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A Scattering Theory for Linear Waves o1 the
Interior of Reissner—Nordstrom Black r ~les

Christoph Kehle and Yakov Shlapentokh-Rothmar

Abstract. We develop a scattering theory for -he 1. ~ar wave equation
Uge = 0 on the interior of Reissner—Nordstr:. blaci. ".oles, connect-
ing the fixed frequency picture to the physi~~! spa. ~» picture. Our main
result gives the existence, uniqueness an' asy1 ntotic completeness of
finite energy scattering states. The past a1 ! futv e scattering states are
represented as suitable traces of t] 2 sol*” ~n v un the bifurcate event and
Cauchy horizons. The heart of the L. _otis t. show that after separation of
variables one has uniform boundedness of .ne reflection and transmission
coefficients of the resulting radial o.d.e. over all frequencies w and ¢. This
is non-trivial because the iat». 1T conservation law is sign-indefinite in
the black hole interior. In t 1e 1 .ysical space picture, our results imply
that the Cauchy ev (. m . .1 the event horizon to the Cauchy hori-
zon is a Hilbert sp. e ison rphism, where the past (resp. future) Hilbert
space is define” hy 1 ~ “.iiteness of the degenerate T energy fluxes on
both comper ants ¢ ” the ~vent (resp. Cauchy) horizon. Finally, we prove
that, in cont. st to .he above, for a generic set of cosmological constants
A, the ¢ 15 "0 a alogous finite T energy scattering theory for either the
linear vave ¢ [uatica or the Klein—Gordon equation with conformal mass
ou “e ) de Sitter-Reissner-Nordstrém interior.
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1. Introduction

One of the most stunning predictions of general relativity is the formation
of black holes, defined by the property that information cannot propagate
from their interior region to outside far-away observers. Fortunately, we can
count ourselves among the latter; nevertheless, if a group of physicists were so
courageous as to cross the event horizon and enter a black hole, they could still
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very well perform experiments and compare the outcomes among themselves.
Indeed, the problem of determining the fate of these black hole explorers (and
their laboratories) has led to some of the most central conceptual puzzles in
gravitational physics.

In view of the above, there has been a lot of recent activity analyzing
the Cauchy problem on black hole interiors, e.g., [15-17,31,47]. However, for
certain physical processes it is more natural to consider the scattering problem
(see [18] for scattering on the exterior of black holes). With this paper, v 2
initiate the mathematical study of the finite energy scattering probler. o
black hole interiors. Specifically, we will consider solutions of the wave eq. »tion
on what can be viewed as the most elementary interior, that of ™-issn r—
Nordstrém. The Reissner—Nordstrom metrics constitute a family of sprce ‘mes,
parameterized by mass M and charge @, which satisfy the Eir ‘teit -M- xwell
system in spherical symmetry [41,45] and admit an additic .~1 1 illing vector
field T. For vanishing charge @@ = 0, the family reduc~s t Sc warzschild.
We shall moreover restrict in the following to the ~ubexti. al case where
0 < |Q| < M. In addition to the bifurcate eve 't ho. 7on. these black hole
interiors then admit an additional bifurcate inner Wic izon, vue so-called Cauchy
horizon. Our past and future scattering states ...." be « “fined as suitable traces
of the solution on the bifurcate event horiz¢ 1 and bifurcate Cauchy horizon,
respectively, restricted to have finite 1’ energy “-. on each component of the
horizons.

In the rest of the introduction we wi'. state our main results for the
scattering problem on the interior of Reissner—Nordstrom (Theorems 1-5),
relate them to existing literat ure = fixed frequency scattering, and draw links
to various recent results in the nte 1or and exterior of black holes. Finally, we
will see that the exister e 0. a L_unded scattering map for the wave equation
on Reissner—Nordstrén. turns out to be a very fragile property; we shall show
that there does n-. . -ist .. analogous scattering theory in the presence of a
cosmological co. “tant  Thec 2m 6) or Klein-Gordon mass (Theorem 7).

The scatte’ .ugy oro. «m on Reissner—Nordstrom interior. In this paper, we
will establ. 'h a s atteir ag theory for finite energy solutions of the linear wave
ec .atlown

Ugtp =0, (1.1)

on tu. _acerior of a Reissner—Nordstrom black hole, from the bifurcate event
horizon H = Ha U Hp U B_ to the bifurcate Cauchy horizon CH = CH4 U
CHpUB,, as depicted in Fig. 1. The first main result of our paper is Theorem 1
(see Sect. 3.1) in which we will show existence, uniqueness and asymptotic
completeness of finite energy scattering states. In this context, existence and
uniqueness mean that for given finite energy data vy on the event horizon
‘H, there exist unique finite energy data on the Cauchy horizon CH arising
from 1o as the evolution of (1.1). With asymptotic completeness we denote
the property that all finite energy data on the Cauchy horizon C’H can indeed
be achieved from finite energy data on the event horizon H. This provides
a way to construct solutions with desired asymptotic properties which is a
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FIGURE 1. Penrose diagram of the inte ic- o. the Reissner—
Nordstrém black hole and visualization ¢. e sca..ering map

necessary first step to properly und cstand q. =" am theories in the interior
of a Reissner—Nordstrom black hole € 14,2 ,51]). The energy spaces on the
event and Cauchy horizon are associated wi a the Killing field and generator
of the time translation T'. Indeed, T is nuit on the horizons and, in particular,
is the generator of the event anc “auchy horizon H and CH. Because of the
sign-indefiniteness of the ener: y fl 1x of the vector field T on the bifurcate
event (resp. Cauchy) h rize  [sce already (1.4)], we define our energy space
by requiring the finiter. ss of he T energy on both components separately of
the event (resp. C'.u™v) . wizon. These define Hilbert spaces with respect to
which the scatt¢ ng m p is , roven to be bounded.

Finallv “* is  ~~*.uctive to draw a comparison between the interior of
Reissner-I ordst. 5m « nd the interior of Schwarzschild (Q = 0). As opposed
to e ~er Nors strom discussed above, the Schwarzschild interior terminates
a’ a singu 'ar boundary at which solutions to (1.1) generically blow up (see
[1 ). In ¢ ntrast, the non-singular and, moreover, Killing, Cauchy horizons
(see 7' 1) of Reissner—Nordstrom immediately yield natural Hilbert spaces
of finite energy data to consider. In view of this, Reissner—-Nordstrém with
@ # 0 can be considered the most elementary interior on which to study the
scattering problem. Furthermore, in view of the recent work [7], we have that
the causal structure of Reissner-Nordstrom is stable in a weak sense (see the
discussion below about related works in the interior).

Fixed frequency scattering. It is well known that the wave equation (1.1) on
Reissner—Nordstrom spacetime allows separation of variables which reduces it
to the radial o.d.e.

u” — Vou + w?u =0, (1.2)
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with potential V; [see already (2.37)], where w € R is the time frequency and
¢ € Ny is the angular parameter. Indeed, most of the existing literature con-
cerning scattering of waves in the interior of Reissner—-Nordstrom mainly con-
siders fixed frequency solutions, e.g., [5,21,22,33-35,52]. For a purely incoming
(i-e., supported only on H4) fixed frequency solution with parameters (w,¢),
we can associate transmission and reflection coefficients ¥ (w, £) and R(w, £).
The transmission coefficient T(w, ¢) measures what proportion of the incom-
ing wave is transmitted to CH g, whereas the reflection coefficient specifies tf >
proportion reflected to CH 4. An essential step to go from fixed frequency - ca.
tering to physical space scattering is to prove uniform boundedness of . v, ()
and R(w, ¢). This is non-trivial in view of the discussion of the enere, iden 'ty
(1.4). In this paper, we indeed obtain this uniform bound in Thcore a > (see
Sect. 3.2). In particular, the regime w — 0,¢ — oo is the mos inHlve 1 fre-
quency range to prove uniform boundedness. As we shall sc . th proof relies
on an explicit computation at w = 0 (see [21]) together w'+h « ca. .ul analysis
of special functions and perturbations thereof.

The uniform boundedness of the scattering o< ic. ‘ts is the main ingre-
dient to prove the boundedness of the scattering 1. in 1 ueorem 1. Moreover,
it allows us to connect the separated picture v .“e p. vsical space picture by
means of a Fourier representation forrmula. ‘his i stated as Theorem 3 (see
Sect. 3.3). A somewhat surprising, arect co.. ~~.ence of the Fourier repre-
sentation of the scattered data on th < .uch_ horizon is that purely incoming
compactly supported data lead to a solution -, hich vanishes at the future bifur-
cation sphere B,. This is moreover shown to be a necessary condition for the
existence of a bounded scattc.ine nap (Corollary 3.1).

Comparison to scatterin~ an { e - xterior of black holes. On the exterior of
black holes, the scatteriig p1 blem has been studied more extensively; see the
pioneering works [2.3,1. -131" the book [18] and related results on conformal
scattering in [32,57,4. 49, Note that for the exterior of a Schwarzschild or
Reissner—Nordst: ‘'m b] .ck hole, the uniform boundedness of the scattering
coefficients o1 wu1. “ently, the boundedness of the scattering map, can be
viewed a [ steric 1i' ar a consequence of the global T energy identity

/Hf Ty +/If Tyl = /H+ Ty +/I+ Ty, (1.3)

Cons.” .ing only incoming radiation from Z—, this statement translates into
IR|2 + |Z|> = 1 for the reflection coefficient R and transmission coefficients
. In the interior, however, due to the different orientations of the T vector
field on the horizons (cf. Fig. 2), boundedness of the scattering map is not at
all manifest. In particular, the global T energy identity on the interior of a
Reissner—Nordstrom black hole reads

/HA |Tw|2/HB Ty|? /CHB quz/CHA (T2 (1.4)

INote that proving (1.3) requires first establishing some form of qualitative decay toward
4 .
i and 7.
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FIGURE 2. Interior of Reissner—Nordstr¢ . (. %) and exterior
of Schwarzschild or Reissner—Nordstrom ght). Tr both dia-
grams, the arrows denote the direction of the 7" Killing vector
field. Note that we have the identi’ catic s 7c4 = HT and
B_ =B

from which we cannot deduce boundedness of che scattering map even a poste-
riori. (Indeed, identity (1.4) corresponds c.uty to the “pseudo-unitarity” state-
ment of Theorem 1.) Again, ¢ us lering only ingoing radiation from H 4, this
translates to

[y o))" — [R(w, 0> =1 (1.5)

for the reflection coefficic ~t ¥ and the transmission coefficient . Hence, while
for fixed |w| > 0 wnd ¢ it 1 straightforward to show that ¥ and R are finite,
there is no a pric i obv ous obstruction from (1.5) for these scattering coeffi-
cients to b! ,w  » in “he limits w — 0,+00 and ¢ — oo.

More. ver, 1 dte tuat in the exterior, the Killing field T is timelike, so
th radic” o.. .. (1.2) should be considered as an equation for a fixed time
fi quency vave on a constant time slice. In the interior, however, the Killing
fie.” T is _.celike, so the radial o.d.e. (1.2) is rather an evolution equation
for a constant spatial frequency.

The Schwarzschild family can be viewed as a special case (a = 0) of the
two-parameter Kerr family, describing rotating black holes with mass param-
eter M and rotation parameter a [26].> On the exterior of Kerr many other
difficulties arise: superradiance, intricate trapping, presence of ergoregion, etc.
[8]. Nevertheless, using the decay results in [8], a definitive physical space scat-
tering theory for Kerr black holes has been established in [9] (see also the earlier
[19]). The proof on the exterior of Kerr involved first establishing a scattering

2Both Kerr and Reissner-Nordstrom can be viewed as special cases of the Kerr-Newman
spacetime. For decay results on Kerr-Newman, see [6].
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map from past null infinity Z~ to a constant time slice ¥ and then concatenat-
ing that map with a second scattering map from ¥ to the future event horizon
‘H* and future null infinity Z*. In the interior, however, we will directly show
the existence of a “global” scattering map from the event horizon H to the
Cauchy horizon CH. Indeed, due to blueshift instabilities (see [10]), we do not
expect that the analogous concatenation of scattering maps (event horizon H
to spacelike hypersurface ¥ and then from 3 to the Cauchy horizon CH) as in
the Kerr exterior, to be bounded in the interior of Reissner—Nordstrom.

Injectivity of the reflection map and blueshift instabilities. We can alc con-
clude from our work that there is always non-vanishing reflection to th~ Caw hy
horizon CH 4 arising from non-vanishing purely ingoing radiation «t 7., This
follows from the fact that in the separated picture and for fixed { the refl ction
coefficient R(w, £) can be analytically continued to the strip ' ™( )| < x4 and
hence, only vanishes on a discrete set of points on the res! ax's. I isis shown
in Theorem 4 (see Sect. 3.4).

We will also deduce from the Fourier repres nt v » of the scattered data
on the Cauchy horizon CH, and a suitable merc.i. rphic continuation of the
transmission coefficient, that there exist purel> . ~om. ¢ compactly supported
data on the event horizon H leading te solt :ions +hich fail to be C! on the
Cauchy horizon CH. This C'-blowv of line. = v .ves puts on a completely
rigorous footing the pioneering wor - «” Ui ndrasekhar and Hartle [5]. We
state this as Theorem 5 (see Sect. 3.5).

For generic solutions arising from locwiized data on an asymptotically flat
hypersurface, one expects a st on: v instability, namely non-degenerate energy
blowup at the Cauchy horizon UH 35uch non-degenerate energy blowup was
proven in [27] for generi_ cu pe Ly supported data on an asymptotically flat
Cauchy hypersurface. . ter, fc - the more difficult Kerr interior, non-degenerate
energy blowup we | ~ove . [31] assuming certain polynomial lower bounds
on the tail of ir*»ming date on the event horizon H and in [10] for solutions
arising from cene. - ir cial data along past null infinity Z— with polynomial
tails.

Tmali we aention the forthcoming work [30] which studies the problem
of non-de enerate energy blowup from a scattering theory perspective and
aL o uses ' 1e non-triviality of reflection to establish results related to mass
infic ‘o or the spherically symmetric Einstein-Maxwell-scalar field system
(cf. [28,29]).

Related results on the interior. There has been a lot of recent progress studying
the interior of black holes. In particular, new insights were gained concerning
the stability of the Cauchy horizon and the strong cosmic censorship conjec-
ture.

For the Cauchy problem for (1.1) on the interior of both a fixed
Kerr and a Reissner—Nordstrom black hole, the works [16,17,24] estab-
lish uniform boundedness (in L°°) and continuity up to and including the
Cauchy horizon for solutions arising from smooth and compactly supported



1590 C. Kehle, Y. Shlapentokh-Rothman  Ann. Henri Poincaré

data on an asymptotically flat spacelike hypersurface. Such data in par-
ticular give rise to solutions with polynomial decay along the event hori-
ZOn.

In contrast, for the scattering problem considered in the present paper,
we are required to work with spaces which are symmetric with respect to the
event and Cauchy horizons. This naturally leads to the rougher class of finite
T energy data in the statement of Theorem 1. Note that for such data on the
Cauchy horizon, continuity or boundedness (in L°°) does not necessarily ho!
true.

Turning finally to the full nonlinear dynamics of the Einstein equat. 1s, it
is shown in [7] that the Kerr Cauchy horizon is C°-stable. Thus, the viste ce
of a Cauchy horizon, a very natural setting parameterizing scattc.in-, o *ta in
the interior, is not a pure artifact of symmetry but rather a s ablc prs perty
at least in a weak sense. On the other hand, in [28,29,50] '* is vroven that
for a suitable Einstein-matter system under spherical sy nm try, 'he Cauchy
horizon, while C%-stable, is generically C2-unstab'e. W.nally, ~ mention that
for the Schwarzschild black hole (Q = 0), whic" loe. not admit a Cauchy
horizon, it is shown in [15] that solutions to (1.1) _enerically blow up at the
spacelike singularity {r = 0}.

Breakdown of 7' energy scattering f~. A 7 0 or p # 0. If a cosmological
constant A € R is added to the Ei steir. Maxwell system, we can consider
the analogous (anti-) de Sitter—Reissnc.—Nor strom family of solutions whose
interiors have the same Penrose diagram a< uepicted in Fig. 1. For very slowly
rotating Kerr—de Sitter and Rei--mer-Nordstrém—de Sitter spacetimes, bound-
edness, continuity, and regul .rit- v » to and including the Cauchy horizon has
been shown for solutions to ( .1) arising from smooth and compactly sup-
ported data on a Caurl y hy, ersurface [25]. However, remarkably, there is no
analogous T energy sca. erin‘ theory for either the linear wave equation (1.1)
or the Klein—Gor on « tua.'on with conformal mass. This is the statement of
Theorem 6 (see . =ct. ¢ 6). 'Lhe reason for this failure is the unboundedness
of the trans ... fon oefficient T and reflection coefficients R in the vanishing
frequency mit « — L. To be more precise, we will prove that there does not
ex’,0a 1 ~ne ~ scattering theory of the wave or Klein—Gordon equation in the
it erior of  (anti-) de Sitter—Reissner—Nordstrom black hole for generic subex-
tre nal ble - hole parameters (M, @, A). In particular, for fixed 0 < |Q| < M,
there 1> an € > 0 such that there does not exist a T energy scattering theory
for all 0 # |A] <.

