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Abstract

We consider the wave equation on Reissner—Nordstrom—de Sitter and more
generally Kerr—Newman—de Sitter black hole spacetimes with A > 0. The
strength of the blue-shift instability associated to the Cauchy horizon of these
spacetimes has been the subject of much discussion, since—in contrast to the
asymptotically flat A = 0 case—the competition with the decay associated to
the region between the event and cosmological horizons is delicate, especially
as the extremal limit is approached. Of particular interest is the question
as to whether generic, admissible initial data posed on a Cauchy surface
lead to solutions whose local (integrated) energy blows up at the Cauchy
horizon, for this statement holds in the asymptotically flat case and would
correspond precisely to the blow up required by Christodoulou’s formulation
of strong cosmic censorship. Some recent heuristic work suggests that the
answer is in general negative for solutions arising from sufficiently smooth
data, i.e. there exists a certain range of black hole parameters such that for
all such data, the arising solutions have finite local (integrated) energy at the
Cauchy horizon. In this short note, we shall show in contrast that, by slightly
relaxing the smoothness assumption on initial data, we are able to prove the
analogue of the Christodoulou statement in the affirmative, i.e. we show that
for generic data in our allowed class, the local energy blow-up statement
indeed holds at the Cauchy horizon, for all subextremal black hole parameter
ranges. We present two distinct proofs. The first is based on an explicit mode
construction while the other is softer and uses only time translation invariance
of appropriate scattering maps, in analogy with our previous (Dafermos
and Shlapentokh-Rothman 2017 Commun. Math. Phys. 350 985-1016).
Both proofs use statements concerning the non-triviality of transmission
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and reflexion, which are easy to infer by o.d.e. techniques and analyticity
considerations. Our slightly enlarged class of initial data is still sufficiently
regular to ensure both stability and decay properties in the region between the
event and cosmological horizons as well as the boundedness and continuous
extendibility beyond the Cauchy horizon. This suggests thus that it is finally
this class—and not smoother data—which may provide the correct setting to
formulate the genericity condition in strong cosmic censorship.

Keywords: black holes, strong cosmic censorship, cosmological constant

1. Introduction

Penrose was the first to remark that the Cauchy horizon of the Reissner—Nordstrom and Kerr
black hole solutions is subject to a blue-shift instability [Pen68]. As the Cauchy horizon
delimits the region of spacetime determined uniquely by initial data, this instability provided a
path to a possible resolution to one of general relativity’s most puzzling paradoxes: Observers
crossing the Cauchy horizon experience failure of predictability in a supposedly determin-
istic classical-physics theory, without however manifestly exiting the domain of validity of
the classical description. The blue-shift instability associated to the Cauchy horizon eventu-
ally led to the formulation of the strong cosmic censorship conjecture [Pen74], according to
which, for generic initial data for the Einstein vacuum equations

Ry (8] =0, ey

or more general Einstein matter systems like the Einstein—-Maxwell equations, the spacetime
region (M, g) uniquely determined by initial data (i.e. the ‘maximal Cauchy development’)
is suitably inextendible. A similar conjecture can be made for the vacuum equations with a
cosmological constant:

Ry g = Agw’ )

which admit in the case A > 0 the so-called Kerr—de Sitter solutions, or for the more general
Einstein-Maxwell equations with A > 0

1
RHV[g] = Aguv +2 <Fu)\F>\V - ZgWFMFM> s VYFu, =0, V[MFVA] =0, 3)

which admit the Reissner—Nordstrom—de Sitter solutions (in fact the Kerr-Newman—de Sitter
solutions encompassing all of the previous), all again possessing Cauchy horizons inside of
black holes. For the conjecture to be made precise, one must in particular stipulate in what
sense M should be inextendible. The stronger the inextendibility condition, the more defini-
tive a resolution to the paradox the conjecture would provide. The most satisfying statement
would be if the spacetime metric g itself could be shown to be generically inextendible merely
as a continuous (C°%) Lorentzian metric [Chr99a], i.e. without requiring further differentiabil-
ity. This is the so-called C’-formulation of strong cosmic censorship. This formulation would
correspond to the inextendibility statement which indeed holds for Schwarzschild [Sbil§]
across its » = 0 singularity and is related to the property that observers approaching r = 0 are
‘torn apart’ by infinite tidal deformations, making the issue of their future (as classical observ-
ers) a moot point. The question of which (if any) formulation of strong cosmic censorship
holds hinges in turn on the strength of the blue-shift instability.



Class. Quantum Grav. 35 (2018) 195010 M Dafermos and Y Shlapentokh-Rothman

A proxy problem for understanding the above issue for (1) is to consider just the linear
wave equation

Ly =0 “

on a fixed Reissner—Nordstrom or Kerr background. Remarkably, it has been shown that, for
solutions to (4) arising from sufficiently regular and localised initial data posed on a Cauchy
hypersurface, 1) remains uniformly bounded on the entire maximal Cauchy development, in
particular, on the black hole interior, up to and including the Cauchy horizon, to which % in
fact extends continuously [Fral6, Fral7]. See also [Hin17]. Thus, the amplitude of 1) is not
affected by any blue-shift instability, which only acts on derivatives of 1. Indeed, for solu-
tions arising from generic initial data in the above class, the derivative of ¢ transversal to the
Cauchy horizon has been proven [LO17a, DSR17] to blow up identically along the Cauchy
horizon, in fact, 1 fails to be in the Sobolev space H[ . This means that extensions of 1
not only fail to solve (4) classically at the Cauchy horizon but cannot there be interpreted
as ‘finite-energy’ weak solutions of (4). (For a previous conditional instability results, see
[McN78b, Daf05].) To obtain the above statement, it was essential that the natural localisation
assumption on data implies that solutions generically decay only inverse polynomially on the
event horizon, which is then dwarfed by the blue-shift at the Cauchy horizon, governed by
an exponential growth mechanism. The proof given in our [DSR17] was quite soft, exploit-
ing directly the translation invariance and non-trivial transmission properties of the scattering
map, together with the properties of the Killing generator of the Cauchy horizon. An alterna-
tive approach has been given in [LS16], directly relating a lower bound on the event horizon
to the blow up statement on the Cauchy horizon.

While Penrose’s blue-shift instability property is familiar to the wider relativity commu-
nity, the question of its precise strength has remained mostly confined to more specialist lit-
erature. Indeed, the amplitude stability and continuous extendibility result for (4) referred
to above, first suggested by [McN78a] and proven finally in [Fral6], remained largely
unknown—perhaps because it was originally thought that one could not extrapolate these lat-
ter stability statements to the fully nonlinear equation (1). Indeed, it was widely expected that
the quadratic terms in (1) would lead to a highly non-linear behaviour once derivatives were
sufficiently large, leading to a breakdown of the basic causal structure of the spacetime metric
g associated to the Cauchy horizon, forming instead a spacelike singularity beyond which the
metric g itself failed to be continuously extendible, just as in Schwarzschild. This expectation
has been definitively falsified, however, in [DL17], where it has been proven, in the context of
the fully nonlinear evolution under (1), without symmetry assumptions, that—assuming only
the stability of the Kerr exterior region—then it follows that the Cauchy horizon persists as a
null boundary of spacetime, and the metric indeed extends beyond continuously. (See [His81,
PI89, Ori91, Daf05] for earlier work on model spherically symmetric problems and [Ori97]
for an heuristic study of the problem without symmetry.) Thus, satisfying though it would
have been, the C°-formulation of strong cosmic censorship, described at the beginning of this
paper, is in fact false! This motivated Christodoulou’s reformulation of strong cosmic censor-
ship [Chr09], where ‘inextendibility’ is stated in the class of metrics not just merely continu-
ous but now also required to have locally square integrable Christoffel symbols. In analogy
with the proxy problem (4), this formulation corresponds precisely to blow up in H|. , and
represents the threshold for the standard notion of weak solution of the Einstein equation (1).
Though this notion of inextendibility is not sufficient to ensure that classical observers are
torn apart by infinite tidal deformations before exiting the domain of predictability, it still pro-
vides a definitive sense in which the classical-physics description can be said to locally break
down whenever predictability fails, giving thus at least a partially satisfactory resolution to

3
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the paradox of Cauchy horizons?. It remains an open problem to show that the Christodoulou
formulation indeed holds, at the very least in a neighbourhood of Kerr, but there has been
supporting recent work on spherically symmetric model problems [Daf05, LO17b, LO17c,
VdM18] and for the vacuum without symmetry in [Luk18].

