


2) How can we leverage this analysis to enable low-overhead

reliable GPU computing?

One of the major challenges in answering these questions

is to come up with a methodical approach that captures the

execution flows and resource usage of thousands of concur-

rently executing threads in GPGPU applications. To this end,

we adopt a hierarchical approach, which is based on the

inherent GPGPU application hierarchy that arranges threads

at three levels:2 kernels, thread-blocks (or cooperative thread

arrays (CTAs) in CUDA terminology), and warps. Note that

resource allocation in GPUs happens in the same order [18].

The kernel(s) are first launched on the GPUs, followed by

per-core resource allocation across CTAs. The warps inside

each CTA are then launched in a lock-step fashion on the

single-instruction-multiple-thread (SIMT) execution lanes. We

associate this resource allocation procedure with our proposed

accuracy-aware resilience characterization, which we show to

be an effective way to determine which resources at what

levels of the application hierarchy contribute to the user

acceptable (SDC-Accept) faults and hence can be protection-

free.

As a use case of the proposed hierarchical analysis of

GPGPU resilience, we consider the popular re-computation

model [44] as a way to provide protection and assure re-

liable computing: if the application outputs of the actual

computation and re-computation match, then execution can be

declared fault-free. Clearly, the overhead of re-computation

can be severe. For example, if re-computation is performed

in parallel to the actual execution, double hardware resources

(e.g., core/memory/register files) would be required. If per-

formed sequentially, the total execution time (including re-

computation) doubles. Our hierarchical approach first analyzes

the error resilience of representative threads of a kernel to

determine if the kernel has the level of resilience that is

required by the user. If it is the case, the re-computation of

the entire kernel is not required and its associated overheads

are saved. On the other hand, if the resilience coverage is not

adequate, we perform the error resilience analysis at a finer

granularity (i.e., at the CTA-level). If this analysis determines

that only a fraction of CTAs do not meet the resilience cover-

age requirements, we require only the re-computation of such

vulnerable CTAs. Consequently, the overall re-computation

overhead is reduced because not all CTAs need to be re-

computed. We show that our statistically-validated hierarchical

approach can provide significant reduction in re-computation

overhead while still meet user requirements for application

output accuracy and resilience coverage.

To the best of our knowledge, this is the first work to

systematically and comprehensively analyze the accuracy-

aware resilience for a diverse set of GPGPU applications. We

study a total of 15 benchmarks (26 kernels) and launch over

330K fault-injection runs (with an average of 10K runs per

kernel), leading to the following key contributions:

2Section II provides a detailed background on the GPGPU application
hierarchy.

• We introduce the concept of accuracy-aware resilience to

GPGPU applications, which provides more opportunities

for exploring low-overhead reliable GPU computing.

• We observe that the resilience of a diverse set of GPGPU

applications can be classified hierarchically at different

levels:

a) Kernel-level: Accuracy-aware error-resilience can in-

crease significantly if the user is able to tolerate a limited

amount of inaccuracy in the application outputs.

b) CTA-level: Accuracy-aware error-resilience can vary

significantly across groups of CTAs. Studying a few

CTAs per group is enough to represent the overall

accuracy-aware error-resilience of GPGPU applications.

c) Warp-level: Accuracy-aware error-resilience is similar

across warps within a group of CTAs. Therefore, it

is sufficient to perform accuracy-aware error-resilience

analysis only at the CTA-level.

• As a case study, we show that the proposed hierarchi-

cal approach can reduce protection overheads related to

re-computation based on user-defined fault tolerance and

resilience coverage. Specifically, we observe that: a) The

physical resources allocated to the entire kernel for re-

computation are saved (and potentially be used for other

useful work or be turned-off for power savings) if a user

is able to accept a certain resilience coverage and output

quality. b) Under stricter user-defined requirements, the

re-computation overhead can still be reduced by enabling

re-computation at a finer granularity (e.g., at CTA/warp

level). Overall, the proposed hierarchical approach is able

to reduce re-computation overhead while satisfying user-

defined output quality and resilience coverage.

II. BACKGROUND AND METHODOLOGY

This section provides a brief overview of the baseline

GPU architecture and GPGPU application hierarchy, followed

by a description of the fault injection methodology and the

evaluated applications.

A. GPU Architecture and GPGPU Application Hierarchy

Baseline GPU Architecture. A typical GPU consists of

multiple cores, also called streaming-multiprocessors (SMs)

in NVIDIA terminology [33]. Each core is associated with

private L1 data, texture and constant caches, software-managed

scratchpad memory, and register files. The cores are connected

to memory channels (partitions) via an interconnection net-

work. Each memory partition is associated with a shared L2

cache, and its associated memory requests are handled by a

GDDR5 memory controller.