Similarly, we prove in Theorem 7 (see Sect. 3.7) that there does not exist
a T energy scattering theory for the Klein-Gordon equation Qg9 — pp = 0
on the Reissner-Nordstrom interior for a generic set of masses . This is in
contrast to the exterior, where T energy scattering theories were established
for massive fields in [3,36].

It remains an open problem to formulate an appropriate scattering theory
in the cosmological setting and for the Klein-Gordon equation as well as for
the interior of Kerr.
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Outline. This paper is organized as follows. In Sect. 2, we shall set up the
spacetime, introduce the relevant energy spaces, and define the scattering coef-
ficients in the separated picture. In Sect. 3, we state the main results of this
paper, Theorems 1-7. Section 4 is devoted to the proof of Theorem 2. Then,
the statement of Theorem 2 allows us to prove Theorem 1 in Sect. 5. Finally,
in the last two sections are show our non-existence results: In Sect. 6, we prove
Theorem 6 and in Sect. 7, we give the proof of Theorem 7.

2. Preliminaries

In this section, we will define the background differentiable structv ¢ a 1 me .-
ric for the Reissner—Nordstrom spacetime and introduce some cenver ent coor-
dinate systems.

2.1. Interior of the Subextremal Reissner—Nordstrom B.. ~k . Tole

The global geometry of Reissner—Nordstréom we s fiz. described in [20]. For
completeness, we will explicitly construct in this se <ion 1. » oordinates for the
region considered. We start, in Sect. 2.1.1, by defini. » a Lorentzian manifold
corresponding to the interior of the Reissne —No. Istrom black hole without
the horizons. Then, in Sect. 2.1.2, w will a tach .he boundaries which will
correspond to the event horizon and Cavr~"  horizon.

2.1.1. The Interior Without Boundary. W~ will now give an explicit descrip-
tion of the differential structure ~nd metric. The Reissner-Nordstrom solutions
[41,45] are a two-parameter an 'y, of spherically symmetric spacetimes with
mass parameter M € R and ‘lec’ric charge parameter @ € R solving the
Einstein—-Maxwell syste n

_ 1 1 \ 1 \
Ricy, — §gwu =8 1y =87 <47r (Fu Py — ZQWF/\pF p)) ,
VIF,. =0, Y ,F,=0. (2.1)

In this pap r, we onsicer the subextremal family of black holes with parameter

rage U |G, = M. Define the manifold M by

M=Rx (r_,ry) xS? (2.2)

where r+ = M 4+ /M2 — Q? > 0. The manifold is parameterized by the
standard coordinates t € R, r € (r_,r.), and a choice of spherical coordinates

(6,¢) on the sphere S2. We denote the global coordinate vector field 9; by T
0
T:=—. 2.3
5 (2.3)
Using the above coordinates, we equip M with the Lorentzian metric

IM Q2 oM Q2!
gQ7M(1+Q)dt®dt+<1r+?2> d7‘®d7"+7’2g52,

7 (2.4)
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FIGURE 3. Penrose diagram of M; formally we have de..- ed
the boundary (not part of the manifold) k-7, = ' UHp
and CH=CH,UCHE

where Jeo 18 the round metric on the 2-spher . v, als. define the quantities

A

A=r*-2Mr+Q*=(r -r)r— , and h:= —- (2.5)
r
Furthermore, define r, by
g %dr, (2.6)
where we choose r*(%f\ = for definiteness. Thus,
1 1
ro(r)=r- — oglr—ry|+ —loglr—r_|+C (2.7)
O K_
for a constant C »nly ¢ 'pencing on the black hole parameters and
Ty — Ty
== _ T 2.8
ik 2r3 (2:8)
We  'so wucroduce null coordinates
v=ry+t and u=r,—t (2.9)

on M. I'he Penrose diagram of M is depicted in Fig. 3.

2.1.2. Attaching the Event and Cauchy Horizon. Now, we will attach the
Cauchy and event horizon to the manifold. The Cauchy horizon character-
izes the future boundary up to which the spacetime is uniquely determined as
a solution to the Einstein—Maxwell system arising from data on the event hori-
zon. Although the metric is smoothly extendible beyond the Cauchy horizon,
any such extension fails to be uniquely determined from initial data, leading
to a severe failure of determinism.

Attaching the event and Cauchy horizon gives rise to a manifold with
corners. To do so, we first define the following two pairs of null coordinates.
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Let Up: R — (0,00) and Vi : R — (0, 00) be smooth and strictly increas-
ing functions such that
Un(u) =u for u > 1, Vyy(v) = v for v > 1,
Un(u) — 0asu— —oo, Viy(v) — 0 as v — —oo,
there exists a uy < 1 such that 9% = exp(ru) for u < uy,

there exists a vy < 1 such that %ﬁ = exp(k4v) for v < wvy.

This defines—in mild abuse of notation—the null coordinates Uy : M -
(0,00) via Up(u) and Vay: M — (0,00) via Vi (v), where u,v are the nu 1
coordinates defined in (2.9).

Similarly, let Uey: R — (—00,0) and Vey: R — (—00,0) be smooth nd
strictly increasing functions such that

o Uep(u) =u for u < —1, Ver(v) = v for v < —1,
o Uen(u) = 0asu— oo, Ver(v) — 0as v — oo,
e there exists a uy > —1 such that %fﬁ =exp(k_u) for « -,
e there exists a v4 > —1 such that d‘g% =ex»(rn ) for o v,

As above, this defines null coordinates Uey : A* — (¢ o via Uew(u) and
Vern: M — (0,00) via Vep(v), where u,v are the null coordinates defined
in (2.9).

To define the event horizon, we consic i the coorc nate chart (Us, Vi, 0, ¢).
We now define the event horizon wit 1out the 1L."ccation sphere as the union

H() = HAU'H37 (210)
where
Ha = {Up =0} x (0,00, x >* and Hp := (0,00) x {V3y =0} x S
(2.11)

Analogously, we also dc ‘ue th : Cauchy horizon without the bifurcation sphere
in the coordinate ... * (U =, Vew, 0, ¢) as the union

CHo:=CHAsUCHB, (2.12)
where
CHa - (v X { Ve =0} X S? and CHp := {Uc = 0} x (0,00) x S2.
(2.13)

Th-_ we define the interior of the Reissner—Nordstrom spacetime without
the bifurcation sphere as the manifold with boundary

M := MUHUCH. (2.14)

The Lorentzian metric on M extends smoothly to M. In particular, the bound-
ary of M consists of four disconnected null hypersurfaces. In Fig. 4, we have
depicted its Penrose diagram. In mild abuse of notation, we shall also use the
coordinate systems

(Upg,v,0,6) on MUH,, (2.15)
(U7VH303¢) on MUHBa (216)
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FIGURE 4. Penrose diagram of M

(u, Ver,0,6) on MUC ‘4, (2.17)
(Uer,v,0,4) on M "Hpg (2.18)
In particular, we can write
Ha={Up= }> o R}xS? (2.19)
Hp ={u € R} x {Vi =0} x 2, (2.20)
CHa = {v= R} x {Vey =0} x §?, (2.21)
CHp ={U » -0} x {veR}xS% (2.22)

Note also that the vec. r 1."u T, initially defined on M in (2.3), extends
to a smooth vector fiex. on A with

0
T FHA_ % r’HAa (223)

where % it coc dinate derivative with respect to local chart defined in

(2.15) Sin larly, wve have

9,

T qp= ~ % 7  w.r.t. to the local chart (2.16), (2.24)
9,

T lera= r ler,  w.r.t. to the local chart (2.17), (2.25)
3}

T lenp= . ey w.r.t. to the local chart (2.18). (2.26)

Note that T is a Killing null generator of the Killing horizons Ha, Hp,CH 4,
and CHp. Recall also that V7T [ey= k_T lcx and V1T = k4T 3, where
k4 is defined by (2.8).

At this point, we note that we can attach corners to Hy and CH, to extend
M smoothly to a Lorentzian manifold with corners. To be more precise, we
attach the past bifurcation sphere B_ to Hy as the point (Up, V) = (0,0).
Then, define H := Ho U B_. Similarly, we can attach the future bifurcation
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FIGURE 5. Penrose diagram of Mgy wh b ‘nc. *des the bifur-
cate spheres By and B_

sphere B, to the Cauchy horizon w’.ach will . = “cnoted by CH. We call the
resulting manifold Mgy. Further de ~*". are not given since the precise con-
struction is straightforward and the metric xtends smoothly. Moreover, the
T vector field extends smoothly to B4 ana B_ and vanishes there. Its Penrose
diagram is depicted in Fig. 5

Further details about the oo .imate systems can be found in [42]. From
a dynamical point of vi.w, . 2 cw. also consider the spacetimes (Mgn, gar,Q)
as being contained in t. = Cau ay development of a spacelike hypersurface with
two asymptoticall: .. * en s solving the Einstein-Maxwell system in spherical
symmetry.

2.2. The C haraci »rist.. Initial Value Problem for the Wave Equation

Ir the cc tex. of scattering theory, we will be interested in solutions to the
w ve equa on (1.1) arising from suitable characteristic initial data. Recall the
foli. vine . u-posedness result for (1.1) with characteristic initial data.

Proposition 2.1. Let ¥ € C°(H) be smooth compactly supported data on the
event horizon H. Then, there exists a unique smooth solution 1 to (1.1) on
MRgN\CH such that ¢ [n=T.

The previous proposition is well known, see [38,46]. Analogously, we have
the following for the backward evolution.

Proposition 2.2. Let ¥ € C°(CH) be smooth compactly supported data on the
Cauchy horizon CH. Then, there exists a unique smooth solution 1 to (1.1)
on Mgrx\H such that ¢ [cy=U.
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2.3. Hilbert Spaces of Finite 7" Energy on Both Horizon Components

Now, we are in the position to define the Hilbert spaces on the event H =
HaUHpUB_ and Cauchy horizon CH = CH4 UCHp U B, respectively.
We will start with constructing the Hilbert space on the event horizon.
Roughly speaking, it will be defined by requiring finiteness of the T' energy
flux on H 4 minus the T energy flux on H . More precisely, let C°(H) be the
vector space of smooth compactly supported functions on H. Recall that the
Killing vector field T is also a null generator of H and vanishes at the pa ¢
bifurcation sphere B_. This allows us to define the norm || - ||Z; on the v cto.

2
12,
space C°(H) as
11z = /HA J1 [nf,  dvoly,, —/H J5 [nk,, dvoly.. 2.27)
B
where ¢ € C°(H), T[] is the energy momentum tensor

Tl = ROu0,0) ~ 391 O’ 10, (225)

and JT )] := T[¢](T),-). In (2.27), the fluxes are aei. ed with respect to future
directed normal vector fields ns, and ny, ou Y4 nd Hp, respectively.?
Moreover, recall from Fig. 2 that 7" is f» .ure _-esp. 1 ast) directed on H 4 (resp.
Hp). Thus, the terms arising in (2 27) satist, 5, J5[]nk,  dvol > 0 and
- fHB J,TW]”’;{B dvol > 0. Again, in ..cw ot she fact that on the component
‘Hp the normal vector field 7" is past direr'cd, we can choose ny, =T [x,
and ny, = —T [y, as the fut>- ~ directed normal vector fields on H 4 and Hp,
respectively, such that we ca . re. » the norm (2.27) as [using the coordinate
charts (2.15) and (2.16)]

||1/)||§?E :/ 10,0 | -, 2 :usin@d@dcp—i—/ |0ut 7, [Pdusin 6dOde.
RxS? RxS?

(2.29)

X

/

The norm /_..7" du ‘ues an inner product, hence its completion is a Hilbert

space.

D ‘finitior. 2.1. We define the Hilbert space of finite T energy &£}, on both
cc nponen ;3 of the event horizon as the completion of smooth and compactly
supp . tunctions C2°(H) on the event horizon H = Ha4 U Hp U B_ with
respect to the norm (2.27).

Analogously, we can consider the vector space C2°(CH) and define the
norm || - ||§T as the T energy flux on the component CHp minus the T energy

flux on the component CH 4:

W”ic% = /C y I [WIngsy, dvolye,, . — /C ) I [WIngs,, dvolne,, . (2.30)
B A

3A choice of such normal vectors fixes the volume form. Also note that this is the natural
setup for energy estimates.
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Again, in view of the orientation of the T vector field (cf. Fig. 2), this norm
can be represented as [using the coordinate charts (2.17) and (2.18)]

||w||§cT71 z/ |0v Tem s dv sin9d9d<p—|—/ |0ut Tera |>du sin 0dfdep.
RxS2 RxS?2
(2.31)

Definition 2.2. We define the Hilbert space of finite 7' energy £Z;, on both
components of the Cauchy horizon as the completion of smooth and compact!
supported functions C2°(CH) the Cauchy horizon CH = CHAUCHpUBy 7it »
respect to the norm (2.30).

2.4. Separation of Variables

In this section, we show how the radial o.d.e. (1.2) arises from decor ipo .ig a
general solution in spherical harmonics and Fourier modes. For ~on. .eness,
let ¢ be a smooth solution to Ogtp = 0 such that on each { - - « wmst.} slice,
1) is compactly supported in the ¢ variable.* Then. we ca. . fine its Fourier
transform in the ¢ variable and also decompose ¢ i. spherica: harmonics to
end up with

ﬁml(r, w) = / eithYmﬁ(ev ¢)¢(t7 rd, ¢, sinv j0d¢ a
RxS?

Vor
Due to the compact support on cons ant 7 slic = .ne wave equation Lgtp =0
implies that

(2.32)

’L&mg(’l“, w) =: Rg‘;g/ ) =: R(r) (2.33)
satisfies the radial o.d.e.
d d >
A— (A -R — A+ 1R+ 71w R=0. (2.34)
dr ar

In Sect. 4, we will ana. 7e s wutions to (2.34) and denote a solution thereof
with R(r). Morec ver, .“ is  seful to introduce the function u defined as

u(r) == rR(r) (2.35)
and consic v u = u(r, .)) as a function of r,., which is defined in (2.7). Using
the .. = ria le. ae o.d.e. (2.34) finally reduces to

u” + (W = Vo)u=0 (2.36)
on . ~ro . une with potential
r(ry +r_) —2rpr_ N 0+ 1))

= 5 (2.37)

Vng:A(

In Lemma A.3 in Appendix, it is proven that, as a function of r,, the potential
Vi decays exponentially as r. — Zoo. In particular, this indicates that we
have asymptotic free waves (asymptotic states) near the event and Cauchy
horizon of the form e**" as |r,| — co. In order to construct these solutions,
we use the following proposition for Volterra integral equations (see Lemma
2.4 of [48]).

4Note that we will prove later that such solutions arise from data which are dense in 5%.
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Proposition 2.3. Let 29 € RU {+ o0} and g € L>®(—00,x9). Suppose the
integral kernel K satisfies

o
= / sup  |K(z,y)|dy < 0. (2.38)

—oo {zy<z<zo}

Then, the Volterra integral equation
f@ =g+ [ K@y (230
— 00

has a unique solution f satisfying

(£l 2o (—o0,20) < €19l Lo (—00,m0)- (2.9
If in addition K is smooth in both variables and
zo
/ sup 0K (z,y)|dy < oo (2.41)
—oo {my<z<zo}

for all k € N, then the solution f is smooth on [ —c ) ana the derivatives
can be computed by formal differentiation of (2.5

Remark 2.1. Analogous results as in Propositi ... ~ 3 a. o hold true for Volterra
integral equations on intervals of the form (2 v, 21) r (zg, + 00).

This allows us to define the fo owir  “mnaamental pairs of solutions to
the o.d.e. (2.36). In view of the exponeuual de ay of the potential, it is straight-
forward to check that the assumptions of ".oposition 2.3 are satisfied.