Turning to the case A > 0, already through the prism of the proxy problem (4), the issue
of the nature of the blow-up for ) on the Kerr—de Sitter and Reissner—Nordstrom—de Sitter
spacetimes (satisfying (2) and (3) respectively) appears more delicate, and has been mired in
confusion. See the discussion in [Daf14]. As opposed to the asymptotically flat spacetimes
satisfying (1), where, for generic appropriate data, 1 decays inverse polynomially on the event
horizon, in the latter two A > 0 cases, v decays exponentially [Bon08, Vas13]. On the one
hand, this very fast decay is extremely fortuitous for proving non linear stability theorems.
Indeed, exploiting this fast decay, the stability properties of the region between the event and
cosmological horizon, under the full nonlinear evolution of (2) and more generally (3), have
been inferred in the very slowly rotating case |a| < M, Q in the remarkable recent [HV16,
Hin18]*. This exponential decay means in principle, however, that decay along the event hori-
zon is in direct competition with the blue-shift associated to the Cauchy horizon generating
exponential growth. The precise exponential rates now matter!

For smooth initial data, the asymptotic behaviour of solutions in the region between the
event and cosmological horizons should be governed by quasinormal modes [Cha83, Dyall,
Warl5]. Thus, the question of whether the blue-shift wins appears to be connected to deter-
mining the ‘spectral gap’, the infimum of the imaginary parts of the quasinormal modes.
For this, one must take into account phenomena connected to the event and cosmological
horizons, slowly decaying solutions corresponding to trapped null geodesics, as well as other,
more subtle slowly damped modes corresponding to the near-extremal limit in the superra-
diant case. The relevance of these for the problem at hand has been discussed in [BMMOS,
CCD™ 18, DERS18] respectively. (See also [Hod18] for the case of a spherically symmetric
charged scalar field.) Remarkably, in the Kerr—de Sitter case, for all subextremal parameters,
it has very recently been argued that the spectral gap is necessarily sufficiently small so as
to expect the blue-shift effect to be strong enough so as for the H_ blow-up result to still
hold [DERS18]. In the Reissner—Nordstrom—de Sitter case, however, there remains a range
of black hole parameters for which the prospect of a relatively large spectral gap ‘survives’
all the above obstructions, suggesting in particular that solutions (4) do now extend to be H}
at the Cauchy horizon [CCD™" 18, DERS18]. The above discussion thus suggests the intrigu-
ing possibility that when A > 0, Christodoulou’s formulation of strong cosmic censorship is
violated [Daf14, Real8, CCD™ 18] (at least for (3) if not for (2)).

The above apparent failure of even Christodoulou’s revised formulation of strong cosmic
censorship (already a weakening of the original C°-formulation!) would leave a rather dis-
comforting situation for general relativity in the presence of a positive cosmological constant
A > 0: For if Cauchy horizons generically occur at which spacetime can moreover still be
interpreted as a weak solution of the Einstein equations, then it is difficult to argue decisively

3 There of course is an even weaker formulation of strong cosmic censorship, where inextendibilty is required in the
sense of a C2 Lorentzian metric. We will take the point of view here, however, that the C2-formulation is manifestly
unsatisfactory, given that strong local well posedness results have already been shown for (1) well below the C?
threshold, for instance at the level of data which are H> [KRS15]. This point of view is nicely explained also in
CCD™ 18. Nonetheless, the C> formulation is still very useful to consider as a test-case for what can be proven!

“4In particular, this allows one to unconditionally apply the analogue of [DL17] in the black hole interior to defini-
tively falsify the C° formulation of strong cosmic censorship for (2) or more generally (3) in the A > 0 case. For
work on a spherically symmetric non-linear toy model problem for understanding strong cosmic censorship with

A > 0, see [CGNS17a, CGNS17b] and references therein. For the linear wave equation (4) in the black hole interior
in the A > 0 case see [HV17].
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Figure 1. Portion of maximally extended Reissner—Nordstrom—de Sitter and a
hypersurface 3.

that the classical description has ‘broken down’, and thus, it would appear that the paradox
persists of classical predictability failing without manifestly exiting the classical regime.

The purpose of this short note is to suggest a way out.

We will prove that, at the level of the proxy problem (4), there is indeed a way to retain the
desirable generic H] . blowup at the Cauchy horizon: It suffices to consider a slightly less
regular, but still well-motivated, class of initial data.

To formulate our result, let M denote maximally extended subextremal Reissner—
Nordstrom~-de Sitter spacetime (or more generally, Kerr—-Newman—de Sitter spacetime). Let
¥ denote a complete spacelike hypersurface intersecting two cosmological horizons C T asin
figure 1. Initial data (¥, ¥’) on X give rise to a solution ¢ on the future domain of dependence
DT (), with Yls =¥, ngiblg = V', where ng denotes the future normal to 5. The local
energy flux of ) along ¥ is of course computable in terms of initial data (¥, ¥’), in particular
¢ has finite local energy flux along X if (¥, ¥') € HL (2) x L2,.(3). For brevity, we will say

loc
in this case that the data (¥, ') have finite local energy along 3.
Our main result is the following

Theorem 1.1. Consider a subextremal Reissner—Nordstrom—de Sitter spacetime, or more
generally, Kerr—-Newman—de Sitter spacetime M. For generic initial data (U, ¥") with finite
local energy along Y, the resulting solution 1 of (4) in D"‘(i) has infinite local energy along
hypersurfaces intersecting transversally the Cauchy horizon CH™, ie. W in particular fails to
extend HJ.. around any point of CH*.

The genericity statement can be understood as the following ‘co-dimension 1 property’:
For all Cauchy data (¥, ¥() which lead to a solution vy of finite energy along hypersur-
faces transversally intersecting the Cauchy horizon CH™, the solution 1 corresponding to



Class. Quantum Grav. 35 (2018) 195010 M Dafermos and Y Shlapentokh-Rothman

the Cauchy data (Ug + c¢¥y, ¥( + ¢¥/) has infinite energy along hypersurfaces transversally
intersecting CH ™" for some (¥}, ")) and every ¢ € R\ {0}. By linearity, it suffices to con-
struct a single (¥, ') in the case (¥q, Tj) = (0,0). Note that this is analogous to the notion
of genericity used by Christodoulou in his proof of weak cosmic censorship for the spherically
symmetric Einstein-scalar-field system [Chr99b, Chr99a]. (We also observe that one can show
that the initial data leading to the desired Cauchy horizon blow-up form a set of Baire second
category within the class of all initial data. However, since smooth solutions are dense in H',
in light of [Daf14, Real8, CCD™ 18] referred to above, we do not expect to show that the set
of Cauchy data leading to H .-blow up at CH™Tis open.)

In fact, one can take generic initial data (¥, V') in a slightly more regular class, i.e. one
can replace the assumption that ) merely has finite local energy on X (i.e. corresponding to
data lying in the Sobolev space HL (2) x leoc(i)), with the assumption that the data lie in
H\TE(X) x Hf, (3), with € — 0 however as extremality is approached.

