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A Scattering Theory for Linear Waves on the
Interior of Reissner–Nordström Black Holes

Christoph Kehle and Yakov Shlapentokh-Rothman

Abstract. We develop a scattering theory for the linear wave equation
�gψ = 0 on the interior of Reissner–Nordström black holes, connect-
ing the fixed frequency picture to the physical space picture. Our main
result gives the existence, uniqueness and asymptotic completeness of
finite energy scattering states. The past and future scattering states are
represented as suitable traces of the solution ψ on the bifurcate event and
Cauchy horizons. The heart of the proof is to show that after separation of
variables one has uniform boundedness of the reflection and transmission
coefficients of the resulting radial o.d.e. over all frequencies ω and �. This
is non-trivial because the natural T conservation law is sign-indefinite in
the black hole interior. In the physical space picture, our results imply
that the Cauchy evolution from the event horizon to the Cauchy hori-
zon is a Hilbert space isomorphism, where the past (resp. future) Hilbert
space is defined by the finiteness of the degenerate T energy fluxes on
both components of the event (resp. Cauchy) horizon. Finally, we prove
that, in contrast to the above, for a generic set of cosmological constants
Λ, there is no analogous finite T energy scattering theory for either the
linear wave equation or the Klein–Gordon equation with conformal mass
on the (anti-) de Sitter–Reissner–Nordström interior.
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1. Introduction

One of the most stunning predictions of general relativity is the formation
of black holes, defined by the property that information cannot propagate
from their interior region to outside far-away observers. Fortunately, we can
count ourselves among the latter; nevertheless, if a group of physicists were so
courageous as to cross the event horizon and enter a black hole, they could still
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very well perform experiments and compare the outcomes among themselves.
Indeed, the problem of determining the fate of these black hole explorers (and
their laboratories) has led to some of the most central conceptual puzzles in
gravitational physics.

In view of the above, there has been a lot of recent activity analyzing
the Cauchy problem on black hole interiors, e.g., [15–17,31,47]. However, for
certain physical processes it is more natural to consider the scattering problem
(see [18] for scattering on the exterior of black holes). With this paper, we
initiate the mathematical study of the finite energy scattering problem on
black hole interiors. Specifically, we will consider solutions of the wave equation
on what can be viewed as the most elementary interior, that of Reissner–
Nordström. The Reissner–Nordström metrics constitute a family of spacetimes,
parameterized by mass M and charge Q, which satisfy the Einstein–Maxwell
system in spherical symmetry [41,45] and admit an additional Killing vector
field T . For vanishing charge Q = 0, the family reduces to Schwarzschild.
We shall moreover restrict in the following to the subextremal case where
0 < |Q| < M . In addition to the bifurcate event horizon, these black hole
interiors then admit an additional bifurcate inner horizon, the so-called Cauchy
horizon. Our past and future scattering states will be defined as suitable traces
of the solution on the bifurcate event horizon and bifurcate Cauchy horizon,
respectively, restricted to have finite T energy flux on each component of the
horizons.

In the rest of the introduction we will state our main results for the
scattering problem on the interior of Reissner–Nordström (Theorems 1–5),
relate them to existing literature in fixed frequency scattering, and draw links
to various recent results in the interior and exterior of black holes. Finally, we
will see that the existence of a bounded scattering map for the wave equation
on Reissner–Nordström turns out to be a very fragile property; we shall show
that there does not exist an analogous scattering theory in the presence of a
cosmological constant (Theorem 6) or Klein–Gordon mass (Theorem 7).

The scattering problem on Reissner–Nordström interior. In this paper, we
will establish a scattering theory for finite energy solutions of the linear wave
equation,

�gψ = 0, (1.1)

on the interior of a Reissner–Nordström black hole, from the bifurcate event
horizon H = HA ∪ HB ∪ B− to the bifurcate Cauchy horizon CH = CHA ∪
CHB∪B+, as depicted in Fig. 1. The first main result of our paper is Theorem 1
(see Sect. 3.1) in which we will show existence, uniqueness and asymptotic
completeness of finite energy scattering states. In this context, existence and
uniqueness mean that for given finite energy data ψ0 on the event horizon
H, there exist unique finite energy data on the Cauchy horizon CH arising
from ψ0 as the evolution of (1.1). With asymptotic completeness we denote
the property that all finite energy data on the Cauchy horizon CH can indeed
be achieved from finite energy data on the event horizon H. This provides
a way to construct solutions with desired asymptotic properties which is a
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Figure 1. Penrose diagram of the interior of the Reissner–
Nordström black hole and visualization of the scattering map

necessary first step to properly understand quantum theories in the interior
of a Reissner–Nordström black hole (cf. [14,23,51]). The energy spaces on the
event and Cauchy horizon are associated with the Killing field and generator
of the time translation T . Indeed, T is null on the horizons and, in particular,
is the generator of the event and Cauchy horizon H and CH. Because of the
sign-indefiniteness of the energy flux of the vector field T on the bifurcate
event (resp. Cauchy) horizon [see already (1.4)], we define our energy space
by requiring the finiteness of the T energy on both components separately of
the event (resp. Cauchy) horizon. These define Hilbert spaces with respect to
which the scattering map is proven to be bounded.

Finally, it is instructive to draw a comparison between the interior of
Reissner–Nordström and the interior of Schwarzschild (Q = 0). As opposed
to Reissner–Nordström discussed above, the Schwarzschild interior terminates
at a singular boundary at which solutions to (1.1) generically blow up (see
[15]). In contrast, the non-singular and, moreover, Killing, Cauchy horizons
(see Fig. 1) of Reissner–Nordström immediately yield natural Hilbert spaces
of finite energy data to consider. In view of this, Reissner–Nordström with
Q �= 0 can be considered the most elementary interior on which to study the
scattering problem. Furthermore, in view of the recent work [7], we have that
the causal structure of Reissner–Nordström is stable in a weak sense (see the
discussion below about related works in the interior).

Fixed frequency scattering. It is well known that the wave equation (1.1) on
Reissner–Nordström spacetime allows separation of variables which reduces it
to the radial o.d.e.

u′′ − V�u + ω2u = 0, (1.2)
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with potential V� [see already (2.37)], where ω ∈ R is the time frequency and
� ∈ N0 is the angular parameter. Indeed, most of the existing literature con-
cerning scattering of waves in the interior of Reissner–Nordström mainly con-
siders fixed frequency solutions, e.g., [5,21,22,33–35,52]. For a purely incoming
(i.e., supported only on HA) fixed frequency solution with parameters (ω, �),
we can associate transmission and reflection coefficients T(ω, �) and R(ω, �).
The transmission coefficient T(ω, �) measures what proportion of the incom-
ing wave is transmitted to CHB , whereas the reflection coefficient specifies the
proportion reflected to CHA. An essential step to go from fixed frequency scat-
tering to physical space scattering is to prove uniform boundedness of T(ω, �)
and R(ω, �). This is non-trivial in view of the discussion of the energy identity
(1.4). In this paper, we indeed obtain this uniform bound in Theorem 2 (see
Sect. 3.2). In particular, the regime ω → 0, � → ∞ is the most involved fre-
quency range to prove uniform boundedness. As we shall see, the proof relies
on an explicit computation at ω = 0 (see [21]) together with a careful analysis
of special functions and perturbations thereof.

The uniform boundedness of the scattering coefficients is the main ingre-
dient to prove the boundedness of the scattering map in Theorem 1. Moreover,
it allows us to connect the separated picture to the physical space picture by
means of a Fourier representation formula. This is stated as Theorem 3 (see
Sect. 3.3). A somewhat surprising, direct consequence of the Fourier repre-
sentation of the scattered data on the Cauchy horizon is that purely incoming
compactly supported data lead to a solution which vanishes at the future bifur-
cation sphere B+. This is moreover shown to be a necessary condition for the
existence of a bounded scattering map (Corollary 3.1).

Comparison to scattering on the exterior of black holes. On the exterior of
black holes, the scattering problem has been studied more extensively; see the
pioneering works [2,3,11–13], the book [18] and related results on conformal
scattering in [32,37,40,49]. Note that for the exterior of a Schwarzschild or
Reissner–Nordström black hole, the uniform boundedness of the scattering
coefficients or equivalently, the boundedness of the scattering map, can be
viewed a posteriori1 as a consequence of the global T energy identity∫

H−
|Tψ|2 +

∫
I−

|Tψ|2 =
∫

H+
|Tψ|2 +

∫
I+

|Tψ|2. (1.3)

Considering only incoming radiation from I−, this statement translates into
|R|2 + |T|2 = 1 for the reflection coefficient R and transmission coefficients
T. In the interior, however, due to the different orientations of the T vector
field on the horizons (cf. Fig. 2), boundedness of the scattering map is not at
all manifest. In particular, the global T energy identity on the interior of a
Reissner–Nordström black hole reads∫

HA

|Tψ|2 −
∫

HB

|Tψ|2 =
∫

CHB

|Tψ|2 −
∫

CHA

|Tψ|2 (1.4)

1Note that proving (1.3) requires first establishing some form of qualitative decay toward
i+ and i−.
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Figure 2. Interior of Reissner–Nordström (left) and exterior
of Schwarzschild or Reissner–Nordström (right). In both dia-
grams, the arrows denote the direction of the T Killing vector
field. Note that we have the identifications HA = H+ and
B− = B

from which we cannot deduce boundedness of the scattering map even a poste-
riori. (Indeed, identity (1.4) corresponds only to the “pseudo-unitarity” state-
ment of Theorem 1.) Again, considering only ingoing radiation from HA, this
translates to

|T(ω, �)|2 − |R(ω, �)|2 = 1 (1.5)

for the reflection coefficient R and the transmission coefficient T. Hence, while
for fixed |ω| > 0 and �, it is straightforward to show that T and R are finite,
there is no a priori obvious obstruction from (1.5) for these scattering coeffi-
cients to blow up in the limits ω → 0,±∞ and � → ∞.

Moreover, note that in the exterior, the Killing field T is timelike, so
the radial o.d.e. (1.2) should be considered as an equation for a fixed time
frequency wave on a constant time slice. In the interior, however, the Killing
field T is spacelike, so the radial o.d.e. (1.2) is rather an evolution equation
for a constant spatial frequency.

The Schwarzschild family can be viewed as a special case (a = 0) of the
two-parameter Kerr family, describing rotating black holes with mass param-
eter M and rotation parameter a [26].2 On the exterior of Kerr many other
difficulties arise: superradiance, intricate trapping, presence of ergoregion, etc.
[8]. Nevertheless, using the decay results in [8], a definitive physical space scat-
tering theory for Kerr black holes has been established in [9] (see also the earlier
[19]). The proof on the exterior of Kerr involved first establishing a scattering

2Both Kerr and Reissner–Nordström can be viewed as special cases of the Kerr–Newman
spacetime. For decay results on Kerr–Newman, see [6].
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map from past null infinity I− to a constant time slice Σ and then concatenat-
ing that map with a second scattering map from Σ to the future event horizon
H+ and future null infinity I+. In the interior, however, we will directly show
the existence of a “global” scattering map from the event horizon H to the
Cauchy horizon CH. Indeed, due to blueshift instabilities (see [10]), we do not
expect that the analogous concatenation of scattering maps (event horizon H
to spacelike hypersurface Σ and then from Σ to the Cauchy horizon CH) as in
the Kerr exterior, to be bounded in the interior of Reissner–Nordström.

Injectivity of the reflection map and blueshift instabilities. We can also con-
clude from our work that there is always non-vanishing reflection to the Cauchy
horizon CHA arising from non-vanishing purely ingoing radiation at HA. This
follows from the fact that in the separated picture and for fixed �, the reflection
coefficient R(ω, �) can be analytically continued to the strip | Im(ω)| < κ+ and
hence, only vanishes on a discrete set of points on the real axis. This is shown
in Theorem 4 (see Sect. 3.4).

We will also deduce from the Fourier representation of the scattered data
on the Cauchy horizon CH, and a suitable meromorphic continuation of the
transmission coefficient, that there exist purely incoming compactly supported
data on the event horizon H leading to solutions which fail to be C1 on the
Cauchy horizon CH. This C1-blowup of linear waves puts on a completely
rigorous footing the pioneering work of Chandrasekhar and Hartle [5]. We
state this as Theorem 5 (see Sect. 3.5).

For generic solutions arising from localized data on an asymptotically flat
hypersurface, one expects a stronger instability, namely non-degenerate energy
blowup at the Cauchy horizon CH. Such non-degenerate energy blowup was
proven in [27] for generic compactly supported data on an asymptotically flat
Cauchy hypersurface. Later, for the more difficult Kerr interior, non-degenerate
energy blowup was proven in [31] assuming certain polynomial lower bounds
on the tail of incoming data on the event horizon H and in [10] for solutions
arising from generic initial data along past null infinity I− with polynomial
tails.

Finally, we mention the forthcoming work [30] which studies the problem
of non-degenerate energy blowup from a scattering theory perspective and
also uses the non-triviality of reflection to establish results related to mass
inflation for the spherically symmetric Einstein–Maxwell–scalar field system
(cf. [28,29]).

Related results on the interior. There has been a lot of recent progress studying
the interior of black holes. In particular, new insights were gained concerning
the stability of the Cauchy horizon and the strong cosmic censorship conjec-
ture.

For the Cauchy problem for (1.1) on the interior of both a fixed
Kerr and a Reissner–Nordström black hole, the works [16,17,24] estab-
lish uniform boundedness (in L∞) and continuity up to and including the
Cauchy horizon for solutions arising from smooth and compactly supported
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data on an asymptotically flat spacelike hypersurface. Such data in par-
ticular give rise to solutions with polynomial decay along the event hori-
zon.

In contrast, for the scattering problem considered in the present paper,
we are required to work with spaces which are symmetric with respect to the
event and Cauchy horizons. This naturally leads to the rougher class of finite
T energy data in the statement of Theorem 1. Note that for such data on the
Cauchy horizon, continuity or boundedness (in L∞) does not necessarily hold
true.

Turning finally to the full nonlinear dynamics of the Einstein equations, it
is shown in [7] that the Kerr Cauchy horizon is C0-stable. Thus, the existence
of a Cauchy horizon, a very natural setting parameterizing scattering data in
the interior, is not a pure artifact of symmetry but rather a stable property
at least in a weak sense. On the other hand, in [28,29,50] it is proven that
for a suitable Einstein-matter system under spherical symmetry, the Cauchy
horizon, while C0-stable, is generically C2-unstable. Finally, we mention that
for the Schwarzschild black hole (Q = 0), which does not admit a Cauchy
horizon, it is shown in [15] that solutions to (1.1) generically blow up at the
spacelike singularity {r = 0}.

Breakdown of T energy scattering for Λ �= 0 or μ �= 0. If a cosmological
constant Λ ∈ R is added to the Einstein–Maxwell system, we can consider
the analogous (anti-) de Sitter–Reissner–Nordström family of solutions whose
interiors have the same Penrose diagram as depicted in Fig. 1. For very slowly
rotating Kerr–de Sitter and Reissner–Nordström–de Sitter spacetimes, bound-
edness, continuity, and regularity up to and including the Cauchy horizon has
been shown for solutions to (1.1) arising from smooth and compactly sup-
ported data on a Cauchy hypersurface [25]. However, remarkably, there is no
analogous T energy scattering theory for either the linear wave equation (1.1)
or the Klein–Gordon equation with conformal mass. This is the statement of
Theorem 6 (see Sect. 3.6). The reason for this failure is the unboundedness
of the transmission coefficient T and reflection coefficients R in the vanishing
frequency limit ω → 0. To be more precise, we will prove that there does not
exist a T energy scattering theory of the wave or Klein–Gordon equation in the
interior of a (anti-) de Sitter–Reissner–Nordström black hole for generic subex-
tremal black hole parameters (M,Q,Λ). In particular, for fixed 0 < |Q| < M ,
there is an ε > 0 such that there does not exist a T energy scattering theory
for all 0 �= |Λ| < ε.

Similarly, we prove in Theorem 7 (see Sect. 3.7) that there does not exist
a T energy scattering theory for the Klein–Gordon equation �gψ − μψ = 0
on the Reissner–Nordström interior for a generic set of masses μ. This is in
contrast to the exterior, where T energy scattering theories were established
for massive fields in [3,36].

It remains an open problem to formulate an appropriate scattering theory
in the cosmological setting and for the Klein–Gordon equation as well as for
the interior of Kerr.
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Outline. This paper is organized as follows. In Sect. 2, we shall set up the
spacetime, introduce the relevant energy spaces, and define the scattering coef-
ficients in the separated picture. In Sect. 3, we state the main results of this
paper, Theorems 1–7. Section 4 is devoted to the proof of Theorem 2. Then,
the statement of Theorem 2 allows us to prove Theorem 1 in Sect. 5. Finally,
in the last two sections are show our non-existence results: In Sect. 6, we prove
Theorem 6 and in Sect. 7, we give the proof of Theorem 7.

2. Preliminaries

In this section, we will define the background differentiable structure and met-
ric for the Reissner–Nordström spacetime and introduce some convenient coor-
dinate systems.

2.1. Interior of the Subextremal Reissner–Nordström Black Hole

The global geometry of Reissner–Nordström was first described in [20]. For
completeness, we will explicitly construct in this section the coordinates for the
region considered. We start, in Sect. 2.1.1, by defining a Lorentzian manifold
corresponding to the interior of the Reissner–Nordström black hole without
the horizons. Then, in Sect. 2.1.2, we will attach the boundaries which will
correspond to the event horizon and Cauchy horizon.

2.1.1. The Interior Without Boundary. We will now give an explicit descrip-
tion of the differential structure and metric. The Reissner–Nordström solutions
[41,45] are a two-parameter family of spherically symmetric spacetimes with
mass parameter M ∈ R and electric charge parameter Q ∈ R solving the
Einstein–Maxwell system

Ricμν − 1
2
gμνR = 8πTμν := 8π

(
1
4π

(
F λ

μ Fλν − 1
4
gμνFλρF

λρ

))
,

∇μFμν = 0, ∇[μFνλ] = 0. (2.1)

In this paper, we consider the subextremal family of black holes with parameter
range 0 < |Q| < M . Define the manifold M by

M = R × (r−, r+) × S
2, (2.2)

where r± = M ±
√

M2 − Q2 > 0. The manifold is parameterized by the
standard coordinates t ∈ R, r ∈ (r−, r+), and a choice of spherical coordinates
(θ, φ) on the sphere S

2. We denote the global coordinate vector field ∂t by T :

T :=
∂

∂t
. (2.3)

Using the above coordinates, we equip M with the Lorentzian metric

gQ,M = −
(

1 − 2M

r
+

Q2

r2

)
dt ⊗ dt +

(
1 − 2M

r
+

Q2

r2

)−1

dr ⊗ dr + r2
/g

S2 ,

(2.4)
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HA
=

{u
=

−∞}H
B = {v = −∞}

CH
A = {v =∞}CH

B
=

{u
=

∞}

i+i+

Figure 3. Penrose diagram of M; formally we have denoted
the boundary (not part of the manifold) by H = HA ∪ HB

and CH = CHA ∪ CHB

where /g
S2 is the round metric on the 2-sphere. We also define the quantities

Δ := r2 − 2Mr + Q2 = (r − r+)(r − r−) and h :=
Δ
r2

. (2.5)

Furthermore, define r∗ by

dr∗ :=
r2

Δ
dr, (2.6)

where we choose r∗(
r++r−

2 ) = 0 for definiteness. Thus,

r∗(r) = r +
1

2κ+
log |r − r+| +

1
2κ−

log |r − r−| + C (2.7)

for a constant C only depending on the black hole parameters and

κ± =
r± − r∓

2r2±
. (2.8)

We also introduce null coordinates

v = r∗ + t and u = r∗ − t (2.9)

on M. The Penrose diagram of M is depicted in Fig. 3.

