ω ∈ R \ {0} the solutions Rin,+ (ω, r) and Rin,− (ω, r) are lin-
early independent.
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Proof.  We proceed in a similar fashion to the proof of lemma 4.3.1. Fix an arbitrary 
ω ∈ R \ {0} and suppose, for the sake of contradiction, that

Rin,+(ω, r) = aRin,− (ω, r)

for some a ∈ C.
We set R(r) = Rin,+(ω, r) and introduce the ̃r(r) coordinate by

dr̃
dr

=
(
r2µ

)−1
, r̃

(
r− + r+

2

)
= 0.

Then (19) becomes

d2R
dr̃2 + r4ω2R = 0,� (32)

and, just as in the proof of lemma 4.3.1, we see that if we set

QT
.
= Im

(
dR
dr̃

R
)

,

then

d
dr̃

QT = 0.� (33)

One computes

QT (r+) = −r2
+ω, QT (r−) = |a|2r2

−ω.

Together with (33) we obtain

|a|2r2
− + r2

+ = 0,

which is clearly a contradiction.� □ 

4.4.  Proof of theorem 3.1

Now we are ready to prove theorem 3.1.

Proof.  Recall the fundamental inequality κ+ < κ− satisfied by the surface gravities  
(lemma 2.5.1). We may thus choose κ̂ satisfying κ+ < κ̂ < κ−. We also introduce a parameter 
ωR ∈ R \ {0} which will be fixed later in the proof.

We start by defining a mode solution ψ in the static region Mstatic where r ∈ (r+, rc) by

ψ (t, r) .
= e−it(ωR−i κ̂2 )Rin,c

(
ωR − i

κ̂

2
, r
)

= e−it(ωR−i κ̂2 ) (r − rc)
−

i(ωR−i κ̂2 )
2κc R̂in,c

(
ωR − i

κ̂

2
, r
)

.
� (34)

It follows from (7) that near r  =  rc, we have
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ψ(t, r) = e−i(ωR−i κ̂2 )(t−r∗)R̃ (r) ,

where R̃(r) is analytic for r near rc. In particular, it is clear by working in the ingoing Edding-
ton–Finkelstein coordinates (u, r, θ,φ) of section 2.3 that ψ extends smoothly to C+.

Next, we want to extend ψ to Minterior also as a mode solution. First, using lemma 4.2.2, 
we expand

ψ(t, r) = e−it(ωR−i κ̂2 )
[
A

(
ωR − i

κ̂

2

)
Rin,+

(
ωR − i

κ̂

2
, r
)
+B

(
ωR − i

κ̂

2

)
Rout,+

(
ωR − i

κ̂

2
, r
)]

.

� (35)

Then we define ψ in the interior region where r ∈ (r−, r+) by the following:

ψ(t, r) = A

(
ωR − i

κ̂

2

)
e−it(ωR−i κ̂2 )Rin,+

(
ωR − i

κ̂

2
, r
)

.

We observe that in outgoing Eddington–Finklestein coordinates (v, r, θ,φ) of section 2.2, 
the expression (35) becomes

ψ(t, r) = e−iv(ωR−i κ̂2 )

[
A

(
ωR − i

κ̂

2

)
R̂in,+

(
ωR − i

κ̂

2
, r
)

+B

(
ωR − i

κ̂

2

)
(r − r+)

i(ωR−i κ̂2 )
κ+ R̂out,+

(
ωR − i

κ̂

2
, r
)]

.

�

(36)

In particular, it is clear that if we now consider ψ as a function on Mstatic ∪H+
A ∪Minterior, 

it continuously extends to the horizon H+
A . Next, we claim that irrespective of the values of 

A
(
ωR − i κ̂2

)
 and B

(
ωR − i κ̂2

)
, there exists a sufficiently small ε > 0 so that we will have that

(ψ|S , nSψ|S) ∈ H1+ε (S)× Hε (S)� (37)

for any compact spacelike hypersurface-with-boundary S ⊂ Mstatic ∪H+
A ∪Minterior . Indeed, 

since the terms e−iv(ωR−i κ̂2 ), R̂in,+
(
ωR − i κ̂2 , r

)
 and R̂out,+

(
ωR − i κ̂2 , r

)
 are smooth expres-

sions for r ∈ (r−, rc) in the (v, r, θ,φ) coordinates, it suffices to examine (r − r+)
i(ωR−i κ̂2 )

κ+ . 