Recall from the above discussion that, by linearity, to obtain the above theorem it suf-
fices to produce a single solution 1), arising from data in the admissible space, satisfying
the claimed blow up. In the Reissner—Nordstrom—de Sitter case, we can in fact construct a
spherically symmetric such 1, or more generally, a v» whose angular frequency is supported
on an arbitrary fixed spherical harmonic number £. This means we can replace the space

H, 1(+6)(2~3) X Hﬁ)(je) (i) in the above statement with a space (let us call it D) with arbitrary

loc

additional regularity in the angular directions. Solutions 1) of (4) arising from data in D would
then share the same positive qualitative features of smooth C* solutions (in particular, in view
of the norms of [DRO7], the analogue of the results of [Fral6] still apply). Moreover, the fact
that one formulates strong cosmic censorship in terms of inextendibility with low regularity
strongly suggests that one should also allow similarly low regularity initial data (see the role
of low regularity in the genericity assumption in the proof of weak cosmic censorship under
spherical symmetry [Chr99b]). One can thus argue that there is no particular reason to prefer
smoother initial data, and perhaps the above class of data indeed provides a more appropriate
setting in which to consider the genericity assumption of strong cosmic censorship. We shall
discuss this further in section 6.

We shall here carry out the proof of theorem 1.1 in detail only in the Reissner—Nordstrom—
de Sitter case, as already in this case, the H}  blowup shown here is thought to fail for smooth
data if the black hole parameters are suitably close to extremality [Daf14, CCD" 18]. To make
this paper self-contained, we will give an explict construction of the Reissner—Nordstrom—de
Sitter metric in the relevant region M (see section 2). The theorem easily reduces to theorem
3.1 (see section 3), concerning only region M, which is the precise formulation we shall
prove. We shall in fact provide two distinct proofs. Our first proof (see section 4) is explicit
and constructs a solution suitably blowing up at the Cauchy horizon as a mode solution whose
time frequency has negative imaginary part, related to the regularity at the event horizon. We
note that this imaginary part may be less than the spectral gap associated to smooth data; thus
one sees how the problem posed by determining the precise spectral gap is completely circum-
vented by passing to lower regularity. This essential insight already appears in [Warl5] (see
definition 3.19 given in [War15] for an H*-quasinormal mode and also the example discussed
in section 6 of that paper). Our second proof (see section 5) is softer, and appeals directly to
the time translation invariance properties of scattering maps. In both proofs, the fundamental
inequality k_ > k4 connecting the surface gravities of the Cauchy and event horizons plays
an essential role. In addition, both proofs require appealing to the nonvanishing of transmis-
sion and reflexion of suitable scattering maps for a certain open set of frequencies; this is here
inferred exploiting analyticity properties. As is clear from the second proof, equation (4) can
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Figure 2. The manfiold-with-stratified-boundary M.

be replaced by a wide class of translation-invariant wave-type equations, on spacetimes shar-
ing only the basic qualitative properties of the respective horizons. We shall leave, however,
such further generalisations of our result to another occasion.

2. The Reissner—Nordstrom—-de Sitter metrics

In this section we will quickly review the structure of the Reissner—Nordstrom—de Sitter
spacetime and introduce the relevant notation.

We will eventually define a manifold (M, g) with stratified boundary corresponding to
the union of a static region M. (bounded by a bifurcate event horizon 7—[:{ UH ™ and cos-
mological horizon CT) and a black hole interior region M, (bounded by a bifurcate event
horizon Hz UH; and Cauchy horizon CHj; UCH]). See already figure 2. We review this
construction explicitly here, as we shall make use of the properties of the various underlying
coordinate systems. s

Note that the above (M, g) is itself still only a subset of the maximally extended (M, g)
Reissner—Nordstrom—de Sitter referred to in section 1. Since theorem 1.1 quickly reduces to
a statement on (M, g), we shall not discuss the explict construction of M here (see already
section 3).

2.1. Schwarzschild coordinates and the static patch M gatic
We say that a three-tuple of positive constants (M, e, A) is non-degenerate if the function

WM A,

,
r r2 3

has three distinct positive zeros, which we then label

1

0<r_<ry<r. <oo. 5)

Henceforth, we shall always consider a fixed choice of such (M, e, A).
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We define the static region of Reissner—Nordstrom—de Sitter with parameters (M, e, A) to be
the manifold M . defined by the coordinate range (1,7,6,¢) € R x (ry,r.) x §* = Muic
with metric given by

M &2 A oM 2 AL\
g=—(1-2+S —22)at+ (1-22 45 - 22) d + Pdog, (6)
r rr 3 r 2 3

where dog: = df? + sin? 8d¢? denotes the round metric on S%. We call the above coordinates
Schwarzschild coordinates. Note that the metric (6) is manifestly stationary and spherically
symmetric, with Killing fields T = 9, and 24, {),, (23, where 2; denote the standard angular
momentum operators in (6, ¢) coordinates.

There exists a one parameter family of stationary spherically symmetric two-forms F,,
on Mg so that the triple (Mugc, g, F) is now a solution to the Einstein-Maxwell equa-
tions with a positive cosmological constant A > 0 (3) (see [Car73]). The choice of electro-
magnetic field will have no relevance in this paper; in what follows, we shall only refer to the
underlying metric (6).

We will time orient (M agic, g) With the timelike vector field T = 9,.

2.2. Outgoing Eddington—Finkelstein coordinates attaching C”Hg U Minterior U ’Hj and C~

The metric g defined by (6) can be smoothly extended to a larger manifold; we now succinctly
review the construction.
First, it is convenient to introduce a function r*(r) by setting

* 2 -1
dr :<1_2M+6_Ar2> , r*(”“):o. )

dr r 2 3 2

Note that the range r € (ry, r.) corresponds to r* € (—oo, 00). Then we may define v = £ + 1",
and one finds that in the outgoing Eddington—Finklestein coordinates (v, r, 0, ¢), the metric g
defined by (6) becomes

2

g=- (1 _ M + % - Ar2> dv? + 2dvdr + r*dog. (8)
r r 3

The manifold M. corresponds to the coordinate range (v, 7,6, ¢) € R x (ry,r.) x S%.

It is now manifest that the expression (8) in fact also defines a smooth Lorentzian
metric on the manifold with boundary M, defined by the coordinate range
(0,7,0,0) € R x [r_,r] x §* = M. The manifold Mgy is thus an open submanifold of
M corresponding to the subset 7+ < r < r.. Note that defining T = 9, with respect to the
above coordinates, T is a Killing field on Mg smoothly extending the definition from M c.

Let us define the black hole interior region to be the open subset
Minterior = {p € Mo : r— < r(p) < ri} and the outgoing future event horizon to be the
hypersurface "HX ={pe My :r(p) =ry}. Note that T is spacelike on Miperior and null
and tangent to 1. In particular, HI is a null hypersurface.

The boundary of M (as a manifold with boundary) consists of two components
OMo = CHj UC~ defined by

CHy ={peMo:r(p)=r-}, C ={pecMo:r(p)=r}.

The vector field T is null and tangential to these hypersurfaces which are in particular thus
null and Killing horizons. We shall call C”H,Jgr the outgoing Cauchy horizon and C~ the past
cosmological horizon.
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Finally let us note that the future orientation defined by 7" on M. extends to a unique
future orientation on M. According to this, the vector field 7 is future directed null on HX,
CHj and C™.