2.1.2. Attaching the Event and Cauchy Horizon. Now, we will attach the
Cauchy and event horizon to the manifold. The Cauchy horizon character-
izes the future boundary up to which the spacetime is uniquely determined as
a solution to the Einstein–Maxwell system arising from data on the event hori-
zon. Although the metric is smoothly extendible beyond the Cauchy horizon,
any such extension fails to be uniquely determined from initial data, leading
to a severe failure of determinism.

Attaching the event and Cauchy horizon gives rise to a manifold with
corners. To do so, we first define the following two pairs of null coordinates.
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Let UH : R → (0,∞) and VH : R → (0,∞) be smooth and strictly increas-
ing functions such that

• UH(u) = u for u ≥ 1, VH(v) = v for v ≥ 1,
• UH(u) → 0 as u → −∞ , VH(v) → 0 as v → −∞,
• there exists a u+ ≤ 1 such that dUH

du = exp(κ+u) for u ≤ u+,
• there exists a v+ ≤ 1 such that dVH

dv = exp(κ+v) for v ≤ v+.
This defines—in mild abuse of notation—the null coordinates UH : M →
(0,∞) via UH(u) and VH : M → (0,∞) via VH(v), where u, v are the null
coordinates defined in (2.9).

Similarly, let UCH : R → (−∞, 0) and VCH : R → (−∞, 0) be smooth and
strictly increasing functions such that

• UCH(u) = u for u ≤ −1, VCH(v) = v for v ≤ −1,
• UCH(u) → 0 as u → ∞ , VCH(v) → 0 as v → ∞,
• there exists a u+ ≥ −1 such that dUCH

du = exp(κ−u) for u ≥ u+,
• there exists a v+ ≥ −1 such that dVCH

dv = exp(κ−v) for v ≥ v+.
As above, this defines null coordinates UCH : M → (0,∞) via UCH(u) and
VCH : M → (0,∞) via VCH(v), where u, v are the null coordinates defined
in (2.9).
To define the event horizon, we consider the coordinate chart (UH, VH, θ, φ).
We now define the event horizon without the bifurcation sphere as the union

H0 := HA ∪ HB , (2.10)

where

HA := {UH = 0} × (0,∞) × S
2 and HB := (0,∞) × {VH = 0} × S

2.
(2.11)

Analogously, we also define the Cauchy horizon without the bifurcation sphere
in the coordinate chart (UCH, VCH, θ, φ) as the union

CH0 := CHA ∪ CHB , (2.12)

where

CHA := (0,∞) × {VCH = 0} × S
2 and CHB := {UCH = 0} × (0,∞) × S

2.
(2.13)

Then, we define the interior of the Reissner–Nordström spacetime without
the bifurcation sphere as the manifold with boundary

M̃ := M ∪ H ∪ CH. (2.14)

The Lorentzian metric on M extends smoothly to M̃. In particular, the bound-
ary of M̃ consists of four disconnected null hypersurfaces. In Fig. 4, we have
depicted its Penrose diagram. In mild abuse of notation, we shall also use the
coordinate systems

(UH, v, θ, φ) on M ∪ HA, (2.15)
(u, VH, θ, φ) on M ∪ HB, (2.16)
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(u, VCH, θ, φ) on M ∪ CHA, (2.17)
(UCH, v, θ, φ) on M ∪ CHB . (2.18)

In particular, we can write

HA = {UH = 0} × {v ∈ R} × S
2, (2.19)

HB = {u ∈ R} × {VH = 0} × S
2, (2.20)

CHA = {u ∈ R} × {VCH = 0} × S
2, (2.21)

CHB = {UCH = 0} × {v ∈ R} × S
2. (2.22)

Note also that the vector field T , initially defined on M in (2.3), extends
to a smooth vector field on M̃ with

T �HA
=

∂

∂v
�HA

, (2.23)

where ∂
∂v is the coordinate derivative with respect to local chart defined in

(2.15). Similarly, we have

T �HB
= − ∂

∂u
�HB

w.r.t. to the local chart (2.16), (2.24)

T �CHA
= − ∂

∂u
�CHA

w.r.t. to the local chart (2.17), (2.25)

T �CHB
=

∂

∂v
�CHB

w.r.t. to the local chart (2.18). (2.26)

Note that T is a Killing null generator of the Killing horizons HA,HB , CHA,
and CHB . Recall also that ∇T T �CH= κ−T �CH and ∇T T �H= κ+T �H, where
κ± is defined by (2.8).

At this point, we note that we can attach corners to H0 and CH0 to extend
M̃ smoothly to a Lorentzian manifold with corners. To be more precise, we
attach the past bifurcation sphere B− to H0 as the point (UH, VH) = (0, 0).
Then, define H := H0 ∪ B−. Similarly, we can attach the future bifurcation
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HA
=

{u
=

−∞}H
B = {v = −∞}

CH
A = {v =∞}CH

B
=

{u
=

∞}

i+i+

B+

B−

Figure 5. Penrose diagram of MRN which includes the bifur-
cate spheres B+ and B−

sphere B+ to the Cauchy horizon which will be denoted by CH. We call the
resulting manifold MRN. Further details are not given since the precise con-
struction is straightforward and the metric extends smoothly. Moreover, the
T vector field extends smoothly to B+ and B− and vanishes there. Its Penrose
diagram is depicted in Fig. 5.

Further details about the coordinate systems can be found in [42]. From
a dynamical point of view, we can also consider the spacetimes (MRN, gM,Q)
as being contained in the Cauchy development of a spacelike hypersurface with
two asymptotically flat ends solving the Einstein–Maxwell system in spherical
symmetry.

2.2. The Characteristic Initial Value Problem for the Wave Equation

In the context of scattering theory, we will be interested in solutions to the
wave equation (1.1) arising from suitable characteristic initial data. Recall the
following well-posedness result for (1.1) with characteristic initial data.

Proposition 2.1. Let Ψ ∈ C∞
c (H) be smooth compactly supported data on the

event horizon H. Then, there exists a unique smooth solution ψ to (1.1) on
MRN\CH such that ψ �H= Ψ.

The previous proposition is well known, see [38,46]. Analogously, we have
the following for the backward evolution.

Proposition 2.2. Let Ψ ∈ C∞
c (CH) be smooth compactly supported data on the

Cauchy horizon CH. Then, there exists a unique smooth solution ψ to (1.1)
on MRN\H such that ψ �CH= Ψ.
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2.3. Hilbert Spaces of Finite T Energy on Both Horizon Components

Now, we are in the position to define the Hilbert spaces on the event H =
HA ∪ HB ∪ B− and Cauchy horizon CH = CHA ∪ CHB ∪ B+, respectively.

We will start with constructing the Hilbert space on the event horizon.
Roughly speaking, it will be defined by requiring finiteness of the T energy
flux on HA minus the T energy flux on HB . More precisely, let C∞

c (H) be the
vector space of smooth compactly supported functions on H. Recall that the
Killing vector field T is also a null generator of H and vanishes at the past
bifurcation sphere B−. This allows us to define the norm ‖ · ‖2

ET
H

on the vector
space C∞

c (H) as

‖ψ‖2
ET

H
:=

∫
HA

JT
μ [ψ]nμ

HA
dvolnHA

−
∫

HB

JT
μ [ψ]nμ

HB
dvolnHB

, (2.27)

where ψ ∈ C∞
c (H), T[ψ] is the energy momentum tensor

T[ψ]μν := Re(∂μψ∂νψ) − 1
2
gμν∂αψ∂αψ, (2.28)

and JT [ψ] := T[ψ](T, ·). In (2.27), the fluxes are defined with respect to future
directed normal vector fields nHA

and nHB
on HA and HB , respectively.3

Moreover, recall from Fig. 2 that T is future (resp. past) directed on HA (resp.
HB). Thus, the terms arising in (2.27) satisfy

∫
HA

JT
μ [ψ]nμ

HA
dvol ≥ 0 and

− ∫
HB

JT
μ [ψ]nμ

HB
dvol ≥ 0. Again, in view of the fact that on the component

HB the normal vector field T is past directed, we can choose nHA
:= T �HA

and nHB
:= −T �HB

as the future directed normal vector fields on HA and HB ,
respectively, such that we can realize the norm (2.27) as [using the coordinate
charts (2.15) and (2.16)]

‖ψ‖2
ET

H
=
∫

R×S2
|∂vψ �HA

|2dv sin θdθdϕ +
∫

R×S2
|∂uψ �HB

|2du sin θdθdϕ.

(2.29)

The norm (2.27) defines an inner product, hence its completion is a Hilbert
space.

Definition 2.1. We define the Hilbert space of finite T energy ET
H on both

components of the event horizon as the completion of smooth and compactly
supported functions C∞

c (H) on the event horizon H = HA ∪ HB ∪ B− with
respect to the norm (2.27).

Analogously, we can consider the vector space C∞
c (CH) and define the

norm ‖ · ‖2
ET

CH
as the T energy flux on the component CHB minus the T energy

flux on the component CHA:

‖ψ‖2
ET

CH
:=

∫
CHB

JT
μ [ψ]nμ

CHB
dvolnCHB

−
∫

CHA

JT
μ [ψ]nμ

CHA
dvolnCHA

. (2.30)

3A choice of such normal vectors fixes the volume form. Also note that this is the natural
setup for energy estimates.
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Again, in view of the orientation of the T vector field (cf. Fig. 2), this norm
can be represented as [using the coordinate charts (2.17) and (2.18)]

‖ψ‖2
ET

CH
=
∫

R×S2
|∂vψ �CHB

|2dv sin θdθdϕ +
∫

R×S2
|∂uψ �CHA

|2du sin θdθdϕ.

(2.31)

Definition 2.2. We define the Hilbert space of finite T energy ET
CH on both

components of the Cauchy horizon as the completion of smooth and compactly
supported functions C∞

c (CH) the Cauchy horizon CH = CHA∪CHB ∪B+ with
respect to the norm (2.30).

2.4. Separation of Variables

In this section, we show how the radial o.d.e. (1.2) arises from decomposing a
general solution in spherical harmonics and Fourier modes. For concreteness,
let ψ be a smooth solution to �gψ = 0 such that on each {r = const.} slice,
ψ is compactly supported in the t variable.4 Then, we can define its Fourier
transform in the t variable and also decompose ψ in spherical harmonics to
end up with

ψ̂m�(r, ω) :=
∫

R×S2
e−iωtYm�(θ, φ)ψ(t, r, θ, φ) sin θdθdφ

dt√
2π

. (2.32)

Due to the compact support on constant r slices, the wave equation �gψ = 0
implies that

ψ̂m�(r, ω) =: R
(ω)
m� (r) =: R(r) (2.33)

satisfies the radial o.d.e.

Δ
d
dr

(
Δ

d
dr

R

)
− Δ�(� + 1)R + r4ω2R = 0. (2.34)

In Sect. 4, we will analyze solutions to (2.34) and denote a solution thereof
with R(r). Moreover, it is useful to introduce the function u defined as

u(r) := rR(r) (2.35)

and consider u = u(r(r∗)) as a function of r∗, which is defined in (2.7). Using
the r∗ variable, the o.d.e. (2.34) finally reduces to

u′′ + (ω2 − V�)u = 0 (2.36)

on the real line with potential

V = V� = Δ
(

r(r+ + r−) − 2r+r−
r3

+
�(� + 1)

r4

)
. (2.37)

In Lemma A.3 in Appendix, it is proven that, as a function of r∗, the potential
V� decays exponentially as r∗ → ±∞. In particular, this indicates that we
have asymptotic free waves (asymptotic states) near the event and Cauchy
horizon of the form e±iωr∗ as |r∗| → ∞. In order to construct these solutions,
we use the following proposition for Volterra integral equations (see Lemma
2.4 of [48]).

4Note that we will prove later that such solutions arise from data which are dense in ET
H.
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Proposition 2.3. Let x0 ∈ R ∪ {+∞} and g ∈ L∞(−∞, x0). Suppose the
integral kernel K satisfies

α :=
∫ x0

−∞
sup

{x:y<x<x0}
|K(x, y)|dy < ∞. (2.38)

Then, the Volterra integral equation

f(x) = g(x) +
∫ x

−∞
K(x, y)f(y)dy (2.39)

has a unique solution f satisfying

‖f‖L∞(−∞,x0) ≤ eα‖g‖L∞(−∞,x0). (2.40)

If in addition K is smooth in both variables and∫ x0

−∞
sup

{x:y<x<x0}
|∂k

xK(x, y)|dy < ∞ (2.41)

for all k ∈ N, then the solution f is smooth on (−∞, x0) and the derivatives
can be computed by formal differentiation of (2.39).

Remark 2.1. Analogous results as in Proposition 2.3 also hold true for Volterra
integral equations on intervals of the form (x0, x1) or (x0,+∞).

This allows us to define the following fundamental pairs of solutions to
the o.d.e. (2.36). In view of the exponential decay of the potential, it is straight-
forward to check that the assumptions of Proposition 2.3 are satisfied.

Definition 2.3. Let ω ∈ R and � ∈ N0 be fixed. Define asymptotic state solu-
tions u1 and u2 of the radial o.d.e. (2.36) as the unique solutions to the Volterra
integral equations

u1(ω, r∗) = eiωr∗ +
∫ r∗

−∞

sin(ω(r∗ − y))
ω

V (y)u1(ω, y)dy, (2.42)

u2(ω, r∗) = e−iωr∗ +
∫ r∗

−∞

sin(ω(r∗ − y))
ω

V (y)u2(ω, y)dy. (2.43)

Analogously, define v1 and v2 as the unique solutions to the Volterra integral
equations

v1(ω, r∗) = eiωr∗ −
∫ ∞

r∗

sin(ω(r∗ − y))
ω

V (y)v1(ω, y)dy, (2.44)

v2(ω, r∗) = e−iωr∗ −
∫ ∞

r∗

sin(ω(r∗ − y))
ω

V (y)v2(ω, y)dy. (2.45)

For ω = 0, we set sin(ω(r∗−y))
ω �ω=0= r∗ −y in the integral kernel in which

case u1 and u2 coincide. We define

ũ1(r∗) := u1(0, r∗) = u2(0, r∗) (2.46)

and similarly,

ṽ1(r∗) := v1(0, r∗) = v2(0, r∗). (2.47)
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Since u1(0, r∗) = u2(0, r∗) for ω = 0, there exists another linearly independent
fundamental solution ũ2 solving the Volterra integral equation

ũ2(r∗) = r∗ +
∫ r∗

−∞
(r∗ − y)V (y)ũ2(y)dy. (2.48)

Similarly, we also have another fundamental solution, which is linearly inde-
pendent from ṽ1, solving

ṽ2(r∗) = r∗ −
∫ ∞

r∗
(r∗ − y)V (y)ṽ2(y)dy. (2.49)

Since r∗ is not uniformly bounded, we cannot apply Proposition 2.3 to con-
struct ũ2 and ṽ2. Nevertheless, after switching to coordinates which are regular
at H or CH, the existence of the desired solutions follows immediately from
the usual local theory of regular singularities (see [44]).

Remark 2.2. Due to the exponential decay of the potential V� (see Lemma A.3
in Appendix), it follows from standard theory that the solutions u1(ω, r∗),
u2(ω, r∗), v1(ω, r∗) and v2(ω, r∗) can be continued to holomorphic functions of
ω in the strip | Im(ω)| < κ+ for fixed r∗ ∈ R. Indeed, in [5] it is shown that
u1(ω, r∗) is analytic in C\{imκ+ : m ∈ N} with possible poles at {imκ+ : m ∈
N} and similarly for u2, v1, and v2. See also the proof of Proposition A.2 in
Appendix.

This allows us now to define the reflection and transmission coefficients
R and T.

Definition 2.4. Let ω �= 0. Then, we define the transmission coefficient T(ω, �)
and reflection coefficient R(ω, �) as the unique coefficients such that

u1 = Tv1 + Rv2. (2.50)

Using the fact that the Wronskian

W(f, g) := fg′ − f ′g (2.51)

of two solutions f and g is independent of r∗, we can equivalently define the
scattering coefficients as

T :=
W(u1, v2)
W(v1, v2)

=
W(u1, v2)

− 2iω
(2.52)

and

R :=
W(u1, v1)
W(v2, v1)

=
W(u1, v1)

2iω
. (2.53)

The transmission and reflection coefficients satisfy a pseudo-unitarity
property proven in the following.

Proposition 2.4 (Pseudo-unitarity in the separated picture). The transmission
and reflection coefficients satisfy

1 = |T|2 − |R|2. (2.54)
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Proof. First, note that any solution to the o.d.e. (2.36) satisfies the identity

Im(ūu′) = const. (2.55)

Applying this to the solution u1 = Tv1 + Rv2 shows the claim. �

In the following, we shall see that the reflection and transmission coeffi-
cients are regular at ω = 0.

Proposition 2.5. Let � ∈ N0 be fixed. Then, the scattering coefficients R(ω, �)
and T(ω, �) are analytic functions of ω in the strip {ω ∈ C : | Im(ω)| < κ+}
with values for ω = 0 given by

R(0, �) =
(−1)�

2

(
r−
r+

− r+

r−

)
, (2.56)

T(0, �) =
(−1)�

2

(
r−
r+

+
r+

r−

)
. (2.57)

In particular, the reflection coefficient R(ω, �) only vanishes on a discrete set
of points ω.

Moreover, the reflection and transmission coefficients R(ω, �) and T(ω, �)
are analytic functions on C\P with possible poles at P = {imκ+ : m ∈ N} ∪
{ikκ− : k ∈ Z\{0}}.

Proof. From the analyticity of u1, u2, v1, and v2 in the strip | Im(ω)| < κ+

(cf. Remark 2.2), we conclude that T and R are holomorphic in {ω �= 0 ∈
C : | Im(ω)| < κ+} with a possible pole at ω = 0. In the following, we shall
show that {ω = 0} is a removable singularity. Indeed, we will compute the
explicit value of the reflection and transmission coefficient at ω = 0 and deduce
that for fixed � ∈ N0, the transmission coefficient T(ω, �) and the reflection
coefficient R(ω, �) are analytic functions on the strip {ω ∈ C : Im(ω)| < κ+}
(cf. unpublished work of McNamara cited in [21]). To do so, note that from
Proposition 4.2 in Sect. 4.1.3 we conclude the pointwise limits

u1(ω, r∗) → ũ1(r∗), (2.58)

v1(ω, r∗) → ṽ1(r∗) = (−1)� r+

r−
ũ1(r∗), (2.59)

v2(ω, r∗) → ṽ1(r∗) = (−1)� r+

r−
ũ1(r∗) (2.60)

as |ω| → 0. Using the definition in (2.50) of T(ω, �), R(ω, �), and the condition
1+ |R|2 = |T|2 (cf. Proposition 2.4), we deduce that the limits limω→0 R(ω, �)
and limω→0 T(ω, �) exist and moreover can be computed to be (2.56) and
(2.57). Note that (2.56) and (2.57) have been established in [22]. Also note
that in view of the analyticity properties of u1, v1, and v2, the R(ω, �) and
T(ω, �) are analytic functions on C\P with possible poles at P = {imκ+ : m ∈
N} ∪ {ikκ− : k ∈ Z\{0}}. �
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2.5. Conventions

Let X be a point set with a limit point c (e.g., X = R, [a, b], C). Throughout
this paper, we will use the symbols � and �, where the implicit constants might
depend on the black hole parameters M and Q. In particular, for functions (or
constants) a(x), b(x) > 0 the notation a � b means that there is a constant
C = C(M,Q) > 0 such that a(x) ≤ Cb(x) for all x ∈ X. We will also make use
of the notation �� or �� which means that the constant may additionally also
depend on �. We also write a ∼ b if there are constants C(M,Q), C̃(M,Q) > 0
such that Ca(x) ≤ b(x) ≤ C̃a(x) for all x ∈ X.