However, since κ̂
κ+

> 1, it is immediate that (r − r+)
i(ωR−i κ̂2 )

κ+  lies in H1+ε ([r+, r+ + 1]) for 

suitable 0 < ε � 1 and we thus obtain (37).
Next we note that ψ is easily seen to be a weak solution of the wave equation (4), and, 

furthermore, defining (Ψ,Ψ′)
.
= (ψ|Σ, nΣψ|Σ), we have shown that

(Ψ,Ψ′) ∈ H1+ε(Σ)× Hε(Σ),

and thus ψ coincides in D+(Σ) with the solution produced by proposition 3.1.1.
Now, to finish the proof it suffices to show that ψ satisfies (16) for any spherically symmet-

ric null hypersurface N  intersecting CH+
A  transversally. To see why this is true, we use lemma 

4.2.2 to expand ψ near r  =  r− as
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ψ(t, r) = A

(
ωR − i

κ̂

2

)
e−it(ωR−i κ̂2 )

[
Ã

(
ωR − i

κ̂

2

)
Rin,−

(
ωR − i

κ̂

2
, r
)

+ B̃

(
ωR − i

κ̂

2

)
Rout,−

(
ωR − i

κ̂

2
, r
)]

.

In order to understand the regularity as we approach CH+
A , we re-write this in the ingoing 

coordinates (ũ, r, θ,φ) of section 2.4. We obtain

ψ(ũ, r) = A

(
ωR − i

κ̂

2

)
eiũ(ωR−i κ̂2 )

[
Ã

(
ωR − i

κ̂

2

)
R̂in,−

(
ωR − i

κ̂

2
, r
)

+ B̃

(
ωR − i

κ̂

2

)
(r − r−)

i(ωR−i κ̂2 )
κ− R̂out,−

(
ωR − i

κ̂

2
, r
)]

.

Since κ̂
κ−

< 1, we have that
∣∣∣∣∣

∣∣∣∣∣(r − r−)
i(ωR−i κ̂2 )

κ−

∣∣∣∣∣

∣∣∣∣∣
H1([r−,r−+1])

= ∞.

In particular, if we can arrange so that A
(
ωR − i κ̂2

)
B̃

(
ωR − i κ̂2

)
�= 0, then we will have 

established (16) and finished the proof. By lemma 4.2.2, the functions A (ω) and B̃(ω) are an-
alytic. Thus, either (a) one of A(ω) or B̃(ω) vanish identically, or (b) the zeros of A(ω)B̃(ω) 
form a discrete set. Fortunately, lemmas 4.3.1 and 4.3.2 are sufficient to exclude possibility 

(a). Thus, we can indeed find an ωR ∈ R \ {0} such that A
(
ωR − i κ̂2

)
B̃

(
ωR − i κ̂2

)
�= 0 and 

the proof is concluded.� □ 

5.  Second proof of theorem 3.1: exploiting time-translation invariance

In this section we will give our second proof of theorem 3.1 by exploiting time translation with 
respect to the Killing field T. We will in fact construct a solution to (4) globally in the region 
M by prescribing scattering data on (H+

B ∪ B+ ∪H−) ∪ C− and then obtain theorem 3.1 by 
restricting the solution to D+

M (Σ).
We start in section 5.1 by recalling various previous results which will be useful. Next, in 

section 5.2 we prove proposition 5.2.1 which constructs a 1-parameter family of data along 
H−, which are uniformly bounded H1+ε(H−), so that the H1 norm of the corresponding solu-
tion along CH+

B  can be arbitrarily large. Finally, in section 5.3 we use proposition 5.2.1 and 
the uniform boundedness principle to complete the proof of theorem 3.1.

5.1.  Preliminary results

We start by introducing some notation and reviewing known results which will be used in the 
proof of theorem 3.1.

It is useful to introduce the following norms.