2.3. Ingoing Eddington—Finkelstein coordinates on Mgyc attaching H~ and C*

Returning to (M, g), we can set u=7—r* and similarly define ingoing
Eddington—Finklestein coordinates (u,r,0,¢). The manifold Mgy, corresponds to
(u,7,0,¢) € R x (ry,r.) x S*. The metric now takes the form
2M & A
g=— 17—+e———r2 du® — 2dudr + rog. 9)
r r2 3
Similarly to the previous section, it is immediately clear that the metric g extends to
a smooth Lorentzian manifold with boundary Mgy, defined by the coordinate range
(u,r,0,0) € R x [ry,r] x §* = Muic. The boundary OMhe = H~ UCT of this mani-
fold consists of the hypersurfaces

H™ = {P € M\static : r(P) = r+}, ct= {P S M\static : "(P) = rc}

which we shall refer to respectively as the past event horizon and the future cosmological
horizon. Note that the Killing vector field 7 of the static region extends to this new manifold
with boundary by T = ,, and this is tangential and null on H~ and C*. These are thus null
and Killing horizons.

We may already now attach the above null hypersurfaces H~and C* as additional boundary
to the manifold with boundary M to obtain a manifold with boundary M; = Mo UH~ UC*
on which T is globally defined. Note that M inherits the time orientation from M, and 7 is
future-directed on X~ and C*.

2.4. Ingoing Eddington—Finkelstein coordinates on Minerior attaching CH and H

Next we will define similar ingoing Eddington—Finkelstein coordinates on Miperior, Which
allow us to attach two additional null hypersurfaces.
In analogy with (7), we define the function r*(r) in the region Miperior Y

* 2 —1
dr(1m+8Ar2> , r*<r‘+”>o. (10)

r r2 3 2

We have r*(r_,ry) = (—o0,00). (Note, however, that % < 0.) Now, analogously to the
region Mpie, We can define # = r* —t in Mjperior and then cover Miyerior With coor-
dinates (it,r,0,$) € R x (r_,ry) x S?. Just as before, the metric extends smoothly to
(t,7,0,¢) ER X [r_,ry] x §* = M\interior» and this leads to the definition of the boundary
hypersurfaces

H; = {p € M\inlerior : r(p) = r+}, CHZ_ = {P € M\inlerior : r(p) = r*}

which we may now attach to obtain a manifold with boundary M, = M; UH} UCH,
which has the additional boundary components #; and CH;. We will refer to these as the
ingoing future event horizon and the ingoing Cauchy horizon, respectively.



Class. Quantum Grav. 35 (2018) 195010 M Dafermos and Y Shlapentokh-Rothman

This new manifold M, with boundary again inherits a time orientation. The Killing field T
extends globally to M, and is again null on (and tangential to) ’HZ{ and C?—[X. Note however
that T is now past-directed on both Hj and CHl".

2.5. The surface gravities k4, k_ and k¢ and the inequality K— > k4

Before further extending the metric to obtain our final M, let us discuss further the behaviour
of the Killing field 7 on the horizons.

One can infer immediately from the spherical symmetry of the metric and the fact that 7 is
the Killing null generator of the various Killing horizons C * ’Hj, H™, 7—[;, C’H; and CH:,
that there exist constants k., K+ and x_ so that

VTT|7.L;r = /{+T, VTT|c+ = IQCT, VTT|C’H; = —K,_T,
VTTl’H* = —H+T, vTTlH; = K]+T, VTTlc— = —h}cT, vTT'C’H:r =xr_T.

These constants <, x_ and k. are the various surface gravities of the horizons. In order to
calculate the surface gravities it is useful to observe that

2M & A A .
i 572 =32 —r)r=r)(r—r)(r = 7o),
where
Fo=—r_—ry—1.<0.

Then, using that

10 2M & A, 10 2M & A,
Re = — 347 l—-—+ 5 —5r |r=r£7 Ry = =457 l—-—+ 5 —5r ‘r=r+7

20r r r2 3 20r r 2 3
10 2 e A
=== | 1-— = -7 r=r_»
" 20r ( r +r2 3r>|
we obtain
A . A .
’ﬂc:g(rc_r-k)(rc_r—)("c_”C)r527 /<c+:g(m_—r_)(rc—r+)(r+—rc)r+2,
A
o g(r_~_ —r V(re —r_)(r_ —F)r2

Thus we see that k., £+ and x_ are all positive. The following well-known inequality (which
the reader can readily verify) is of fundamental importance for our main results:

Lemma 2.5.1. For each tuple (M, e, \) of non-degenerate constants, we have

K_ > Ry.

2.6. Kruskal coordinates attaching the bifurcation spheres B, B_ and B,

Finally, we shall introduce Kruskal coordinates allowing us to extend our manifold to include
the three bifurcation spheres B, B+, and B_.

10
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We start with the coordinates which will define B,.. We define two functions U.(t, r) and
Vc(t, r) in Magic by

Ue(tr) = exp (e (1= 1)), Ve (tr) = —exp(—k, (14 17)).

Then Mg corresponds to the range {(U,,V,,0,¢) € (0,00) x (—00,0) x S?}. It then
turns out that the metric extends to a smooth Lorentzian metric with stratified boundary on
{(U., Ve, 0,8) € [0,00) x (—00,0] x S?} (the explicit form that the metric takes in these coor-
dinates will not be relevant for this paper). The hypersurface {{U, = 0} x {V € (—00,0} x §?}
may be identified with C~ and the hypersurface {{V, = 0} x {U € (0,00} x S?} may be
identified with C*. However, we obtain a new sphere B, = {{U. = 0} x {V, = 0} x §?}.

The vector field 7 smoothly extends to B, where it vanishes, and we have the following
formulae:

)
AU lc+ ’ V. lc-
The bifurcation spheres By and B_ are defined in an analogous fashion and end up corre-

sponding to the common boundary of H1 and %~ and CHj and CH| respectively. The asso-
ciated Kruskal coordinates can be constructed from

= e"T.

Ut (67) [Mgie = —exp (= (t—=17)), Vi (67) | My = exp (54 (E+17)), (11)
U— (6,7) | Mierin = — XD (—=6— (r" = 1)), Vo (6,7) [ Myesr = —€XP (=K (1+77)). (12)

As with B,, T extends smoothly to B+ and B_ where it vanishes and we have the formulas:

0 19} 0 19}
e K+MT — —K+7}T — H_UT — HCuT.
U, I = e v, by = o gylleny =T Gplewr =
(13)
We finally define

M=MUB_UB.UB, (14)

with differential structure defined by the above charts. It follows that the above is a manifold
with stratified boundary on which g extends smoothly as a time-oriented Lorentzian metric.
Note that the interior of M is given by Migterior U ’HX U Maiic and the boundary OM is given
by the union

(HFuBLUHT) | (CcHFuB_uCH)) | J(ctuB.UCT). (15)

We note that (”;'-[;3r UBy U ”H_) is a smooth boundary hypersurface, but the other two sets in
brackets in (15) are unions of transversally intersecting smooth hypersurfaces-with-boundary,
with common boundary B_, 5. respectively, e.g.

(CHE UB_UCH,) = (CHj UB_) U (B_UCH,)

with CHp NCHF = 0.

In figure 2 we depict the standard Penrose diagram for (M, g).

‘We note finally that the electromagnetic tensor F,,, on M ,ic €xtends to an electromagnetic
tensor F,,,, on M so that the triple (M, g, F,,,,) still satisfies (3).

1
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3. Precise statement of the main theorem

In this section, we will give a precise statement of the main result of this paper as theorem
3.1 (see section 3.1). This formulation only refers to the region M constructed explicitly in
the previous section. We shall then explain (see section 3.2) how theorem 1.1 of section 1 can
immediately be reduced to this statement.

3.1. Statement of theorem 3.1

Let M be defined by (14). We will consider below hypersurfaces-with-boundary ¥ C M\ H;
which are connected, spacelike and compact, transversally intersect CT and 3’-[;1Ir and have
boundary consisting of a single sphere in Myerior and a single sphere in C*. (We shall soon
specialise to the case where Y is itself spherically symmetric.)