Recent commercial GPUs use single-error-correction

double-error-detection (SECDED) error correction codes to

protect register files, L1/L2 caches, shared memory and

DRAM from soft errors, and use parity to protect the read-only

data cache. Other structures like arithmetic logic units (ALUs),

load control units (LCUs), thread schedulers, instruction dis-

patch units, and interconnect network are not protected [1]–[3].

GPGPU Applications and Execution Model. GPUs rely on

the single-instruction-multiple-thread (SIMT) philosophy and















TABLE IV
RESILIENCE COVERAGE VS. OVERHEAD REDUCTION.

Kernel-Level CTA-/Warp-

Level

Benchmark Perfect OQ (OR) Default OQ (OR) Default OQ

(OR)

BlackScholes 31.8% (0%) 89.0% (100%) –

RAY 83.2% (0%) 96.0% (100%) –

Sort k8 81.5% (0%) 97.8% (100%) –

JPEG 76.1% (0%) 84.6% (0%) –

SCP 62.1% (0%) 71.6% (0%) –

FWT k6 36.0% (0%) 51.5% (0%) –

FWT k13 28.3% (0%) 54.2% (0%) –

HotSpot 66.2% (0%) 83.8% (0%) 99.6% (26%)

NN k4 89.6% (100%) 89.6% (100%) 91.9% (92%)

WC k5 87.9% (100%) 88.9% (100%) 96.6% (75%)

WC k91 94.9% (100%) 94.9% (100%) 100% (75%)

WC k114 89.8% (100%) 89.8% (100%) 93.4% (94%)

BFS k3 88.5% (100%) 88.5% (100%) 100% (100%)

BFS k9 84.9% (0%) 84.9% (0%) 86.1% (95%)

BFS k11 82.1% (0%) 83.9% (0%) 99.2% (90%)

KMN k1 82.2% (0%) 82.6% (0%) 100% (7%)

KMN k2 81.0% (0%) 85.4% (100%) 100% (7%)

* The resilience coverage requirement is set to be 85%.

* Kernels with no values in the fourth column only contain one fault distribution

group, thus are not applicable for fine-grain analysis.

find that for kernels such as RAY, Sort k8, and KMN k2, the

resilience coverage requirement of 85% is met and hence its

re-computation can be completely avoided leading to 100%

reduction in protection overhead by accepting Default OQ

instead the Perfect OQ. However, we also find that some other

kernels (see cells in bold in Table IV) do not meet the 85%

resilience coverage requirement even at the Default OQ. For

such kernels, we have to resort to fine-grain analysis to seek

opportunities of overhead reduction.

Fine-grain Protection Overhead Analysis. If the kernels do

not meet the resilience coverage requirement, the protection

overhead can still be reduced by exploiting the fact that some

CTAs or warp groups are significantly more error-resilient

than others (see Observations #6 and #7). We propose not

to re-compute such groups and hence reduce the associated

protection overhead. As CTAs are independent of each other,

output of only those CTAs will be required to be compared that

have lower resilience coverage. After applying our resilience

characterization (Section IV), we find that the resilience cover-

age has increased significantly for most kernels (see “Default

OQ (OR)” column under “CTA-/Warp-Level”) and still with

a significant overhead reduction. For example, for HotSpot,

at the CTA level, users can obtain 99.6% resilience coverage

while still reducing overhead by 26% (i.e., G1 in Figure 9(e)

can be protection-free). In addition, for kernels with over 85%

resilience coverage (i.e., NN k4, WC k5, WC k91, WC k114,

and BFS k3), it is still possible to further improve their

resilience coverage at a finer granularity (see fourth column).

Although the above analysis is for the 85% resilience coverage

requirement, similar analysis can be performed for any other

threshold.

Observation#8: Hierarchical error-resilience analysis offers

flexibility for resilience coverage and overhead reduction.

VI. RELATED WORK

There is a large number of studies that focus on leveraging

simulation-based analysis to detect critical hardware structures

that are more vulnerable to soft errors. Prior works [10],

[17] have conducted architectural vulnerability factor (AVF)

analysis, which tracks every bit during the application run

and calculates the likelihood of the output being affected.

Although there is a large body of work on fault injection

models/frameworks [4], [12], [13], [34]–[36], [39] in the

context of CPUs, only a limited set of fault injector models

have been proposed for GPUs [9], [14], [23], [30], [46], [47].