We shall also make use of the standard Landau notation O and o [39,44].
To be more precise, as x → c in X

f(x) = O(g(x)) means
∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ C(M,Q) (2.61)

and

f(x) = o(g(x)) means
f(x)
g(x)

→ 0. (2.62)

We will also use the notation O� if the constant C in (2.61) may additionally
depend on �.

3. Main Theorems

In this section, we will formulate our main theorems.
Theorem 1, which we state in Sect. 3.1, establishes the existence of a

scattering map ST of the form

ST : ET
H → ET

CH, (3.1)

which is a Hilbert space isomorphism, i.e., a bounded and invertible map with
bounded inverse. Theorem 1 will be proven in Sect. 5. In the separated picture,
the boundedness of ST corresponds to the uniform boundedness of the trans-
mission and reflection coefficients which is stated as Theorem 2 in Sect. 3.2.
Theorem 2 will be proven in Sect. 4 (and later used in the proof of Theorem 1).

Section 3.3 is then devoted to Theorem 3, which connects our physical
space scattering theory to the fixed frequency scattering theory. (We will infer
Theorem 3 as a consequence of Theorem 1). In Theorem 3.4, this connection
allows us to prove that the reflection map is injective, which is the content of
Theorem 4. In Theorem 5, which is stated and proven in Sect. 3.5, we construct
data which are incoming and compactly supported but, nevertheless, lead to
a solution which fails to be in C1 on the Cauchy horizon.

We end this section with the statement of our two non-existence results.
In Sect. 3.6, we formulate Theorem 6, the non-existence of the T energy scatter-
ing theory for the Klein–Gordon equation with conformal mass on the interior
of (anti-) de Sitter–Reissner–Nordström black holes. The proof of Theorem 6
is given in Sect. 6. Finally, in Theorem 7, stated in Sect. 3.7, we show the
non-existence of the T energy scattering map for the Klein–Gordon equation
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on the interior of Reissner–Nordström. The proof of Theorem 7 is given in
Sect. 7.

3.1. Existence and Boundedness of the T Energy Scattering Map

First, we define the forward (resp. backward) evolution on a dense domain.

Definition 3.1. The domains of the forward and backward evolution are defined
as

DT
H := {ψ ∈ C∞

c (H) ⊂ ET
H s.t. the Cauchy evolution of ψ has

× compact support on constant r = const. hypersurfaces} (3.2)

and

DT
CH := {ψ ∈ C∞

c (CH) ⊂ ET
CH s.t. the backward evolution of ψ has

× compact support on constant r = const. hypersurfaces},
(3.3)

respectively. Here, we consider r− < r < r+ and note that if ψ is compactly
supported on one {r = const.} slice, then, as a direct consequence of the
domain of dependence, its evolution will be compactly supported on all other
{r = const.} hypersurfaces for r− < r < r+.

We will prove in Lemma 5.1 in Sect. 5 that DT
H ⊂ ET

H and DT
CH ⊂ ET

CH
are dense domains.

These definitions of the domains are motivated by the following observa-
tion.

Remark 3.1. Suppose we are given data in DT
H on the event horizon H. Con-

sider now the unique Cauchy development (cf. Proposition 2.1) and observe
that its restriction to the Cauchy horizon CH will lie in DT

CH. This holds true
since we can first smoothly extend the metric beyond the Cauchy horizon CH
and then use the compact support on a constant r∗ hypersurface to solve an
equivalent Cauchy problem in an appropriate region which extends the Cauchy
horizon CH, includes the support of the solution, but does not include i+. The
smoothness of the solution up to and including the Cauchy horizon CH follows
now from Cauchy stability.

In view of Remark 3.1, we can define the forward and backward map on
the domains DT

H and DT
CH, respectively.

Definition 3.2. Define the forward map ST
0 : DT

H ⊂ ET
H → DT

CH ⊂ ET
CH as the

unique forward evolution from data on the event horizon to data on the Cauchy
horizon. More precisely, let ψ be the solution to (1.1) arising from initial data
Ψ ∈ DT

H ⊂ ET
H. Then, define ST

0 (Ψ) as the restriction of ψ to the Cauchy
horizon, i.e., ST

0 (Ψ) := ψ �CH∈ DT
CH.

Similarly, let φ be the unique backward evolution of (1.1) arising from
Φ ∈ DT

CH. Then, define the backward map by BT
0 (Φ) := φ �H∈ DT

H.

Remark 3.2. Note that by the uniqueness of the Cauchy evolution we have that
ST

0 and BT
0 are inverses of each other, i.e., BT

0 ◦ST
0 = IdDT

H
, ST

0 ◦BT
0 = IdDT

CH
.
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Now, we are in the position to state our main theorem.

Theorem 1. The map ST
0 : DT

H ⊂ ET
H → DT

CH ⊂ ET
CH is bounded and uniquely

extends to

ST : ET
H → ET

CH, (3.4)

called the “scattering map”. The scattering map ST is a Hilbert space iso-
morphism, i.e., a bounded and invertible linear map with bounded inverse
BT : ET

CH → ET
H satisfying

BT ◦ ST = IdET
H

, ST ◦ BT = IdET
CH

. (3.5)

Here, BT : ET
CH → ET

H is the “backward map,” which is the unique bounded
extension of BT

0 .
In addition, the scattering map ST is pseudo-unitary, meaning that for

ψ ∈ ET
H, we have∫

HA

|Tψ|2 −
∫

HB

|Tψ|2 =
∫

CHB

|TST ψ|2 −
∫

CHA

|TST ψ|2. (3.6)

In more traditional language, Theorem 1 yields existence, uniqueness,
and asymptotic completeness of scattering states.

The proof of Theorem 1 is given in Sect. 5. Let us note already that
Theorem 1 is a posteriori the physical space equivalent of the uniform bound-
edness of the scattering coefficients proven in Theorem 2 (see Sect. 3.2). This
equivalence is made precise in Theorem 3 (see Sect. 3.3).

Remark 3.3. Note that in general, neither initial data nor scattered data
have to be bounded in L∞ or continuous. Indeed, we have that ΦA(u, θ, ϕ) =
log(u)χu≥1 ∈ ET

CHA
, where χu≥1 is a smooth cutoff. Thus, there exist initial

data BT (ΦA) ∈ ET
H such that its image under the scattering map is not in L∞

and not continuous. We emphasize the contrast with the estimates from [17]
for which more regularity and decay along the event horizon H are necessary.

3.2. Uniform Boundedness of the Transmission and Reflection Coefficients

On the level of the o.d.e. (2.36) in the separated picture, the problem of bound-
edness of the scattering map reduces to proving that the transmission coeffi-
cient T and the reflection coefficient R are uniformly bounded over all param-
eter ranges of ω ∈ R and � ∈ N0. This is stated as Theorem 2.

Theorem 2. The reflection and transmission coefficients R(ω, �) and T(ω, �)
are uniformly bounded, i.e., they satisfy

sup
ω∈R,�∈N0

(|R(ω, �)| + |T(ω, �)|) � 1. (3.7)

Theorem 2 is proved in Sect. 4. As discussed in the introduction, the proof
relies on an explicit calculation for ω = 0 together with a careful analysis of the
radial o.d.e. (2.36), involving properties of special functions and perturbations
thereof.

Let us note that, given Theorem 1, we could infer Theorem 2 as a corollary
(using the theory to be described in Sect. 3.3). We emphasize, however, that
in the present paper we use Theorem 2 to prove Theorem 1 in Sect. 5.
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3.3. Connection Between the Separated and the Physical Space Picture

In this section, we will make the connection of the separated and physical
space picture precise.

First, let us note that we have natural Hilbert space decompositions ET
H ∼=

ET
HA

⊕ ET
HB

and ET
CH ∼= ET

CHB
⊕ ET

CHA
.

Proposition 3.1. The Hilbert spaces ET
H and ET

CH of finite T energy on the event
horizon H and on the Cauchy horizon CH admit the orthogonal decomposition

ET
H ∼= ET

HA
⊕ ET

HB
and ET

CH ∼= ET
CHA

⊕ ET
CHB

. (3.8)

Proof. Clearly, the embedding i : ET
HA

⊕ET
HB

↪→ ET
H is well defined and isomet-

ric. It remains to show that i is surjective. Let ψ ∈ C∞
c (H). First, we show that

we can approximate (in T -energy) ψ �HA
on HA with functions ψε ∈ C∞

c (HA)
which are supported away from the past bifurcation sphere. On HA, choose
non-degenerate coordinates (V, θ, ϕ) := (VH, θ, ϕ) as in Sect. 2.1.2 and recall
that the past bifurcation sphere is {V = 0}. Then, for small ε > 0, set

ψε(V, θ, ϕ) := ψ(U = 0, V, θ, ϕ)χ(−ε log(V )), (3.9)

where χ : R → [0, 1] is smooth and such that supp(χ) ⊆ (−∞, 2] and
χ �(−∞,1]= 1. Then, it is straightforward to check that ψε ∈ C∞

c (HA) and
∫

HA

JT [ψ − ψε]μnμdvol �
∫

S2

∫ ∞

0

V (∂V (ψ − ψε))2dV sin θdθdϕ → 0 (3.10)

as ε → 0. Analogously, we can do this for HB from which the claim follows. �

We will use this identification to represent the scattering map also in the
Fourier picture and show how these pictures connect. To do so, we define the
following.

Definition 3.3. For (ΨA,ΨB) ∈ ET
HA

⊕ ET
HB

, note that ∂vΨA(v, θ, φ) ∈ L2(R ×
S

2; C) and analogously for ΨB . Hence, in mild abuse of notation, we can define
the Fourier and spherical harmonics coefficients FHA

(ΨA) and FHB
(ΨB) as

iωFHA
(ΨA)(ω,m, �) := r+

∫
R

∫
S2

∂vΨA(v, θ, ϕ)e−iωvY�m(θ, ϕ) sin θdθdϕ
dv√
2π

(3.11)

and

−iωFHB
(ΨB)(ω,m, �) := r+

∫
R

∫
S2

∂uΨB(u, θ, ϕ)eiωuY�m(θ, ϕ) sin θdθdϕ
du√
2π

.

(3.12)

Similarly, for (ΦA,ΦB) ∈ ET
CHA

⊕ ET
CHB

set

−iωFCHA
(ΦA)(ω,m, �) := r−

∫
R

∫
S2

∂uΦA(u, θ, ϕ)eiωuY�m(θ, ϕ) sin θdθdϕ
du√
2π

(3.13)
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and

iωFCHB
(ΦB)(ω,m, �) :=r−

∫
R

∫
S2

∂vΦB(v, θ, ϕ)e−iωvY�m(θ, ϕ) sin θdθdϕ
dv√
2π

.

(3.14)

Also, recall the Hilbert space decomposition ET
H ∼= ET

HA
⊕ET

HB
and ET

CH ∼=
ET

CHB
⊕ ET

CHA
. Thus, the scattering matrix can be also decomposed as

ST =

(
ST

BA ST
BB

ST
AA ST

AB

)
, (3.15)

where

ST
ij : ET

Hj
→ ET

CHi
(3.16)

is a bounded linear map for i, j ∈ {A,B}.5

Definition 3.4. Define the Hilbert spaces

ÊT
HA

:= �2(Z;L2(r−2
+ ω2dω)), ÊT

HB
:= �2(Z;L2(r−2

+ ω2dω)),

ÊT
CHA

:= �2(Z;L2(r−2
− ω2dω)), ÊT

CHB
:= �2(Z;L2(r−2

− ω2dω)),

where Z = {(m, �) ∈ Z × N0 : |m| ≤ �}.

The Hilbert spaces defined in Definition 3.4 are unitary isomorphic to
their corresponding physical energy spaces. This is captured in

Proposition 3.2. The linear maps defined in (3.11)–(3.14)

FHA
⊕ FHB

: ET
HA

⊕ ET
HB

→ ÊT
HA

⊕ ÊT
HB

(3.17)

FCHB
⊕ FCHA

: ET
CHB

⊕ ET
CHA

→ ÊT
CHB

⊕ ÊT
CHA

(3.18)

are unitary.

Proof. This follows from the fact that the Fourier transform and the decom-
position into spherical harmonics are unitary maps. �

Now, we will define the scattering map in the separated picture and show
that it is bounded.

Proposition 3.3. The scattering map in the separated picture

ŜT : ÊT
HA

⊕ ÊT
HB

→ ÊT
CHB

⊕ ÊT
CHA

, (3.19)

defined as the multiplication operator

ŜT =

( ˆST
BA

ˆST
BB

ˆST
AA

ˆST
AB

)
:=

(
T(ω, �) R̄(ω, �)

R(ω, �) T̄(ω, �)

)
, (3.20)

is bounded. Moreover, the map ŜT is invertible with bounded inverse given by

ŜT
−1

=

(
T̄(ω, �) −R̄(ω, �)

−R(ω, �) T(ω, �)

)
. (3.21)

5Note that T does not denote the transpose but the fact that it is the scattering map
associated with the T vector field.
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Proof. Indeed, ŜT is bounded in view of the uniform boundedness of the trans-
mission and reflection coefficients T and R (cf. Theorem 2). Also note that
|T|2 = 1 + |R|2 implies that

det
(
ŜT
)

= 1 (3.22)

which shows (3.21). The boundedness of ŜT
−1

is again immediate since the
scattering coefficients are uniformly bounded. �

Using the previous definitions, we obtain the following connection for the
scattering map between the physical space and the separated picture.

Theorem 3. The following diagram commutes and each arrow is a Hilbert space
isomorphism:

ET
HA

⊕ ET
HB

ET
CHB

⊕ ET
CHA

ÊT
HA

⊕ ÊT
HB

ÊT
CHB

⊕ ÊT
CHA

.

ST

FHA
⊕FHB

FCHB
⊕FCHA

ŜT

Moreover, the maps ST and ŜT are pseudo-unitary satisfying (3.6) and (2.54),
respectively. More concretely, for (ΨA,ΨB) ∈ ET

HA
⊕ ET

HB
, we can write(

ΦB

ΦA

)
= ST

(
ΨA

ΨB

)
, (3.23)

where ∂uΦA ∈ L2(CHA) and ∂vΦB ∈ L2(CHB) can be represented by

∂uΦA(u, θ, ϕ) =
1√

2πr−

∫
R

∑
|m|≤�

−iωR(ω, �) FHA(ΨA)(ω, m, �)Ym�(θ, ϕ)e−iωudω

+
1√

2πr−

∫
R

∑
|m|≤�

−iωT̄(ω, �) FHB (ΨB)(ω, m, �)Ym�(θ, ϕ)e−iωudω

(3.24)

and

∂vΦB(v, θ, ϕ) =
1√

2πr−

∫
R

∑
|m|≤�

iωT(ω, �) FHA(ΨA)(ω, m, �)Ym�(θ, ϕ)eiωvdω

+
1√

2πr−

∫
R

∑
|m|≤�

iωR̄(ω, �) FHB (ΨB)(ω, m, �)Ym�(θ, ϕ)eiωvdω

(3.25)

as well as ΦA ∈ ET
CHA

∼= Ḣ1(R;L2(S2)),ΦB ∈ ET
CHB

∼= Ḣ1(R;L2(S2)) can be
represented by regular distributions as

ΦA(u, θ, ϕ) =
1√

2πr−
p. v.

∫
R

∑
|m|≤�

R(ω, �) FHA(ΨA)(ω, m, �)Ym�(θ, ϕ)e−iωudω

+
1√

2πr−
p. v.

∫
R

∑
|m|≤�

T̄(ω, �) FHB (ΨB)(ω, m, �)Ym�(θ, ϕ)e−iωudω

(3.26)
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and

ΦB(v, θ, ϕ) =
1√

2πr−
p. v.

∫
R

∑
|m|≤�

T(ω, �) FHA(ΨA)(ω, m, �)Ym�(θ, ϕ)eiωvdω

+
1√

2πr−
p. v.

∫
R

∑
|m|≤�

R̄(ω, �) FHB (ΨB)(ω, m, �)Ym�(θ, ϕ)eiωvdω.

(3.27)

Proof. This is a direct consequence of Theorems 1, 2 and (5.30), (5.31) in the
proof of Proposition 5.1. �

From the previous representation of the scattered solution, we can draw
a link between the boundedness of the scattering map and the fact that com-
pactly supported incoming data will lead to solutions which vanish on the
future bifurcation sphere B+. This is the content of the following

Corollary 3.1. Let Ψ = (ΨA, 0) ∈ ET
HA

⊕ ET
HB

be purely incoming smooth data.
Assume further that ΨA is supported away from the past bifurcation sphere B−
and future timelike infinity i+.

Then, the Cauchy evolution ψ arising from ΨA vanishes at the future
bifurcation sphere B+.

On the other hand, if Ψ, as above, led to a solution which does not vanish
at the future bifurcation sphere B+, then the scattering map ST : ET

H → ET
CH

could not be bounded.

Proof. The first claim is a direct consequence of (3.27) in Theorem 3.
For the second statement, let ΨA be compactly supported data on the

event horizon and assume that its Cauchy evolution ψ does not vanish at the
future bifurcation sphere B+. Now take data Ψ̃A which is supported away from
the past bifurcation sphere B− and satisfies T Ψ̃A = ΨA. Then, Ψ̃A ∈ ET but
its Cauchy evolution ψ̃ satisfies ψ̃ �CH /∈ ET

CH since

‖ψ̃ �CHB
‖2

ET
CHB

=
∫

R×S2
|ψ �CHB

(v, θ, ϕ)|2dv sin θdθdϕ = ∞, (3.28)

as ψ �CHB
= T ψ̃ �CHB

does not vanish at the future bifurcation sphere B+.
By cutting off smoothly, one can construct normalized (in ET

H-norm) smooth
compactly supported initial data on ET

H such that its Cauchy evolution has
arbitrary large norm ET

CH-norm at the Cauchy horizon. �

Remark 3.4. For convenience, we have stated the second statement of Corol-
lary 3.1 only for the interior of Reissner–Nordström. However, note that it
holds true for more general black hole interiors (e.g., subextremal (anti-)
de Sitter–Reissner–Nordström) with Penrose diagram as depicted in Fig. 5.

3.4. Injectivity of the Reflection Map

In this section, we define the reflection operator of purely incoming radiation
(cf. Fig. 6) and prove that it is has trivial kernel as an operator from ET

HA
→

ET
CHA

.
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HA
H
B

CH
A

CH
B

i+i+

B+

B−

R

Figure 6. Reflection R of purely incoming radiation

Definition 3.5 (Reflection operator). For purely incoming radiation (ΨA, 0) ∈
ET

HA
⊕ ET

HB
, define the reflection operator

R : ET
HA

→ ET
CHA

(3.29)

as

R(ΨA) = ΦA := prA

(
ST

(
ΨA

0

))
, (3.30)

where prA : ET
CHB

⊕ ET
CHA

→ ET
CHA

is the orthogonal projection.

Theorem 4 The reflection operator R defined in Definition 3.5 has trivial
kernel.

Proof. Assume R(ΨA) = 0 for some ΨA ∈ ET
HA

. Then, in view of Theorem 3,

R(ω, �)FHA
(ΨA)(ω,m, �) = 0 (3.31)

for all m, �, and a.e. ω ∈ R. Moreover, since R(ω, �) only vanishes on a discrete
set (cf. Proposition 2.5), we obtain that FHA

(ΨA)(ω,m, �) = 0 for all m, �, and
a.e. ω ∈ R. Again, in view of Theorem 3, we conclude ΨA = 0 as an element
of ET

HA
. �

3.5. C1-Blowup on the Cauchy Horizon

In this section, we shall revisit and discuss the seminal work [5] of Chan-
drasekhar and Hartle. The Fourier representation of the scattered data on the
Cauchy horizon in Theorem 3 serves as a good framework to provide a com-
pletely rigorous framework for the C1-blowup at the Cauchy horizon studied
in [5].