Definition 2.3. Let w € R ar .« £ _ Ny be fixed. Define asymptotic state solu-
tions uy and usg of the radial 0.d e. (¢ .36) as the unique solutions to the Volterra
integral equations

[ sin(w(re —y))

ul(W,T*) 2 - Tv(y)ul(wvy)d% (242)
Ug () = T +/r* Sin(w(zji*_w‘/(y)ug(w,y)dy. (2.43)

Ar uog. csly defae v and vg as the unique solutions to the Volterra integral
e uations

S R L (2.44)
v (w,7y) = e — /00 MV(y)vg(My)dy. (2.45)

For w = 0, we set bm(“’(ww [w=0= T« —y in the integral kernel in which
case u; and uy coincide. We define

U1 (ry) == u1(0,74) = u2(0, 1) (2.46)
and similarly,

01(ry) == v1(0,74) = v2(0,74). (2.47)
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Since u1(0,74) = u2(0,74) for w = 0, there exists another linearly independent
fundamental solution s solving the Volterra integral equation

ia(r) = o + / " — )V (@)ia(y)dy. (2.48)

Similarly, we also have another fundamental solution, which is linearly inde-
pendent from 97, solving

B == [ V). (740

*

Since 7, is not uniformly bounded, we cannot apply Proposition 2.3 to 2n-
struct @y and 0. Nevertheless, after switching to coordinates whick are . ~gular
at ‘H or C'H, the existence of the desired solutions follows imredis cely .rom
the usual local theory of regular singularities (see [44]).

Remark 2.2. Due to the exponential decay of the potenti.” V, ‘see _emma A.3
in Appendix), it follows from standard theory “.aa. -he soi. lons wui(w,ry),
uz(w, ), v1(w,rs) and ve(w,r,) can be continuec ‘v ho. »merphic functions of
w in the strip |Im(w)| < x4 for fixed . € R. Inde 4, in |5] it is shown that
u1(w,7,) is analytic in C\{imr4: m € N} wi u p.ssib.. poles at {imk: m €
N} and similarly for ug, vy, and vy. Soo alsc the ¢ oof of Proposition A.2 in
Appendix.

This allows us now to define the reflect on and transmission coefficients
R and ¥.

Definition 2.4. Let w # 0. T! en w define the transmission coefficient T(w, ¢)
and reflection coefficient R (w, .\ as the unique coefficients such that
up = Ty + Ros. (250)
Using the fe ¢ t. >t t. » Wronskian

W(f,9):=rfg' —f'g (2.51)

of two solt sions * anc ¢ is independent of r,, we can equivalently define the
scoLern. ™ oo fficlents as
QU(ul,vg) Qﬁ(ul,vg)

T = Tor o) ~ 20w (2.52)

and
W(uy,v1)  Wlug,vy)

R = o o) ~ 20 (2.53)

The transmission and reflection coefficients satisfy a pseudo-unitarity
property proven in the following.

Proposition 2.4 (Pseudo-unitarity in the separated picture). The transmission
and reflection coefficients satisfy

=% - R~ (2.54)
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Proof. First, note that any solution to the o.d.e. (2.36) satisfies the identity
Im(@u') = const. (2.55)

Applying this to the solution u; = vy + Rvs shows the claim. g

In the following, we shall see that the reflection and transmission coeffi-
cients are regular at w = 0.

Proposition 2.5. Let £ € Ny be fized. Then, the scattering coefficients R v, ¢
and T(w, ) are analytic functions of w in the strip {w € C: |Im(w)| < K4}
with values for w =0 given by

20,0 = "1 (’“ - ”) , 2.56)

2 T4+ T_—
T(0,0) = (;21)[ (:; + :*) . (2.57)

In particular, the reflection coefficient R(w, ) or., vanis...s on a discrete set
of points w.

Moreover, the reflection and trar .missic  coe! icients R(w, £) and T (w, £)
are analytic functions on C\P with »oss' © voies at P = {imk;: m € N} U
{ikk_: k € Z\{0}}.

Proof. From the analyticity ¢ - us, vy, and ve in the strip |Im(w)| < k4
(cf. Remark 2.2), we conclute ‘na ¥ and PR are holomorphic in {w # 0 €
C : |Im(w)| < k4+} with = nos ibl" pole at w = 0. In the following, we shall
show that {w = 0} ie \ rem vable singularity. Indeed, we will compute the
explicit value of the refle. “ion and transmission coefficient at w = 0 and deduce
that for fixed ¢ ¢ Ny, the ‘ransmission coefficient T(w,¥) and the reflection
coefficient R(w, ¢, are 7 aalytic functions on the strip {w € C: Im(w)| < Ky}
(cf. unpub?snel wo. - of McNamara cited in [21]). To do so, note that from
Propositio. 4.2 1 Secu. 4.1.3 we conclude the pointwise limits

up(w, ry) = a1 (rs), (2.58)
v (w,1) — (1) = (—1)f%a1(r*), (2.59)
va(w, ) — B1(re) = (=1 () (2.60)

as |w| — 0. Using the definition in (2.50) of ¥ (w, £), R(w, £), and the condition
1+ |R|? = |Z|? (cf. Proposition 2.4), we deduce that the limits lim,, o R(w, ¢)
and lim,_0 %(w,¥) exist and moreover can be computed to be (2.56) and
(2.57). Note that (2.56) and (2.57) have been established in [22]. Also note
that in view of the analyticity properties of ui, v1, and vq, the R(w, ) and
% (w, ¥) are analytic functions on C\P with possible poles at P = {imk: m €
N} U {iks_: k € Z\{0}}. O
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2.5. Conventions
Let X be a point set with a limit point ¢ (e.g., X = R, [a, b], C). Throughout
this paper, we will use the symbols < and 2, where the implicit constants might
depend on the black hole parameters M and @. In particular, for functions (or
constants) a(x),b(z) > 0 the notation a < b means that there is a constant
C =C(M,Q) > 0such that a(z) < Cb(z) for all z € X. We will also make use
of the notation <, or =, which means that the constant may additionally alsc
depend on £. We also write a ~ b if there are constants C(M, Q),C(M,Q) > )
such that Ca(z) < b(z) < Ca(z) for all z € X.

We shall also make use of the standard Landau notation O and o [5. 44].
To be more precise, as * — ¢ in X

f(@)=0(g(z)) means ’jgfg; <C(M,Q) 2.61)
and
f(z) =o(g(x)) means ]gc(() % (2.62)

We will also use the notation Oy if the conste: =~ 7 in ‘2.61) may additionally
depend on /.

3. Main Theorems

In this section, we will formulat~ our main theorems.
Theorem 1, which we < ¢at . . Sect. 3.1, establishes the existence of a
scattering map S7 of the form

ST . &l — &, (3.1)

which is a Hilbert spe 2 is. snorphism, i.e., a bounded and invertible map with
bounded inverse. Theor m 1 vill be proven in Sect. 5. In the separated picture,
the bounde” - ~s 0. 7" corresponds to the uniform boundedness of the trans-
mission ar | refle 'tiow. <oefficients which is stated as Theorem 2 in Sect. 3.2.
Th ore. 2. N ke proven in Sect. 4 (and later used in the proof of Theorem 1).

Sect: n 3.3 is then devoted to Theorem 3, which connects our physical
sp ce scat’ oring theory to the fixed frequency scattering theory. (We will infer
Theo. .. 3 as a consequence of Theorem 1). In Theorem 3.4, this connection
allows us to prove that the reflection map is injective, which is the content of
Theorem 4. In Theorem 5, which is stated and proven in Sect. 3.5, we construct
data which are incoming and compactly supported but, nevertheless, lead to
a solution which fails to be in C!' on the Cauchy horizon.

We end this section with the statement of our two non-existence results.
In Sect. 3.6, we formulate Theorem 6, the non-existence of the T' energy scatter-
ing theory for the Klein—-Gordon equation with conformal mass on the interior
of (anti-) de Sitter—Reissner—Nordstrém black holes. The proof of Theorem 6
is given in Sect. 6. Finally, in Theorem 7, stated in Sect. 3.7, we show the
non-existence of the T' energy scattering map for the Klein—Gordon equation
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on the interior of Reissner-Nordstrém. The proof of Theorem 7 is given in
Sect. 7.

3.1. Existence and Boundedness of the T' Energy Scattering Map

First, we define the forward (resp. backward) evolution on a dense domain.

Definition 3.1. The domains of the forward and backward evolution are defined
as

D, = {1 € C°(H) C &}, s.t. the Cauchy evolution of ¢ has
X compact support on constant r = const. hypersurfaces} (3.2)
and
DLy, = {1 € C°(CH) C EL4y s-t. the backward evolution of 1 b s

X compact support on constant r = const. I ne1 urfaces},

(3.3)

respectively. Here, we consider r— < r < ry and no that u p is compactly
supported on one {r = const.} slice, then, as . direc’ ¢ nsequence of the
domain of dependence, its evolution will be compac.'v supported on all other
{r = const.} hypersurfaces for r_ < r < ry.

We will prove in Lemma 5.1 in “_ct. 5 *hat 7, C &F, and DF,, C &L,
are dense domains.

These definitions of the domains are mr .ivated by the following observa-
tion.

Remark 3.1. Suppose we arc gir c1. lata in D;’; on the event horizon H. Con-
sider now the unique Carchy = eve opment (cf. Proposition 2.1) and observe
that its restriction to t1e Ca chy horizon CH will lie in DZ;,. This holds true
since we can first smoouv 1y e jend the metric beyond the Cauchy horizon CH
and then use the con._ act "upport on a constant r, hypersurface to solve an
equivalent Cauci., prob 2m i an appropriate region which extends the Cauchy
horizon CH .. 'nude une support of the solution, but does not include 7. The
smoothnes of th solu ion up to and including the Cauchy horizon CH follows
ne . tro.  Ge ooty stability.

In vic ¥ of Remark 3.1, we can define the forward and backward map on
the "~m- ns D7T{ and DCTH, respectively.

Definition 3.2. Define the forward map S{': D}, C &}, — Dk, C €L, as the
unique forward evolution from data on the event horizon to data on the Cauchy
horizon. More precisely, let ¢ be the solution to (1.1) arising from initial data
U € DI, c &} Then, define ST (V) as the restriction of 1 to the Cauchy
horizon, i.e., ST (V) := ¢ |cn€ DLy

Similarly, let ¢ be the unique backward evolution of (1.1) arising from
@ € DE;,. Then, define the backward map by Bl (®) := ¢ € Di,.

Remark 3.2. Note that by the uniqueness of the Cauchy evolution we have that
S¢ and B are inverses of each other, i.e., BI o ST = ldpz, StoBl = ldpg, -
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Now, we are in the position to state our main theorem.

Theorem 1. The map ST : D;; C 5% — DEH C 5CTH s bounded and uniquely
extends to

sT. el — &4, (3.4)
called the “scattering map”. The scattering map ST is a Hilbert space iso-
morphism, i.e., a bounded and invertible linear map with bounded inverse
BT EgH — 77_2 satisfying

T T T T
B* oS :Idg;l;,s oB :IdgcTH. (3.5

)

Here, BT 5CTH — 77; is the “backward map,” which is the unig»  hour 'ed
extension of BL.
In addition, the scattering map ST is pseudo-unitary, md wir.» tF it for

Y € &, we have

Ty|? — TY|? = TSTYP o b Ty, 3.6
J e [ o= [ stepa [ e @)

In more traditional language, Theorem 1 ;.'lds €. .ence, uniqueness,
and asymptotic completeness of scattering stat--

The proof of Theorem 1 is given in S :ct. b Let us note already that
Theorem 1 is a posteriori the physice’ space ¢ 11ivs .ent of the uniform bound-
edness of the scattering coefficients | vov- .. Theorem 2 (see Sect. 3.2). This
equivalence is made precise in Theorem 3 (s¢ : Sect. 3.3).

Remark 3.3. Note that in general, neituer initial data nor scattered data
have to be bounded in L* o cor ‘nuous. Indeed, we have that ®4(u,0,¢) =
log(u)xu>1 € EEHA, where Y, 1 is « smooth cutoff. Thus, there exist initial
data BT (®4) € £} sucl tha its .nage under the scattering map is not in L
and not continuous. W emp asize the contrast with the estimates from [17]
for which more re ju. "ity ud decay along the event horizon H are necessary.

3.2. Uniform Bo. nded ess or the Transmission and Reflection Coefficients

On the leve of v ¢ 0. e. (2.36) in the separated picture, the problem of bound-
edne< of { e sca tering map reduces to proving that the transmission coeffi-
ci ot ¥ a 1 v reflection coefficient R are uniformly bounded over all param-
eu T range, of w € R and ¢ € Ny. This is stated as Theorem 2.

The. ~ 2. The reflection and transmission coefficients R(w, ) and T(w, L)
are uniformly bounded, i.e., they satisfy
sup  (|R(w, )|+ |Z(w, £)]) S 1. (3.7)
w€ER,LEN]

Theorem 2 is proved in Sect. 4. As discussed in the introduction, the proof
relies on an explicit calculation for w = 0 together with a careful analysis of the
radial o.d.e. (2.36), involving properties of special functions and perturbations
thereof.

Let us note that, given Theorem 1, we could infer Theorem 2 as a corollary
(using the theory to be described in Sect. 3.3). We emphasize, however, that
in the present paper we use Theorem 2 to prove Theorem 1 in Sect. 5.
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3.3. Connection Between the Separated and the Physical Space Picture

In this section, we will make the connection of the separated and physical
space picture precise.

First, let us note that we have natural Hilbert space decompositions 577_; =
Eiy Oy, and E0y = EGy ® Elyy,-

Proposition 3.1. The Hilbert spaces 577_2 and SCTH of finite T' energy on the event
horizon H and on the Cauchy horizon CH admit the orthogonal decompositic

877_; = (C/‘/;I_;A P 577;B and EgH = ggHA D gngB \3.8/

Proof. Clearly, the embedding i: £ . @555 — &}, is well defined .. “som. ‘-
ric. It remains to show that ¢ is surjective. Let ¢ € C°(H). First, we - nov ‘hat
we can approximate (in T-energy) 1 4/, on H 4 with functions . € 7 (H4)
which are supported away from the past bifurcation spherc ™n H 4, choose

non-degenerate coordinates (V,0, ) := (V,0,¢) as ip o ~t. 2.1.2 and recall
that the past bifurcation sphere is {V = 0}. The ., fc small ¢ - 0, set
1/&(‘/7 9790) = 77/1(U = Oa‘/aga@)XQ zlog(‘ﬂ/h (39)

where x: R — [0,1] is smooth and such tha. supp(x) C (—o0,2] and
X [(=o0,11= 1. Then, it is straightforw-_a to  reck f1at 9. € C(H4) and

JT[z/J—wé]“n“dvolg/ / Vv (¥ -1be))?dV sin@dfdyp — 0 (3.10)
Ha sz Jo

as € — 0. Analogously, we can ' _ *his for Hp from which the claim follows. [

We will use this identifica ion ;o represent the scattering map also in the
Fourier picture and shc # ho - these pictures connect. To do so, we define the
following.

Definition 3.3. ™ r (U, Uy €&l @&, note that 3,V 4(v,0, ) € L*(R x
S2;C) and an~loge <Iv .or ¥y. Hence, in mild abuse of notation, we can define
the Fourier and vhe. cal harmonics coefficients Fp, (V4) and Fp (¥ p) as

. dv

) ,m,b) = / 0, ¥ ,0, Y em (0, in 0d6d
i Fr, (s ) (w,m, l) =1y e Av,0,p)e 'm (0, ) sin so(m
3.11

)

and
_iwaB (\IJB)(“)? m, f) =Ty / au\I]B (u7 97 (P)eiwu}/fm (97 (P) sin ededsodiu
o 315)

Similarly, for (®4,®p) € 5gHA D SCTHB set

o Fery (Ba)(w,m, ) = / D (1, 0, 9) Y (6, ) sin lfdp— 1
e 3 12373
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and

) d
iwFery (Pp)(w,m, l)=r_ / 0,8 5(0,0, 2)e " Yo (0, ) sin 0dfd o=
R Js2 \/27T
(3.14)
Also, recall the Hilbert space decomposition 573 ~ SZA @Ez and ECH =
6'CTHB ® SCHA' Thus, the scattering matrix can be also decomposed as

ST _ (SEA S%B) (9 10
Sha Sk
where
Sh: &, — &y, > 16)

is a bounded linear map for i,j € {A, B}.%
Definition 3.4. Define the Hilbert spaces
c‘fﬁA = 02(Z; L*(r{?w?dw)), f:'%B =004 (rPwraw)),
ELy = (2 LA (rTPw?dw)), €8y, =0 (7 LA _Awidw)),
where Z = {(m,{) € Z x Ny : |m| < (}.

The Hilbert spaces defined in T cfinitio. 3.4 are unitary isomorphic to
their corresponding physical energy vnac- .. This is captured in

Proposition 3.2. The linear maps defined ir 3.11)—(3.14)
Frin®Fr %, @&, — L, @&, (3.17)
Fers ® Forat <p, ®E, — SCTHB @ SEHA (3.18)
are unitary.

Proof. This follows fron. the .act that the Fourier transform and the decom-
position into sph ricai hari. onics are unitary maps. g

Now, w= ill (' ~f-_¢ the scattering map in the separated picture and show
that it is I bunde 1.