Definition 5.1.  For any spherically symmetric function ψ such that ∂ψ∂v |H− is measurable, 
we set
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||ψ||2Ḣ1(H−)
.
=

∫ 0

−∞

∣∣∣∣
∂ψ

∂u
|H−

∣∣∣∣
2

du +

∫ 0

−1

∣∣∣∣
∂ψ

∂U+

∣∣∣∣
2

dU+.

Similarly, if ψ is spherically symmetric and ∂ψ∂v |CH+
B

 is measurable, we set

||ψ||2Ḣ1(CH+
A )

.
=

∫ 0

−∞

∣∣∣∣
∂ψ

∂v
|H−

∣∣∣∣
2

dv +

∫ 0

−1

∣∣∣∣
∂ψ

∂V−

∣∣∣∣
2

dV−.

Note, in particular, that if ψ is supported near the bifurcation sphere B+ the ||·||Ḣ1(H−) norm 
is finite if and only if ψ lies in Ḣ1

loc along H− ∪ B+. An analogous statement holds for the 
bifurcation sphere B− and the ||·||Ḣ1(CH+

B )
 norm.

Recall from section 2.6 that H− ∪ B+ ∪H+
B  is a smooth null hypersurface. In particular, a 

solution ψ in M is uniquely determined by its characteristic data along H− ∪ B+ ∪H+
B  and 

C−.

Theorem 5.1.  Let Ψ : H− → R be smooth, compactly supported and spherically symmet-

ric, and let ψ be the unique solution to the wave equation (4) on M such that ψ|H+
B ∪B+

= 0, 
ψ|H− = Ψ and ψ|C− = 0.

Then ψ continuously extends to CH+
B ∪ CH+

A ∪ B− and satisfies

sup
CH+

B ∪CH+
A ∪B−

|ψ|2 +
∫ ∞

−∞

∣∣∣∣
∂ψ

∂v
|CH+

B

∣∣∣∣
2

dv +

∫ ∞

−∞

∣∣∣∣
∂ψ

∂u
|CH+

A

∣∣∣∣
2

du � ||Ψ||2Ḣ(H−)∩L∞(H−) .

Proof.  This follows from a straightforward adaption of [DR07] and of [Fra16] to the  
Reissner–Nordström–de Sitter setting.� □ 

We now fix some notation for the ‘seed data’ we will use to construct our desired solutions.

Definition 5.2.  Let ΦH−(u) : H− → R be a non-zero smooth function compactly sup-
ported in {u ∈ (−1, 0)} and spherically symmetric, and let ϕ be the corresponding spherically 

symmetric solution to the wave equation (4) on M so that ϕ|H− = ΦH−, ϕ|H+
B ∪B+

= 0 and 
ϕ|C− = 0.

The next proposition is a statement of non-trivial reflection to H+
A .

Proposition 5.1.1.  Let ϕ denote the solution from definition 5.2. Then we have
∫ ∞

−∞

∣∣∣∣
∂ϕ

∂v
|H+

A

∣∣∣∣
2

dv > 0.

Proof.  This follows from lemma 4.3.1 and a minor adaption of the proof of theorem 10 
from [DRSR18].� □ 

The next proposition is the statement that there is non-zero transmission to CH+
B .

Proposition 5.1.2.  Let ϕ denote the solution from definition 5.2. Then we have
∫ ∞

−∞

∣∣∣∣
∂ϕ

∂v
|CH+

B

∣∣∣∣
2

dv > 0.
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Proof.  This follows by combining theorem 5.1, proposition 5.1.1 and a minor adaption of 
the proof of proposition 7.2 from [DSR17].� □ 

Finally, the next proposition is a manifestation of the time translation invariance of the 
spacetime.

Proposition 5.1.3.  Let ΦH− and ϕ be as in definition 5.2. For every τ > 0, set

Φ
(τ)
H−

.
= ΦH− (u − τ) ,

and let ϕ(τ) be the corresponding solution to the wave equation  (4) on M so that 

ϕ(τ)|H− = Φ
(τ)
H−, ϕ(τ)|H+

B ∪B+
= 0 and ϕ(τ)|C− = 0.