Theorem 5 (C1-blowup on the Cauchy horizon [5]). There exist smooth, com-
pactly supported, and purely incoming data ΨA on the event horizon HA for
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which the Cauchy evolution of (1.1) fails to be C1 at the Cauchy horizon
CH. More precisely, the solution ψ arising from ΨA fails to be C1 at every
point on the Cauchy horizon CHA ∪B+. Moreover, the incoming radiation can
be chosen to be only supported on any angular parameter �0 which satisfies
�0(�0 + 1) �= r2

+(r+ − 3r−).

Proof. Let �0 be fixed and satisfy �0(�0 + 1) �= r2
+(r+ − 3r−). Define purely

incoming smooth data ΨA(v, θ, ϕ) = f(v)Y�00(θ, ϕ) on HA, where f(v) is
smooth and compactly supported. Moreover, assume that the entire function
f̂ satisfies f̂(iκ+) �= 0. In view of the representation formula (3.27) from The-
orem 3, the degenerate derivative of its Cauchy evolution ΦB on the Cauchy
horizon CHB reads

∂vΦB(v, θ, ϕ) =
r+√
2πr−

∫
R

iωT(ω, �0)f̂(ω)eiωvdωY�00(θ, ϕ). (3.32)

Since T(ω, �) has a simple pole at ω = iκ+ (cf. Proposition A.2 in Appen-
dix), we pick up the residue at iκ+ when we deform the contour of inte-
gration in (3.32) from the real line to the line Im(ω) = κ+ + δ for some
κ+ > δ > 0. Here, we use that the compact support of f(v) implies the
bound |f̂(ω)| ≤ e| Im(ω)| sup | supp(f)|f̂(Re(ω)) and that, in addition, by Propo-
sition A.2, the transmission coefficient T remains bounded as |Re(ω)| → ∞.
This ensures that the deformation of the integration contour is valid. Hence,

∂vΦB(v, θ, ϕ) =
ir+√
2πr−

2πi(iκ+)f̂(iκ+)e−κ+vY�00(θ, ϕ)Res(T(ω, �0), iκ+)

+ i
r+e−(κ++δ)v

√
2πr−

∫
R

[
(ωR + i(κ+ + δ))T(ωR + i(κ+ + δ))

f̂(ωR + i(κ+ + δ))eiωRvY�00(θ, ϕ)
]
dωR

= Ce−κ+vY�00(θ, ϕ) + o
(
e−(κ++δ)v

)
(3.33)

as v → ∞, where

C = −iκ+
r+

r−

√
2πf̂(iκ+)Res(T(ω, �0), ω = iκ+) �= 0 (3.34)

by construction. Thus, ΦB is not in C1 at the future bifurcation sphere as the
non-degenerate derivative diverges as v → ∞:

∂

∂VCH
ΦB = e−κ−v∂vΨB(v, θ, ϕ) = Ce−(κ++κ−)v(1 + o(1)), (3.35)

where we recall that κ− < −κ+ < 0. Finally, propagation of regularity gives
that the solution is not in C1 at each point on the Cauchy horizon CHA. More
precisely, expressing (1.1) is (u, v) coordinates gives

∂u∂vψ =
−Δ
2r3

(∂vψ + ∂uψ) +
Δ
4r4

�0(�0 + 1)ψ, (3.36)

where Δ is as in (2.5) and where we have used that ΔS2ψ = −�0(�0 + 1)ψ.
Now, note that |ψ|, |∂uψ| and |∂vψ| are uniformly bounded in the interior by
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a higher order norm of ΨA. This follows from [17], commuting with T and
angular momentum operators as well as elliptic estimates. Finally, integrating
(3.36) in u, using the estimate |Δ| � eκ−(u+v) for r∗ ≥ 0 [see (A.7)] and using
the non-degenerate coordinate VCH gives the C1 blowup also everywhere on
CHA. �

3.6. Breakdown of T Energy Scattering for Cosmological Constants Λ �= 0
Interestingly, the analogous result to Theorem 1 on the interior of a subex-
tremal (anti-) de Sitter–Reissner–Nordström black hole does not hold for
almost all cosmological constants Λ. In the presence of a cosmological constant,
it is also natural to consider the Klein–Gordon equation with conformal mass
μ = 3

2Λ. We will consider in fact a general mass term of the form μ = νΛ, where
ν ∈ R. Note that ν = 3

2 corresponds to the conformal invariant Klein–Gordon
equation. To be more precise, we prove that for generic subextremal black
hole parameters (M,Q,Λ), there exists a normalized (in ET

H-norm) sequence
of Schwartz initial data on the event horizon for which the ET

CH-norm of the
evolution restricted to the Cauchy horizon blows up.

We define a black hole parameter triple (M,Q,Λ) to be subextremal if

(M,Q,Λ) ∈ Pse := PΛ=0
se ∪ PΛ>0

se ∪ PΛ<0
se , (3.37)

where

PΛ=0
se := {(M,Q,Λ) ∈ R+ × R × {0} : Δ(r) := r2 − 2Mr + Q2

× has two positive simple roots satisfying 0 < r− < r+.}, (3.38)

PΛ>0
se :=

{
(M,Q,Λ) ∈ R+ × R × R+ : Δ(r) := r2 − 2Mr − 1

3
Λr4 + Q2

× has three positive simple roots satisfying 0 < r− < r+ < rc

}
,

(3.39)

PΛ<0
se :=

{
(M,Q,Λ) ∈ R+ × R × R− : Δ(r) := r2 − 2Mr − 1

3
Λr4 + Q2

× has two positive roots satisfying 0 < r− < r+

}
. (3.40)

Theorem 6. Let ν ∈ R be a fixed Klein–Gordon mass parameter. (In particular,
we may choose ν = 3

2 to cover the conformal invariant case or ν = 0 for the
wave equation (1.1).) Consider the interior of a subextremal (anti-) de Sitter–
Reissner–Nordström black hole with generic parameters (M,Q,Λ) ∈ Pse\D(ν).
(Here, D(ν) ⊂ Pse is a set with measure zero defined in Proposition 6.1 (see
Sect. 6). Moreover, D(ν) satisfies PΛ=0

se ⊂ D(ν) and U ∩ D(ν) = PΛ=0
se for

some open set U ⊂ Pse.)
Then, there exists a sequence (Ψn)n∈N of purely ingoing and compactly

supported data on HA with

‖Ψn‖ET
H

= 1 for all n (3.41)
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such that the solution ψn to the Klein–Gordon equation with mass μ = νΛ

�gM,Q,Λψ − μψ = 0 (3.42)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ET
CH

→ ∞ as n → ∞. (3.43)

Proof. See Sect. 6. �
Remark 3.5. Note that from Theorem 6 it also follows that for fixed 0 <
|Q| < M , the T energy scattering breaks down (in sense of Theorem 6) for all
cosmological constants 0 < |Λ| < ε, where ε = ε(M,Q) > 0 is small enough.

3.7. Breakdown of T Energy Scattering for the Klein–Gordon Equation

Finally, we will also prove that the T energy scattering theory does not hold
for the Klein–Gordon equation for a generic set of masses μ, even in the case
of vanishing cosmological constant Λ = 0.

Theorem 7. Consider the interior of a subextremal Reissner–Nordström black
hole. There exists a discrete set D̃(M,Q) ⊂ R with 0 ∈ D̃ such that the
following holds true. For any μ ∈ R\D̃, there exists a sequence (Ψn)n∈N of
purely ingoing and compactly supported data on HA with

‖Ψn‖ET
H

= 1 for all n (3.44)

such that the solution ψn to the Klein–Gordon equation with mass μ

�gM,Q,Λψ − μψ = 0 (3.45)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ET
CH

→ ∞ as n → ∞. (3.46)

Proof. See Theorem 7. �
The Theorem 6 and Theorem 7 show that the existence of a T energy scat-

tering theory for the wave equation (1.1) on the interior of Reissner–Nordström
is in retrospect a surprising property. Implications of the non-existence of a T
energy scattering map and, in particular the unboundedness of the scattering
map in the cosmological setting Λ �= 0, are yet to be understood.

4. Proof of Theorem 2: Uniform Boundedness of the
Transmission and Reflection Coefficients

This section is devoted to the proof of Theorem 2. We will analyze solutions
to the o.d.e. [recall from (2.34)]

Δ
d
dr

(
Δ

d
dr

R

)
− Δ�(� + 1)R + r4ω2R = 0.

This o.d.e. can be written equivalently [recall from (2.36)] as

u′′ + (ω2 − V�)u = 0,

in the r∗ variable, where u = rR.
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For the convenience of the reader, we recall the statement of Theorem 2.

Theorem 2. The reflection and transmission coefficients R(ω, �) and T(ω, �)
are uniformly bounded, i.e., they satisfy

sup
ω∈R,�∈N0

(|R(ω, �)| + |T(ω, �)|) � 1. (3.7)

The proof of Theorem 2 will involve different arguments for different
regimes of parameters. Also, note that in view of (2.56) and (2.57) it is enough
to assume ω �= 0.

The first regime for bounded frequencies (|ω| ≤ ω0, � arbitrary) requires
the most work. One of its main difficulties is to obtain estimates which are
uniform in the limit � → ∞. We shall use that the o.d.e. (2.36) with ω = 0,
which reads

u′′ − V�u = 0, (4.1)

can be solved explicitly in terms of Legendre polynomials and Legendre func-
tions of second kind. The specific algebraic structure of the Legendre o.d.e.
leads to the feature that solutions which are bounded at r∗ = −∞ are also
bounded at r∗ = +∞. For generic perturbations of the potential, this property
fails to hold. Nevertheless, for perturbations of the form as in (2.36) for ω �= 0
and |ω| ≤ |ω0|, this behavior survives and most importantly, can be quantified.
To prove this, we will essentially divide the real line R � r∗ into three regions.

The first region will be near the event horizon (r∗ = −∞), where we
will consider the potential V� as a perturbation. The second region will be
the intermediate region, where we will consider the term involving ω as a
perturbation. Finally, in the third region near the Cauchy horizon (r∗ = +∞),
we consider the potential V� as a perturbation again. This eventually allows us
to prove the uniform boundedness of the reflection and transmission coefficients
R and T in the bounded frequency regime |ω| < ω0.

The second regime will be bounded angular momenta and ω-frequencies
bounded from below (|ω| ≥ ω0, � ≤ �0). For this parameter range, we will
consider V� as a perturbation of the o.d.e. since V� might only grow with �,
which is, however, bounded in that range. Again, this allows us to show uniform
boundedness for the transmission and reflection coefficients T and R.

The third regime will be angular momenta and frequencies both bounded
from below (|ω| ≥ ω0, � ≥ �0). To prove boundedness of reflection and trans-
mission coefficients R and T, we will consider 1

� as a small parameter to perform
a WKB approximation.

4.1. Low Frequencies (|ω| ≤ ω0)

We first analyze the o.d.e. for the special case of vanishing frequency. Then, we
will summarize properties of special functions, which we will need to finally
prove the boundedness of reflection and transmission coefficients in the low
frequency regime. Let

0 < ω0 ≤ 1
2

(4.2)
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be a fixed constant.

4.1.1. Explicit Solution for Vanishing Frequency (ω = 0). For ω = 0, we can
explicitly solve the o.d.e. with special functions. In that case, the o.d.e. reads

d
dr

(
Δ

dR

dr

)
− �(� + 1)R = 0. (4.3)

We define the coordinate x(r) as

x(r) := − 2r

r+ − r−
+

r+ + r−
r+ − r−

(4.4)

or equivalently,

r(x) = −r+ − r−
2

x +
r+ + r−

2
. (4.5)

Then, we can write

Δ(x) =
(

r+ − r−
2

)2

(x + 1)(x − 1) =
(

r+ − r−
2

)2

(x2 − 1). (4.6)

Hence, Eq. 4.3 reduces to the Legendre o.d.e.

d
dx

(
(1 − x2)

dR

dx

)
+ �(� + 1)R = 0. (4.7)

We will denote by P�(x) and Q�(x) the two independent solutions, the Legendre
polynomials and the Legendre functions of second kind, respectively [39,44].
We will prove later in Proposition 4.2 that ũ1 and ũ2 from Definition 2.3 satisfy

ũ1(r∗) = w1(r∗) := (−1)� r(r∗)
r+

P�(x(r∗)), (4.8)

ũ2(r∗) = w2(r∗) := (−1)� r(r∗)
k+r+

Q�(x(r∗)). (4.9)

These are a fundamental pair of solutions for the o.d.e. in the case ω = 0. We
will perturb these explicit solutions for the regime of low frequencies (|ω| ≤
ω0). To do so, we will need properties about special functions which will be
considered first.

In view of the fact that ω0 is fixed, constants appearing in � and � may
also depend on ω0. Before we begin, we shall summarize the special functions
we will use and list their relevant properties in the case |ω| ≤ ω0.

4.1.2. Special Functions. Good references for the following discussion are
[1,39,44]. First, we shall recall the definition of the Gamma and Digamma
function.

Definition 4.1. For z ∈ C with Re(z) > 0, we denote the Gamma function
with Γ(z) and will also make use of the Digamma function �(z) defined as

�(z) :=
∫ ∞

0

(
e−x

x
− e−zx

1 − e−x

)
dx. (4.10)



1614 C. Kehle, Y. Shlapentokh-Rothman Ann. Henri Poincaré

Note that

�(z + 1) − �(z) =
1
z

(4.11)

and

�(n) =
n−1∑
k=1

1
k

− γ = log(n) + O(n−1), (4.12)

where γ is the Euler–Mascheroni constant.

As we mentioned above, we shall use the Legendre polynomials and the
Legendre functions of second kind. We will express them in terms of the hyper-
geometric function F(a, b; c;x) for x ∈ (−1, 1), a, b, c ∈ R as defined in [44,
Equation (9.3)].

Definition 4.2 (Legendre functions of first and second kind). We use the stan-
dard conventions which are used in [39,44].

For x ∈ (−1, 1), we define the associated Legendre polynomials by

Pm
� (x) =

(
1 + x

1 − x

)m
2

F
(

� + 1,−�; 1 − m;
1 − x

2

)
(4.13)

and the associated Legendre functions of second kind by

Qm
� (x) = −1

2
π sin

(
1
2
π(� + m)

)
w1(�, x) +

1
2
π cos

(
1
2
(� + m)π

)
w2(�, x).

(4.14)

Here,

w1(�, x) =
2mΓ( �+m+1

2 )
Γ(1 + �

2 )
(1 − x2)− m

2 F
(

−� + m

2
,
1 + � − m

2
;
1
2
;x2

)
, (4.15)

w2(�, x) =
2mΓ(1 + �+m

2 )
Γ( �−m+1

2 )
x(1 − x2)− m

2 F
(

1 − � − m

2
, 1 +

� − m

2
;
3
2
;x2

)
.

(4.16)

We shall also use the convention P� = P 0
� and Qm

� = Q0
� . Also, recall the

symmetry

P�(x) = (−1)�P�(−x), (4.17)

Q�(x) = (−1)�+1Q�(−x). (4.18)

In the asymptotic expansion in the parameter � for the Legendre polynomials
and functions, we will make use of Bessel functions which we define in the
following.

Definition 4.3 (Bessel functions of first and second kind). Recall the Bessel
functions of first kind

J0(x) :=
∞∑

k=0

x2k

(−4)kk!2
, (4.19)
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J1(x) :=
x

2

∞∑
k=0

x2k

(−4)kk!(k + 1)!
, (4.20)

and the Bessel functions of second kind

Y0(x) :=
2
π

J0(x)
(
log

(x

2

)
+ γ

)
− 2

π

∞∑
k=1

Hk
x2k

(−4)k(k!)2
, (4.21)

Y1(x) := − 1
2πx

+
2
π

log
(x

2

)
J1(x)

− x

2π

∞∑
k=0

(�(k + 1) + �(k + 2))
x2k

(−4)kk!(k + 1)!
, (4.22)

where Hk =
∑k

n=1 n−1 is the k-the harmonic number. We have the asymptotic
expansions

J0(x) = 1 + O(x2), (4.23)

J1(x) =
x

2
+ O(x3), (4.24)

Y0(x) =
2
π

log
(x

2

)
+ O(1), (4.25)

Y1(x) = − 1
2πx

+ o(1) as x → 0. (4.26)

Note that bounds deduced from (4.23)–(4.26) hold uniformly on any interval
(0, a] of finite length. We shall also use the bounds

|J0(x)| ≤ 1, |Y0(x)| � 1 + | log(x)| (4.27)

for 0 < x ≤ 1 and

|J0(x)| � 1√
x

, |Y0(x)| � 1√
x

(4.28)

for x ≥ 1 [1, p. 360, p. 364].

In the proof, we will also use the following asymptotic formulae for P� and Q�

for large � in terms of Bessel functions.

Lemma 4.1. [39, Sect. 14.15(iii)] We have

P�(cos θ) =
(

θ

sin θ

) 1
2
(

J0

(
θ(2� + 1)

2

)
+ e1,�(θ)

)
, (4.29)

Q�(cos θ) = −π

2

(
θ

sin θ

) 1
2
(

Y0

(
θ(2� + 1)

2

)
+ e2,�(θ)

)
, (4.30)

Q1
�(cos θ) = − π

2�

(
θ

sin θ

) 1
2
(

Y1

(
θ(2� + 1)

2

)
+ e3,�(θ)

)
, (4.31)

where the error terms can be estimated by

|e1,�(θ)|, |e2,�(θ)| � 1
1 + �

[∣∣∣∣J0

(
θ(2� + 1)

2

)∣∣∣∣+
∣∣∣∣Y0

(
θ(2� + 1)

2

)∣∣∣∣
]

, (4.32)
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|e3,�(θ)| � 1
1 + �

[∣∣∣∣J1

(
θ(2� + 1)

2

)∣∣∣∣+
∣∣∣∣Y1

(
θ(2� + 1)

2

)∣∣∣∣
]

(4.33)

for θ ∈ (0, π − δ) and for any fixed δ > 0. In particular, this holds uniformly
as θ → 0.

We shall use the following asymptotic formulae for the Legendre functions
at the singular endpoints.

Lemma 4.2 [39, Sect. 14.8]. For 0 < x < 1, we have

P�(x) = 1 + f1(x), (4.34)

Q�(x) =
1
2
(log(2) − log(1 − x)) − γ − �(� + 1) + f1(x), (4.35)

where |f1(x)| �� (1−x). Moreover, analogous results hold true for −1 < x < 0
due to symmetry.

Now, we will estimate the derivatives of the Legendre polynomials and
Legendre functions of second kind.

Lemma 4.3. For x ∈ (−1, 1), we have∣∣∣∣dP�

dx

∣∣∣∣ ≤ �2. (4.36)

For xα,� := 1 − α
1+�2 with 0 < α < 1 and � ∈ N, we have

(1 − (±xα,�)2)
∣∣∣∣dQ�

dx
(±xα,�)

∣∣∣∣ � 1. (4.37)

Proof. Inequality (4.36) is known as Markov’s inequality and is proven in [4,
Theorem 5.1.8]. We only have to prove (4.37) for x = +xα,� due to symmetry.
From the recursion relation [39, §14.10], we have

(� + 1)−1(1 − x2
α,�)

dQ�

dx
(xα,�) = xα,�Q�(xα,�) − Q�+1(xα,�)

= (xα,� − 1)Q�(xα,�) + (Q�(xα,�) − Q�+1(xα,�)).
(4.38)

We will consider both summands separately.