Yim et al. [47] build a source-to-source translator, SWIFI, to

investigate error resilience in GPUs and demonstrate that the

ratio of silent data corruption (SDC) in GPUs is much higher

than that observed in CPUs.

Prior works [9], [30], [46] use the number of dynamic

instructions (DI) per thread as a proxy for thread behavior.

The rationale is that threads with the same dynamic instruction

count are likely to execute the exact same set of instructions,

thus resulting in similar error resilience behavior. In this paper,

we typically put threads with the different DI count in the

same group based on additional hierarchical information (Sec-

tion IV-B). This allows higher overhead reduction compared

to GPU-Qin because vulnerable threads are encapsulated into

fewer CTAs, which then can be recomputed.

While the purpose of fault protection is to completely avoid

faults, approximate computing explores the trade-off between

accuracy, performance, and energy efficiency. Prior studies

have considered this trade-off in specific areas including

bioinformatics [16], [25], performance analysis [42], data

mining [26], and image recognition [24]. Approxilyzer [44]

has been proposed to evaluate the three-way trade-off among

output quality, resilience coverage, and overhead reduction.

It is built for single-threaded CPU applications and is not

clear how it can be extended for GPGPU applications with

thousands of threads and billions of fault sites.

VII. CONCLUSIONS

In this paper, we characterize the of accuracy-aware re-

silience of GPGPU applications. We propose a hierarchical

thread classification and selection approach to understand

the application resilience coverage. Through a large number

of fault injection runs (330, 000 in total) on a variety of

GPGPU applications, we obtain several interesting observa-

tions. First, the error resilience of GPGPU application kernels

can significantly increase by embracing some loss in output

quality. Second, the accuracy-aware error-resilience of a kernel

can be captured by analyzing threads of only a few thread-

blocks. Third, the proposed hierarchical approach facilitates

the overhead reduction of protection/recovery mechanisms to

ensure reliable output.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers.

This material is based upon work supported by the National

Science Foundation (NSF) grants (#1717532 and #1750667).



REFERENCES

[1] GP100 Pascal Whitepaper.
[2] NVIDIA Fermi Architecture Whitepaper.
[3] NVIDIA Kepler GK110 Architecture Whitepaper.
[4] L. N. Bairavasundaram. Characteristics, impact, and tolerance of partial

disk failures. ProQuest, 2008.
[5] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt.

Analyzing CUDA workloads using a detailed GPU simulator. In
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on, pages 163–174. IEEE, 2009.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing,
2009.

[7] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter. The scalable heterogeneous com-
puting (SHOC) benchmark suite. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, pages
63–74. ACM, 2010.

[8] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte. Medical image
processing on the GPU–past, present and future. Medical image analysis,
17(8):1073–1094, 2013.

[9] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications.
In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, pages 221–230. IEEE, 2014.

[10] N. Farazmand, R. Ubal, and D. Kaeli. Statistical fault injection-based
AVF analysis of a GPU architecture. Proceedings of SELSE, 2012.

[11] R. Foster. How to harness big data for improving public health.
Government Health IT, 2012.

[12] S. Fu and C. Xu. Quantifying temporal and spatial correlation of failure
events for proactive management. In Reliable Distributed Systems, 2007.
SRDS 2007. 26th IEEE International Symposium on, pages 175–184.
IEEE, 2007.

[13] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Fault prediction under
the microscope: A closer look into HPC systems. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, page 77. IEEE Computer Society Press, 2012.

[14] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer.
SASSIFI: Evaluating resilience of GPU applications. In Proceedings of
the Workshop on Silicon Errors in Logic-System Effects, 2015.

[15] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a
MapReduce framework on graphics processors. In Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, pages 260–269. ACM, 2008.

[16] R. K. Jena, M. M. Aqel, P. Srivastava, and P. K. Mahanti. Soft
computing methodologies in bioinformatics. European Journal of
Scientific Research, 26(2):189–203, 2009.

[17] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi, and G. Loh.
Architectural vulnerability modeling and analysis of integrated graphics
processors. In Workshop on Silicon Errors in Logic-System Effects
(SELSE), Stanford, CA, 2012.

[18] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das. OWL: cooperative thread
array aware scheduling techniques for improving GPGPU performance.
In ACM SIGPLAN Notices, volume 48, pages 395–406. ACM, 2013.