Pr.posi.'wn 0 2 The scattering map in the separated picture
ST: &L @&L, — 5y, © €L, (3.19)
define. us the multiplication operator
ST = <S7§A S%) = (ﬂw’@ 9‘%@,5)) , (3.20)
ST, Sty Rw,€)  F(w,0)
is bounded. Moreover, the map ST is invertible with bounded inverse given by

gt _ [ Fw ) R0 (3.21)
N\ R(w, ) F(w,0) ] |

5Note that T does not denote the transpose but the fact that it is the scattering map
associated with the T" vector field.
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Proof. Indeed, ST is bounded in view of the uniform boundedness of the trans-
mission and reflection coefficients T and 2R (cf. Theorem 2). Also note that
|T|? =1+ |R|? implies that

det (ST) =1 (3.22)

A -1
which shows (3.21). The boundedness of ST  is again immediate since the
scattering coefficients are uniformly bounded. [

Using the previous definitions, we obtain the following connection fc - the
scattering map between the physical space and the separated picture.

Theorem 3. The following diagram commutes and each arrow is a “1ilb 1. space
isomorphism:
T T st T T
Erp ®Eny — Eemy ®ECn,
FHoa EB]—'—HB\L l]—‘cnlB YT,
5T s7 ST 4T R
SHAEB(S’HB *>€CH3®6( At

Moreover, the maps ST and ST are pseudo-ur war, sat. fying (3.6) and (2.54),
respectively. More concretely, for (Ua Tp) ¢ 571;;\ )5723, we can write

Pp) - s
where 0,® 4 € L*(CHA) and 0. ®p € L*(CHp) can be represented by
6u<I>A(u,9,t,0) = ﬁ‘[ "ZZ\Z Wl . w g) ]:HA(“I’A)(W m, E) me(e 90) zwudw

+ ; / T —iw®(w, 0) Fripy (UB)(w,m, £)Ye(0, ©)e " dw
—r_
Jml<e

(3.24)

and

C G, ) = R /RZ W (w, £) Friy (Ua)(w,m, £)Yme(0, 0)e™ dw

m|<e

iR (W, £) Fripy (V) (w,m, £)Yme(0, 0)e™" dw
g ) : 0.0

(3.25)

as well as o € EFy,, = H'(R; L*(S?)), ®p € En, = HY(R; L*(S?)) can be
represented by regular distributions as

Da(u,0,p) =

Z R(w, £) Fre, (Ta)(w, m, ) Yime(6, p)e” " “dw
|m|<¢

1 —iwu
* V2mr_ P-v. /T;Q‘Z W, ) Frg (UB)(w,m, £)Yme(0, p)e dw

1
V.
V2Tr_ P /]R

(3.26)
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and

1
®p(v,0,p) = Tor p.V. /JR Z T(w, £) Fre (W a)(w,m, £)Yme(0, 0)e™dw

|m|<¢

o= PV / Z R(w, £) Fripy (V) (w,m, £)Yme(0, 0)e™" dw.
R

|m|<e

(3.27)

Proof. This is a direct consequence of Theorems 1, 2 and (5.30), (5.31) in tl =
proof of Proposition 5.1. L

From the previous representation of the scattered solution, w <. n di.w
a link between the boundedness of the scattering map and the fact *iat ~om-
pactly supported incoming data will lead to solutions which -ani® ~n the
future bifurcation sphere By . This is the content of the folld g

Corollary 3.1. Let W = (¥ 4,0) € &, & &F, . be pur v unco.. * q smooth data.
Assume further that W 4 is supported away from e va.* bifurcation sphere B_
and future timelike infinity i

Then, the Cauchy evolution v arising ¥ ~ U, wvanishes at the future
bifurcation sphere B .

On the other hand, if ¥, as abor _, led to <o’ .tion which does not vanish
at the future bifurcation sphere By, *her .. scattering map ST : &}, — L,
could not be bounded.

L

Proof. The first claim is a dire~* consequence of (3.27) in Theorem 3.

For the second statemcat. .e. W4 be compactly supported data on the
event horizon and assume that its Jauchy evolution i) does not vanish at the
future bifurcation spher > B, . Now take data U 4 which is supported away from
the past bifurcation spl. e P _ and satisfies TV, = Uy Then, U, € ET but
its Cauchy evolut.on ¢ sat. fies ¢ [en ¢ ELy, since

19 eis 20, = [ 10 lews (0,6, )P dusingaddy oo, (329
B RxS?

as Y [en = = ; lcr, does not vanish at the future bifurcation sphere B, .

E - cutting off smoothly, one can construct normalized (in £-norm) smooth

cow nactl _.pported initial data on 577; such that its Cauchy evolution has

arbitrary large norm SgH-norm at the Cauchy horizon. O

Remark 3.4. For convenience, we have stated the second statement of Corol-
lary 3.1 only for the interior of Reissner—Nordstrom. However, note that it
holds true for more general black hole interiors (e.g., subextremal (anti-)
de Sitter-Reissner—Nordstrom) with Penrose diagram as depicted in Fig. 5.

3.4. Injectivity of the Reflection Map

In this section, we define the reflection operator of purely incoming radiation
(cf. Fig. 6) and prove that it is has trivial kernel as an operator from &}, —

5CHA
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F1GURE 6. Reflection & of purely inc ~ aing ~ad’ation

Definition 3.5 (Reflection operator). For pur :ly i1. oming radiation (¥ 4,0) €
S%A &) 5%3, define the reflection oper ..or
R:E, e, (3.29)
as
T [¥a

R(Wa) =@ =pra (S () ) (3.30)
where pry: 4y ©EL , — ey, 1s the orthogonal projection.
Theorem 4 The reflect. 'n cerator % defined in Definition 3.5 has trivial
kernel.

Proof. Assum~ 2™ > =0 for some W4 € &, . Then, in view of Theorem 3,
R(w, O)Fr, (Va)(w,m,£) =0 (3.31)

fc allm,  anu a.e. w € R. Moreover, since R(w, £) only vanishes on a discrete
se  (cf. Pr¢ hosition 2.5), we obtain that Fy, (¥ 4)(w, m, ) = 0 for all m, ¢, and
a.e. '~ ", Again, in view of Theorem 3, we conclude ¥4 = 0 as an element

of 577;14. O

3.5. C'-Blowup on the Cauchy Horizon

In this section, we shall revisit and discuss the seminal work [5] of Chan-
drasekhar and Hartle. The Fourier representation of the scattered data on the
Cauchy horizon in Theorem 3 serves as a good framework to provide a com-
pletely rigorous framework for the C'-blowup at the Cauchy horizon studied
in [5].

Theorem 5 (C!-blowup on the Cauchy horizon [5]). There exist smooth, com-
pactly supported, and purely incoming data ¥4 on the event horizon H for
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which the Cauchy evolution of (1.1) fails to be C* at the Cauchy horizon
CH. More precisely, the solution v arising from W fails to be C' at every
point on the Cauchy horizon CH AU B,.. Moreover, the incoming radiation can
be chosen to be only supported on any angular parameter o which satisfies

Lo(lp + 1) £ ’/‘_2,'_(7‘_,_ —3r_).

Proof. Let £y be fixed and satisfy lo(¢p + 1) # 73 (r4 — 3r_). Define purely
incoming smooth data W4(v,0,9) = f(v)Y0(0,¢) on Ha, where f(v) i
smooth and compactly supported. Moreover, assume that the entire functic 1
f satisfies f(ir,) # 0. In view of the representation formula (3.27) fror> The-
orem 3, the degenerate derivative of its Cauchy evolution @z on the Ca. ~hy
horizon CH g reads

85 (0,0, ) = — / W (W, €) f(w)e™  dwYey0(0, ¢ (3.32)
V2rr_ Jr
Since ¥(w, ) has a simple pole at w = ik, (cf. Proposii~u Az in Appen-
dix), we pick up the residue at ix; when we .efc. m the cuntour of inte-
gration in (3.32) from the real line to the line "m(w, = x4 + & for some
ke > 0 > 0. Here, we use that the compact sup ort of f(v) implies the
bound |f(w)| < el Im@)lsuplsupp(fl f(Re(w)) wnd v at, m addition, by Propo-
sition A.2, the transmission coefficier . £ rer ains ounded as |Re(w)| — oo.
This ensures that the deformation o the * " ~gravion contour is valid. Hence,

BB (v, 0, ) = \/;ET omi(itiy) f(ikL)e™ " Y00, @) Res(T(w, L), ik

—(K +5\ f
.rye . .
FAT | (r il 4 0)T(n iy +9)

f{» 2+l oy + 5))einUYZOO(97 30)} dwp

L Ce Y, (8, 0) + 0 (e*m”)v) (3.33)
as v — 00, vuc 2
C = —mfi\/ 27 f(iky) Res(T(w, by),w = iky) # 0 (3.34)
r_
by constru tion. Thus, ®5 is not in C! at the future bifurcation sphere as the
non- "~ .erate derivative diverges as v — co:
0
dp =e U9, Up(v,0,p) = Ce™ K+Tr1Iv(1 4 o(1)), (3.35)
oVen

where we recall that k_ < —k; < 0. Finally, propagation of regularity gives
that the solution is not in C'! at each point on the Cauchy horizon CH 4. More
precisely, expressing (1.1) is (u,v) coordinates gives

—-A A

8uav'(/} = ﬁ(avw + 5u¢) + FEO(EO + 1)"/)a (336)
where A is as in (2.5) and where we have used that Ag2p = —£o(¢y + 1)9).
Now, note that ||, |0,%| and |0,%| are uniformly bounded in the interior by
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a higher order norm of ¥,4. This follows from [17], commuting with 7" and
angular momentum operators as well as elliptic estimates. Finally, integrating
(3.36) in u, using the estimate |A| < e~ (+) for r, > 0 [see (A.7)] and using
the non-degenerate coordinate Vgy gives the C' blowup also everywhere on
CHa. O

3.6. Breakdown of T" Energy Scattering for Cosmological Constants A # 0

Interestingly, the analogous result to Theorem 1 on the interior of a sube: -
tremal (anti-) de Sitter-Reissner-Nordstrém black hole does not hol fc
almost all cosmological constants A. In the presence of a cosmological cor. “ant,
it is also natural to consider the Klein—Gordon equation with confer -al n. ss
w= %A. We will consider in fact a general mass term of the form =11, -here
v € R. Note that v = % corresponds to the conformal invariant Xlei —C'b>rdon
equation. To be more precise, we prove that for generic ¢ . ex remal black
hole parameters (M, Q, A), there exists a normalized (ii. €%, n01..) sequence
of Schwartz initial data on the event horizon for w.' .n the J;,_(—norm of the
evolution restricted to the Cauchy horizon blows .

We define a black hole parameter triple (M, (¢, A) to be subextremal if

(M,Q, M) € P :=PA0U PL™ UPL™, (3.37)
where
PA=0 .= [(M,Q,A) € Ry x R x {0}: A( ) :=7% —2Mr 4 Q?
x has two positive simnle roots satisfying 0 < r_ < ry.}, (3.38)

PL0 ::{(M7Q,A)G]R+* R (Ry: A(r) = r2—2Mr—%Ar4+Q2

x has three p =itiv simple roots satisfying 0 < r_ <r; <r.

)

(3.39)

: 1
PASO i(l. TN ERL xR xR A(r) :=12 — 2Mr — gAr‘* + Q?
has two positive roots satisfying 0 < r_ < r+} . (3.40)

Theo. ..« 6. Let v € R be a fized Klein—Gordon mass parameter. (In particular,
we may choose v = % to cover the conformal invariant case or v = 0 for the
wave equation (1.1).) Consider the interior of a subextremal (anti-) de Sitter—
Reissner—Nordstrém black hole with generic parameters (M, Q, A) € Ps\D(v).
(Here, D(v) C Pse is a set with measure zero defined in Proposition 6.1 (see
Sect. 6). Moreover, D(v) satisfies PA=0 C D(v) and U N D(v) = PA=C for
some open set U C Pse.)

Then, there exists a sequence (U, )nen of purely ingoing and compactly
supported data on Ha with

[Wnller, =1 for alln (3.41)
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such that the solution 1, to the Klein—Gordon equation with mass p = vA
DQM,Q,A’(/} —pp =0 (3'42)
arising from W, has unbounded T energy at the Cauchy horizon
¥on Ter lleg,, — o0 as n — oo, (3.43)

Proof. See Sect. 6. 0

Remark 3.5. Note that from Theorem 6 it also follows that for fixed 0
|Q| < M, the T energy scattering breaks down (in sense of Theorem 6) { r a.’
cosmological constants 0 < |A| < €, where € = e(M, @) > 0 is small enov._ h.

3.7. Breakdown of T' Energy Scattering for the Klein—Gordon E¢ aat-_ »

Finally, we will also prove that the T energy scattering theory doe no~ hold
for the Klein—Gordon equation for a generic set of masses ;¢ eve » in tne case
of vanishing cosmological constant A = 0.

Theorem 7. Consider the interior of a subextrem ul k “ssner—i.ordstrom black
hole. There exists a discrete set D(M,Q) C &k wvith « ¢ D such that the
following holds true. For any pn € R\D, there exis.  a sequence (Vp,)nen of

purely ingoing and compactly supported data on ro - with

[Wnller =1 for «'m (3.44)
such that the solution i, to the Klew. _ordc 1 equation with mass
Ugaroa¥ =0 v =0 (3.45)
arising from W,, has unbound_d 7 energy at the Cauchy horizon
[t Ter ller,, — 00 asn — oo. (3.46)
Proof. See Theorem 7. g

The Theorer 1 6 o 41 eorem 7 show that the existence of a T energy scat-
tering theory for “e wa e equation (1.1) on the interior of Reissner—Nordstrom
is in retrosr _c. » st rising property. Implications of the non-existence of a T'
energy sca ‘ering map and, in particular the unboundedness of the scattering
m- p 1 e ¢ 7 oological setting A # 0, are yet to be understood.

4. » .1 of Theorem 2: Uniform Boundedness of the
Transmission and Reflection Coeflicients

This section is devoted to the proof of Theorem 2. We will analyze solutions
to the o.d.e. [recall from (2.34)]

d d

A—(A—R)—Alt+1 Yw?R =0.

dr( drR) ({+1)R+r*w*R=0

This o.d.e. can be written equivalently [recall from (2.36)] as
u” + (w? — Vi)u =0,

in the r, variable, where u = rR.
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For the convenience of the reader, we recall the statement of Theorem 2.

Theorem 2. The reflection and transmission coefficients R(w, ) and T(w, L)
are uniformly bounded, i.e., they satisfy
sup (|R(w, )]+ [T(w, H]) S 1. 3.7)
wERLEN]

The proof of Theorem 2 will involve different arguments for different
regimes of parameters. Also, note that in view of (2.56) and (2.57) it is enoug 1
to assume w # 0.

The first regime for bounded frequencies (|w| < wyp, ¢ arbitrary) re ires
the most work. One of its main difficulties is to obtain estimates  “ich re
uniform in the limit £ — co. We shall use that the o.d.e. (2.36) wit’. « = 0,
which reads

u” —Vyu =0, (4.1)

can be solved explicitly in terms of Legendre polvac ~7als ai. ' ".egendre func-
tions of second kind. The specific algebraic stri ~t-.re ~f the Legendre o.d.e.
leads to the feature that solutions which are bou. led av r, = —o0 are also
bounded at r, = 4+o00. For generic perturbatio ., € the notential, this property
fails to hold. Nevertheless, for perturbations »f the orm as in (2.36) for w # 0
and |w| < |wg|, this behavior survives and mos. ™ ortantly, can be quantified.
To prove this, we will essentially div. '’ .e1 al line R 5 r, into three regions.

The first region will be near the ever horizon (r, = —o0), where we
will consider the potential V; as a perturbation. The second region will be
the intermediate region, whr.e > ~ will consider the term involving w as a
perturbation. Finally, in the th.d r : ion near the Cauchy horizon (r, = +00),
we consider the potentis. v, s « _certurbation again. This eventually allows us
to prove the uniform bc nded: ess of the reflection and transmission coefficients
R and T in the be .. led = _yuency regime |w| < wy.

The second -egim  wil be bounded angular momenta and w-frequencies
bounded from ber v w| > wo, ¢ < {y). For this parameter range, we will
consider V' as a ver. ‘rbation of the o.d.e. since V; might only grow with ¢,
whi-". " hc rever  bounded in that range. Again, this allows us to show uniform
b undedi. ss tor the transmission and reflection coefficients € and *R.

The 1 1ird regime will be angular momenta and frequencies both bounded
fron. ' w (Jw| > wo, £ > £p). To prove boundedness of reflection and trans-
mission coefficients R and ¥, we will consider % as a small parameter to perform
a WKB approximation.