A solution ¢ to the wave equation is uniquely determined in Dj(/t (), the domain of
dependence of X, by its corresponding Cauchy data along Y. In particular, we have the fol-
lowing well-known proposition.

Proposition 3.1.1. Given Cauchy data (¥,¥’) € H(X) x H"(X), there exists a
weak solution 1) to the wave equation (4) in DL(Z) uniquely defined by the property that
(¥, nstp) C HY (S) x H ' (S) for any spacelike hypersurface S € D},(X) and that
(WY|s, nsy|s) = (U, ©'). Furthermore, if X is spherically symmetric and the data (¥, ') are
spherically symmetric, then the solution v is also spherically symmetric.

Our main result is the following theorem.

Theorem 3.1. Fix a non-degenerate tuple (M, e, \) and consider the corresponding Reiss-
ner-Nordstrom—de Sitter metric (M, g) and let X denote a spherically symmetric hypersur-
face as above. Then there exists € = e(M, e, \) > 0 and spherically symmetric Cauchy data
(U, W) € H'T¢(X) x HY(X) such that the corresponding solution 1 to the wave equation (4)
obtaining the Cauchy data satisfies

191l 71 () = 00 (16)

ie. v & H' (N), where N is any constant U_ hypersurface emanating from a sphere in
D (X) N Minterior and terminating on a sphere of CH:.

In figure 3 we have depicted the hypersurface 3, its future domain of dependence DT (X)
and a choice of hypersurface A. The square of the homogeneous Sobolev norm H' (N) can
be interpreted as the energy flux measured by a family of local observers on . Note that the
statement (16) is independent of the choice of induced volume form on N .

We will provide two proofs of this result. The first proof, given in section 4, will be a direct
construction based on individual mode solutions. The second proof, given in section 5 will be
based on the time translation invariance of the spacetime and is an adaption to the cosmologi-
cal setting of our arguments from [DSR17].

We note that, it will be immediate from either proof that instead of spherically symmetric
(¥, ¥') in theorem 3.1, we can take data supported instead on an arbitrary fixed higher spheri-
cal harmonic number ¢ > 1.

12
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Figure 3. The manifold M with hypersurfaces 3, N and shaded domain of influence
of ¥.

3.2. Reduction of theorem 1.1 to theorem 3.1

We now explain how theorem 1.1 can be inferred from theorem 3.1.

First of all, we observe that by local existence considerations similar to proposition 3.1.1, it
clearly suffices to establish theorem 1.1 for a spherically symmetric X. In the rest of this sec-
tion we shall thus work with spherically symmetric hypersurfaces. Next, we note that (M’, g)
is isometric to (M, g), where we define M’ = M/ .. U ’H;‘ U Minterior (see figure 4). Hence
we obtain the analogue of theorem 3.1 for the region M’.

Next, using the finite speed of propagation, we immediately are able to obtain a solution ¢

arising from Cauchy data (¥, ') € H'"*(3) x H*(X) suchthat||s)| |y ) = |9/l pr) = 005
where A is a null hypersurface transversally intersecting C?—[;r and N is a null hypersurface
transversally intersecting C’HZ.

Finally, it remains to show that the solution has an infinite H' norm along hypersurfaces
transversally intersecting CH™ which lie outside the shaded region. This follows from a
straightforward propagation of singularities argument, using however also the local finiteness
of the energy flux of ) along CH;{B, a result proven in [Fral6].

4. First proof of theorem 3.1: an explicit mode-solution construction

In this section, we will give our first proof of theorem 3.1 by constructing the desired solution
1 via direct o.d.e. analysis.

We start in section 4.1 by reviewing the separation of variables for the wave equation (4). In
section 4.2 we carry out an asymptotic analysis of the radial o.d.e. at its singular points. Next,
in section 4.3 we establish two o.d.e. lemmata which have the interpretation as statements of
non-triviality of reflection and transmission. These lemmata will also be used in section 5.
Finally, in section 4.4 we give the proof of theorem 3.1.

13
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Figure 4. The manifold M’ U M with the hypersurfaces &, A" and V.
4.1. Separation of variables on the Reissner—Nordstrém—de Sitter spacetime

In this section we will review the procedure for separation of variables for the wave equa-
tion (4) on the Reissner—Nordstrom—de Sitter spacetime.

We say that a spherically symmetric 1 : Muic — C in the static region is a mode solution
if ¢ satisfies (18) and there exists w € C so that

P(t,r) =e "R(r). (17)

Note that a spherically symmetric function (z, r) satisfies the wave equation (4) in Mgc if
and only if

G —r2u(r)d, (Pu(r)dp) =0, (18)
where we have defined

. e A,

In particular, in the case of a mode solution, the function R(r)from (17) will satisfy5 the radial
o.d.e.:

d dR
r_zu(r)a <r2ﬂ(r)dr> +w’R =0, re (re,re). (19)
Finally, we also obtain a definition, mutatis mutandis, for spherically symmetric mode
solutions % : Miperior — C in the interior region, where the r-range of (19) is replaced by
re(ro,ry).

4.2. Asymptotic analysis of the radial 0.d.e., basis solutions and analyticity properties

The o.d.e. (19) has regular singular points at r = r, r = r and r = r_. In particular, if R satis-
fies (19), then we will have

3 For the analysis of solutions supported on a fixed higher spherical harmonic number ¢, one must simply replace
use of (19) everywhere in what follows by the resulting o.d.e. depending on £.

14
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d’R 1 dR wrk 2 _

d2R 1 dR w2/€;2 _
m"‘( +0(1)>dr+<4()2+0<(1"—7+) 1) R:O,for\r—r+|<<1,

r—rq r—rq
21
&R 1 dr w2k .
=t (r—r, +0(1)) 5+ (4(r_r)2—|—0((r—r) )| R=0, for|r—r_| < 1.
(22)

Then the theory of o.d.e.”s with regular singular points (see [Olv97] and also appendix A
of [SR14]) immediately yields the following lemma.

Lemma 4.21. Let U ={0} U{w e C:Im(w) € kK ZU Kk+ZUK_Z}. Then for every
w € U there exist six solutions Rin+ (w,r), Rout+ (W, ), Rine (W, ), Route (w,7), Rin— (w,7)
and Roy — (w, r) to (19) defined by

1. Riny(w,r) = (r—ry) _ﬁkin,ﬁ- (w,r), where Riny (w,r) is analytic for r € (r_,r.)
and satisfies f(’in,+ (w,ry) =1

2. Rout(w,r) = (r—ry) iI’A?om,+ (w,r), where Rouy (w,r)is analytic for r € (r_,r)
and satisfies IA?oul,Jr (w,ry) =1

3. Rine(w.r) = (r — 1) " Ring (w.r), where Rine (w.r) is analytic for r € (ry.r.) and
satisfies Rine (w,re) = 1.

4. Rout,c(w, r) = (r — rc) ﬁkout,g (w, r) ) where Rout,c (w? r) is analytic fOV re (l"+, rC} and
satisfies Roue (w,re) = 1.

5. R (w.r) = (r—r_) "% Rin_ (w.r), where Rin_ (w.r) is analytic for r € [r_.r;)
and satisfies f(’in,f (w,r— );w: L

6. Rowt,— (w,7) = (r — r_) ™= Rou— (w, 7), where Rou_ (w,r) is analytic for r € [r_,ry)
and satisfies Row,— (w,r_) = 1.
Furthermore, considered as functions of w, IA?in,_F (w, 1), Rou¢,+ (w, ), IA?in,C (w, 1),
Route (w, ), Rin— (w,r) and Row,— (w, r) are holomorphic for w € U.
Finally, it is immediate that when w € U \ {0}, Rin+(w,r) and Row+(w,r) are linearly
independent. Similarly, Ri.(w,r) and Row.(w,r) are linearly independent and R, —(w,r)
and Roy,— (w, r) are linearly independent.