Then, in the outgoing Eddington–Finklestein coordinates (v, r, θ,φ), we have 
ϕ(τ) (v, r) = ϕ (v − τ , r). In particular,

ϕ(τ)|CH+
B
(v) = ϕ|CH+

B
(v − τ) .

Proof.  This follows by combining theorem 5.1, proposition 5.1.1 and a minor adaption of 
the proof of lemma 7.6 from [DSR17].� □ 

5.2.  From time translation invariance to scattering map amplification

The following proposition contains the essential content for the proof of theorem 3.1 and is 
closely related to the proof of theorem 2 in [DSR17].

Proposition 5.2.1.  For a sufficiently small ε > 0, there exists a one-parameter family of 

spherically symmetric and compactly supported Ψ
(τ)
H− : H− → R  so that

	 1.	�We have

sup
τ>0

∣∣∣
∣∣∣Ψ(τ)

H−

∣∣∣
∣∣∣
H1+ε(H−)∩L∞(H−)

� 1.

	 2.	�If we denote by ψ(τ) the unique solution in M such that ψ(τ)|H+
B ∪B+

= 0, ψ(τ)|H− = Ψ
(τ)
H− 

and ψ(τ)|C− = 0, then

sup
τ>0

∣∣∣
∣∣∣ψ(τ)

∣∣∣
∣∣∣
Ḣ1(CH+

B )
= ∞.

Proof.  Recall the fundamental inequality κ+ < κ− satisfied by the surface gravities (lemma 
2.5.1) and again chose thus κ̂ satisfying κ+ < κ̂ < κ−. Let Φ and ϕ be as in definition 5.2. 

Define Ψ(τ)
H− : H− → R  by

Ψ
(τ)
H− (u) .

= e
−κ̂

2 τΦ
(τ)
H− (u) = e

−κ̂
2 τΦH− (u − τ) ,

and then let ψ(τ) be the corresponding solution to the wave equation  on M so that 

ψ(τ)|H− = Ψ
(τ)
H−, ψ(τ)|H+

B ∪B+
= 0 and ψ(τ)|C− = 0.

Clearly supτ>0

∣∣∣
∣∣∣Ψ(τ)

H−

∣∣∣
∣∣∣
L∞(H−)

� 1.
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Using Kruskal coordinates at B+ (see (11)), for large enough τ we may calculate

∣∣∣
∣∣∣Ψ(τ)

H−

∣∣∣
∣∣∣
2

Ḣ1(H−)
�

∫ 0

−1

∣∣∣∣∣
∂Ψ

(τ)
H−

∂U+

∣∣∣∣∣
2

dU+

�
1
κ+

∫ ∞

0

∣∣∣∣
∂

∂u
Ψ

(τ)
H−

∣∣∣∣
2

eκ+u du

=
1
κ+

∫ τ

τ−1

∣∣∣∣
∂

∂u
ΦH− (u − τ)

∣∣∣∣
2

eκ+u−κ̂τ du

∼ e(κ+−κ̂)τ .

� (38)

Similarly, we may estimate
∣∣∣
∣∣∣Ψ(τ)

H−

∣∣∣
∣∣∣
2

Ḣ2(H−)
� e(3κ+−κ̂)τ .� (39)

In particular, by interpolating, there must exist ε > 0 so that

sup
τ>0

∣∣∣
∣∣∣Ψ(τ)

H−

∣∣∣
∣∣∣
2

Ḣ1+ε(H−)
� 1.� (40)

Next, our goal is to prove that

sup
τ>0

∣∣∣
∣∣∣ψ(τ)

∣∣∣
∣∣∣
2

Ḣ1(CH+
B )

= ∞.� (41)

Proposition 5.1.2 implies that there exists v0 ∈ (−∞,∞) and c  >  0 so that
∫ v0+1

v0

∣∣∣∣
∂ϕ

∂v
|CH+

B

∣∣∣∣
2

dv � c.� (42)

Now, using (42) and also proposition 5.1.3, we have

sup
τ>0

∣∣∣
∣∣∣ψ(τ)

∣∣∣
∣∣∣
2

Ḣ1(CH+
B )

� sup
τ>0

∫ 0

−1

∣∣∣∣
∂ψ(τ)