4.1. Low Frequencies (|w| < wo)

We first analyze the o.d.e. for the special case of vanishing frequency. Then, we
will summarize properties of special functions, which we will need to finally
prove the boundedness of reflection and transmission coefficients in the low
frequency regime. Let

[t
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be a fixed constant.

4.1.1. Explicit Solution for Vanishing Frequency (w = 0). For w = 0, we can
explicitly solve the o.d.e. with special functions. In that case, the o.d.e. reads

d dR
—(A— | —¢({+1)R=0. 4.3
dr < dr> (t+1) (43)
We define the coordinate z(r) as
2r (R
= — 4.4
(r) e iy — 4.4
or equivalently,
r(x)_—”;“wr”;“. (4.5)

Then, we can write

Alr) = (== 2(x+1)(x—1): E?L‘\Q(ﬂ_m. (4.6)
(=57) (=

2 /
Hence, Eq. 4.3 reduces to the Legendre o.d.e
d dRr>
o <(1:172)d )Jré(é N=0. (4.7)

We will denote by Py(z) and Q,(z) the two in- ependent solutions, the Legendre
polynomials and the Legendre functions ur second kind, respectively [39,44].
We will prove later in Proposi'ion * 2 that %; and s from Definition 2.3 satisfy

(= (= () PiGatr)) (48)
) () = () TG, (19)
+7+

These are a #~da.. ~»"al pair of solutions for the o.d.e. in the case w = 0. We
will pertur > the. » ex, licit solutions for the regime of low frequencies (|w| <
wo) o do 2. v : will need properties about special functions which will be
cc asiderec first.

In vic w of the fact that wq is fixed, constants appearing in < and 2 may
also U -~ _ad on wy. Before we begin, we shall summarize the special functions
we will use and list their relevant properties in the case |w| < wp.

4.1.2. Special Functions. Good references for the following discussion are
[1,39,44]. First, we shall recall the definition of the Gamma and Digamma
function.

Definition 4.1. For z € C with Re(z) > 0, we denote the Gamma function
with I'(z) and will also make use of the Digamma function f (z) defined as

F(z) = /Ooo (e: - 1e__:m> da. (4.10)
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Note that
F(z+1)—F(2) :% (4.11)
and
- Z % — 7y =log(n) +O(n™1), (4.12)

where v is the Euler-Mascheroni constant.

As we mentioned above, we shall use the Legendre polynomials ai. ' the
Legendre functions of second kind. We will express them in terms of . hyp -
geometric function F(a,b;c;z) for z € (—1,1), a,b,c € R as deanra 1 [44,
Equation (9.3)].

Definition 4.2 (Legendre functions of first and second kind). "Ne - e the stan-
dard conventions which are used in [39,44].
For z € (—1,1), we define the associated L zenu. » polynomials by

1 z i 1—
Pg”(x):(ﬁi) F(e+1,- G- 2”3) (4.13)

and the associated Legendre functior , of secc 4 k'ad by

Q' (2) = f%ﬂsm (1 0+ m)> wi(,7) + %wcos <;(e+ m)w) ws(, 7).

(4.14)
Here,
oM (Gt m l 1 z 1
wl(ﬂ,x):7<?t Ja x2)2F< tmolriom. ) (4.15)
r(1+ %, 2
2mT 14 m (1—C—m (—m 3 ,
wg(ﬂ,x):—rk,_gﬁ?)—mkl—x )™ 2F< 5 1+ 5 5% >

(4.16)

W shai alse wse the convention P, = PP and Q7' = QY. Also, recall the
Sy mmetry

Py(z) = (-1) Pi(~=), (4.17)
Qe(x) = (=1)'Qu(~2). (4.18)
In the asymptotic expansion in the parameter ¢ for the Legendre polynomials

and functions, we will make use of Bessel functions which we define in the
following.

Definition 4.3 (Bessel functions of first and second kind). Recall the Bessel
functions of first kind
o 22k

k=0



Vol. 20 (2019) Scattering of Linear Waves on Reissner—Nordstrom 1615

2 & 22k
L@yzggﬁzwﬁ@:ﬁ, (4.20)
and the Bessel functions of second kind
2 T 2 & a2k
1 2
Yi(z) = —5 -+ _log (*) Ji(x)

z 22k
- — k+1 k+2)———— 22
o k:O(F( )+ Fk ))(—4)kk!(k F1 (122)

where Hj, = Zszl n~!is the k-the harmonic number. We have he a ym stotic
expansions

Jo(z) =1+ O(2?), (4.23)
T () = g +0(2?), (4.24)
Yo(z) = %log (g) rouw (4.25)
Vi) = o +o(l) ar 0. (4.26)

Note that bounds deduced from (4.23)—(4.2€¢, hold uniformly on any interval
(0, a] of finite length. We shall also use tk_ pounds

|Jo(z)l <1 Yo(z)| S 1+ [log(z)| (4.27)
for0 <z <1 and
‘ 1 1
(r | S 7 [Yo(z)| < NE (4.28)

forx >111,p. o 9, p. 64].

In the proc ¢, we vill . 'so use the following asymptotic formulae for P, and @y
for 1~ £ .~ terr is of Bessel functions.

L mma 4. . [39, Sect. 14.15(iii)] We have

ot = (223" (0 (2252) 00, 20
Qelcos ) = —g (gie)é (Yo (W) +ez,@(9)> , (4.30)
QL (cos ) = f% <Sii9>é (Y1 (0(%;1)) +eg,g(a)> , (4.31)

where the error terms can be estimated by

(15

1
en ) eae®)) < 1 |90 (°25

1+¢

(1250
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1 (20 + 1) 0(20+1)

0)] < J Yi|—= 4.33

|e3>Z()|N1+E[ 1( 5 )’-F 1( 5 (4.33)

for 0 € (0,m — &) and for any fixred 6 > 0. In particular, this holds uniformly
as 0 — 0.

We shall use the following asymptotic formulae for the Legendre functions
at the singular endpoints.

Lemma 4.2 [39, Sect. 14.8]. For 0 < z < 1, we have
Py(z) =1+ fi(x), (+.34,

Qulx) = 3(0g(2) ~ log(1 ~ 2)) =7~ F(E+1) + fila), -~ (4.%)

where | f1(x)| Se (1—x). Moreover, analogous results hold true ,»or — <t <0
due to symmetry.

Now, we will estimate the derivatives of the Legend = | olynomials and
Legendre functions of second kind.

Lemma 4.3. For x € (—1,1), we have

dPg’ o
— | </ 4.36
\ —| < (4:36)
Forzqao:=1-— ﬁ with 0 < a <1 and ? =~ N, we have
d
(1 — (:I:xmz)z) %/ ;xaj) <1 (4_37)

Proof. Inequality (4.36) is k.ow . . * Markov’s inequality and is proven in [4,
Theorem 5.1.8]. We only have < » prove (4.37) for © = +z4,¢ due to symmetry.
From the recursion rel= ion |9, §14.10], we have

A0
(+1)~r1- 953 C(aeo) = Za,0Qe(Ta) — Qut1(Tar)

}7(190‘(
= (Ta,e — 1)Qe(zae) + (Qe(Taye) — Qry1(Tarr))-
(4.38)

We ... -own ider both summands separately.

P rt 1: Su amand (zq, — 1)Qe(a.r)
Fio t, con "1 1 — 240 = 177, Where we implicitly define cos(0ae) = Tae.
Note wuat we have

Ooe(2) = \/2(1 — Ta0) + O((1 — 2ay)?) = % +0 <<1f€2> 2)

-V (o(522))

In particular, we have 0, (¢ < 1. This gives

—Qe(Ta,e) = —Qe(cosba,e) = g (siiaé:g) ’ (Yo (W> +62,e(9a,z)) .
(1.40)
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Again, we will look at the two terms independently. First, note that

2 () (o (0ur (1+3))
5 () () o)

+0(82,)) <1og(0a,e) + log (E + ;) + O(1)>

=3

= (1

( <1+£2)> <;log (ﬁ}z) +log <€+1> +om\
(0 (e)) (3o on 1+ G53) o

- %log(a) +0(1). (4.41)

In order to estimate ez ¢(64.¢), we shall recall inec ality /4 2). Tt works anal-
ogously to the previous estimate up to a good term ¢ In particular, this
shows

1+€

1Qe(zae)| < [loolay i a (4.42)

and

1
14 02"

[(Ta,e = 1)Qe(a ) (Hog(a)[+1) 5 (4.43)

e

Part 2: Summand (Q¢(r o, — . -1(Zar))
Using the recursion rc tion or the difference of two Legendre function [39,
§14.10], we have

(C+1)(Qe(zne) Qi 1(Tap) = —(1— 22 )2 Q(a) + (1 — Za,)Qe(Tae)-

(4.44)
W esti, ~te .~ term (1 — a:%g)Qg(a:(M) by what we have done above as
|(1 = 2a,0)Qe(Ta,e)| S 1+€2 5 ([log(a)[ +1) S 1. (4.45)

For the term —(1 — 2 13) Q} (Tar), we use (4.31) to get

(1= 22 )} Qh(was)|
< oo (c2a) (s (o) o)

As before, we shall start estimating the first term using (4.26) and (4.39) to
obtain
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Ve (o)) () )
et (e () (e, o)
\/Elig(}Jr )51- (4.47)

We estimate the second term using (4.33), (4.24), (4.26), and (4.39) to obta’1

o 1
P+11+47¢ 1+e2 c2.¢(6
<

a 1
< — +1 1. .48
€2+11+£2<I+> )
We have estimated that [Q¢(za¢) — Qer1(zae)| S LlM w. i proves the

claim in view of (4.38). O

Finally, we prove asymptotics for the deriva iv:s ¢ the Legendre of func-
tions of second kind near the singular points.

Lemma 4.4. ForO<zxz <1 andx — 1, we h ve

d
(1—x2)%:1+ Ou((* - z)0g(1 — ). (4.49)
By symmetry, this also yields for —1 < x <, and x — —1
d
(l—xQ)% = =4 0(1 + ) log(1 + ). (4.50)

Proof. From the recursic - =la.or 39, Sect. 14.10] and (4.35), we obtain

(1= 295 02 1)6Q: - Qo)

="+ = 1,2+ (L +1)(Qr — Qey1)

=t e — Q1) + Or((1 — z) log(1 — )

=D (E+2) = FE+1)4+0((1 —z)log(l —z))

— 1+ 0u((1 - 2)log(1 — ). (4.51)
O

Having reviewed the required facts about special functions, we shall now
proceed to prove the uniform boundedness of the reflection and transmission
coefficients.

4.1.3. Boundedness of the Reflection and Transmission Coefficients. As men-
tioned before, we will consider three different regions: a region near the event
horizon, an intermediate region, and a region near the Cauchy horizon. In r,
coordinates, we separate these regions at

R (w,0) = % log (“’2> (4.52)
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and

y 1 w?

for 0 < |w| < wp and ¢ € Ny. Note that —oco < R} (w,¥) < 0 < Rj(w, ) < oo.

Region near the event horizon

Proposition 4.1. Let 0 < |w| < wo and £ € Ng. Then, we have

[uh || oo (o0, m7) S Iwl, 1.54)

lurll Lo (—oo,r7) S 1- (4..7)

Proof. Recall the defining Volterra integral equation for uy fron Def 1iti n 2.3
; " sin(w(re —

Ul(?"*) — elw’l‘* +/ ( ( y))v(y>u1 (y) 11/' (456)

with integral kernel

K(r.y) = Sin(w(ii*_y))v\g. (4.57)
From Lemma A.3 in Appendix, we obt=in fc r, < R}
V()| < 2m 40 (4.58)
and in particular,
V(R < e+ 51 (1 + %) = w2 (4.59)
This implies for r, < R}
K7 y) = |j||V(y)\ < ﬁ(l + %)ty (4.60)
and thus,
/ N\ sup | K(rs,y)|dy < @e%*m < 1. (4.61)
s oo y T <R} |w]
T} : cla. ~ t¢'~7 s now from Proposition 2.3. 0

Now. we would like to consider w as a small parameter and perturb the
exp. ** < iutions for the w = 0 case in order to propagate the behavior of the
solution through the intermediate region, where V; is large compared to w.
In particular, V; can be arbitrarily large since ¢ is not bounded above in the
considered parameter regime.

Intermediate region. First, recall the following fundamental pair of solutions
which is based on the Legendre functions of first and second kind

wy (ry) = (—I)ZWPg(x(r*)), (4.62)
wa(rs) = (-1 ") 0 a(r)), (4.63)

k+ T+
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where P, and )y are the Legendre polynomials and Legendre functions of
second kind, respectively. Our first claim is that we have constructed this
fundamental pair (w1, ws) to have unit Wronskian and moreover @; = wy and
Uy = wo holds true.

Proposition 4.2. We have wi = 41 and we = us and the Wronskian of u; and
ug satisfies

Qﬁ(wl,wg) = Qﬂ(ﬂl,ﬂg) =1. (4.61 )
Similarly, we also have v = (—1)*w; = (1) 4.

Proof. We first prove that 20(wq, ws) = 1. Since the Wronskian is * «de. ndeut
of r,, we will compute its value in the limit r, — —oo. In this pror osit un, ¢
is fixed and we shall allow implicit constants in < to depend on ’. C. arly,

wy(ry) — 1 as r, — —oo. (4.65)
Moreover, we have that for r, <0

d
dr,

dPy(z), |- ok
\7 [ < Tx
dl‘ R qr* r*) ~ € + 9 (4'66)

< 25 | Py(a(ry))| +

w1 (7s)

where we have used (4.36). This, in p .rticular, ~1s- shows that w, satisfies the
same boundary conditions (w; — 1, @’ - " as r, — —o0) as U defined in
Definition 2.3 and thus, w; and @; have to ¢ .incide. Similarly, we can deduce
’51 = (—1)Z:—+w1.

For wsy, we use (4.35) te obt ‘n

_ < _@\ /1 /27 o _ 2k 7y
[wa(rs) — 7| < ( Tors \zlob\l—i—x(r*) y—F(+1) r« | +e .
(4.67)

For an intermed’: te ste », we compute log(1+z(r,)) from (4.4) near r, = —oo.
In particular for “e V.nit r, — —oo, we can assume that r, < 0 and thus,
r—r_2r_—r1_ .hoce,

log(l + z(ry)) = log (1 n (rs —:j 1-7(”7:7 _ r))

=log <1 + ) R )

Ty —T— Ty —Tr—
_ lOg (Tif(_r;) 62k+r*>
— 2hyra +1og2f(r)(ry — ) ), (4.68)

where f is defined in (A.11). Thus, this directly implies
[wa (1) — 7| < e+ 41 <1, (4.69)

Finally, we claim that wj — 1 as r, — —oo. We shall use estimate (4.50) near
z(r«) = —1 to obtain
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() dQe(z) dz _

kyry dx  dr.

wh(re) = 1] S e+ (| +1) + ‘(*1)

< o2kyTx 7(r) o dz B
SO [P 0 (U4 a(ra) g (1 2] Tz g
(4.70)
Now, in order to conclude that
|wy(ry) — 1| — 0 as 7, — —o0, (4.71°
it suffices to check that
1 d
SR ki as r, — —o00. (- 72)

1—22(r,) dr,
But this holds true because

1 dz 1 -2 A rp—r_ i
— = — = — k. sy — —00.
1—22(ry)dre 1 —22(ro) ry —r_r? 272 V&
(4.73)
Now, this implies that
W(wy,wz) = lim (wjwhy —wijn ) =1, (4.74)

Ty ——00

and moreover, that ws = 7y as they s»’isfy he sai 1e boundary conditions at
Ty = —00. O

Having proved the Wronskian conditior we are in the position to define
the perturbations of 4, and s to nonzerc .requencies.

Definition 4.4. Define perturvati.. = 1, and g, of 41 and 4y [cf. (4.8) and
(4.9)] in the intermediate regio by the unique solutions to the Volterra equa-
tions

~ \

ul,w(T*) — ﬂl(m</ Lw

\‘/’“(

%
M

iy (1 )U2(y) — U1 (y)a2(ry)) t,u(y)dy  (4.75)

v

and
o (r) = a) + [ (@()ia() ~ D)) Tau o)y (470
Ry
P opositio . 4.3. Let 0 < |w| < wy and ¢ € Ny, then we have for r, € [R}, Rj)
ur(w,re) = A(w, £)t1,,(r+) + B(w, )wiig o, (1), (4.77)
where
|A(w, )| + |B(w, )] < 1. (4.78)

Proof. First, note that by construction in Definition 4.4 we have

U,0(RY) = 1 (RY), (4.79)
y, (RY) = ) (RY), (4.80)
tz,(RY) = uz(RY), (4.81)
ty ,(RY) = p(RY). (4.82)
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Now, we want to estimate the previous terms. By construction, we directly
have that

la(RY)| < 1. (4.83)
Then, note that

w? w?