Proof. The expressions (20)—(22) imply that the indicial roots near r., ry and r_ are +iw

- 2k’
+ 21:; and izi%respectively. The desired solutions may be then constructed by explicit power
series (see [Olv97] and also appendix A of [SR14]) as long we do not allow w to enter a region
where the difference of two indicial roots is a non-zero integer. We immediately see that the

constructed solutions are valid for w € U. O

Remark 4.1. When w = 0, the final statement of above lemma does not apply. This fact
plays no role in the proof of theorem 3.1; nevertheless, we note that one could construct addi-
tional linearly independent solutions which must, however, contain logarithmic singularities.

Though it is also not relevant for the proof of theorem 3.1; we note that at w = ik, the
solution Ry +(w, r) has a simple pole, and that at w = —iky, the solution Rj, (w,r) has

15
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a simple pole (see the analysis of the reflexion and transmission coefficients considered in
[CHS82]). Analogous statements hold for Royc(w, 1), Rine(w,7), Rou.— (w, r) and Ry —(w, r).

The following lemma will be useful.

Lemma 4.2.2. There exist holomorphic functions 2A:U\ {0} — C, B:U\ {0} — C,
A:UN\{0} - Cand B :U\ {0} = C so that for all r & {r—_,r,r.} and w € U\ {0} we
have

Rine (w, ) = Bw)Rin+ (w,7) + B(w)Row+ (w,7), (23)

Rint (w, 1) = A(w)Rin— (w, r) + B(w)Rou— (w, 7). (24)

Proof. The fact that the expressions (23) and (24) hold for functions 2, ‘B, 2 and B of
unspecified regularity is an immediate consequence of the statement from lemma 4.2.1 that
Rin+ (w,r) and Ryy+ (w, r) are linearly independent and Ry, — (w, r) and Ryy,— (w, r) are lin-
early independent when w € U \ {0} B B

In order to analyse the regularity of 2(, B, 2 and ‘B, we use the Wronskian 20. Given two
functions f(r) and g(r) we define the Wronskian:

W(£,8) (1) = Pulr) L g~ i) .

A key fact is that if fand g satisfy the radial o.d.e., then

du
= _0 25
dr 25

Let ry = % Using (25) and the observation that 27 (f,f) = 0, one may establish the
formula

Qﬂ (Rin,c (UJ, rO) s Rout,+ (UJ, r(]))
2 (Rin,+ (w,70) » Rourt (w70))

A(w) = (26)

The asymptotic behavior of R+ and Rowy+ and (25) imply that
20 (Rin+ (w,70) » Rout+(w, 19)) 7# 0. Thus, (26) and lemma 4.2.1 yield that 2l is holomorphic.
The arguments for B, 2 and B are analogous. O

4.3. Non-triviality of reflexion and transmission

Before giving the proof of theorem 3.1, we need two final preparatory lemmata which can be
interpreted as the statement that neither the reflexion map in the static region nor the transmis-
sion map in the black hole interior region can vanish identically (see the proof of theorem 10
of [DRSR18] and the results of [KSR18]).

Lemma 4.3.1. There exists w € R so that the solutions Rou + (w,r) and Rin. (w,r) are
linearly independent.

Proof. Suppose, for the sake of contradiction, that for every w € R there is some a(w) € C
so that Ry + (w,r) = a(w)Rine (w, 7).

16
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Set R (r) = Rout+ (w, r). We have that R will satisfy the radial o.d.e. (19). It is convenient
to define a new 7(r) coordinate by

dr _ 2 —1 ~ [ T+ +rc _
i (r u) s r< > ) =0.
Then (19) becomes

d’R
vy + r4w2R = 0 (27)
dr?

Now define

. dR—

We clearly have

dor

=0.
dr

In particular, using the fundamental theorem of calculus, we obtain

0= lim Qr (r) - lim Qr(r). (28)
Let us now compute lim,_,, Qr (r):
lim Im (d—{eﬁ) = lim Im (rZ,u(r)d—Rk)
r—re dr r—re dr
= —2r’k, \a|2 lim Im ((r — rL.)% ((r — ré)%) (r— n_)z'%)

r—re
= Pwlal*. (29)
Similarly, we may compute
) dR— )
rlgg Im (d?R> =riw. (30)

Combining (28)—(30) yields, when w # 0,

2 ri
la| == < L. (31)
rC

However, since a must be smooth in w, by continuity we also have (31) when w = 0.
On the other hand, when w = 0, the o.d.e. (32) can be easily solved explicitly and we see
that

R(0,r)=1=a(0)=1.
This contradicts (31), completing the proof. ]

Lemma 4.3.2. For every w € R\ {0} the solutions Rin (w,r) and Rin— (w,r) are lin-
early independent.

17



Class. Quantum Grav. 35 (2018) 195010 M Dafermos and Y Shlapentokh-Rothman

Proof. We proceed in a similar fashion to the proof of lemma 4.3.1. Fix an arbitrary
w € R\ {0} and suppose, for the sake of contradiction, that

Rin+(w,r) = aRin — (w, 1)

for some a € C.
We set R(r) = Rin+(w, r) and introduce the 7(r) coordinate by

Then (19) becomes

&R
dr2

+ PR =0, (32)

and, just as in the proof of lemma 4.3.1, we see that if we set

QOr =Im (i{jk) ,
then
Sor=0 (33)
One computes
Or(ry) = —riw, Or(r-) = |a|2riw.

Together with (33) we obtain

a2 + 1% =0,

which is clearly a contradiction. O

4.4. Proof of theorem 3.1
Now we are ready to prove theorem 3.1.

Proof. Recall the fundamental inequality x4+ < k_ satisfied by the surface gravities
(lemma 2.5.1). We may thus choose # satisfying k4 < & < k_. We also introduce a parameter
wr € R\ {0} which will be fixed later in the proof.

We start by defining a mode solution ¢ in the static region M. Where r € (r4, r.) by

6.0) = DR, (g = i5r)

i(wrif) I

A (34)
= e_it(wk_i%) (r — rc)_ e Rin,c <wR - ii? ) .

2

It follows from (7) that near r = r., we have

18
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W(t,r) = e @R ()

where k(r) is analytic for r near r.. In particular, it is clear by working in the ingoing Edding-
ton—Finkelstein coordinates (u, r, 6, ¢) of section 2.3 that ¢ extends smoothly to ct.

Next, we want to extend 1 to Miyerior also as a mode solution. First, using lemma 4.2.2,
we expand

w(l‘, r) = e_it(wR_i%) |:Q[ (WR — 1;) Rin,+ (wR — ig,r) + B ((.A.)R — lg) Rout,+ (wR — 1§,r>} .
(35

Then we define ¢ in the interior region where r € (r_, r) by the following:
Yt r) =2 <wR — 1;> e*i’(”"*i%)Rin’_’_ <WR _ ig, r> .

We observe that in outgoing Eddington—Finklestein coordinates (v, r, 8, ¢) of section 2.2,

the expression (35) becomes
A (wR — 12> Rin+ (wR — 12,r)

A

A i(wr—i%) . A
+ B <wR — 1§> (r—ry) " Rouws (wR — i;,r> 1 . (36)

In particular, it is clear that if we now consider 1) as a function on M U Hj( U Minterior»
it continuously extends to the horizon 7—[A+. Next, we claim that irrespective of the values of
A (wg —1%) and B (wg — %), there exists a sufficiently small € > 0 so that we will have that

(Yls.nstls) € H'T(S) x H (S) (37)

’l/J(I, r) _ efiv(wgfi%)

for any compact spacelike hypersurface-with-boundary S C Me U Hj U Mngerior- Indeed,

iR} & - A
wWrT1Z ), Rin+ (wR — 1%, r) and Rout+ (wR —iz, r) are smooth expres-

. 3
‘(kalj)

sions for r € (r_,r.) in the (v,r,0, $) coordinates, itfufﬁqie)s to examine (r — ry) “+
foren

since the terms e~ (

However, since ﬁ > 1, it is immediate that (r — ry)  *+ lies in H'*¢ ([ry,ry + 1]) for

suitable 0 < ¢ < 1 and we thus obtain (37).
Next we note that v is easily seen to be a weak solution of the wave equation (4), and,
furthermore, defining (¥, ¥') = (¢|s, nxt)|s ), we have shown that

(U, 0') € H'T¢(X) x H(®),

and thus 1) coincides in D" (3) with the solution produced by proposition 3.1.1.