Part 1: Summand (xα,� − 1)Q�(xα,�)
First, consider 1 − xα,� = α

1+�2 , where we implicitly define cos(θα,�) = xα,�.
Note that we have

θα,�(x) =
√

2(1 − xα,�) + O((1 − xα,�)
3
2 ) =

√
2α

1 + �2
+ O

((
α

1 + �2

) 3
2
)

=

√
2α

1 + �2

(
1 + O

(
α

1 + �2

))
. (4.39)

In particular, we have θα,�� � 1. This gives

−Q�(xα,�) = −Q�(cos θα,�) =
π

2

(
θα,�

sin θα,�

) 1
2
(

Y0

(
θα,�(2� + 1)

2

)
+e2,�(θα,�)

)
.

(4.40)
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Again, we will look at the two terms independently. First, note that

π

2

(
θα,�

sin θα,�

) 1
2
(

Y0

(
θα,�

(
� +

1
2

)))

=
π

2

(
θα,�

sin θα,�

) 1
2
(

2
π

log
(

θα,�(2� + 1)
4

)
+ O(1)

)

=
(
1 + O(θ2

α,�)
)(

log(θα,�) + log
(

� +
1
2

)
+ O(1)

)

=
(

1 + O

(
α

1 + �2

))(
1
2

log
(

α

1 + �2

)
+ log

(
� +

1
2

)
+ O(1)

)

=
(

1 + O

(
α

1 + �2

))(
1
2

log(α) +
1
2

log
(

1 +
� − 3

4

�2 + 1

)
+ O(1)

)

=
1
2

log(α) + O(1). (4.41)

In order to estimate e2,�(θα,�), we shall recall inequality (4.32). It works anal-
ogously to the previous estimate up to a good term of 1

1+� . In particular, this
shows

|Q�(xα,�)| � | log(α)| + 1 (4.42)

and

|(xα,� − 1)Q�(xα,�)| � α

1 + �2
(| log(α)| + 1) � 1

1 + �2
. (4.43)

Part 2: Summand (Q�(xα,�) − Q�+1(xα,�))
Using the recursion relation for the difference of two Legendre function [39,
§14.10], we have

(� + 1)(Q�(xα,�) − Q�+1(xα,�) = −(1 − x2
α,�)

1
2 Q1

�(xα,�) + (1 − xα,�)Q�(xα,�).
(4.44)

We estimate the term (1 − xα,�)Q�(xα,�) by what we have done above as

|(1 − xα,�)Q�(xα,�)| � α

1 + �2
(| log(α)| + 1) � 1. (4.45)

For the term −(1 − x2
α,�)

1
2 Q1

�(xα,�), we use (4.31) to get
∣∣∣−(1 − x2

α,�)
1
2 Q1

�(xα,�)
∣∣∣

�
√

α

�2 + 1
1

1 + �

(
1 + O

(
α

1 + �2

))(
Y1

((
� +

1
2

)
θα,�

)
+ e2,�(θα,�)

)
.

(4.46)

As before, we shall start estimating the first term using (4.26) and (4.39) to
obtain
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√
α

�2 + 1
1

1 + �

(
1 + O

(
α

1 + �2

))
Y1

((
� +

1
2

)
θα,�

)

=
√

α

�2 + 1
1

1 + �

(
1 + O

(
α

1 + �2

))(
− 1

π(2� + 1)θα,�
+ O(1)

)

�
√

α

�2 + 1
1

1 + �

(
1√
α

+ 1
)

� 1. (4.47)

We estimate the second term using (4.33), (4.24), (4.26), and (4.39) to obtain∣∣∣∣
√

α

�2 + 1
1

1 + �

(
1 + O

(
α

1 + �2

))
e2,�(θα,�)

∣∣∣∣
�
√

α

�2 + 1
1

1 + �2

(
1√
α

+ 1
)

� 1. (4.48)

We have estimated that |Q�(xα,�) − Q�+1(xα,�)| � 1
1+� which proves the

claim in view of (4.38). �

Finally, we prove asymptotics for the derivatives of the Legendre of func-
tions of second kind near the singular points.

Lemma 4.4. For 0 < x < 1 and x → 1, we have

(1 − x2)
dQ�

dx
= 1 + O�((1 − x) log(1 − x)). (4.49)

By symmetry, this also yields for −1 < x < 0 and x → −1

(1 − x2)
dQ�

dx
= (−1)� + O�((1 + x) log(1 + x)). (4.50)

Proof. From the recursion relation [39, Sect. 14.10] and (4.35), we obtain

(1 − x2)
dQ�

dx
= (� + 1)(xQ� − Q�+1)

= (� + 1)(x − 1)Q� + (� + 1)(Q� − Q�+1)

= (� + 1)(Q� − Q�+1) + O�((1 − x) log(1 − x))

= (� + 1)(�(� + 2) − �(� + 1)) + O�((1 − x) log(1 − x))

= 1 + O�((1 − x) log(1 − x)). (4.51)

�

Having reviewed the required facts about special functions, we shall now
proceed to prove the uniform boundedness of the reflection and transmission
coefficients.

4.1.3. Boundedness of the Reflection and Transmission Coefficients. As men-
tioned before, we will consider three different regions: a region near the event
horizon, an intermediate region, and a region near the Cauchy horizon. In r∗
coordinates, we separate these regions at

R∗
1(ω, �) :=

1
2κ+

log
(

ω2

1 + �2

)
(4.52)
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and

R∗
2(ω, �) :=

1
2κ−

log
(

ω2

1 + �2

)
(4.53)

for 0 < |ω| < ω0 and � ∈ N0. Note that −∞ < R∗
1(ω, �) < 0 < R∗

2(ω, �) < ∞.

Region near the event horizon

Proposition 4.1. Let 0 < |ω| < ω0 and � ∈ N0. Then, we have

‖u′
1‖L∞(−∞,R∗

1) � |ω|, (4.54)

‖u1‖L∞(−∞,R∗
1) � 1. (4.55)

Proof. Recall the defining Volterra integral equation for u1 from Definition 2.3

u1(r∗) = eiωr∗ +
∫ r∗

−∞

sin(ω(r∗ − y))
ω

V (y)u1(y)dy. (4.56)

with integral kernel

K(r∗, y) :=
sin(ω(r∗ − y))

ω
V (y). (4.57)

From Lemma A.3 in Appendix, we obtain for r∗ ≤ R∗
1

|V (r∗)| � e2k+r∗(1 + �2) (4.58)

and in particular,

|V (R∗
1)| � e2k+R∗

1 (1 + �2) = ω2. (4.59)

This implies for r∗ ≤ R∗
1

|K(r∗, y)| ≤ 1
|ω| |V (y)| � 1

|ω| (1 + �2)e2k+y (4.60)

and thus, ∫ R∗
1

−∞
sup

y<r∗<R∗
1

|K(r∗, y)|dy � �2 + 1
|ω| e2k+R∗

1 � 1. (4.61)

The claim follows now from Proposition 2.3. �

Now, we would like to consider ω as a small parameter and perturb the
explicit solutions for the ω = 0 case in order to propagate the behavior of the
solution through the intermediate region, where V� is large compared to ω.
In particular, V� can be arbitrarily large since � is not bounded above in the
considered parameter regime.

Intermediate region. First, recall the following fundamental pair of solutions
which is based on the Legendre functions of first and second kind

w1(r∗) := (−1)� r(r∗)
r+

P�(x(r∗)), (4.62)

w2(r∗) := (−1)� r(r∗)
k+r+

Q�(x(r∗)), (4.63)
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where P� and Q� are the Legendre polynomials and Legendre functions of
second kind, respectively. Our first claim is that we have constructed this
fundamental pair (w1, w2) to have unit Wronskian and moreover ũ1 = w1 and
ũ2 = w2 holds true.

Proposition 4.2. We have w1 = ũ1 and w2 = ũ2 and the Wronskian of u1 and
u2 satisfies

W(w1, w2) = W(ũ1, ũ2) = 1. (4.64)

Similarly, we also have ṽ1 = (−1)� r+
r−

w1 = (−1)� r+
r−

ũ1.

Proof. We first prove that W(w1, w2) = 1. Since the Wronskian is independent
of r∗, we will compute its value in the limit r∗ → −∞. In this proposition, �
is fixed and we shall allow implicit constants in � to depend on �. Clearly,

w1(r∗) → 1 as r∗ → −∞. (4.65)

Moreover, we have that for r∗ ≤ 0∣∣∣∣ d
dr∗

w1(r∗)
∣∣∣∣ � e2k+r∗ |P�(x(r∗))| +

∣∣∣∣dP�(x)
dx

(r∗)
dx

dr∗
(r∗)

∣∣∣∣ � e2k+r∗ , (4.66)

where we have used (4.36). This, in particular, also shows that w1 satisfies the
same boundary conditions (w1 → 1, w′

1 → 0 as r∗ → −∞) as ũ1 defined in
Definition 2.3 and thus, w1 and ũ1 have to coincide. Similarly, we can deduce
ṽ1 = (−1)� r+

r−
w1.

For w2, we use (4.35) to obtain

|w2(r∗) − r∗| �
(

− r(r∗)

k+r+

(
1

2
log

(
2

1 + x(r∗)

)
− γ − �(� + 1)

)
− r∗

)
+ e2k+r∗ .

(4.67)

For an intermediate step, we compute log(1+x(r∗)) from (4.4) near r∗ = −∞.
In particular, for the limit r∗ → −∞, we can assume that r∗ ≤ 0 and thus,
r − r− � r+ − r−. Hence,

log(1 + x(r∗)) = log
(

1 +
(r+ − r) + (r− − r)

r+ − r−

)

= log
(

1 +
f(r∗)

r+ − r−
e2k+r∗ +

r− − r

r+ − r−

)

= log
(

2f(r∗)
r+ − r−

e2k+r∗

)

= 2k+r∗ + log(2f(r∗)(r+ − r−)−1), (4.68)

where f is defined in (A.11). Thus, this directly implies

|w2(r∗) − r∗| � r∗e2k+r∗ + 1 � 1. (4.69)

Finally, we claim that w′
2 → 1 as r∗ → −∞. We shall use estimate (4.50) near

x(r∗) = −1 to obtain
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|w′
2(r∗) − 1| � e2k+r∗ (|r∗| + 1) +

∣∣∣∣(−1)�
r(r∗)
k+r+

dQ�(x)

dx

dx

dr∗
− 1

∣∣∣∣
� e2k+r∗ +

∣∣∣∣ r(r∗)
k+r+

[1 + O ((1 + x(r∗)) log(1 + x(r∗)))]
1

1 − x2(r∗)
dx

dr∗
− 1

∣∣∣∣ .
(4.70)

Now, in order to conclude that

|w′
2(r∗) − 1| → 0 as r∗ → −∞, (4.71)

it suffices to check that
1

1 − x2(r∗)
dx

dr∗
→ k+ as r∗ → −∞. (4.72)

But this holds true because
1

1 − x2(r∗)
dx

dr∗
=

1
1 − x2(r∗)

−2
r+ − r−

Δ
r2

=
r+ − r−

2r2
→ k+ as r∗ → −∞.

(4.73)

Now, this implies that

W(w1, w2) = lim
r∗→−∞ (w1w

′
2 − w′

1w2) = 1, (4.74)

and moreover, that w2 = ũ2 as they satisfy the same boundary conditions at
r∗ = −∞. �

Having proved the Wronskian condition we are in the position to define
the perturbations of ũ1 and ũ2 to nonzero frequencies.

Definition 4.4. Define perturbations ũ1,ω and ũ2,ω of ũ1 and ũ2 [cf. (4.8) and
(4.9)] in the intermediate region by the unique solutions to the Volterra equa-
tions

ũ1,ω(r∗) = ũ1(r∗) + ω2

∫ r∗

R∗
1

(ũ1(r∗)ũ2(y) − ũ1(y)ũ2(r∗)) ũ1,ω(y)dy (4.75)

and

ũ2,ω(r∗) = ũ2(r∗) + ω2

∫ r∗

R∗
1

(ũ1(r∗)ũ2(y) − ũ1(y)ũ2(r∗)) ũ2,ω(y)dy. (4.76)

Proposition 4.3. Let 0 < |ω| < ω0 and � ∈ N0, then we have for r∗ ∈ [R∗
1, R

∗
2]

u1(ω, r∗) = A(ω, �)ũ1,ω(r∗) + B(ω, �)ωũ2,ω(r∗), (4.77)

where

|A(ω, �)| + |B(ω, �)| � 1. (4.78)

Proof. First, note that by construction in Definition 4.4 we have

ũ1,ω(R∗
1) = ũ1(R∗

1), (4.79)

ũ′
1,ω(R∗

1) = ũ′
1(R

∗
1), (4.80)

ũ2,ω(R∗
1) = ũ2(R∗

1), (4.81)

ũ′
2,ω(R∗

1) = ũ′
2(R

∗
1). (4.82)
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Now, we want to estimate the previous terms. By construction, we directly
have that

|ũ1(R∗
1)| ≤ 1. (4.83)

Then, note that

ω2

�2 + 1
� 1 + x(R∗

1) � ω2

�2 + 1
. (4.84)

Hence, from (4.35), we obtain

|ũ2(R∗
1)| � 1 +

∣∣∣∣−1
2

log(1 + x(R∗
1)) − �(� + 1)

∣∣∣∣ � 1 + | log(|ω|)| � log
(

1
|ω|

)
,

(4.85)

where we have used that for � ≥ 1 we have �(� + 1) = log(�) + γ + O(�−1).
For ũ′

2(R
∗
1) we have the estimate

|ũ′
2(R

∗
1)| � |Δ(R∗

1)Q�(x(R∗
1))| +

∣∣∣∣dQ�

dx
(R∗

1)
dx

dr∗
(R∗

1)
∣∣∣∣ � 1, (4.86)

where we have used (4.37) and (4.84) as well as the fact that

dx

dr∗
(1 − x(r∗)2)−1 � 1. (4.87)

Now, we can express A via the Wronskian as

|A| =
∣∣∣∣ W(u1, ũ2,ω)
W(ũ1,ω, ũ2,ω)

∣∣∣∣ . (4.88)

By construction, we have W(ũ1,ω, ũ2,ω) = W(ũ1, ũ2) = 1. Hence, using Propo-
sition 4.1 we conclude

|A| ≤ |u1(R∗
1)ũ

′
2,ω(R∗

1)| + |u′
1(R

∗
1)ũ2,ω(R∗

1)| � |ũ′
2(R

∗
1)| + |ωũ2(R∗

1)|. (4.89)

Thus, we conclude

|A| � 1. (4.90)

Note that from (4.36), we have

|ũ′
1(R

∗
1)| �

∣∣∣∣
(

1 +
dP�

dx

)
dx

dr∗

∣∣∣∣ � (1 + �2)
ω2

1 + �2
≤ ω2. (4.91)

Hence, we can also estimate B by

|B| =
1

|ω| |W(u1, ũ1,ω)| � 1
|ω| (|ũ′

1(R
∗
1)| + |ωũ1(R∗

1)|)

� 1 +
1

|ω| |ũ
′
1(R

∗
1)| � 1, (4.92)

where we used Proposition 4.1 again. �

For the intermediate region, we will need the following result in order to
get uniform bounds for the Volterra iteration.
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Lemma 4.5. Let 0 < |ω| < ω0 and � ∈ N0, then
∫ R∗

2

R∗
1

|ũ1(r∗)|dr∗ � log2

(
1

|ω|
)

, (4.93)

∫ R∗
2

R∗
1

|ũ2(r∗)|dr∗ � log2

(
1

|ω|
)

. (4.94)

Proof. We first prove (4.93). We shall split the integral in two regions. The
first region is from r∗ = R∗

1 to r∗ = 0. In that region, we define θ ∈ (0, π
2 ] such

that cos(θ) = −x(r∗). Using also Lemma 4.1, we obtain

|ũ1(r∗)| � |P�(x(r∗))| = |P�(−x(r∗))| = |P�(cos θ)|

�
∣∣∣∣∣
(

θ

sin θ

) 1
2

J0

((
� +

1
2

)
θ

)∣∣∣∣∣+ |e1,�(θ)|. (4.95)

The last term shall be treated as an error term. Thus,
∫ 0

R∗
1

|ũ1(r∗)|dr∗ �
∫ 0

x(R∗
1)

|P�(x)| 1
1 + x

dx ≤
∫ 0

−1+C ω2
1+�2

|P�(−x)| 1
1 + x

dx

�
∫ π

2

arccos(1−C ω2
1+�2

)

|P�(cos θ)| 1
1 − cos θ

sin θ dθ

≤
∫ π

2

C1
|ω|
1+�

|P�(cos θ)| sin θ

1 − cos θ
dθ. (4.96)

Here, C and C1 are positive constants only depending on the black hole param-
eters. We further estimate using equation (4.95)

∫ 0

R∗
1

|ũ1(r∗)|dr∗ �
∫ π

2

C1
ω

1+�

(
θ

sin θ

) 1
2
∣∣∣∣J0

((
� +

1
2

)
θ

)∣∣∣∣ sin θ

1 − cos θ
dθ + Error,

(4.97)

where we will take care of the term

Error =
∫ π

2

C1
ω

1+�

|e1,�(θ)| (4.98)

later. First, we look at the term
∫ π

2

C1
ω

1+�

(
θ

sin θ

) 1
2
∣∣∣∣J0

((
� +

1
2

)
θ

)∣∣∣∣ sin θ

1 − cos θ
dθ

�
∫ π

2

C1
ω

1+�

1
θ

∣∣∣∣J0

((
� +

1
2

)
θ

)∣∣∣∣dθ

�
∫ π

2 (�+1)

C1ω

1
θ

∣∣∣∣J0

(
� + 1

2

� + 1
θ

)∣∣∣∣ dθ
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�
∫ 1

C1ω

∣∣∣J0

(
�+ 1

2
�+1 θ

)∣∣∣
θ

dθ +
∫ ∞

1

∣∣∣J0

(
�+ 1

2
�+1 θ

)∣∣∣
θ

dθ

�
∫ 1

C1ω

1
θ
dθ +

∫ ∞

1

1
θ

3
2
dθ � | log(|ω|)|, (4.99)

where we have used equation (4.27) and (4.28). Now, we are left with the error
term

Error ≤ 1
1 + �

∫ π
2

C1
ω

�+1

sin θ

1 − cos θ

(∣∣∣∣J0

((
� +

1
2

)
θ

)∣∣∣∣+
∣∣∣∣Y0

((
� +

1
2

)
θ

)∣∣∣∣
)

dθ

� 1
1 + �

∫ π
2

C1
ω

�+1

sin θ

1 − cos θ
(1 + | log(|ω|)|)dθ � | log(|ω|)|

1 + �

∫ π
2

C1
ω

�+1

1
θ
dθ

� log2(|ω|) + log(1 + �)
1 + �

� log2

(
1

|ω|
)

. (4.100)

Thus, ∫ 0

R∗
1

|ũ1(r∗)|dr∗ � log2

(
1

|ω|
)

. (4.101)

Completely analogously, we can compute

∫ R∗
2

0

|ũ1(r∗)|dr∗ � log2

(
1

|ω|
)

. (4.102)

The proof of equation (4.93) is completely similar up to a term which involves

∫ 1

C1ω

∣∣∣Y0

(
�+ 1

2
�+1 θ

)∣∣∣
θ

dθ � log2

(
1

|ω|
)

(4.103)

appearing in the estimate analogous to (4.99). �

With the help of the previous lemma, we can now bound our solution u1

at R∗
2. This results in

Proposition 4.4. Let 0 < |ω| < ω0 and � ∈ N0, then

‖u1‖L∞(R∗
1 ,R∗

2) � 1 and |u′
1|(R∗

2) � |ω|. (4.104)