[19] J. Kim, M. Sullivan, and M. Erez. Bamboo ECC: Strong, safe, and
flexible codes for reliable computer memory. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pages 101–112. IEEE, 2015.

[20] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez. Frugal ECC: Efficient and
versatile memory error protection through fine-grained compression. In
High Performance Computing, Networking, Storage and Analysis, 2015
SC-International Conference for, pages 1–12. IEEE, 2015.

[21] D. B. Kirk and W. H. Wen-Mei. Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

[22] R. Koo and S. Toueg. Checkpointing and rollback-recovery for dis-
tributed systems. IEEE Transactions on software Engineering, (1):23–
31, 1987.

[23] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose. Understanding error
propagation in GPGPU applications. In High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for,
pages 240–251. IEEE, 2016.

[24] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel
execution framework for recognition and mining applications. In Par-
allel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–12. IEEE, 2009.

[25] S. Mitra and Y. Hayashi. Bioinformatics with soft computing. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 36(5):616–635, 2006.

[26] S. Mitra, S. K. Pal, and P. Mitra. Data mining in soft computing
framework: a survey. IEEE transactions on neural networks, 13(1):3–14,
2002.

[27] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers. A large-scale
study of soft-errors on GPUs in the field. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
519–530. IEEE, 2016.

[28] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari.
Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities. In 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 22–31.
IEEE, 2017.

[29] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari. Machine learning models for GPU error prediction in a
large scale HPC system. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 95–106.
IEEE, 2018.

[30] B. Nie, L. Yang, A. Jog, and E. Smirni. Fault site pruning for practical
reliability analysis of GPGPU applications. In 51st Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2018, Fukuoka,
Japan, October 20-24, 2018, pages 749–761. IEEE Computer Society,
2018.

[31] NVIDIA. Computational finance.
[32] NVIDIA. CUDA C/C++ SDK Code Samples, 2011.
[33] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA Compute Archi-

tecture, 2011.
[34] A. Oliner and J. Stearley. What supercomputers say: A study of five

system logs. In Dependable Systems and Networks, 2007. 37th Annual
IEEE/IFIP International Conference on, pages 575–584. IEEE, 2007.

[35] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer. Improving
log-based field failure data analysis of multi-node computing systems.
In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on, pages 97–108. IEEE, 2011.

[36] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang.
Failure data analysis of a large-scale heterogeneous server environment.
In Dependable Systems and Networks, 2004 International Conference
on, pages 772–781. IEEE, 2004.

[37] B. Sangchoolie, K. Pattabiraman, and J. Karlsson. One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors. In Dependable Systems and Networks (DSN), 2017 47th Annual
IEEE/IFIP International Conference on, pages 97–108. IEEE, 2017.

[38] I. Schmerken. Wall street accelerates options analysis with GPU
technology. Wall Street Technology, 11, 2009.

[39] B. Schroeder and G. Gibson. A large-scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and
Secure Computing, 7(4):337–350, 2010.

[40] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, et al. Addressing
failures in exascale computing. The International Journal of High
Performance Computing Applications, 28(2):129–173, 2014.

[41] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, et al. Understanding
GPU errors on large-scale HPC systems and the implications for system
design and operation. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pages 331–342.
IEEE, 2015.

[42] H.-L. Truong and T. Fahringer. Soft computing approach to performance
analysis of parallel and distributed programs. pages 622–622. Springer,
2005.

[43] S. Tselonis and D. Gizopoulos. GUFI: A framework for gpus reliability
assessment. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2016, Uppsala, Sweden, April
17-19, 2016, pages 90–100.

[44] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. Approxi-
lyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency. In Microarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on, pages 1–14. IEEE, 2016.

[45] W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite
rankings. ACM Transactions on Information Systems (TOIS), 28(4):20,
2010.

[46] L. Yang, B. Nie, A. Jog, and E. Smirni. Practical resilience analysis of
GPGPU applications in the presence of single- and multi-bit faults. In
Transactions on Computers. IEEE, 2020.

[47] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer. Hauberk:
Lightweight silent data corruption error detector for GPGPU. In
Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 287–300. IEEE, 2011.

[48] D. H. Yoon and M. Erez. Memory mapped ECC: low-cost error pro-
tection for last level caches. In ACM SIGARCH Computer Architecture
News, volume 37, pages 116–127. ACM, 2009.

[49] D. H. Yoon and M. Erez. Virtualized and flexible ECC for main memory.
In ACM SIGARCH Computer Architecture News, volume 38, pages 397–
408. ACM, 2010.