∂V−
|CH+

B

∣∣∣∣
2

dV−

=
1
κ−

sup
τ>0

∫ ∞

0

∣∣∣∣
∂φ

∂v
|CH+

B
(v − τ)

∣∣∣∣
2

eκ−v−κ̂τ dv

=
1
κ−

sup
τ>0

∫ ∞

−τ

∣∣∣∣
∂φ

∂v
|CH+

B
(v)

∣∣∣∣
2

eκ−(v+τ)−κ̂τ dv

�
1
κ−

sup
τ>0

[
eκ−(v0+τ)−κ̂τ

∫ v0+1

v0

∣∣∣∣
∂φ

∂v
|CH+

B
(v)

∣∣∣∣
2

dv

]

�
ceκ−v0

κ−
sup
τ>0

e(κ−−κ̂)τ

= ∞.
�

(43)

□ 
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5.3. The uniform boundedness principle and the proof of theorem 3.1

Finally we can use proposition 5.2.1 along with the uniform boundedess principle to prove 
theorem 3.1.

Proof.  Let ε > 0 be determined by proposition 5.2.1 and ξ(x) be a smooth function which 

is identically 1 for x  <  0 and identically 0 for x  >  1. Also, let H1+ε
sph (H−) ∩ L∞

sph (H−) denote 
the Banach space of spherically symmetric functions in H1+ε (H−) ∩ L∞ (H−).

Then, for every N  >  0, we define a map TN : H1+ε
sph (H−) ∩ L∞

sph (H−) → Ḣ1
(
CH+

B

)
∩ L∞ (

CH+
B

)
 

by taking ΨH− ∈ H1+ε
sph (H−) ∩ L∞

sph (H−) to the corresponding unique solution ψ to the wave 
equation (4) which satisfies ψ|H+

B ∪B+
= 0, ψ|H− = ΨH− and ψ|C− = 0, then restricting ψ to 

CH+
B  and then multiplying ψ by ξ (v − N), that is,

TN (ΨH−) (v) .
= ξ (v − N)ψ|CH+

B
(v) .

Note that the solutions ψ constructed will be spherically symmetric weak solutions to the 
wave equation uniquely defined by the property that (ψ, nSψ) ⊂ H1+ε

loc (S)× Hε
loc(S) for any 

spacelike hypersurface S ⊂ M.
Theorem 5.1 and a density argument implies that each TN  is a well-defined bounded map. 

Proposition 5.2.1 implies that

sup
N

sup
||ΨH− ||�1

||TNΨH− ||Ḣ1
sph(CH

+
B )

= ∞.

The uniform boundedness principle (see theorem III.9 of [RS80]) and theorem 5.1 then 

imply that there exists ΨH− ∈ H1+ε
sph (H−) ∩ L∞

sph (H−) so that

sup
N

||TNΨH− ||Ḣ1
sph(CH

+
B )

= ∞.

This is, of course, equivalent to

||ψ||Ḣ1(CH+
B )

= ∞.

Having established that the energy along CH+
B  blows up, the H1 blow-up along any other 

null hypersurface N  which intersects CH+
A  transversally follows from a standard propagation 

of singularities argument. (See, for example, section 7.2.3 of [DSR17].)
Define (Ψ,Ψ′)

.
= (ψ|Σ, nΣψ|Σ). Using finite-in-time energy estimates and the spherical 

symmetry of (Ψ,Ψ′), it is straightforward to see that

||(Ψ,Ψ′)||2H1+ε(Σ)×Hε(Σ) � 1,� (44)

and thus ψ coincides in D+(Σ) with the solution produced by proposition 3.1.1. We have thus 
constructed a solution ψ in D+(Σ) arising from data (44) which satisfies the required blow up 
property at CH+

A , completing the proof of theorem 3.1.� □ 
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6.  Discussion

We end this paper by amplifying some of the comments already made in the introduction.