Proof. Recall that we have from Proposition 4.3 for r∗ ∈ [R∗
1, R

∗
2]

u1(ω, r∗) = A(ω, �)ũ1,ω(r∗) + ωB(ω, �)ũ2,ω(r∗) (4.105)

for some uniformly bounded (in |ω| ≤ ω0 and �) constants A,B. In particular,
from Proposition 2.3 and Remark 2.1 we obtain the bound

‖ũ1,ω‖L∞(R∗
1 ,R∗

2) ≤ eα‖ũ1‖L∞(R∗
1 ,R∗

2) (4.106)

for

α = ω2

∫ R∗
2

R∗
1

sup
{r∗|y≤r∗≤R∗

2}
|ũ1(r∗)ũ2(y) − ũ1(y)ũ2(r∗)|dy. (4.107)
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First, we have the bound

‖ũ1‖L∞(R∗
1 ,R∗

2) ≤ 1. (4.108)

Secondly, for r∗ ∈ [R∗
1, R

∗
2] we have

1 − x(r∗) � ω2

1 + �2
(4.109)

and

1 + x(r∗) � ω2

1 + �2
. (4.110)

Consider the case x(r∗) ≥ 0 first and implicitly define θ(r∗) by cos θ(r∗) =
x(r∗). Then, in view of (4.30) and θ(x(r∗)) =

√
2 − 2x(r∗) + O((1 − x(r∗)

3
2 )),

we estimate

|ũ2(r∗)| � |Q�(cos(θ(r∗)))| �
∣∣∣∣Y0

(
θ(r∗)(2� + 1)

2

)∣∣∣∣ � |Y0 (C|ω|)| (4.111)

for a C = C(M,Q) > 0. Analogously, this also holds for x(r∗) < 0 such that
(4.27) and (4.28) imply

‖ũ2‖L∞(R∗
1 ,R∗

2) � log
(

1
|ω|

)
. (4.112)

Together with Lemma 4.5, we obtain

α � 1. (4.113)

Hence,

‖ũ1,ω‖L∞(R∗
1 ,R∗

2) � 1 (4.114)

and similarly,

‖ũ2,ω‖L∞(R∗
1 ,R∗

2) � log
(

1
|ω|

)
. (4.115)

This shows ‖u1‖L∞(R∗
1 ,R∗

2) � 1 in view of (4.105).
Now, we are left with the derivative u′

1(R
∗
2). To do so, we start by esti-

mating ũ′
1(R

∗
2) and ũ′

2(R
∗
2). Using the analogous estimate as we did for R∗

1 in
(4.86) and (4.91), we obtain

|ũ′
2(R

∗
2)| � 1 and |ũ′

1(R
∗
2)| � ω2. (4.116)

Note that

ũ′
2,ω(R∗

2) = ũ′
2(R

∗
2) + ω2

∫ R∗
2

R∗
1

(ũ′
1(R

∗
2)ũ2(y) − ũ1(y)ũ′

2(R
∗
2)) ũ2,ω(y)dy

(4.117)

and thus in view of Lemma 4.5, (4.116), (4.115), (4.112), and (4.108) we esti-
mate

|ũ′
2,ω(R∗

2)| ≤ |ũ′
2(R

∗
2)| + ω2 log

(
1

|ω|
)∫ R∗

2

R∗
1

|ũ′
1(R

∗
2)ũ2(y)| + |ũ1(y)ũ′

2(R
∗
2)|dy

� 1 + ω2 | log(|ω|)| (ω2 log2(|ω|) + log2(|ω|)) � 1. (4.118)
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Similarly, we obtain

|ũ′
1,ω(R∗

2)| ≤ |ũ′
1(R

∗
2)| + ω2

∫ R∗
2

R∗
1

|ũ′
1(R

∗
2)ũ2(y)| + |ũ1(y)ũ′

2(R
∗
2)|dy

� ω2 + ω2(ω2 log2(|ω|) + log2(|ω|)) � |ω| (4.119)

which concludes the proof in the light of (4.105). �

Region near the Cauchy horizon. Completely analogously to Proposition 4.1,
we have

Proposition 4.5. Let 0 < |ω| < ω0 and � ∈ N0. Then, we have

‖v′
1‖L∞(R∗

2 ,∞) � |ω|, ‖v1‖L∞(R∗
2 ,∞) � 1 (4.120)

and

‖v′
2‖L∞(R∗

2 ,∞) � |ω|, ‖v2‖L∞(R∗
2 ,∞) � 1. (4.121)

Boundedness of the scattering coefficients. Finally, we conclude that the
reflection and transmission coefficients are uniformly bounded for parameters
0 < |ω| < ω0 and � ∈ N0.

Proposition 4.6. We have

sup
0<|ω|<ω0,�∈N0

(|R(ω, �)| + |T(ω, �)|) � 1. (4.122)

Proof. Let 0 < |ω| < ω0 and � ∈ N0 and recall Definition 2.4. Then, Proposi-
tion 4.4 and Proposition 4.5 imply

|T| � |W(u1, v2)|
|ω| ≤ |u1(R∗

2)v
′
2(R

∗
2)| + |u′

1(R
∗
2)v2(R∗

2)|
|ω| � 1 (4.123)

and

|R| � |W(u1, v1)|
|ω| ≤ |u1(R∗

2)v
′
1(R

∗
2)| + |u′

1(R
∗
2)v1(R∗

2)|
|ω| � 1. (4.124)

�

4.2. Frequencies Bounded from Below and Bounded Angular Momenta (|ω| ≥
ω0, � ≤ �0)

Now, we will consider parameters of the form |ω| ≥ ω0 and � ≤ �0, where
ω0 is small and determined from Sect. 4.1. Also, the upper bound on the
angular momentum �0 will be determined from Sect. 4.3. As before, constants
appearing in � and � may depend on ω0.

Proposition 4.7. We have

sup
ω0≤|ω|,�≤�0

(|R(ω, �)| + |T(ω, �)|) � 1. (4.125)



Vol. 20 (2019) Scattering of Linear Waves on Reissner–Nordström 1627

Proof. Recall the definition of u1 as the unique solution to

u1(ω, r∗) = eiωr∗ +
∫ r∗

−∞

sin(ω(r∗ − y))
ω

V (y)u1(ω, y)dy. (4.126)

Note that in the regime � ≤ �0 we have a bound of the form

|V (r∗)| � e−2 min(k+,|k−|)|r∗| (4.127)

which implies the following bound on the integral kernel of the perturbation
in (4.126)

|K(r∗, y)| =
∣∣∣∣ sin(ω(r∗ − y))

ω
V (y)

∣∣∣∣ � |V (y)| (4.128)

in view of |ω| ≥ ω0. Thus,∫ ∞

−∞
sup
r∗∈R

|K(r∗, y)|dy �
∫ ∞

−∞
|V (y)|dy � 1. (4.129)

Hence, from Proposition 2.3 we deduce

‖u1‖L∞(R) � 1 (4.130)

and

‖u′
1‖L∞(R) � |ω|. (4.131)

Note that we have obtained similar, indeed even stronger bounds for u1 as in
Proposition 4.4. An argument completely similar to Proposition 4.6 allows us
to conclude. �

4.3. Frequencies and Angular Momenta Bounded from Below (|ω| ≥ ω0,
� ≥ �0)

In this regime, we assume ω ≥ ω0 and � ≥ �0, where we choose �0 large
enough such that V� < 0 everywhere. Note that such an �0 can be chosen only
depending on the black hole parameters.

We write the o.d.e. as

u′′ = −(ω2 − V�)u (4.132)

and will represent the solution of the o.d.e. via a WKB approximation. For
concreteness, we will use the following theorem which is a slight modification
of [43, Theorem 4].

Lemma 4.6 (Theorem 4 of [43]). Let p ∈ C2(R) be a positive function such
that

F (x) =
∣∣∣∣
∫ x

−∞
p− 1

4

∣∣∣∣ d2

dx2

(
p− 1

4

)∣∣∣∣ dy

∣∣∣∣ (4.133)

satisfies supx∈R F (x) < ∞. Then, the differential equation

d2u(x)
dx2

= −p(x)u(x) (4.134)
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has conjugate solutions u and ū such that

u(x) = p− 1
4

(
exp

(
i

∫ x

0

√
p(y)dy

)
+ ε

)
, (4.135)

u′(x) = ip
1
4

[
exp

(
i

∫ x

0

√
p(y)dy

)
− iη +

ip′

4p
3
2

(
exp

(
−i

∫ x

0

√
p(y)dy

)
+ ε

)]
,

(4.136)

where

|η(x)|, |ε(x)| ≤ exp (F (x)) − 1. (4.137)

Proposition 4.8. Let ω0 ≤ |ω| and � ≥ �0. Assume without loss of generality
that ω > 0. Then,

u1(ω, r∗) = Aω
1
2 (ω2 − V (r∗))− 1

4

(
exp

(
i

∫ r∗

0

(ω2 − V�(y))
1
2 dy

)
+ ε(r∗)

)
,

(4.138)

u′
1(ω, r∗) = Aω

1
2 i(ω2 − V (r∗))

1
4

[
exp

(
i

∫ r∗

0

(ω2 − V�(y))
1
2 dy

)
− iη(r∗)

− iV ′(r∗)
4(ω2 − V )

3
2 (r∗)

(
exp

(
i

∫ r∗

0

(ω2 − V�(y))
1
2 dy

)
+ ε(r∗)

)]
, (4.139)

where

|A| = 1, sup
r∗∈R

(|ε|(r∗) + |η|(r∗)) � 1 (4.140)

and

lim
r∗→−∞ η(r∗) = lim

r∗→−∞ ε(r∗) = 0. (4.141)

In particular, this proves

lim sup
r∗→∞

|u(r∗)| � 1, (4.142)

lim sup
r∗→∞

|u′(r∗)| � |ω|, (4.143)

and uniform bounds on the reflection and transmission coefficients

sup
ω0≤|ω|,�≥�0

(|R(ω, �)| + |T(ω, �)|) � 1. (4.144)

Proof. We will apply Lemma 4.6. First, we set

p = (ω2 − V�) (4.145)

which is positive and smooth. Then, the o.d.e. reads

u′′ = −pu. (4.146)

Now we have to show that F is uniformly bounded on the real line. Note that
we have the following bounds on the potential and its derivatives

|V�(r∗)|, |V ′
� (r∗)|, |V ′′

� (r∗)| � �2e2κ+r∗ and �2e2κ+r∗ � |V�(r∗)| for r∗ ≤ 0,
(4.147)
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|V�(r∗)|, |V ′
� (r∗)|, |V ′′

� (r∗)| � �2e2κ−r∗ and �2e2κ−r∗ � |V�(r∗)| for r∗ ≥ 0.
(4.148)

Here, we might have to choose �0(M,Q) even larger (r2
+(r+−3r−)+�(�+1) > 0,

cf. (A.16)) in order to assure the lower bounds on the potential. Finally, we
can estimate F by

sup
r∗∈R

F (r∗) ≤
∣∣∣∣
∫ ∞

−∞
p− 1

4

∣∣∣∣ d2

dx2

(
p− 1

4

∣∣∣
)

dy

∣∣∣∣
=
∫ ∞

−∞
p− 1

4

(
p− 9

4 p′2 + p− 5
4 |p′′|

)
dy

� 1
�

∫ ∞

0

(
e4κ−y

(�−2 + e2κ−y)
5
2

+
e2κ−y

(�−2 + e2κ−y)
3
2

)
dy

+
1
�

∫ 0

−∞

(
e4κ+y

(�−2 + e2κ+y)
5
2

+
e2κ+y

(�−2 + e2κ+y)
3
2

)
dy, (4.149)

where we have used the bounds from (4.147) and (4.148). We shall estimate
both terms independently. After a change of variables y �→ 1

2κ−
log(y), we can

estimate the first term by

1
�

∫ ∞

0

(
e4κ−y

(�−2 + e2κ−y)
5
2

+
e2κ−y

(�−2 + e2κ−y)
3
2

)
dy

� 1
�

∫ 1

0

(
y

(�−2 + y)
5
2

+
1

(�−2 + y)
3
2

)
dy

� �2
∫ 1

0

�2y

(1 + �2y)
5
2

+
1

(1 + �2y)
3
2
dy

�
∫ ∞

0

y

(1 + y)
5
2

+
1

(1 + y)
3
2
dy � 1. (4.150)

Completely analogously, we get the bound for the second integral. In particular,
this shows

sup
R

F � 1. (4.151)

This implies the bounds on η and ε in the statement of the theorem [cf. (4.140)]
using (4.137).

The limits in equation (4.141) follow from the fact that F (r∗) → 0 as
r∗ → −∞ by construction.

The bound on the reflection and transmission coefficients follows now
from

|R| �
∣∣∣∣W(u1, v1)

ω

∣∣∣∣ ≤ 1
|ω| lim sup

r∗→∞
(|u′

1v1| + |u1v
′
1|) � 1 (4.152)

and analogously for T.
Finally, A can be determined from the asymptotic behavior u → eiωr∗ as

r∗ → −∞ and it is given by
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A = lim
r∗→−∞ exp

(
iωr∗ − i

∫ r∗

0

(ω2 − V (y))
1
2 dy

)

= lim
r∗→−∞ exp

(
−i

∫ r∗

0

(
(ω2 − V (y))

1
2 − ω

)
dy

)
(4.153)

which converges since V tends to zero exponentially fast. In particular, this
also shows that |A| = 1. �

Finally, Theorem 2 is a consequence of Propositions 4.6, 4.7 and 4.8.

5. Proof of Theorem 1: Existence and Boundedness of the T
Energy Scattering Map

Having performed the analysis of the radial o.d.e. and having in particular
proven uniform boundedness of the transmission coefficient T and the reflection
coefficients R, we shall prove Theorem 1 in this section.

5.1. Density of the Domains DT
H and DT

CH
We start by proving that the domains DT

H and DT
CH are dense.

Lemma 5.1. The domains of the forward and backward evolution DT
H and DT

CH
are dense in ET

H and ET
CH, respectively.

Proof. We will only prove that the domain of the forward evolution is dense
since the other claim is analogous.

Recall that by definition C∞
c (H) is dense in ET

H. Now, let Ψ ∈ C∞
c (H)

be arbitrary and denote by ψ its forward evolution. We will show that we
can approximate Ψ with functions of DT

H arbitrarily well. To do so, fix
rred < r0 < r+. Then, using the redshift effect (see Lemma A.1 in Appen-
dix) the N energy of ψ �r=r0 will have exponential decay toward i+. Hence,
it can be approximated with smooth functions φn of compact support on the
hypersurface r = r0 w.r.t. the norm induced by the non-degenerate N energy
(see Remark A.1 in Appendix). More precisely, on Σr0 = {r = r0} define a
sequence φn ∈ C∞

c (Σr0) by

φn(t, θ, φ) = ψ �r=r0 (t, θ, φ)χ(n−1t), (5.1)

where (θ, φ) ∈ S
2 and χ : R → [0, 1] is smooth with suppχ ⊆ [−2, 2],

χ �[−1,1]= 1. Then, we obtain that
∫
Σr0

JN
μ [ψ−φn]nμ

Σr0
dvol → 0 as n → ∞. By

construction, the restriction to the event horizon of the backward evolution,
Φn of each φn will lie in DT

H. Finally, we can conclude the proof by applying
Lemma A.2 from Appendix, which yields

‖Ψ − Φn‖2
ET

H
=
∫

H
JT

μ [Ψ − Φn]Tμdvol �
∫

r=r0

JN
μ [ψ − φn]nμ

Σr0
dvol → 0

(5.2)

as n → ∞. �
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5.2. Boundedness of the Scattering and Backward Map on DT
H and DT

CH
In the following proposition, we shall lift the boundedness of the transmission
and reflection coefficients (Theorem 2) to the physical space picture on the
dense domains DT

H and DT
CH.

Proposition 5.1. Let ψ be a smooth solution to (1.1) on MRN such that ψ �H∈
DT

H (or equivalently, ψ �CH∈ DT
CH). Then,

‖ψ �CHA
‖2

ET
CHA

+ ‖ψ �CHB
‖2

ET
CHB

≤ B
(
‖ψ �HA

‖2
ET

HA

+ ‖ψ �HB
‖2

ET
HB

)
(5.3)

and

‖ψ �HA
‖2

ET
HA

+ ‖ψ �HB
‖2

ET
HB

≤ B̃
(
‖ψ �CHA

‖2
ET

CHA

+ ‖ψ �CHB
‖2

ET
CHB

)
(5.4)

for constants B and B̃ only depending on the black hole parameters.

Proof. Set φ := Tψ and note that φ �H∈ DT
H and φ also solves (1.1). Since

ψ ∈ DT
H ⊂ ET

H, we have that φ �HA
= Tψ �HA

∈ L2(HA) with respect to the
unique volume form induced by the normal vector field T . Analogously, we also
have φ �HB

= Tψ �HB
∈ L2(HB). Thus, we can define the Fourier transform on

the event horizon with the charts (2.15) and (2.16) as

aHA
(ω, θ, φ) :=

1√
2π

∫
R

φ �HA
(v, θ, φ)e−iωvdv (5.5)

and

aHB
(ω, θ, φ) :=

1√
2π

∫
R

φ �HB
(u, θ, φ)eiωudu. (5.6)

We can further decompose the Fourier coefficients in spherical harmonics to
obtain

a�,m
HA

(ω) = 〈Y�m, aHA
〉L2(S2) and a�,m

HB
(ω) = 〈Y�m, aHB

〉L2(S2). (5.7)

From Plancherel’s theorem, we obtain

‖ψ �HA
‖2

ET
HA

=
∑

|m|≤�,�≥0

∫
R

|a�,m
HA

(ω)|2dω, (5.8)

‖ψ �HB
‖2

ET
Hb

=
∑

|m|≤�,�≥0

∫
R

|a�,m
HB

(ω)|2dω. (5.9)

Similarly, since φ �CH∈ DT
CH, we define

bCHA
(ω, θ, φ) :=

1√
2π

∫
R

φ �CHA
(v, θ, φ)e−iωvdv (5.10)

and

bCHB
(ω, θ, φ) :=

1√
2π

∫
R

φ �CHB
(u, θ, φ)eiωudu. (5.11)

We can further decompose the Fourier coefficients in spherical harmonics to
obtain

b�,m
CHA

(ω) = 〈Y�m, bCHA
〉L2(S2) and b�,m

CHB
(ω) = 〈Y�m, bCHB

〉L2(S2). (5.12)
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Again, in view of Plancherel’s theorem

‖ψ �CHA
‖2

ET
CHA

=
∑

|m|≤�,�≥0

∫
R

|b�,m
CHA

(ω)|2dω, (5.13)

‖ψ �CHB
‖2

ET
CHB

=
∑

|m|≤�,�≥0

∫
R

|b�,m
CHB

(ω)|2dω. (5.14)

and similarly for CHB . We shall also decompose φ on a constant r slice. Fix
r ∈ (r−, r+), then set

φ̂m�(ω, r) =
1√
2π

∫
R

∫
S2

Ym�(θ, φ)φ(t, r, θ, φ)e−iωt sin θdθdφdt (5.15)

such that

φ(t, r, θ, φ) =
1√
2π

∑
|m|≤�,�≥0

∫
R

φ̂m�(ω, r)Ym�(θ, φ)eiωtdω. (5.16)

This is well defined since φ(t, r, θ, φ) is compactly supported on each r = const.
slice.