1 *
241 +$(R)N£2+1

Hence, from (4.35), we obtain

(4.84)

1
alR)I S 1+ |~ los(1+ (D) - F (04 1) £ 1+ ()] S1ow ).
/
£ 85)

where we have used that for £ > 1 we have F (£ + 1) = log'/) 4 v+ J({~1).
For a4 (R7) we have the estimate

~ * * * dQ( *
BRD| S AR + | S <1 s
where we have used (4.37) and (4.84) as well == *he 1. =t that
d
dia )T < (4.87)
Now, we can express A via the Wronskian as
Qﬁ(ul u9 )
Al ‘~7’~w . 4.88
| | m(ul,w; UZ,w) ( )

By construction, we have ™(ay .. 75 ) = 20(Uy, t2) = 1. Hence, using Propo-
sition 4.1 we conclude

[A] < Jur (R, 7)1 = uy (B2, (RY)] S Ja5(RY)| + lwiia(R7)]- - (4.89)
Thus, we conclua
|A| < 1. (4.90)
N ce tha fro..4.36), we have

dPg dz
<I(1
|u1(R1)|N‘< + dm) ar.

Hence, we can also estimate B by

< (1407 < Wi (4.91)

1 ~ N .
|B| = mlﬁﬂ(ul,ul,w)l S ([ (R5)] + [wits (RD)))
1
S+ —lu(R)IS, (4.92)
jwl
where we used Proposition 4.1 again. O

For the intermediate region, we will need the following result in order to
get uniform bounds for the Volterra iteration.
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Lemma 4.5. Let 0 < |w| < wg and £ € Ny, then

/ iy () |drs < log? <> , (4.93)

R} |w
/ |tia (1, )|dry < log? <> : (4.94)
R} |w

Proof. We first prove (4.93). We shall split the integral in two regions. Tl 2
first region is from 7, = R} to 7, = 0. In that region, we define 6 € (0, 5] suc.
that cos(f) = —z(r,). Using also Lemma 4.1, we obtain

a1 (r)| S [Pe(a(ra))| = [Pe(=(rs))| = |Pe(cos )|

(sta) #((+3)°)

The last term shall be treated as an error term. "_hv

<

~

+lere . (4.95)

0 0 1 /,(\ 1
a)ldr S [ (Pl e < Pl e
/Rf «(RY) L+ S0 Ot 1+
H 1
5/ |Py(crnf) - ———— sinfdb
arccos(1-C 1227 1—cosf
< [ \Pitcos)|—20_gg 4.96
/Cll“jrz| g )|1—c059 ' (4.96)

Here, C and C are positiv~ cor. tar ;s only depending on the black hole param-
eters. We further estim .te us ng equation (4.95)

0 ks 1 .
2 2 1
/ |t (r)[dr < / .9 Jo|(£+3 )0 ﬂdQ + Error,
. o \sm@ 2 1 —cosf
Ri C it¢
(4.97)

wh e v > w. 'l t2'e care of the term

Error = / T Jere(®)] (4.98)

C11%y
later. First, we look at the term

™

5 g\
/C (sin@) /s

_w
11172
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S/ Md9+/ Mde

0 0
'l > 1
S [ g [ a5 fog(u, (4.99)
Clw 9 1 05
where we have used equation (4.27) and (4.28). Now, we are left with the error
term
sin 0 1 )\
Error<7 Jo(L+=)0 €—|—
o) 1—cosf 2
£+1
S [ T fog(wlyas 5 P
N1+€ 1&*11_&)89 & 1474 Joy e
log?(jw|) +log(1+0) | o (1
< < _
< T 7 < log o) (4.100)
Thus,

0 A
/ |ty (7)) |dr, < log? (—l
T N /

Completely analogously, we can comp’..e

/OR2 (1 () |y < 1002 (|w1|> . (4.102)

The proof of equation (4.93) s ¢~ .. nletely similar up to a term which involves

(4.101)

s 2V ‘
2 ori? 1
r Qde < log? () (4.103)
J(/ ) 0 |UJ|
appearing in the sstin. te « ~alogous to (4.99). O

With t' _ welp [ he previous lemma, we can now bound our solution u
at R3. Thi resu. sin

P oposits m 4. Let 0 < |w| < wy and ¢ € Ny, then
lurll ooy r5) S 1 and |u|(R3) < |wl- (4.104)
Proof. Recall that we have from Proposition 4.3 for r, € [R}, R}]
up(w,re) = A(w, 0) 1 4 (1) + wB(w, )z o (74) (4.105)

for some uniformly bounded (in |w| < wg and ¢) constants A, B. In particular,
from Proposition 2.3 and Remark 2.1 we obtain the bound

%1, oo (e, mE) < e®||Ur]l Lo Rz RY) (4.106)
for
R2
a=u? / sup  Jiia(ra)iia(y) — @ (y)ia(r)ldy. (4.107)
R {r.ly<r.<R3}
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First, we have the bound

1] Lo (ry,RE) < 1. (4.108)
Secondly, for 7, € [R}, R5] we have
W2
L-2(r) 2 1 (4.109)
and
W2
14+z(re) 2 e (4 .10,
Consider the case z(r.) > 0 first and implicitly define 0(7’*) by cocf(r. =
2(ry). Then, in view of (4.30) and 0(x =/2=2z(r.)+O((? — =y 13)),
we estimate
O(r.) (20 +1 N
[t (r)| < |1Qe(cos(8(r:)))] S Yo <()(2)>‘ SIYo o b (4.110)

for a C = C(M,Q) > 0. Analogously, this also ¥ old: ‘or z(r,, < 0 such that
(4.27) and (4.28) imply

/1
ol 700 (px ey <1 — \ 4.112
2]l Lo Ry, R3) < log \ Tl (4.112)
Together with Lemma 4.5, we obtair
a5 L. (4.113)
Hence,
ULl (RyRy) S 1 (4.114)
and similarly,
- 1
" Mo, ‘LOO(RTfRS) 5 lOg (|a}|) . (4115)

This shows [|u1||, - (r:. 3) S 1 in view of (4.105).

Now, ~.c . e I« with the derivative u}(R3). To do so, we start by esti-
mating @} R3) a d @, R3). Using the analogous estimate as we did for R} in
(4 50) a. 1 (=2, we obtain

H(R3)| £ 1 and |4 (R5)] S . (1116)
Note ' .o
R
() = T5(85) + o [ (@ (B)naly) — ia(0)5 () a0}y
(4.117)

and thus in view of Lemma 4.5, (4.116), (4.115), (4.112), and (4.108) we esti-
mate

R;
i (R < () + g (1) [ 100 + [ () ()l

S 1+0” |log(lw])| (w?log*(|wl) + log?(lw]) S 1. (4.118)
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Similarly, we obtain

R

@) (R3)| < |a) (R3)] +w® /R* i (R3)tia (y)| + [ (y) 5 (R3)|dy
‘1
S W +w?(w log?(|w]) +log® (lw])) < |w] (4.119)
which concludes the proof in the light of (4.105). O

Region near the Cauchy horizon. Completely analogously to Proposition 4.
we have

Proposition 4.5. Let 0 < |w| < wy and ¢ € Ng. Then, we have

Vil (5,000 S ] V1l (r,00) S 1 (+.120)

and

2]l (R5.00) S @l V2l o S 1. (4.121)

Boundedness of the scattering coefficients. Final,, we conclude that the
reflection and transmission coefficients are u ifor. ly Lounded for parameters
0 < |w| < wo and £ € Ny.

Proposition 4.6. We have
sup (|R(w, O [T(w, O]) S 1. (4.122)

0<|w|<wo,LeN

Proof. Let 0 < |w| < wp and £ - N and recall Definition 2.4. Then, Proposi-
tion 4.4 and Propositior 4.. m,”,

[ 20wy va) | u (R5)v5(R5)| + |uj (15)va (R5))|

T < — — = <1 4.123
and
wl wl
U

4.2. Frequencies Bounded from Below and Bounded Angular Momenta (|w| >
wo, £ < £o)

Now, we will consider parameters of the form |w| > wp and ¢ < £y, where

wp is small and determined from Sect. 4.1. Also, the upper bound on the

angular momentum ¢y will be determined from Sect. 4.3. As before, constants

appearing in < and 2 may depend on wy.

Proposition 4.7. We have
sup (R, O] + [T, O) S 1. (4.125)

wo <|w|,£<Lo
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Proof. Recall the definition of u; as the unique solution to

w(orr) =+

— 00

T

sin(w(ry, —
Iy gy ey, (4.126)
Note that in the regime ¢ < ¢y we have a bound of the form

[V (r,)] S e 2minlhe lk=Dir| (4.127)

which implies the following bound on the integral kernel of the perturbatic i
in (4.126)

K| =[P = D) < i (4.109)
in view of |w| > wp. Thus,
| s kG s [ vy < (4.129)
Hence, from Proposition 2.3 we deduce
lurllLoe @) S 1 (4.130)
and
lurlle - Tl (4.131)

Note that we have obtained similar, indeed ven stronger bounds for u; as in
Proposition 4.4. An argument completely similar to Proposition 4.6 allows us
to conclude. O

4.3. Frequencies and A .g.'r " . menta Bounded from Below (|w| > wo,
£ 2> £o)
In this regime, w. . sun - w > wg and ¢ > {y, where we choose {y large
enough such the V; < eve. ywhere. Note that such an £y can be chosen only
depending o» *he  '~~'. hole parameters.
We w ite ti 2 0.c 2. as

u” = —(w? — Vo)u (4.132)

a1 1 will r oresent the solution of the o.d.e. via a WKB approximation. For
conc.  .ess, we will use the following theorem which is a slight modification
of [43, Theorem 4].

Lemma 4.6 (Theorem 4 of [43]). Let p € C*(R) be a positive function such

that
T d? s
F(x) = ‘/_Oop BFr (p 4)’dy (4.133)
satisfies sup,eg F(z) < oo. Then, the differential equation
d2
u(@) = —p(z)u(x) (4.134)

dz?
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has conjugate solutions u and u such that

u(z) =p 7 <exp <z /O ' \/]3(y)dy> + e> : (4.135)
wtw) = it [exn (1 [ Bwan) —in+ 2 (exn (=i [ vity) +c) .

(4.136)
o )] e(w)] < exp (F(@)) 1. (137,

Proposition 4.8. Let wy < |w| and £ > ly. Assume without loss of 4 ~era.*y

that w > 0. Then,
(exp ( / (W2 = Vily)) ) + ew) ,
0 y

(4.138)

ENG

up(w, ) = Aou%(u)2 —V(rs))™

uy(w,ry) = Aw%i(a}2 - V(r*))% [exp (z /T* (wo - Vg(g,:\fldy) —in(ry)
0
_—iV'(r*) xp | @ T2 — 7 > € >}
ot (oo ([T ovita) )| )
where
|A] =1, sup (|e](rv) +inl(rs)) S 1 (4.140)
r«€R
and
; gy ] ot/ = . Linjoo e(rs) = 0. (4.141)

In particular, this prove

Ymsup |u(ry)] < 1, (4.142)
limsup |/ (r4)| < |w], (4.143)

ar 4 uny. ~m . wnds on the reflection and transmission coefficients

sup  (|R(w, )|+ |%F(w,0)]) S 1. (4.144)

wo<wl,£24o

Proof. We will apply Lemma 4.6. First, we set

p=(?— V) (4.145)
which is positive and smooth. Then, the o.d.e. reads
v’ = —pu. (4.146)

Now we have to show that F' is uniformly bounded on the real line. Note that
we have the following bounds on the potential and its derivatives

Vi) [Vl V() S G627 and - 262547 < Vi) for 7. <0,
(4.147)
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()] S 2e*=" and (%e**~" < |Vy(r,)| for r, >0.

(4.148)

Ve(rl, Vi (rol, [V

Here, we might have to choose ¢o(M, Q) even larger (r? (ry—3r_)+£({+1) > 0,
cf. (A.16)) in order to assure the lower bounds on the potential. Finally, we
can estimate F' by

(1)

[
:/ pi (p ip/ +p‘%|p”\)d

sup F(ry) < p —i

r«ER

e2n_y

y
NZ/ <£2+e2ﬂy)3+

7 | dv
(E—Q + eQn,y)g >

625+y

S 4.14
¢ ; ; 149
* ¢ /—oo ((62 +e2r+Y)2 * (62 v,(;-ﬂﬂ/% ) “ ( )

where we have used the bounds from (4.147) an. ' 4.1 ). We shall estimate
both terms independently. After a change of variab. s y — 5=—log(y), we can
estimate the first term by

_y QZH,J d
ﬁ/ (é 2 4 o2 Lf+\c2+e2*’»—y)3> /

1 / 1
562 / S % 5 + 3 dY

o U tTy)E (14 2y)3

R 1
< - 4+ _dy<L 4.150
oL tYE (L+y)d (4.150)

Completely analog sl we get the bound for the second integral. In particular,

this shows

sup F' < 1. (4.151)
R
Ti = impli = +he bounds on 7 and € in the statement of the theorem [cf. (4.140)]
using +.137).

The limits in equation (4.141) follow from the fact that F(r.) — 0 as
r« — —00 by construction.

The bound on the reflection and transmission coefficients follows now
from

REIS

‘ QU(“: v1) (4.152)

1
< jlimsup(Iullvﬂ +uvi]) $1

‘ | 75— 00

and analogously for .
Finally, A can be determined from the asymptotic behavior u — e as
re — —o0 and it is given by
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A= lim exp (iwr* — z/ *(wQ _ V(y));dy)
0

Ty ——00

= lim exp (—z/ ((w2 — V(y))% — w) dy) (4.153)
Te——00 0

which converges since V' tends to zero exponentially fast. In particular, this

also shows that |A| = 1. O

Finally, Theorem 2 is a consequence of Propositions 4.6, 4.7 and 4.8.

5. Proof of Theorem 1: Existence and Boundedness of ¢chr T
Energy Scattering Map

Having performed the analysis of the radial o.d.e. and ha .- . particular
proven uniform boundedness of the transmission coefficien, ™ a °d tue reflection
coefficients R, we shall prove Theorem 1 in this - ect: n.

5.1. Density of the Domains ’D%F_t and ’Dg,,_‘
We start by proving that the domains D% a d D; . are dense.

Lemma 5.1. The domains of the fort ard and bw. " ward evolution D}, and Dk,
are dense in 577; and EEH, respectivet,

Proof. We will only prove that the doma’.: of the forward evolution is dense
since the other claim is anale ou.

Recall that by definition ~2° .!) is dense in &,. Now, let ¥ € C>°(H)
be arbitrary and denot ., ¥ '* forward evolution. We will show that we
can approximate ¥ . th fu ctions of D,E arbitrarily well. To do so, fix
Tred < To < T4. 70, ( “»_ the redshift effect (see Lemma A.1 in Appen-
dix) the N ener~v of « [.—, will have exponential decay toward i,. Hence,
it can be approxii ates with smooth functions ¢, of compact support on the
hypersurfa e r = r¢ - r.t. the norm induced by the non-degenerate N energy
(see ™oma, - A.J in Appendix). More precisely, on 3, = {r = 7o} define a
s€ quence , € U2 (X,,) by

Gn(t,0,0) = [r—r, (t,0,0)x(n"'t), (5.1)

where (0,¢) € S? and x: R — [0,1] is smooth with suppyx C [-2,2],
X [[=1,11= 1. Then, we obtain that fzm Jg[w—tbn]ngmdvol — 0 asn — oo0. By
construction, the restriction to the event horizon of the backward evolution,
®,, of each ¢, will lie in ’D%. Finally, we can conclude the proof by applying
Lemma A.2 from Appendix, which yields

W — (I)n”???_"‘ = / JI W — @, |THdvol S / N — qzﬁn}n’éro dvol — 0
H r=r
’ (5.2)

as n — o0. O
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5.2. Boundedness of the Scattering and Backward Map on ’DT and DT

In the following proposition, we shall lift the boundedness of the transmission
and reflection coefficients (Theorem 2) to the physical space picture on the
dense domains D,E and DEH.

Proposition 5.1. Let ¢ be a smooth solution to (1.1) on MgN such that ¢ |1 €
DY, (or equivalently, ¢ [cn€ DEyy). Then,

6 Tera I35, + 16 Ters 12, < B (16 Ty I3y + 119 I I3y ) (5.0
and

- \
H¢THA\@5A‘%H¢THB|@53iSlg(H¢[CHA|@5u;+H¢rMHB 2

7 (59

CH )

for constants B and B only depending on the black hole param. ‘ers.