Now, to finish the proof it suffices to show that ¢ satisfies (16) for any spherically symmet-
ric null hypersurface AV intersecting CH! transversally. To see why this is true, we use lemma
4.2.2 to expand ¥ near r = r_ as
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= R R

A (wR — 12> Rin.— <wR — 12,r>
= R R

+ % <wR — 12) Rout,— (wR — 12,r> ] .

In order to understand the regularity as we approach C’H:, we re-write this in the ingoing
coordinates (i, r, 6, ¢) of section 2.4. We obtain

Yt r) =2 (WR _ 1’;) oit(wr—i%)

(i) =2 (wR - J;) elf(wr=i%)

5
2
R (wri%) 3
i~y KR - ~ KR
+ B ((JJR — 12> (r—r-) " Rou- <wR - 12,r> .
Sinceni < 1, we have that

(or-s8)
(r—r_) ==

= .
HY ([r—r—+1])

In particular, if we can arrange so that 2 (wg — i%) B (wg —i%) # 0, then we will have
established (16) and finished the proof. By lemma 4.2.2, the functions 2 (w) and B(w) are an-
alytic. Thus, either (a) one of 2(w) or B (w) vanish identically, or (b) the zeros of A(w)B(w)
form a discrete set. Fortunately, lemmas 4.3.1 and 4.3.2 are sufficient to exclude possibility

(a). Thus, we can indeed find an wg € R\ {0} such that 2 (wg —i%) B (wg —i%) #0 and

the proof is concluded. O

5. Second proof of theorem 3.1: exploiting time-translation invariance

In this section we will give our second proof of theorem 3.1 by exploiting time translation with
respect to the Killing field 7. We will in fact construct a solution to (4) globally in the region
M by prescribing scattering data on (Hz U B, UH~) UC~ and then obtain theorem 3.1 by
restricting the solution to D, ().

We start in section 5.1 by recalling various previous results which will be useful. Next, in
section 5.2 we prove proposition 5.2.1 which constructs a 1-parameter family of data along
", which are uniformly bounded H'*¢(# ™), so that the H' norm of the corresponding solu-
tion along CHj can be arbitrarily large. Finally, in section 5.3 we use proposition 5.2.1 and
the uniform boundedness principle to complete the proof of theorem 3.1.

5.1. Preliminary results

We start by introducing some notation and reviewing known results which will be used in the
proof of theorem 3.1.
It is useful to introduce the following norms.

Definition 5.1. For any spherically symmetric function ¢/ such that %—fhf is measurable,
we set
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) 0 0
W1y = [ at [

Similarly, if ¢ is spherically symmetric and %—f |CH,,+ is measurable, we set
0
0
dv + / d
-1

ov_
Note, in particular, that if 1 is supported near the bifurcation sphere B the [[|| 71 (5,- ) norm
is finite if and only if 1 lies in A\ along H~ U B4, An analogous statement holds for the

loc
bifurcation sphere B_ and the ||-||;, (cw;) horm.
B

2

oy

oy, 0y
ou'”

U,

du,.

2
dv_.

161Bs eep) = \

Recall from section 2.6 that H~ U By U Hj is a smooth null hypersurface. In particular, a
solution 1) in M is uniquely determined by its characteristic data along H~ U B, U Hj and
C~.

Theorem 5.1. Let W : H™ — R be smooth, compactly supported and spherically symmet-
ric, and let 1) be the unique solution to the wave equation (4) on M such that QMHJUBJr =0,

Y- =V and Ylc- = 0.
Then 1) continuously extends to CH; U C’Hj{ U B_ and satisfies

0 0
sup |¢| +/ ‘ ¢|C?—t* dv+/ ’ w|c7_l+

CHyUCHUB_

2 2

2
du ||\IJ||H(H*)OL°°(’H*) :

Proof. This follows from a straightforward adaption of [DRO7] and of [Fral6] to the
Reissner—Nordstrom—de Sitter setting. [l

We now fix some notation for the ‘seed data’ we will use to construct our desired solutions.

Definition 5.2. Let ®3- (1) : X~ — R be a non-zero smooth function compactly sup-
ported in {u € (—1,0)} and spherically symmetric, and let ¢ be the corresponding spherically

symmetric solution to the wave equation (4) on M so that |y, = &y, ‘P|H;u8+ =0 and
¢le- =0.

The next proposition is a statement of non-trivial reflection to ’Hj.

Proposition 5.1.1. Let ¢ denote the solution from definition 5.2. Then we have
oo 8@ 2
oo

Proof. This follows from lemma 4.3.1 and a minor adaption of the proof of theorem 10
from [DRSR18]. [l

dv > 0.

The next proposition is the statement that there is non-zero transmission to CHj.

Proposition 5.1.2. Let ¢ denote the solution from definition 5.2. Then we have

0
/ ‘ (p|cm+

dov > 0.
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Proof. This follows by combining theorem 5.1, proposition 5.1.1 and a minor adaption of
the proof of proposition 7.2 from [DSR17]. O

Finally, the next proposition is a manifestation of the time translation invariance of the
spacetime.

Proposition 5.1.3. Let ®4,— and ¢ be as in definition 5.2. For every T > 0, set

@512 =Py (u—1),

and let ") be the corresponding solution to the wave equation (4) on M so that
ey =l ¢l op, = 0and pMle- = 0.

Then, in the outgoing Eddington—Finklestein coordinates (v,r,0,¢), we have
o) (v,r) = ¢ (v — 7,r). In particular,

‘P(T)|CH; (v) = <P|c9-t;; (0—7).

Proof. This follows by combining theorem 5.1, proposition 5.1.1 and a minor adaption of
the proof of lemma 7.6 from [DSR17]. O

5.2. From time translation invariance to scattering map amplification

The following proposition contains the essential content for the proof of theorem 3.1 and is
closely related to the proof of theorem 2 in [DSR17].

Proposition 5.2.1. For a sufficiently small € > 0, there exists a one-parameter family of
spherically symmetric and compactly supported \Pgl :H™ — R so that
1. We have

sup ‘ ‘\115_2
7>0

<.
Hi*e(H-)NLe (H-) ™
2. Ifwe denote by '™ the unique solution in M such that (™) |H;UB+ =0,y = \Ilg_zz
and (7 |o- = 0, then

sup Hz/;m
7>0

‘Hl (cHy)

Proof. Recall the fundamental inequality x4+ < x_ satisfied by the surface gravities (lemma
2.5.1) and again chose thus & satisfying k4+ < & < K_. Let ® and ¢ be as in definition 5.2.
Define \I’gz :H™ = Rby

W) () = e TN (u) = e T TPy (u—7),

and then let (") be the corresponding solution to the wave equation on M so that
POy =07 Vs, =0 and $0e- =0,

Clearly sup, H\IIE’,I),H o) S L
Loo (M
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Using Kruskal coordinates at B+ (see (11)), for large enough 7 we may calculate

o | oou) |
vl ‘ < | au
H H H'(H—)N/_l U +
%) 2
< L [T 240 ersngy
ky Jo |Ou 7t
1 [T |d 2 )
- — D, _ K4U—RT 4
Pl AL (w—r1)| e u

Similarly, we may estimate

2 N
< e(3n+7n)7“

HX(H™)

H-

In particular, by interpolating, there must exist e > 0 so that

2
< 1.