Since φ is smooth, we also know that φ̂m� satisfies the radial o.d.e. (2.34)
and can be expanded as

φ̂m�(ω, r(r∗)) = α�,m
HA

(ω)
r+

r
u1(ω, r∗) + α�,m

HB
(ω)

r+

r
u2(ω, r∗), (5.17)

where

|u1 − eiωr∗ | �� e2κ+r∗ ∼ (r+ − r), (5.18)

|u2 − e−iωr∗ | �� e2κ+r∗ ∼ (r+ − r) (5.19)

for r∗ ≤ 0. Note that this holds uniformly in ω. We shall show in the following
that indeed α�,m

HA
= a�,m

HA
and α�,m

HB
= a�,m

HB
. To do so, note that for r(r∗) with

r∗ ≤ 0 we have for fixed (m, �) that

φ�,m(t, r) = 〈φ, Ym�〉L2(S2)

=
∫

R

(
α�,m

HA
(ω)

r+

r
u1(ω, r∗(r)) + α�,m

HB
(ω)

r+

r
u2(ω, r∗(r))

)
eiωt dω√

2π
.

(5.20)

We want to interchange the limit r → r+ with the integral. In order to use
Lebesgue’s dominated convergence theorem we will estimate α�,m

HA
and α�,m

HB
.

Note that

|α�,m
HA

| =

∣∣∣∣∣
W( r

r+
φ̂m�, u2)

W(u1, u2)

∣∣∣∣∣ =

∣∣∣∣∣
W( r

r+
ˆTψm�, u2)

W(u1, u2)

∣∣∣∣∣

≤
|ωW( r

r+
ψ̂m�, u2)|

2|ω| ≤
∣∣∣∣W

(
r

r+
ψ̂m�, u2

)∣∣∣∣ , (5.21)

which is independent of r(r∗) and integrable since ω �→ ψ̂m�(ω, r∗) is a Schwartz
function. Now, we shall fix v = r∗ + t and let r → r+ such that r∗ → −∞.
Then, using Lebesgue’s dominated convergence theorem, we obtain
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φ�,m =
∫

R

(
α�,m

HA
(ω)eiωv + α�,m

HB
(ω)e−2iωr∗eiωv

) dω√
2π

+ O(r+ − r)

as r → r+. Finally, for v fixed and letting r → r+ (or r∗ → −∞), we obtain

φ�,m �HA
(v) =

∫
R

α�,m
HA

(ω)eiωv dω√
2π

(5.22)

in view of the Riemann–Lebesgue’s lemma. Also, by definition of a�,m
HA

,

φ �HA
(v, θ, φ) =

∑
|m|≤�,�≥0

∫
R

a�,m
HA

(ω, θ, φ)eiωvY�m(θ, φ)
dv√
2π

. (5.23)

In view of the Fourier inversion theorem and the fact that the spherical har-
monics form a basis, we conclude that

α�,m
HA

= a�,m
HA

and analogously, α�,m
HB

= a�,m
HB

. (5.24)

Similarly to (5.17), we can expand ψ̂m� in a fundamental pair of solutions
corresponding to both Cauchy horizons CHA and CHB . In particular, we can
write

φ̂m�(ω, r(r∗)) = β�,m
CHA

(ω)
r+

r
v1(ω, r∗) + β�,m

CHA
(ω)

r+

r
v2(ω, r∗), (5.25)

where

|v1 − e−iωr∗ | �� e2κ−r∗ ∼ (r − r−), (5.26)

|v2 − eiωr∗ | �� e2κ−r∗ ∼ (r − r−). (5.27)

for r∗ ≥ 0. Similarly to (5.24), we can prove
r+

r−
β�,m

CHA
(ω) = b�,m

CHA
(ω) and

r+

r−
β�,m

CHB
(ω) = b�,m

CHB
(ω). (5.28)

Moreover, from the uniform boundedness of the reflection and transmission
coefficients (cf. Theorem 2) we have the estimate

|b�,m
CHA

(ω)| + |b�,m
CHB

(ω)| =
r+

r−
|β�,m

CHA
(ω)| +

r+

r−
|β�,m

CHB
(ω)|

=
r+

r−

(∣∣∣Rα�,m
HA

+ T̄α�,m
HB

∣∣∣+
∣∣∣R̄α�,m

HB
+ Tα�,m

HA

∣∣∣
)

≤ C(|α�,m
HA

(ω)| + |α�,m
HB

(ω)|) = C(|a�,m
HA

(ω)| + |a�,m
HB

(ω)|)
(5.29)

for a constant C which only depends on the black hole parameters. Here, we
have used the fact that(

β�,m
CHB

β�,m
CHA

)
=
(
T R̄
R T̄

)(
α�,m

HA

α�,m
HB

.

)
. (5.30)

In view of 1 = |T|2 − |R|2, we also have(
α�,m

HA

α�,m
HB

)
=
(

T̄ −R̄
−R T

)(
β�,m

CHB

β�,m
CHA

)
(5.31)



1634 C. Kehle, Y. Shlapentokh-Rothman Ann. Henri Poincaré

from which we deduce

|a�,m
HA

(ω)| + |a�,m
HB

(ω)| � |b�,m
CHA

(ω)| + |b�,m
CHB

(ω)|. (5.32)

Estimate (5.29) and (5.32) show the claim in view of (5.8), (5.9), (5.13), and
(5.14). Finally, in view of the Fourier inversion theorem, note that the previ-
ous also justifies the Fourier representation of scattering map (3.20), and the
Fourier representations (3.24) and (3.25). �

5.3. Completing the Proof

Having proven Lemma 5.1 and Proposition 5.1, we can finally show Theorem 1
in the following.

Proof of Theorem 1. Since DT
H ⊂ ET

H is dense (Lemma 5.1) and ST
0 : DT

H ⊂
ET

H → DT
CH ⊂ ET

CH is a bounded injective map (Remark 3.2, Proposition 5.1),
we can uniquely extend ST

0 to the bounded injective scattering map

ST : ET
H → ET

CH. (5.33)

Analogously, in view of Proposition 2.2, Remarks 3.1, 3.2, and Propo-
sition 5.1, we can uniquely extend the bounded injective map BT

0 : DT
CH ⊂

ET
CH → DT

CH ⊂ ET
H to the bounded injective backward map BT : ET

CH → ET
H

(Lemma 5.1).
Since BT

0 ◦ST
0 = IdDT

H
and ST

0 ◦BT
0 = IdDT

CH
on dense sets, it also extends

to ET
H and ET

CH from which (3.5) follows. Similarly, it suffices to check (3.6)
for ψ ∈ DT

H. Indeed, (3.6) holds true for ψ ∈ DT
H in view of the T energy

identity. �

6. Proof of Theorem 6: Breakdown of T Energy Scattering for
Cosmological Constants Λ �= 0

In the presence of a cosmological constant Λ, the situation regarding the T
energy scattering problem is changed radically. In this section we will con-
sider the subextremal (anti-) de Sitter–Reissner–Nordström black hole interior
(M(a)dSRN, gQ,M,Λ) which is completely analogous to (MRN, gQ,M ). We will
assume that (M,Q,Λ) ∈ Pse as defined in Sect. 3.6. Also, recall that in the
presence of a cosmological constant it is natural to look at the Klein–Gordon
equation

�gψ − μψ = 0 (6.1)

with mass μ = 3
2Λ for the conformal invariant equation or more general μ = νΛ

for fixed ν ∈ R.
This section is devoted to prove Theorem 6 which relies on the fact that

solutions of the corresponding radial o.d.e. in the vanishing frequency limit
ω = 0 generically map bounded solutions at r∗ = −∞ to unbounded solutions
at r∗ = +∞. More precisely, for Λ �= 0 we obtain—after separation of variables
for (6.1) and setting dr∗ = h−1dr—the o.d.e.

−u′′ + V�,Λu = ω2u (6.2)
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for u(r∗) = r(r∗)R(r∗), where

V�,Λ = h

(
hh′

r
+

�(� + 1)
r2

− μ

)
= h

(
dh
dr

r
+

�(� + 1)
r2

− μ

)
(6.3)

and

h =
Δ
r2

= 1 − 2M

r
− 1

3
Λr2 +

Q2

r2
. (6.4)

Here, consider r(r∗) as a function r∗ and recall that ′ denotes the derivative
with respect to r∗. The presence of the mass and the cosmological constant
leads to a modification of the potential V�,Λ.

Nevertheless, the potential V�,Λ still decays exponentially at ±∞ and we
can define asymptotic states u

(Λ)
1 , u

(Λ)
2 , and v

(Λ)
1 , v

(Λ)
2 for ω �= 0 and ũ

(Λ)
1 , ũ

(Λ)
2 ,

and ṽ
(Λ)
1 , ṽ

(Λ)
2 for ω = 0 just as in the case where Λ = μ = 0 in Definition 2.3.

In particular, ũ
(Λ)
1 and ṽ

(Λ)
1 remain bounded as r∗ → −∞ and r∗ → +∞,

respectively. In contrast to that, ũ
(Λ)
2 and ṽ

(Λ)
2 grow linearly in their respec-

tive limits. The next proposition states that in the presence of a cosmological
constant, solutions to (6.1) in the case ω = 0 which are bounded at r∗ = −∞
do not need to be bounded at r∗ = +∞.

Proposition 6.1. Fix ν ∈ R (e.g., ν = 3
2 for the conformal invariant mass) and

fix subextremal black hole parameters (M,Q,Λ) ∈ Pse. Assume moreover that
(M,Q,Λ) /∈ D(ν), where D(ν) ⊂ Pse is defined in the proof and has measure
zero. Then, there exists an �0 = �0(ν) ∈ N0 such that we have

ũ
(Λ)
1 = A(�0,Λ,M,Q)ṽ(Λ)

1 + B(�0,Λ,M,Q)ṽ(Λ)
2 , (6.5)

with B = B(�0,Λ,M,Q) �= 0. Moreover, PΛ=0
se ⊂ D(ν) for all ν ∈ R and there

exists an open subset U with PΛ=0
se ⊂ U ⊂ Pse and Pse ∩ U = PΛ=0

se .

Proof. Let ν ∈ R be fixed. In the case Λ = 0, we can represent ũ1 with
Legendre polynomials and in particular we have that B(�,Λ = 0,M,Q) = 0
for all � and 0 < |Q| < M . Note that we can write B as

B(Λ, �,M,Q) =
W(ṽ(Λ)

2 , ũ
(Λ)
1 )

W(ṽ(Λ)
1 , ṽ

(Λ)
2 )

= W(ṽ(Λ)
2 , ũ

(Λ)
1 ) (6.6)

for all Λ such that (M,Q,Λ) ∈ Pse.
Step 1: Pse ⊂ R

3 is open and has two connected components where either
Q > 0 or Q < 0 For the sake of completeness, we will give a proof of Step 1,
although this seems a quite well-known fact. Note that Pse = PΛ>0

se ∪ PΛ<0
se ∪

PΛ=0
se is open which can be inferred from its definition.

For the second statement, first note that {Q = 0} ∩ Pse = ∅. We will
now show that {Q > 0} ∩ Pse is connected. In Proposition A.3 in Appendix,
we show that PΛ>0

se ∩ {Q > 0} and PΛ<0
se ∩ {Q > 0} are path-connected.

To conclude, note that for every (M0, Q0,Λ0 = 0) ∈ PΛ=0
se , there exist paths

from (M0, Q0,Λ0) to both (M0, Q0, ε) ∈ PΛ>0
se and (M0, Q0,−ε) ∈ PΛ<0

se for
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some ε(M0, Q0) > 0. Together with the fact that PΛ=0
se ∩ {Q > 0} is path-

connected, this shows that {Q > 0}∩Pse is path-connected and similarly that
{Q < 0} ∩ Pse is path-connected which proves the claim.

Step 2: Pse � (M,Q,Λ) �→ B(�,Λ,M,Q) is real analytic To show Step 2
we first express (6.5) in r coordinates. Note that for (M,Q,Λ) ∈ Pse equation
(6.5) is equivalent to

r+

r−
(−1)�P

(Λ)
� (x(r)) = A(�,Λ)P̃ (Λ)

� (x(r)) + B(�,Λ)Q̃(Λ)
� (x(r)), (6.7)

where r ∈ (r−, r+),

x(r) := − 2r

r+ − r−
+

r+ + r−
r+ − r−

, (6.8)

r(x) = −r+ − r−
2

x +
r+ + r−

2
(6.9)

and 0 < r− < r+. Now, note that Pse � (M,Q,Λ) �→ r− and Pse �
(M,Q,Λ) �→ r+ are real analytic. Moreover, we can write Δ = (r − r−)(r −
r+)p(r) for a second order polynomial p(r), where Pse � Λ �→ p(r) is also real
analytic for fixed r. Now, P

(Λ)
� , P̃

(Λ)
� , and Q̃

(Λ)
� appearing in (6.7) are defined

as the unique solutions of

d
dx

(
(1 − x2)p(r(x))

dR

dx

)
+ �(� + 1)R − r(x)2νΛR = 0 (6.10)

satisfying

P
(Λ)
� = (−1)� + O�(1 + x) as x → −1, (6.11)

dP
(Λ)
�

dx
= O�(1) as x → −1, (6.12)

P̃
(Λ)
� = 1 + O�(1 − x) as x → 1, (6.13)

dP̃
(Λ)
�

dx
= O�(1) as x → 1, (6.14)

Q̃
(Λ)
� = −1

2
log(1 − x) + O�(1) as x → 1, (6.15)

dQ̃
(Λ)
�

dx
=

1
2(1 − x)

+ O�((1 − x) log(1 − x)) as x → 1. (6.16)

Note that (6.10) depends real analytically on (M,Q,Λ) ∈ Pse such that
P

(Λ)
� (x), P̃

(Λ)
� (x), Q̃

(Λ)
� (x) are real analytic functions of (M,Q,Λ) ∈ Pse for

x ∈ (−1, 1). Hence, Pse � (M,Q,Λ) �→ B(�,Λ,M,Q) is real analytic.
Step 3: B(�0(ν),Λ,M,Q) only vanishes on a set D(ν) ⊂ Pse of measure

zero. The claim follows from
∂B(�,Λ,M0, Q0)

∂Λ

∣∣∣∣
Λ=0

�= 0 (6.17)

for some 0 < |Q0| < M0. Throughout Step 2, we fix 0 < |Q0| < M0 and avoid
writing their explicit dependence. First note that that for Λ = 0 we obtain
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the Legendre functions of first and second kind, i.e., P
(0)
� = P̃

(0)
� = P� and

Q̃
(0)
� = Q� and B(0, �) = 0. Now, define coefficients Ã(�,Λ) and B̃(�,Λ) to

satisfy

P
(Λ)
� = Ã(�,Λ)P̃ (Λ)

� + B̃(�,Λ)Q̃(Λ)
� , (6.18)

and note that (6.17) is equivalent (use that B(�, 0) = B̃(�, 0) = 0) to

∂B̃(�,Λ)
∂Λ

∣∣∣
Λ=0

�= 0. (6.19)

By construction, P
(Λ)
� solves (6.10). Multiplying

d
dx

(
(1 − x2)p(r(x))

dP
(Λ)
�

dx

)
+ �(� + 1)P (Λ)

� − r(x)2νΛP
(Λ)
� = 0 (6.20)

by P
(0)
� and integrating from x = −1 to x = 1 yields

0 =

∫ 1

−1

P
(0)
�

(
d

dx

(
(1 − x2)p(r(x))

dP
(Λ)
�

dx

)
+ �(� + 1)P

(Λ)
� − r(x)2νΛP�(Λ)

)
dx.

(6.21)

Using the expansion (6.18) and the properties (6.11)–(6.16) at the end points
x = −1 and x = 1 gives after an integration by parts

0 =

∫ 1

−1

P
(Λ)
�

(
d

dx

(
(1 − x2)p(r(x))

dP
(0)
�

dx

)
+ �(� + 1)P

(0)
� − r(x)2νΛP

(0)
�

)
dx

+ p(r(1))B̃(�, Λ). (6.22)

Now, taking ∂Λ

∣∣
Λ=0

and integrating by parts once again yields

p(r(1))∂Λ

∣∣
Λ=0

B̃(�,Λ)

=
∫ 1

−1

⎡
⎣
∣∣∣∣∣
dP

(0)
�

dx

∣∣∣∣∣
2

(1 − x2)∂Λ

∣∣
Λ=0

(p(r(x))) +
∣∣∣P (0)

�

∣∣∣2 ∂Λ

∣∣
Λ=0

(νr(x)2Λ)

⎤
⎦dx

=
∫ 1

−1

⎡
⎣
∣∣∣∣∣
dP

(0)
�

dx

∣∣∣∣∣
2

(1 − x2)∂Λ

∣∣
Λ=0

(p(r(x))) + ν
∣∣∣P (0)

�

∣∣∣2 r(x)2|Λ=0

⎤
⎦dx.

(6.23)

Recall that we are in the subextremal range which guarantees that p(r(1)) �= 0.
We will now distinguish two cases, ν = 0 and ν �= 0.

Part I: ν = 0. In the case ν = 0, we have

p(r(1))∂Λ|Λ=0B̃(�,Λ) = ∂Λ|Λ=0

∫ 1

−1

∣∣∣∣dP�

dx

∣∣∣∣
2

(1 − x2)p(r(x))dx (6.24)

In the case ν = 0, we will choose � = 1 such that
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p(r(1))∂Λ|Λ=0B̃(1, Λ)

= ∂Λ|Λ=0

∫ 1

−1

(1 − x2)p(r(x))dx

= ∂Λ|Λ=0

∫ 1

−1

−Δ(r(x))
4

(r+ − r−)2
dx

= x∂Λ|Λ=0

(
−8

(r+ − r−)3

∫ r+

r−
Δ(r)dr

)

= −8 ∂Λ|Λ=0

⎛
⎝

r3
+−r3

−
3

− M0(r
2
+ − r2

−) + Q2
0(r+ − r−) − 1

15
Λ(r5

+ − r5
−)

(r+ − r−)3

⎞
⎠

=
8(r5

+ − r5
−)

15(r+ − r−)3

∣∣∣
Λ=0

+ 8

r3
+−r3

−
3

− M0(r
2
+ − r2

−) + Q2
0(r+ − r−)

(r+ − r−)5
(r4

+ + r4
−)
∣∣∣
Λ=0

− 8

3

r6
+ + r6

− − 2M0(r
5
+ + r5

−) + Q2
0(r

4
+ + r4

−)

(r+ − r−)4

∣∣∣
Λ=0

=
−8

15

(
3r3

+ + 3r2
− + 4r+r−

) ∣∣∣
Λ=0

= x
−8

15

(
6M2

0 − Q2
0

)
< −24M2

0 .