Proof. Set ¢ := T and note that ¢ [1€ Dj, and ¢ also sclve. ‘1.1). Since
¢ € DI, C &), we have that ¢ [7,= Tt |3, € L2 H4) w.'} respect to the
unique volume form induced by the normal vecto fieiu ™. Analogously, we also
have ¢ |3 ,= T [1,€ L?*(Hp). Thus, we can de’.. ~ the . arier transform on
the event horizon with the charts (2.15) and (© "4) a.

1 r )
AH 5 (w30a¢) = E /]R¢ [HA (Uao ¢)eilwvdv (55)

and
@ (,0,0) - / 6 17 (1,6, 6)e " du. (5.6)

We can further decompose the o . ‘er coefficients in spherical harmonics to
obtain

3" (@) = (Yo, o <)z (s2) and a5} (w) = (Yem, ary ) £2(52)- (5.7)
From Plancherel’, the. -em, we obtain

il = X [l (59)

|m|<,6>0
0 b Iy, = 3 [ labin )P (5.9)
" m|<6,e20

Similaiiy, since ¢ [¢x € ’DgH, we define

1 )
ber s (w,0,) = \/TTT/R¢ leris (0,0, @)~ dv (5.10)
and
1 wu
ber s (w, 0, ¢) = E/R¢ leny (u,0, ¢)e* du. (5.11)

We can further decompose the Fourier coefficients in spherical harmonics to
obtain

bé}TA (w) = <ng7 bCHA>L2(S2) and bé’;_tnB (w) = <ng, bCHB>L2(S2)~ (5.12)
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Again, in view of Plancherel’s theorem

19 Tera IIE}CTHA = > /|bc71A )2 dw, (5.13)
|m|<£,6>0

1 Ters 2z, = > /|b€;;’3 )[2dw. (5.14)
|m|<2,6>0

and similarly for CHpg. We shall also decompose ¢ on a constant r slice. Fi .
r € (r_,ry), then set

Gmelw,7) = V%T /R /S Y0, 6)0(6,7,0, 6)e " sin0d0dodt _(015)
such that
¢(t,7‘,9,¢) /(bmé w, 7" m@( ¢) y“' . (516)
\m|<£ £>0

This is well defined since ¢(t, 7,0, ¢) is compactly ,up: rted on vach r = const.
slice.

Since ¢ is smooth, we also know that @y, satisi >s the radial o.d.e. (2.34)
and can be expanded as

Gme(w,r(ry)) = aﬁjn(w)%*ul( 0,1 + uf-mw)%uz(w, ), (5.17)

where
|U1—€iwr*|§£ 62"1'* N(r+—7°), (518)
2K+7'* ~ (T+ _ /r') (5.19)

for r, < 0. Note that thi, . 'ds - Aformly in w. We shall show in the following
that indeed afﬂf = a;: " and x% = aH To do so, note that for r(r,) with
r. < 0 we have for = ~d \ ., <) that

¢[7m(t7 T) = <¢a b 'VLZ>L? 52?)

’ , r T .
:/ \ O‘QA ’u)%ul(w,r*(r)) + a%ﬁ(w)%uz(w,r*(r))) et
R

W 4
I

|’U,2—€' 92 €

dw

Vor
(5.20)

W want 1) interchange the limit » — r; with the integral. In order to use

Lebe. s dominated convergence theorem we will estimate aHm and asjg.

Note that

| e}m| . fm( (bmfqu QU Td]mfauQ)
N Qn(uh u2 ulv u2)
\WW(LJ) 05 U2)| .
< re < |20 meeaUQ y (521)
2|w] n

which is independent of r(r, ) and integrable since w — Ype(w, 7, ) is a Schwartz
function. Now, we shall fix v = r, +¢ and let » — r4 such that r, — —ooc.
Then, using Lebesgue’s dominated convergence theorem, we obtain
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. . dw
{,m l,m iwv —2iwry JiWV
= o U (w)e™ +ay(w)e e ) ——+O0(ry —r
ot = [ (i@ + algr ) Ja= 00— 7)
as r — ry. Finally, for v fixed and letting r — r4 (or r. — —00), we obtain

iwo d
O e () = [ a2 (5:22)

in view of the Riemann—Lebesgue’s lemma. Also, by definition of ai’[":,

dv
¢ FHA (Ua9a¢) = ay; A w 6 ¢ uuv}/fm(e (b)i
|m§£>0/ H \/ﬂ

In view of the Fourier inversion theorem and the fact that the sp’.eri ~l he -
monics form a basis, we conclude that

(725

asjz = aﬁ_tm and analogously, asim = aﬁ_[r (5.24)
Similarly to (5.17), we can expand Uume in a fundarien. 1| air of solutions

corresponding to both Cauchy horizons CH 4 an  C?., . In paicicular, we can
write

Sme(w, (1)) = BE ()= (@) + o (w )rriw(wm*), (5.25)
where

o —e | <, 22 e L (r =), 5.26

lvg — ™| Spe® =T~ (r—1r). 5.27)

for r. > 0. Similarly to (5.24", we ~an prove
T ‘,m Xl r l,m
e (W) B (o) and +5CHB( ) = bgyy, (). (5.28)

Moreover, from the un. ~»rm joundedness of the reflection and transmission
coefficients (cf. T'ieore m 2, we have the estimate

m ‘ r -
lberi, (@) 158, L= TR, (@) AR, ()

'+
= Z (‘%aH +3aH ’—i—‘%aﬁ —|—‘ZaH )
< O(lag" ()] + las T (W)]) = C(las™ (W) + |ay,™ (w)])
(5.29)

for a constant C' which only depends on the black hole parameters. Here, we
have used the fact that

(Zi:) () (:) (530)

In view of 1 = |T|? — |R|?, we also have

<a€f:> e (ﬂ%) )
ozg[; R ﬁC'HA .
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from which we deduce
lm l,m /,m 0,m
laz, s (W) + [azy, ()] < [bery, (W) + by, (w)]- (5.32)

Estimate (5.29) and (5.32) show the claim in view of (5.8), (5.9), (5.13), and
(5.14). Finally, in view of the Fourier inversion theorem, note that the previ-
ous also justifies the Fourier representation of scattering map (3.20), and the
Fourier representations (3.24) and (3.25). O

5.3. Completing the Proof

Having proven Lemma 5.1 and Proposition 5.1, we can finally show The~em 1
in the following.

Proof of Theorem 1. Since DI, C &] is dense (Lemma 5.1) ang S7: .7, C
&l — DL, c &L, is a bounded injective map (Remark 3.2, P1 vos “io-. 5.1),
we can uniquely extend S{ to the bounded injective scattei .= 1. ap

sT. el — &L, (5.33)

Analogously, in view of Proposition 2.2, Frrars 3.1 3.2, and Propo-
sition 5.1, we can uniquely extend the bounded . iective map B : Dgﬁ C
&Ly — DEy, C & to the bounded injective L« "wa, ! map BT: &L, — &
(Lemma 5.1).

Since BT o ST =1dpr and ST o »¢ =1dp . . dense sets, it also extends

H Cru
to &, and &£}, from which (3.5) for. .. Siilarly, it suffices to check (3.6)
for ¢ € DF,. Indeed, (3.6) holds true for »° € D}, in view of the T energy
identity. O

6. Proof of Theorer. v. B.~.kdown of T' Energy Scattering for
Cosmological Cu star ;s A # 0

In the presence (r a ¢ smdc ngical constant A, the situation regarding the T
energy scattering »rob :m is changed radically. In this section we will con-
sider the svex. em " (anti-) de Sitter—Reissner—Nordstrém black hole interior
(M arN 90,m 1) Wuich is completely analogous to (Mg, 9o, ). We will
as ame o at ., Q,A) € Py as defined in Sect. 3.6. Also, recall that in the
p csence o a cosmological constant it is natural to look at the Klein-Gordon
equ tion
Oyt — b = 0 (6.1)
with mass p = %A for the conformal invariant equation or more general ; = VA
for fixed v € R.
This section is devoted to prove Theorem 6 which relies on the fact that
solutions of the corresponding radial o.d.e. in the vanishing frequency limit
w = 0 generically map bounded solutions at r, = —co to unbounded solutions

at r, = +00. More precisely, for A # 0 we obtain—after separation of variables
for (6.1) and setting dr, = h~'dr—the o.d.e.

—u” + Vypu = wu (6.2)
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for u(ry) = r(r«)R(r«), where

VZ’A:h<hh’+€(£+1) _u> :h<gﬁ+z(z+1) _u> 63)

r r2 r r2
and
e+ = (6.4}
r

Here, consider r(r,) as a function r, and recall that ' denotes the deriv stive
with respect to r,. The presence of the mass and the cosmological coi. tant
leads to a modification of the potential Vp A.

Nevertheless, the potential V; 4 still decays exponentially at +co a . 1 we
(A ~(A)
W, U

can define asymptotic states ugA), ugA), and v%A), véA) forw #0end e

and 5§A)7 f)éA) for w = 0 just as in the case where A = =0 n - Gnition 2.3.

In particular, ﬂgA) and 651\)

bl

remain bounded as v, - —o ¢ ad e — 400,
respectively. In contrast to that, ﬁgA) and 17£A) 0w L oearly in their respec-
tive limits. The next proposition states that in tl.e ~resence of a cosmological
constant, solutions to (6.1) in the case w = 0 ... "h a.» bounded at r, = —o0

do not need to be bounded at r, = 4o~

Proposition 6.1. Fizv € R (e.g., v = 3 f~ e conformal invariant mass) and
fix subextremal black hole parameters (M, Q. \) € Pso. Assume moreover that
(M,Q,A) ¢ D(v), where D(v) C Pse is ¢ jined in the proof and has measure
zero. Then, there exists an lo - (v) € Ny such that we have

a™ = A A, 1,00 + B(lo, A, M, Q)Y (6.5)

with B = B({y, A, M, ¢, # 0. Moreover, PA=C C D(v) for allv € R and there
exists an open sut.c. T w Psl}fo CU CPs and Pse NU = PSAe:O.

Proof. Let v € . be xed. In the case A = 0, we can represent @; with
Legendre yolyn mia » and in particular we have that B(¢,A = 0,M,Q) =0
for a 7 an' 0 < Q| < M. Note that we can write B as

QU(@(A), ’I](A))

B(A 6, M,Q) = — 2L — (i, afV) (6.6)
(o, oY) *

for all A such that (M,Q,A) € Ps.

Step 1: P, C R? is open and has two connected components where either
@ > 0 or Q < 0 For the sake of completeness, we will give a proof of Step 1,
although this seems a quite well-known fact. Note that Py, = PA>0UPA<OU
PA=0is open which can be inferred from its definition.

For the second statement, first note that {Q = 0} N Py, = 0. We will
now show that {@Q > 0} N Py is connected. In Proposition A.3 in Appendix,
we show that P20 N {Q > 0} and PA<° N {Q > 0} are path-connected.
To conclude, note that for every (Mg, Qo, Ag = 0) € PA=0 there exist paths
from (M(],Q(),A()) to both (M(),Q(],G) S ,Ps{}e>0 and (M07Q07—6) € Pé/}a<0 for
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some €(My, Qo) > 0. Together with the fact that P2A=" N {Q > 0} is path-
connected, this shows that {@Q > 0} NPy, is path-connected and similarly that
{Q < 0} NP is path-connected which proves the claim.

Step 2: Py 5 (M,Q,A) — B(£,A, M, Q) is real analytic To show Step 2
we first express (6.5) in r coordinates. Note that for (M, Q, A) € Py equation
(6.5) is equivalent to

T A 5(A A (A .
LD PO ) = AP @) + BEAQ @), (67
where r € (r_,ry),

. 2r Ty T S
z(r) = r+—r_+7‘+—7‘_’ (6.2)

e A o
r(z) = 5% + 3 (6.9)
and 0 < r— < r4. Now, note that Pee 2 (M,D. %) + -~ and P >

(M,Q,A) — ry are real analytic. Moreover, we car \ vite A = (r —r_)(r —
r4)p(r) for a second order polynomial p(r), wher. Ps, 3 * — p(r) is also real
analytic for fixed r. Now, PK(A), I5Z(A), and ng “pew ing in (6.7) are defined
as the unique solutions of

d 2 dR 9 . 2
— (- == (L R— = .
e <(1 x¥)p(r(z)) da:) + ,R—r(x)*vAR=0 (6.10)
satisfying
PN = (=)' 2 00 +2) as x — —1, (6.11)
ap™
di =0 (1) a— -1, (6.12)
PNy —a)asa— 1, (6.13)
ap;
e ) asa — 1, (6.14)
Qa.
- 1
o) = —zlog(l—x)+ 0s(1) asz — 1, (6.15)
aQyy 1
@ _ + O0¢((1 —2x)log(l — x)) as x — 1. (6.16)

dx 2(1 —x2)
Note that (6.10) depends real analytically on (M,Q,A) € P such that
PK(A)(z)7 ]E’Z(A)(:E)7 ~éA) (z) are real analytic functions of (M,Q,A) € P for
€ (—1,1). Hence, Ps. > (M,Q,A) — B(£, A, M, Q) is real analytic.
Step 3: B({y(v), A, M, Q) only vanishes on a set D(v) C Pg of measure
zero. The claim follows from

3B(€, Aa MO; QO)
OA Ao
for some 0 < |Qo| < My. Throughout Step 2, we fix 0 < |Qo| < My and avoid
writing their explicit dependence. First note that that for A = 0 we obtain

£0 (6.17)
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the Legendre functions of first and second kind, i.e., PE(O) = ]5(50) = Py and
~go) = Q and B(0,¢) = 0. Now, define coefficients A(¢,A) and B(£, A) to
satisfy

P = A, NP + B(e, QW (6.18)
and note that (6.17) is equivalent (use that B(¢,0) = B(¢,0) = 0) to

OB(L, \)
0. ST
OA ‘ A=0 7 (
By construction, Pe(A) solves (6.10). Multiplying

d arM (A) (A
o (1 — z®)p(r(x)) dzx + L0+ 1P —r(x)*vAPY =0 (6.20)

by PZ(O) and integrating from x = —1 to x = 1 yie'ds

Yoo d 2 apM (M) 2 )
0= P — | (1—2%)p(r(z)) e +0(0+1,2" —r(x)*vAPY dz.
—1

dx
(6.21)
Using the expansion (6.18) and the rope''»s (v.11)—(6.16) at the end points
x = —1and z = 1 gives after an integ.ation y parts
1 (0)°
_ W [ d 2y oy 3 © _ ()2 AP®
0_/_113"' (dm ((1 2)pC )= )+£(£+1)Pg r(z)?vAP, >d:1:
+ p(r(1)B(E,A). (6.22)

Now, taking 8A| A~ and integrating by parts once again yields

p(r(1)) |A =0 " A)

1 d 0)
-1

L lap©@ !
d/—l U dl‘

U= a2)0n o plr(@) + [P0 0] (o)) | do

i

(1= 20|y 0lr(a)) + v [P0 @m0 | d.

(6.23)

Recall that we are in the subextremal range which guarantees that p(r(1)) # 0.
We will now distinguish two cases, v = 0 and v # 0.

Part I: v = 0. In the case v = 0, we have

dp, |?

< (1 — 2®)p(r(x))d (6.24)

5 1
p(r (1))l a—oB(L, A) = D |a—o / 1

In the case v = 0, we will choose ¢ = 1 such that
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p(r(1))Oala=0B(1, A)

. aA\Azo/ (1 = 2*)p(r(x))de

—1

= Oala=0 B —A(r(m))ﬁdx

_8 T4
2OA|A=0 <(r+—r_)3 /T_ A(r)dr)
: )
(

3
T Mo(r2 — 12
—80A|a=0 ( s (3

ry —r_)3 )
_ o)
~ 15(ry —r-)3la=0
T3 77'3_
e o —Mo(Ti_T3)+Q(2)(7“+—7"—)(74 . ri)l
(7,+ —7‘7)5 |A:\
B §r§_—|—r§ —QMO(T.S‘.-FTE)‘*‘QS(T%&-"', )|
3 (ry —r-)* R’
—8 3 2
15 (3r+ +Ir- + 4T+T7) ‘A- g
-8 2 2
=1 (6My — Qp) < —24M,

The last step is a long but direct comput- .on using that A = r2 — 2Myr +
Q3 — &rt and ry|a—o = Mo+ /MZ — Q2 ie., Q% = ryr_|a—o and 2M, =
r4|a=0 + r—|a=0. Moreover, n ~.e. of the inverse function theorem we have

4
OAln org = ﬁ‘A:o (6.25)
and
!
In|a=or— = _W:r_)‘/\:o‘ (6.26)
. - ~t i v = 0. In this case, we choose £ = 0 such that PZ(O) =1 and
d g

- £— =10. dence,
T

1

p(r1))Oala=0B(L, A) = aA|A:0/ r(z)?vAds
-1

1 2
Ty —7T_ ry 4+r_
= VaA'A:O/ <— + 5 T+ + 9 ) Adz
-1

=v (é(r+ —r )2+ %(r+ + T)Q) ‘A:O #0. (6.27)

This shows that Pse 3 (M, Q,A) — B(¢y(v), M, Q, A) is a non-trivial real
analytic function which zero set D(v) has zero measure. The proof also shows
that PA=% ¢ D(v) and that there exists an open set U C Py, with PA=0 c U
and D(v) NU = PA=Y. O
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Proposition 6.2. Let v € R be fized. Let w # 0, (M,Q,A) € Py, and £ €
No. Then, define completely analogously to Definition 2.4 transmission and
reflection coefficients T (w, €, A) and R(w, £, A) as the unique coefficients such
that

ugA) = 3(w, ¢, A)viA) + R(w, ¢, A)véA) (6.28)

holds.
Now, assume further that (M,Q,A) € Psc\D(v), where D(v) is define .
in Proposition 6.1. Then, there exists an £y = lo(v) such that

lim0 |R(w, )| = lir%|T(w,€0)| = +o0. 1.29)
This shows that ¥ and R have a simple pole at w = 0.