()
sup ‘ ‘\IJH_ ey

>0

Next, our goal is to prove that

2
552 [ | ) =
>0

H(CHY)

Proposition 5.1.2 implies that there exists vy € (—oo, 00) and ¢ > 0 so that

/vg+1
Yo

Now, using (42) and also proposition 5.1.3, we have

: /0 e
’ . R sup
H! (C'H;r) >0.J—1

av_ |C7~l;r
1 | 9¢
= K—_iti}g/o ‘6,0|C7-L;' (v—1)
¢

1 o0
= == v
o [l @

2

Op dv > c.

%km;

2
sup ‘ \W av_

>0

2
P

2
efi- (v+7)—FRT do

1 . vo+1 L)
> — sup e“*(UOJrT)*’”/ ——leat (0)
~ K 70 [ - v 'CHs
cel-% "
> Supe(m,—m)T
K— >0
= Q.
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5.3. The uniform boundedness principle and the proof of theorem 3.1

Finally we can use proposition 5.2.1 along with the uniform boundedess principle to prove
theorem 3.1.

Proof. Let e > 0 be determined by proposition 5.2.1 and £(x) be a smooth function which

is identically 1 for x < 0 and identically O for x > 1. Also, let HS'pJ,q6 (H™) NLg;, (H™) denote

the Banach space of spherically symmetric functions in H'*€ (H~) NL> (H™).

Then, forevery N > 0, wedefineamap J : Hi“ (H™) N LS, (H™) — H' (CH; ) NL™ (CHy)
by taking Wq,— € HLLC (H™) ML,
equation (4) which satisfies 1/)|H;rul,3+ =0, 9|y~ = Uy- and ¢|c- = 0, then restricting ¢ to

CH; and then multiplying ¢ by & (v — N), that is,
I (W3-) (©) =& (0 = N) leggs (0)-

Note that the solutions ¢ constructed will be spherically symmetric weak solutions to the
wave equation uniquely defined by the property that (¢, nst) C Hit4(S) x HE,.(S) for any
spacelike hypersurface S C M.

Theorem 5.1 and a density argument implies that each Jy is a well-defined bounded map.
Proposition 5.2.1 implies that

(H ™) to the corresponding unique solution %) to the wave

sup  sup || TIvUsn-|| cnt) = 00
¥ |- w(er)

The uniform boundedness principle (see theorem II1.9 of [RS80]) and theorem 5.1 then
imply that there exists ¥4,- € Hsllfhe (H™) N Lg;, (H™) so that

SUp (| T o=l e ) = 00

This is, of course, equivalent to

|W||H1(CH;) = .

Having established that the energy along C?‘{l‘,@F blows up, the H' blow-up along any other
null hypersurface A/ which intersects C’H;f transversally follows from a standard propagation
of singularities argument. (See, for example, section 7.2.3 of [DSR17].)

Define (¥, ¥') = (¢|s, ngt)|s). Using finite-in-time energy estimates and the spherical
symmetry of (¥, ¥'), it is straightforward to see that

2
N ) e sy e sy S 1 (44)
and thus v coincides in D" (3) with the solution produced by proposition 3.1.1. We have thus

constructed a solution ¢ in DF () arising from data (44) which satisfies the required blow up
property at CH.", completing the proof of theorem 3.1. [
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6. Discussion

We end this paper by amplifying some of the comments already made in the introduction.

6.1. Additional angular regularity

We have already argued why for Christodoulou’s formulation [Chr09] of strong cosmic cen-
sorship, it is clearly natural to also relax the regularity assumption on initial data. Indeed, as
we have mentioned, this has a precedent in the proof of weak cosmic censorship in spherical
symmetry [Chr99b], where weak irregularities allowed in the space of absolutely continuous
functions were used to maximally exploit the blue-shift instability connected to naked singu-
larities. On the other hand, one might object that for data which are only H'*¢, one cannot
show that general solutions to (4) are continuous. To overcome this objection, it suffices to
replace H'T¢ with a space where additional regularity is imposed in the angular directions. In
fact, in the Reissner—Nordstrom—de Sitter case, for a spherically symmetric hypersurface 3,
one can consider the space

Di(2) = {(T,T) : V]a| < k,QT € H'(X), Q%0 € (D)} (45)

Here o = (o, vz, a3) is a multi-index and Q2 denotes a string 7' Q3257 of angular momen-
tum operators. (Note that the data corresponding to an H' spherically symmetric solution
10, and more generally, a solution ¢, supported on a fixed angular frequency ¥, is a fortiori
contained in Dy (X) for all k. Thus, our theorem 3.1 produces a solution in Dy for all k.) For
sufficiently high £, this is precisely the norm considered in [DRO7] for the wave equation on
Schwarzschild—de Sitter. This yields sufficient regularity and sufficiently fast decay in the
region Mpie U Hj U CT, in particular along ’H:, S0 as to be able to still apply for instance
the results for (4) on the black hole interior Miyeior region due to [Fral6]. (Note that one does
not need in fact the extra ¢ and we have not included it in the definition (45).) Thus, solutions
1 arising from data in Dy still share the same ‘good aspects’ of the qualitative behaviour of
smooth C solutions. In particular, we can still moreover infer the continuous extendibility
of 1) beyond CH™. We further note that spaces like Dy may be strong enough to understand
nonlinear problems (see [LR17]).

6.2. Generalisation to HS

Let us remark also that more generally, one can show for arbitrary s > 1, and sufficiently small
€ > 0, that given generic data (¥, ¥) € H*+9) x H*(+9)~1 the corresponding solution ¢ of
(4) is inextendible in H; . at the Cauchy horizon.

loc

6.3. Extremal black holes with A =0

In the case A = 0, it would be interesting to revisit the extremal Reissner—Nordstrom space-
time from the point of view of the present paper. Recall that, for smooth localised initial data
for (4) on a suitable past Cauchy hypersurface 3 crossing the event horizon H ™ in extremal
Reissner—Nordstrom, it has been proven [Gajl7a, Gajl7b, AAG18] that the resulting solutions
are indeed in H}_ at the Cauchy horizon®. In view of the degeneration of the surface gravity,

©This does not of course affect the validity of Christodoulou’s formulation in A = 0 since the extremal case is itself
non-generic.
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it is not at all clear whether this failure can be circumvented by passing to a space of (still
localised) initial data of lower regularity’.

6.4. Decay rates and strong cosmic censorship for C> data?

The above comments notwithstanding, in no way are we trying to argue that one should cease
investigation of the fine dynamics of C*° initial data. On the contrary! Though we hope to
have given coherent arguments for allowing for a genericity assumption based on a norm
such as H'*€, (45), or some other related modification, we do not view these arguments at
present to be definitive. Unquestionably, the most satisfactory resolution of the Christodoulou
formulation of strong cosmic censorship would be one independent of the precise regularity
assumptions made at the level of initial data, and the cleanest way to have this would be for
the result to have been true in the topology of the C* class. If Christodoulou’s formulation
of strong cosmic censorship indeed fails for the Einstein-Maxwell system (3) with A > 0 in
the smooth topology, then a nagging dissatisfaction with the whole situation is still inevitable,
despite our proposed circumvention. In any case, irrespectively of its final significance for
strong cosmic censorship, the problem of understanding the fine asymptotics of solutions aris-
ing from C*° initial data—and the implications of this for the sharp generic inextendibility
statement at the Cauchy horizon—is certainly an extremely worthwhile open problem that
very much remains to be properly understood.
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