The last step is a long but direct computation using that Δ = r2 − 2M0r +
Q2

0 − Λ
3 r4 and r±|Λ=0 = M0 ±

√
M2

0 − Q2
0, i.e., Q2

0 = r+r−|Λ=0 and 2M0 =
r+|Λ=0 + r−|Λ=0. Moreover, in view of the inverse function theorem we have

∂Λ|Λ=0r+ =
r4
+

3(r+ − r−)

∣∣∣
Λ=0

(6.25)

and

∂Λ|Λ=0r− = − r4
−

3(r+ − r−)

∣∣∣
Λ=0

. (6.26)

Part II: ν �= 0. In this case, we choose � = 0 such that P
(0)
� = 1 and

dP
(0)
�

dx = 0. Hence,

p(r(1))∂Λ|Λ=0B̃(�,Λ) = ∂Λ|Λ=0

∫ 1

−1

r(x)2νΛdx

= ν∂Λ|Λ=0

∫ 1

−1

(
−r+ − r−

2
x +

r+ + r−
2

)2

Λdx

= ν

(
1
6
(r+ − r−)2 +

1
2
(r+ + r−)2

) ∣∣∣
Λ=0

�= 0. (6.27)

This shows that Pse � (M,Q,Λ) �→ B(�0(ν),M,Q,Λ) is a non-trivial real
analytic function which zero set D(ν) has zero measure. The proof also shows
that PΛ=0

se ⊂ D(ν) and that there exists an open set U ⊂ Pse with PΛ=0
se ⊂ U

and D(ν) ∩ U = PΛ=0
se . �
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Proposition 6.2. Let ν ∈ R be fixed. Let ω �= 0, (M,Q,Λ) ∈ Pse, and � ∈
N0. Then, define completely analogously to Definition 2.4 transmission and
reflection coefficients T(ω, �,Λ) and R(ω, �,Λ) as the unique coefficients such
that

u
(Λ)
1 = T(ω, �,Λ)v(Λ)

1 + R(ω, �,Λ)v(Λ)
2 (6.28)

holds.
Now, assume further that (M,Q,Λ) ∈ Pse\D(ν), where D(ν) is defined

in Proposition 6.1. Then, there exists an �0 = �0(ν) such that

lim
ω→0

|R(ω, �0)| = lim
ω→0

|T(ω, �0)| = +∞. (6.29)

This shows that T and R have a simple pole at ω = 0.

Proof. Fix �0 = �0(ν) from Proposition 6.1 and (M,Q,Λ) ∈ Pse such that
B(�0,Λ,M,Q) �= 0. Now, note that the o.d.e. implies that d

dr∗
Im(ūu′) = 0

which shows that 1 = |T|2 − |R|2. In particular, either |T| and |R| are both
bounded or both unbounded as ω → 0. Also note that as ω → 0, we have that
u

(Λ)
1 → ũ

(Λ)
1 pointwise.

Now, assume for a contradiction that there exists a sequence ωn → 0
such that |T(ωn)| and |R(ωn)| remain bounded. Thus,

lim sup
ωn→0

‖u
(Λ)
1 ‖L∞(R) ≤ lim sup

ωn→0
‖u

(Λ)
1 ‖L∞((−∞,0))

+ lim sup
ωn→0

‖Rv
(Λ)
1 + Tv

(Λ)
2 ‖L∞((0,∞)) ≤ C (6.30)

for some constant C > 0. Now, using that B(�0,Λ,M,Q) �= 0 in Proposi-
tion 6.1, we can choose a r∗

0 ∈ R such that |ũ(Λ)
1 (r∗

0)| > C which contradicts
the fact that u

(Λ)
1 → ũ

(Λ)
1 pointwise as ωn → 0. �

Finally, this allows us to prove Theorem 6 which we restate in the fol-
lowing for the convenience of the reader.

Theorem 6. Let ν ∈ R be a fixed Klein–Gordon mass parameter. (In particular,
we may choose ν = 3

2 to cover the conformal invariant case or ν = 0 for the
wave equation (1.1).) Consider the interior of a subextremal (anti-) de Sitter–
Reissner–Nordström black hole with generic parameters (M,Q,Λ) ∈ Pse\D(ν).
(Here, D(ν) ⊂ Pse is a set with measure zero defined in Proposition 6.1 (see
Sect. 6). Moreover D(ν) satisfies PΛ=0

se ⊂ D(ν) and U ∩ D(ν) = PΛ=0
se for

some open set U ⊂ Pse.)
Then, there exists a sequence (Ψn)n∈N of purely ingoing and compactly

supported data on HA with

‖Ψn‖ET
H

= 1 for all n (3.41)

such that the solution ψn to the Klein–Gordon equation with mass μ = νΛ

�gM,Q,Λψ − μψ = 0 (3.42)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ET
CH

→ ∞ as n → ∞. (3.43)
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Proof. Fix �0 = �0(ν) from Proposition 6.2 such that the reflection and
transmission coefficients blow up as ω → 0. Define a sequence of compactly
supported functions Ψn on HA by Ψn(v, θ, ϕ) = fn(v)Y0�(θ, ϕ), such that
fn ∈ C∞

c (R),
∫

R

ω2|f̂n(ω)|2dω = 1 and
∫ 1

n

− 1
n

ω2|f̂n(ω)|2dω ≥ ε

∫
R

ω2|f̂n(ω)|2dω = ε (6.31)

for some ε > 0.6 Imposing vanishing data on HB, this gives rise to a unique
smooth solutions ψn up to but excluding the Cauchy horizon. Arguments com-
pletely analogous to those given in the proof of Proposition 5.1 show that

‖ψn �CH ‖2
ET

CH
=

r2
+

r2−

∫
R

ω2(|R(ω, �)|2 + |T(ω, �)|2)|f̂n(ω)|2dω. (6.33)

Thus,

‖ψn �CH ‖2
ET

CH
≥ r2

+

r2−

∫ 1
n

− 1
n

ω2(|R(ω, �)|2 + |T(ω, �)|2)|f̂n(ω)|2dω

≥ ε
r2
+

r2−
inf

ω∈[− 1
n , 1

n ]

(|R|2 + |T|2) . (6.34)

Since |R|, |T| → ∞ as ω → 0, also infω∈[ 1
2n , 1

n ] |R| → ∞ and infω∈[ 1
2n , 1

n ] |T| →
∞ as n → ∞. Thus, as n → ∞, we have

‖ψn �CH ‖2
ET

CH
→ ∞. (6.35)

�

7. Proof of Theorem 7: Breakdown of T Energy Scattering for
the Klein–Gordon Equation

In this last section, we will prove that for a generic set of Klein–Gordon
masses, there does not exist a T scattering theory on the interior of Reissner–
Nordström for the Klein–Gordon equation. For the convenience of the reader,
we have restated Theorem 7.

Theorem 7. Consider the interior of a subextremal Reissner–Nordström black
hole. There exists a discrete set D̃(M,Q) ⊂ R with 0 ∈ D̃ such that the
following holds true. For any μ ∈ R\D̃, there exists a sequence (Ψn)n∈N of
purely ingoing and compactly supported data on HA with

‖Ψn‖ET
H

= 1 for all n (3.44)

6 Such a function can be constructed by setting fn(v) :=
c√
n

f( v
n
) for smooth f : R → [0, 1]

with supp(f) ⊂ [−2, 2], f �[−1,1]= 1 and some normalization constant c > 0. Indeed,

∫ 1
n

− 1
n

ω2|f̂n(ω)|2dω =

∫ 1
n

− 1
n

ω2|√nf̂(nω)|2dω =

∫ 1

−1
ω2|f̂(ω)|2 =: ε > 0 (6.32)

in view of f̂(0) =
∫
R

f(v)dv > 0.
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such that the solution ψn to the Klein–Gordon equation with mass μ

�gM,Q,Λψ − μψ = 0 (3.45)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ET
CH

→ ∞ as n → ∞. (3.46)

Proof. The proof of this statement is easier than and similar to the proof of
Theorem 6 and the proofs of the propositions leading up to it. More precisely,
similar to Sect. 6 we define asymptotic states ũ

(μ)
1 , ṽ

(μ)
1 and ṽ

(μ)
2 and define

A(�, μ) and B(�, μ) by ũ
(μ)
1 = A(�, μ)ṽ(μ)

1 +B(�, μ)ṽ(μ)
2 . As in Sect. 6, R � μ �→

B(�, μ) is real analytic and from the o.d.e. −u′′ + V�,μu = 0 we obtain

∂B(�, μ)
∂μ

∣∣∣∣
μ=0

=
∫ ∞

−∞

∂V�,μ

∂μ

∣∣∣∣
μ=0

ũ2
1dr∗, (7.1)

where

V�,μ = h

(
hh′

r
+

�(� + 1)
r2

− μ

)
= h

(
dh
dr

r
+

�(� + 1)
r2

− μ

)
(7.2)

and

h = 1 − 2M

r
+

Q2

r2
(7.3)

as in (2.5). Now, note that

∂V�,μ

∂μ

∣∣∣∣
μ=0

= −h > 0 (7.4)

which is manifestly positive from which we can infer, by analyticity, that
B(�, μ) �= 0 for all μ ∈ R\D̃, where D̃ = D̃(M,Q) ⊂ R is a discrete set.
This proves the analogous statements to Proposition 6.1 and Proposition 6.2.
The claim of Theorem 7 follows now as in the proof of Theorem 6. �
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Appendix A. Additional Lemmata

Energy Estimates in the Interior

Lemma A.1. Let Ψ ∈ C∞
c (H) and denote by ψ its evolution in the interior.

Then, the non-degenerate N energy of Ψ decays exponentially toward i+ on
every {r = r0} hypersurface for rred < r0 < r+. Here, rred only depends on
the black hole parameters.

Proof. This argument is very similar to [17, Proposition 4.2]. We only prove it
for the right component of i+ and clearly only have to look at a neighborhood of
i+. First, recall the existence of the celebrated redshift vector field N satisfying
KN [ψ] ≥ bJN

μ [ψ]nμ
v for r+ ≥ r ≥ rred, where nv is the normal to a v = const.

hypersurface.7

We set

E(v0) =
∫

v=v0,rred≤r≤r+

JN
μ nμ

vdvol, (A.1)

and apply the energy identity with the redshift vector field N in the region
R = {r ∈ [rred, r+], v ∈ [v0, v1]}, where v0 is large enough such that v0 >
sup supp(Ψ). This gives in view of the coarea formula that

E(v1) − E(v0) + b̃

∫ v1

v0

E(v)dv ≤ 0 (A.2)

for every v1 ≥ v0 > sup supp(Ψ). Inequality (A.2), smoothness of v �→ E(v)
and a further application of the energy identity in the region {v ≥ v0, r+ ≥
r ≥ rred} finally shows∫

v≥v0,r=rred

JN
μ nμ

r dvol ≤ C exp(−b̃v0), (A.3)

where C is a constant depending on Ψ. This concludes the proof. �

Remark A.1. By cutting off smoothly, we can clearly approximate Ψ on a
{r = const.} hypersurface with compactly supported functions for any fixed
r ∈ (rred, r+).

Lemma A.2. Let ψ be a smooth solution of the wave equation on MRN such that
its restriction to the event horizon has compact support and let r0 ∈ (rred, r+).
Then, ∫

H
JT

μ nμdvol �
∫

{r=r0}
JN

μ nμdvol. (A.4)

7The normal is fixed by making a choice of a volume form on the null hypersurface.
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Proof. We shall use the vector field S = r−2∂r∗ . By potentially making rred

larger, we can assure that the bulk term KS := ∇μJS
μ of the vector field S has

a fixed negative sign in r0 ∈ (rred, r+). This current is analogous to the current
introduced in [17, par. 4.1.3.2]. Moreover, applying the energy identity in the
region R = {r0 ≤ r ≤ r+} and noting that JN [ψ]μnμ|r=r0 ∼ JS [ψ]μnμ|r=r0

as well as JT [ψ]μnμ|H ∼ JS [ψ]μnμ|H yields∫
{r=r0}

JN [ψ]μnμdvol +
∫

R
KSdvol �

∫
H

JT
μ nμdvol. (A.5)

This concludes the proof. �

Analytic properties of the potential and the scattering coefficients. In the
following, we would like to summarize analytic properties of the potential
V�(r) and u1,u2, v1 and v2 as functions of ω. This is similar to parts of [5].

First, however, we will show the exponential decay of the potential V� as
r∗ → ±∞.

Lemma A.3. We have

|Δ(r∗)| � e2k+r∗ for r∗ ≤ 0 (A.6)

and

|Δ(r∗)| � e2k−r∗ for r∗ ≥ 0. (A.7)

Moreover, we have

|V�(r∗)|, |V ′
� (r∗)|, |V ′′

� (r∗)| � (1 + �(� + 1))e2k+r∗ for r∗ ≤ 0 (A.8)

and

|V�(r∗)|, |V ′
� (r∗)|, |V ′′

� (r∗)| � (1 + �(� + 1))e2k−r∗ for r∗ ≥ 0. (A.9)

Proof. Note that

r+ − r = C̃ (r − r−)
k−
k+ e−2k+re2k+r∗ (A.10)

for a constant C̃ only depending on the black hole parameters. Thus, for r∗ ≤ 0,
we have

r+ − r(r∗) = f(r∗)e2k+r∗ (A.11)

for a smooth function f(r∗), which is uniformly bounded below and above for
r∗ ≤ 0. Moreover, we have f ′(r∗), f ′′(r∗) → 0 exponentially fast as r∗ → −∞.
The estimates (A.8) and (A.9) are now straightforward applications of the
chain rule and the fact that dr

dr∗
= Δ

r2 and Δ = (r − r−)(r − r+). �

Proposition A.1. The potential V� can be expanded as

V�(r∗) =
∑
m∈N

Cme2κ+mr∗ , (A.12)

where |Cm| �� e−σm for a σ > 0.
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Proof. Define the variable

z(r) := e2κ+r∗(r) = Ce2κ+r(r+ − r)(r − r−)
κ+
κ− , (A.13)

where C > 0 is such that z( r++r−
2 ) = 1. From the inverse function theorem, it

follows that V�(z) = V�(r(z)) can be analytically continued in a neighborhood
of z = 0 and thus, there exists a Taylor expansion around z = 0 such that

V�(z) =
∞∑

n=1

Cmzm. (A.14)

Hence,

V�(r∗) =
∞∑

n=1

Cme2κ+mr∗ , (A.15)

where

C1 =
dV�

dz

∣∣∣∣
z=0

=
dV�

dr

∣∣∣∣
r=r+

dr

dz

∣∣∣∣
z=0

=
r+ − r−

r4
+

(
r2
+(r+ − 3r−) + �(� + 1)

)
. (A.16)

Note that the coefficients Cm decay exponentially fast in m. To see this, remark
that we can redefine r̃∗ := r∗ − ρ for some constant ρ > 0. Similarly to (A.15),
we expand V� as

V� =
∞∑

m=1

Dme2κ+mr̃∗ (A.17)

which shows Cm = Dme−2κ+mρ. By analyticity, we have |Dm| ≤ |C̃|m+1 for
some C̃ > 0 and thus,

|Cm| �� e−σm (A.18)

for a fixed σ > 0. �

Proposition A.2. Let � ∈ N be fixed. Then,

sup
{| Re(ω)|>1}

|R(ω, �)| + |T(ω, �)| �� 1. (A.19)

Moreover, T(ω, �) has a pole of order one at ω = iκ+ given that �(� + 1) �=
r2
+(r+ − 3r−).

Proof. Recall, that u1 is the unique solution to

u1(r∗) = eiωr∗ +
∫ r∗

−∞

sin(ω(r∗ − y))
ω

V (y)u1(y)dy. (A.20)

In [5], it is shown that the Volterra iteration has the form

u1(r∗) = eiωr∗

(
1 +

∞∑
n=1

u
(n)
1 (r∗)

)
, (A.21)
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where

u
(n)
1 (r∗) =

∑
mn...m1∈N

mn>···>m1

Cmn−mn−1Cmn−1−mn−2 . . . Cm1dmn
. . . dm1e

2κ+mnr∗

(A.22)

with dm = −(4mκ+(mκ+ + iω))−1. Note that in view of the bound in (A.18)
one can check that the Volterra iteration for u1 converges on ω ∈ C\{imκ+ :
m ∈ N} and moreover,

sup
{| Re(ω)|>1}

|u1(r∗ = 0)| �� 1, (A.23)

sup
{| Re(ω)|>1}

|u′
1(r∗ = 0)| �� |ω|. (A.24)

Analogously, we have that v1 is analytic on ω ∈ C\{imκ− : m ∈ N} and v2 is
analytic on ω ∈ C\{−imκ− : m ∈ N}. Moreover,

sup
{| Re(ω)|>1}

|v1(r∗ = 0)| �� 1, (A.25)

sup
{| Re(ω)|>1}

|v′
1(r∗ = 0)| �� |ω|. (A.26)

and

sup
{| Re(ω)|>1}

|v2(r∗ = 0)| �� 1, (A.27)

sup
{| Re(ω)|>1}

|v′
2(r∗ = 0)| �� |ω|. (A.28)

This finally shows (A.19) in view of the definition of the transmission and
reflection coefficients T and R using Wronskians, cf. Definition 2.4.

Now, we prove that T(ω, �) has a pole of order one at ω = iκ+ assuming
that �(� + 1) �= r2

+(r+ − 3r−). First, note that

u
(1)
1 (r∗) =

∑
m1∈N

Cm1dm1e
2κ+m1r∗ (A.29)

has a pole of order one at ω = iκ+ since C1 �= 0, see (A.16). Since for n �= 1
there is no term of the form e2κr∗ in (A.22) as mn ≥ n, the pole at ω = iκ+

cannot be canceled by the other terms and must occur in u1. Moreover, this
pole of u1 at ω = iκ+ is not of higher order that one since d1 does not occur
at higher powers than one in the Volterra iteration. This implies that T(ω, �)
has a pole of order one at ω = iκ+. �

Connectedness of the Subextremal Parameter Range

Proposition A.3. Let the subextremal parameter space PΛ>0
se and PΛ<0

se be
defined as in (3.39) and (3.40), respectively. Then, PΛ>0

se ∩ {Q > 0}, PΛ<0
se ∩

{Q > 0}, PΛ>0
se ∩ {Q < 0} and PΛ<0

se ∩ {Q < 0} are path-connected.

Proof. The claim follows for PΛ>0
se ∩ {Q > 0} and PΛ>0

se ∩ {Q > 0} from the
following continuous parameterizations
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PΛ>0
se ∩ {Q > 0} =

{
(M,Q,Λ) ∈ R × R × R :

Λ = 3(r2
+ + r2

− + r2
c + r+rc + rcr− + r+r−)−1,

6M = Λ(r+ + r−)(r+ + rc)(r− + rc),

Q =
(

Λ
3

(r+ + r− + rc)(r−r+rc)
) 1

2

for 0 < r− < r+ < rc

}
(A.30)

and

PΛ<0
se ∩ {Q > 0} =

{
(M,Q,Λ) ∈ R × R × R :

Λ = 3
(

3
4

(r+ + r−)2 − r+r− − ξi

)−1

,

6M = −Λ
(

1
4

(r+ + r−)2 + ξi − r+r−

)
(r+ + r−),

Q =
(

−Λ
3

r+r−

(
3
4
(r+ + r−)2 + ξi

)) 1
2

,

for 0 < r− < r+ and ξi >

(
3
4
(r+ + r−)2 − r+r−

) 1
2
}

(A.31)

in view of the fact that {0 < r− < r+ < rc} and {0 < r− < r+, ξi >

(3
4 (r+ + r−)2 − r+r−)

1
2 } are path-connected as subsets of R

3. In the following,
we will show (A.30) and (A.31).

First, in the case Λ > 0, note that (A.30) follows from comparing coeffi-
cients of

−3
Λ

(r2 − 2Mr + Q2 − 1
3
Λr4) = (r − r−)(r − r+)(r − rc)(r − r0)

for r0 < 0 < r− < r+ < rc. Indeed, we obtain r0 = −(r− + r+ + rc) and (A.30)
can be deduced.

In the case Λ < 0, note that −3
Λ (r2 − 2Mr + Q2 − 1

3Λr4) only has two
real roots 0 < r− < r+ such that we compare coefficients of

−3
Λ

(r2 − 2Mr + Q2 − 1
3
Λr4) = (r − r−)(r − r+)(r − ξ)(r − ξ̄)

with ξ = ξr+iξi. We obtain 2ξr = −(r++r−) and ξi >
(

3
4 (r+ + r−)2 − r+r−

) 1
2

to guarantee Λ < 0. Now, a direct computation shows (A.31).
Completely analogously, we can show path-connectedness for PΛ>0

se ∩
{Q < 0} and PΛ<0

se ∩ {Q < 0}. �
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