Proof. Fix £y = {y(v) from Proposition 6.1 and (M,Q,A) € P mc that
B(ly, A, M,Q) # 0. Now, note that the o.d.e. implies tha hd— m(au') =0
which shows that 1 = |T|? — |R|%. In particular, either ;7! a d |.1| are both
bounded or both unbounded as w — 0. Also note .hz as w — , we have that
ugA) — ﬂgA) pointwise.

Now, assume for a contradiction that there e ists a sequence w, — 0
such that |T(w,)| and |R(w,)| remain bound «d. . us,

. A . (,
timsup [ul™ | o gy < limsup fu' || o

o)
Wp — Wn—

+ lim sup ||%’U§A) -‘IvéA)HLw((Om)) <C (6.30)

wyp—0

for some constant C' > 0. N.w. 1sing that B({y,A, M,Q) # 0 in Proposi-
tion 6.1, we can choose a 15 € R s..h that \ﬂgA) (r§)] > C which contradicts
the fact that ugA) — ﬂgl\' pe tw.se as wy, — 0. d

Finally, this 2Mows s *, prove Theorem 6 which we restate in the fol-
lowing for the cn wenic 1ce € the reader.

Theorem 6. "~ v ( ® e a fixred Klein—-Gordon mass parameter. (In particular,
we may ctrose v = 5 to cover the conformal invariant case or v = 0 for the
was - «_ate m (1 1).) Consider the interior of a subextremal (anti-) de Sitter—
R issner— Tordastrom black hole with generic parameters (M, Q, A) € Psc\D(v).
(1 2re, D(') C Pse is a set with measure zero defined in Proposition 6.1 (see
Seci. = Moreover D(v) satisfies PA=0 C D(v) and U N D(v) = PA=Y for
some open set U C Pge.)

Then, there exists a sequence (U, )nen of purely ingoing and compactly
supported data on Ha with

”\IJnHE;; =1 for alln (3.41)
such that the solution v, to the Klein—Gordon equation with mass p = vA
DQM,Q,A'(/) —pup =0 (3.42)

arising from ¥,, has unbounded T energy at the Cauchy horizon

[tn Ten llez,, — 00 as n — oc. (3.43)
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Proof. Fix ¢y = {y(v) from Proposition 6.2 such that the reflection and
transmission coefficients blow up as w — 0. Define a sequence of compactly
supported functions ¥,, on Ha by U, (v,0,0) = fn(v)Y0e(6, %), such that
fn € CE(R),

/ W o (w)Pdw = 1 and / 2o )|2dw2€/Rw2|fn(w)|2dw:e (6.31)
for some ¢ > 0.5 Imposing vanishing data on Hp, this gives rise to a uniqu 2

smooth solutions ¥, up to but excluding the Cauchy horizon. Arguments _om
pletely analogous to those given in the proof of Proposition 5.1 show th. -

r? .
[von Ter gz, = T%/sz(liﬁ(w?f)ﬁ +[F(w, )] fn(w)[*dw- "33)
Thus,
1
2 -
o Terc 12, > o5 [ @R, 01 + 120 )P n o) P
2 ’Vl
> ¢ % inf (R[> +!7'2). (6.34)
Z wel-7.7]
Since |R],|T| — 00 as w — 0, also in”,c 1 1) Rl > 0o and inf ¢ 1 1y[T] —
o0 as n — o0o. Thus, as n — oo, we 1 ~vs
||¢n ler H?gr 7 00. (635)

O

7. Proof of Theor< n 7: 3reakdown of 7" Energy Scattering for
the Klein—G~ ~1on = aation

In this last secv. u, w wili prove that for a generic set of Klein—Gordon
masses, the © _es . w exist a T scattering theory on the interior of Reissner—
Nordstrom. for th » Kle a—Gordon equation. For the convenience of the reader,
we nave =suw ‘. Theorem 7.

T eorem ' Consider the interior of a subextremal Reissner—Nordstrom black
hole. T* re exists a discrete set D(M,Q) C R with 0 € D such that the
following holds true. For any p € R\D, there exists a sequence (U,)nen of
purely ingoing and compactly supported data on Ha with

[Wnllgr, =1 for alln (3.44)

6 Such a function can be constructed by setting fy, (v) := ﬁf(%) for smooth f: R — [0,1]
with supp(f) C [~2,2], f I{—1,1)= 1 and some normalization constant ¢ > 0. Indeed,

1

1 L 1
" 2 n Qw: " (4)2 'I’LATL(A)QLAJ: WQAw2::€ 2
'/J Pt = [ PWafelo = [ Af@F <c>0  (632)

n

in view of f(0 = [z f(v)dv > 0.
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such that the solution 1, to the Klein—Gordon equation with mass p

DgM,Q,Aw - ,U/L/) =0 (345)
arising from W, has unbounded T energy at the Cauchy horizon

¥on Ten lleg,, — o0 as n — oo. (3.46)

Proof. The proof of this statement is easier than and similar to the proof of

Theorem 6 and the proofs of the propositions leading up to it. More precisel -,
similar to Sect. 6 we define asymptotic states dg“ ), 17§“ ) and f)é”) and < efine
A(l, 1) and B(¢, ) by @\ = A(¢, 1))5t" + B0, 1)5$". As in Sect. 6. R 3,

B(¢, p) is real analytic and from the o.d.e. —u” 4+ V; ,u = 0 we o} .air

%&“) = / Ve a?dr,, (7.1)
b lumo J-oo 1 4o
where
Wi 00+ 1) (9 0 )
W7M:h<r+r2—u):h\w T—M (72)
and
27 )2
h T r2 (7.3)
as in (2.5). Now, note that
|l
Nenl ™ _ s (7.4)
Or lu=0

which is manifestlv pos “ive from which we can infer, by analyticity, that
B,p) # 0 for Jl p = kK D, where D = ﬁ(M,Q) C R is a discrete set.
This proves the a. alogr us statements to Proposition 6.1 and Proposition 6.2.
The claim 1 1. ~orc 1 7 follows now as in the proof of Theorem 6. 0
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Appendix A. Additional Lemmata
Energy Estimates in the Interior

Lemma A.1. Let U € C°(H) and denote by 1 its evolution in the in. rior.
Then, the non-degenerate N energy of U decays exponentially tor .. iy ~n
every {r = ro} hypersurface for rpcq < 1o < r4. Here, rycq only deyer s on
the black hole parameters.

Proof. This argument is very similar to [17, Proposition 4.2]. W« ly prove it
for the right component of i ™ and clearly only have tc 1o k av 1 =ighborhood of
i*. First, recall the existence of the celebrated rec shif, ~ctor field N satisfying
KN[y] > bJN [ip]ntt for 7y > 7 > rpeq, where n, i *he nC -Lal to a v = const.
hypersurface.”

We set

E(vg) :/ J/;vlaﬁdvol, (A1)
v=vg,r, _r<rj

and apply the energy identity with the re”,hift vector field N in the region
R = {r € [rred,7+],v € [vg,n '}, where vy is large enough such that vy >
sup supp(¥). This gives in vi:w .1 he coarea formula that

E v) E\UOHE/ E(v)dv <0 (A.2)

for every vi > vo - . ps up(¥). Inequality (A.2), smoothness of v — E(v)
and a further a, ‘licati n o1 the energy identity in the region {v > vg,74 >
7> Treg) fin s

/ Jévn?’:‘dvol < Cexp(—bug), (A.3)
VU0, I"=Tred

w ere C is a constant depending on W. This concludes the proof. O

Remarn A.1. By cutting off smoothly, we can clearly approximate ¥ on a
{r = const.} hypersurface with compactly supported functions for any fixed
7 € (Tred, '+ )-

Lemma A.2. Let vy be a smooth solution of the wave equation on Mgn such that
its restriction to the event horizon has compact support and let ro € (Tred, 7+ ).
Then,

/ J it dvol / J ) n#dvol. (A.4)
H {r=ro}

"The normal is fixed by making a choice of a volume form on the null hypersurface.
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Proof. We shall use the vector field S = r~20,_. By potentially making 7,cq
larger, we can assure that the bulk term K*° := V* Jf of the vector field S has
a fixed negative sign in g € (7y.eq, 7+ ). This current is analogous to the current
introduced in [17, par. 4.1.3.2]. Moreover, applying the energy identity in the
region R = {ro < r < r;} and noting that JN[¢],n"|,—r, ~ J[W]n"]r=r
as well as JT[i],nH |y ~ JS[],n" |3 yields

/ JN ), dvol + / K5dvol >, / J 2 dvol. (A.F)
{r=ro} R H
This concludes the proof. O

Analytic properties of the potential and the scattering coeffici ate " the
following, we would like to summarize analytic properties of the pot :ntial
Ve(r) and uq,ug, v1 and v as functions of w. This is similar o . rts ur [5].

First, however, we will show the exponential decay »f t1 » L. -ntial V; as
Ty — T00.

Lemma A.3. We have

|A(r,)| < e+ for . <0 (A.6)
and
IA(r)] Se =" jo. r, > 0. (A7)
Moreover, we have
Vel [VE ()l VY ()l L (14 £(€+1))e® 7 for v, < 0 (A.8)
and
Ve(ra)l, Ve (r)p, Ve (r )L S (L4 €+ 1)) =" for v, > 0. (A.9)
Proof. Note that
-1 = C (r— r,)% e 2k4r2hrs (A.10)

for .o, ta. - C .nly depending on the black hole parameters. Thus, for r, < 0,
w  have

ry —1r(r.) = fr,)e?k+m (A.11)

for a smooth function f(r,), which is uniformly bounded below and above for
ry« < 0. Moreover, we have f'(r.), f”/(r.) — 0 exponentially fast as r, — —oo.
The estimates (A.8) and (A.9) are now straightforward applications of the
chain rule and the fact that dd—ﬁ =5 and A= (r—r_)(r—ry). O

Proposition A.1. The potential V; can be expanded as
Vi(rs) = Z Cp@2rtmrs (A.12)
meN

where |Cp,| See™ ™ for a o > 0.
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Proof. Define the variable

ot
2(r) = 2 = QT (r . — ) (r — 1 )", (A.13)

where C' > 0 is such that z(%) = 1. From the inverse function theorem, it
follows that V;(z) = Vp(r(z)) can be analytically continued in a neighborhood
of z =0 and thus, there exists a Taylor expansion around z = 0 such that

Ve(z) =Y Crz™. (A1)
n=1
Hence,
Vo(r) =) Crpe® 7, (4.15)
n=1
where
o _dvi|  dr
b dz 2=0 a dr r=r4 dz z=0
Ty —T_ SN
- +Ti (ri(ry =220+ 0+1)). (A.16)

Note that the coefficients C,, decay e ponentia " £ st in m. To see this, remark
that we can redefine 7, := r, — p for .~ _ co. stant p > 0. Similarly to (A.15),
we expand V; as

Vo= \" Dpe*r+mi (A.17)

m =y

which shows C,,, = D.e~2* ™. By analyticity, we have |D,,| < |C|™*! for
some C' > 0 and thus,

Cn| See™™™ (A.18)
for a fixed ~ = 2. O
Pre: - “tior A.2. Let £ € N be fized. Then,

sup [ R(w, )] + [T(w, O] Se 1. (A.19)
{| Re(w)[>1}

Moreover, T(w, ) has a pole of order one at w = ik given that £(£ + 1) #
r2 (ry — 3r_).

Proof. Recall, that u; is the unique solution to

u (ry) = ™" +/

— 00

"t =Dy gy (a20)

In [5], it is shown that the Volterra iteration has the form

up () = e (1 + i u§">(r*)> , (A.21)
n=1
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where

(n) } : 2 T
Uy (r*) = Cmn_mn—lc’mn—l_mn—Q ce ledmn ce dmle et

my...mqEN
My > >My

(A.22)

with d,,, = —(4mx (mk, +iw)) L. Note that in view of the bound in (A.18)
one can check that the Volterra iteration for u; converges on w € C\{imr -
m € N} and moreover,

sup  Jui(re =0)] <o 1, C\.23)
{I Re(w)|>1}
sup  |u(re = 0)| <o |wl. \.24)
{IRe(w)[>1}
Analogously, we have that vy is analytic on w € C\{imk_ : ~ € N} and vy is
analytic on w € C\{—imx_ : m € N}. Moreover,
sup  |ui(r. =0)| < 1. (A.25)
{IRe(w)|>1}
sup  [vi(re =0)] <o |w, (A.26)
{I Re(w)|>1}
and
sup .t L =01501, (A.27)
{I Re(w)|>1}
sup_ [0h(r = 0)] S ol (A.28)
{IRe(c 1>

This finally shows (A.19) in v ew of the definition of the transmission and
reflection coeflicients ¥ and .* using Wronskians, cf. Definition 2.4.

Now, we prove the T(w ¢) has a pole of order one at w = ik, assuming
that £(¢ +1) # r?\ry -3 ). First, note that

3 ) = D Oyl e (A.29)

m1EN

he a p = ¢ ~m.er one at w = ik since C7 # 0, see (A.16). Since for n # 1
t] sre is ne term of the form e?*™ in (A.22) as m,, > n, the pole at w = ir
ca. not be :~nceled by the other terms and must occur in u;. Moreover, this
pole . w1 at w = ik is not of higher order that one since d; does not occur
at higher powers than one in the Volterra iteration. This implies that T(w, ¢)
has a pole of order one at w = ik. g

Connectedness of the Subextremal Parameter Range

Proposition A.3. Let the subextremal parameter space P2>0 and PA<O be
defined as in (3.39) and (3.40), respectively. Then, PA>0N{Q > 0}, PA<On

se

{Q >0}, PA>9N{Q < 0} and PA<°N{Q < 0} are path-connected.
Proof. The claim follows for P2>° N {Q > 0} and PA>° N {Q > 0} from the

se se
following continuous parameterizations
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PsAe>°ﬁ{Q>0}={(M,Q,A) €R xR x R:

A=30r1 +r2 +r2 +rpre+rere +rpr)
6M =A(ry +7r_)(ry +re)(r— +7¢),

1

2

Q= <g(r+ +r_ + Tc)(T_T+7“C)>

forO0<r_ <ry < 7‘0} (A.30)

and
PAON{Q >0} = {(M,Q,A) ERXRxR:

—1
A3<i(r++r_)2r+r_§i> ,

1 y
6M = —A (4 (7‘++7“—)2+§i—7“+7’—/ e e
A 3 9 2
Q= (—3r+r <4(r++r)‘+§ \\
/.

for 0 <r_ <ry and & > (j(r o) - r+r_> } (A.31)

in view of the fact that {0 < r_ < rp < r.} and {0 < r— < r4,& >
(lry+r_)?— r4r_)2 ) are hat.. connected as subsets of R3. In the following,
we will show (A.30) an.  (A.3 ).

First, in the a. A . u, note that (A.30) follows from comparing coeffi-
cients of

-3 1
e 2 Mr- Q% — gAT4) =(r—r_)r—ry)(r—r)(r—ro)
fc 7o <0 Zr_ <ry <r. Indeed, we obtain ro = —(r_ +r4 +r.) and (A.30)
caw ~e driuced.

In the case A < 0, note that 2 (r? — 2Mr + Q? — 1Ar*) only has two
real roots 0 < r_ < r4 such that we compare coefficients of

A (r* —2Mr + Q* — 11\7"4) =(r—r)r=r)r =8 -8)

3

1
with &€ = £,.+1;. We obtain 26, = —(r;+r_) and &; > (%(m_ +r_)? - r+r_) 2
to guarantee A < 0. Now, a direct computation shows (A.31).

Completely analogously, we can show path-connectedness for PA>0 N
{Q < 0} and PA<°N {Q < 0}. O
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