6.1.  Additional angular regularity

We have already argued why for Christodoulou’s formulation [Chr09] of strong cosmic cen-
sorship, it is clearly natural to also relax the regularity assumption on initial data. Indeed, as 
we have mentioned, this has a precedent in the proof of weak cosmic censorship in spherical 
symmetry [Chr99b], where weak irregularities allowed in the space of absolutely continuous 
functions were used to maximally exploit the blue-shift instability connected to naked singu-
larities. On the other hand, one might object that for data which are only H1+ε, one cannot 
show that general solutions to (4) are continuous. To overcome this objection, it suffices to 
replace H1+ε with a space where additional regularity is imposed in the angular directions. In 
fact, in the Reissner–Nordström–de Sitter case, for a spherically symmetric hypersurface Σ, 
one can consider the space

Dk(Σ) = {(Ψ,Ψ′) : ∀|α| � k,ΩαΨ ∈ H1(Σ),ΩαΨ′ ∈ L2(Σ)}.� (45)

Here α = (α1,α2,α3) is a multi-index and Ωα denotes a string Ωα1
1 Ωα2

2 Ωα3
3  of angular momen-

tum operators. (Note that the data corresponding to an H1 spherically symmetric solution 
ψ0, and more generally, a solution ψ� supported on a fixed angular frequency �, is a fortiori 
contained in Dk(Σ) for all k. Thus, our theorem 3.1 produces a solution in Dk for all k.) For 
sufficiently high k, this is precisely the norm considered in [DR07] for the wave equation on 
Schwarzschild–de Sitter. This yields sufficient regularity and sufficiently fast decay in the 
region Mstatic ∪H+

A ∪ C+, in particular along H+
A , so as to be able to still apply for instance 

the results for (4) on the black hole interior Minterior region due to [Fra16]. (Note that one does 
not need in fact the extra ε and we have not included it in the definition (45).) Thus, solutions 
ψ arising from data in Dk still share the same ‘good aspects’ of the qualitative behaviour of 
smooth C∞ solutions. In particular, we can still moreover infer the continuous extendibility 
of ψ beyond CH+. We further note that spaces like Dk may be strong enough to understand 
nonlinear problems (see [LR17]).

6.2.  Generalisation to Hs

Let us remark also that more generally, one can show for arbitrary s � 1, and sufficiently small 
ε > 0, that given generic data (Ψ,Ψ′) ∈ Hs(+ε) × Hs(+ε)−1, the corresponding solution ψ of 
(4) is inextendible in Hs

loc at the Cauchy horizon.

6.3.  Extremal black holes with Λ = 0

In the case Λ = 0, it would be interesting to revisit the extremal Reissner–Nordström space-
time from the point of view of the present paper. Recall that, for smooth localised initial data 
for (4) on a suitable past Cauchy hypersurface Σ crossing the event horizon H+ in extremal 
Reissner–Nordstrom, it has been proven [Gaj17a, Gaj17b, AAG18] that the resulting solutions 
are indeed in H1

loc at the Cauchy horizon6. In view of the degeneration of the surface gravity, 

6 This does not of course affect the validity of Christodoulou’s formulation in Λ = 0 since the extremal case is itself 
non-generic.
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it is not at all clear whether this failure can be circumvented by passing to a space of (still 
localised) initial data of lower regularity7.

6.4.  Decay rates and strong cosmic censorship for C∞ data?

The above comments notwithstanding, in no way are we trying to argue that one should cease 
investigation of the fine dynamics of C∞ initial data. On the contrary! Though we hope to 
have given coherent arguments for allowing for a genericity assumption based on a norm 
such as H1+ε, (45), or some other related modification, we do not view these arguments at 
present to be definitive. Unquestionably, the most satisfactory resolution of the Christodoulou 
formulation of strong cosmic censorship would be one independent of the precise regularity 
assumptions made at the level of initial data, and the cleanest way to have this would be for 
the result to have been true in the topology of the C∞ class. If Christodoulou’s formulation 
of strong cosmic censorship indeed fails for the Einstein–Maxwell system (3) with Λ > 0 in 
the smooth topology, then a nagging dissatisfaction with the whole situation is still inevitable, 
despite our proposed circumvention. In any case, irrespectively of its final significance for 
strong cosmic censorship, the problem of understanding the fine asymptotics of solutions aris-
ing from C∞ initial data—and the implications of this for the sharp generic inextendibility 
statement at the Cauchy horizon—is certainly an extremely worthwhile open problem that 
very much remains to be properly understood.
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