


2) How can we leverage this analysis to enable low-overhead

reliable GPU computing?

One of the major challenges in answering these questions

is to come up with a methodical approach that captures the

execution flows and resource usage of thousands of concur-

rently executing threads in GPGPU applications. To this end,

we adopt a hierarchical approach, which is based on the

inherent GPGPU application hierarchy that arranges threads

at three levels:2 kernels, thread-blocks (or cooperative thread

arrays (CTAs) in CUDA terminology), and warps. Note that

resource allocation in GPUs happens in the same order [18].

The kernel(s) are first launched on the GPUs, followed by

per-core resource allocation across CTAs. The warps inside

each CTA are then launched in a lock-step fashion on the

single-instruction-multiple-thread (SIMT) execution lanes. We

associate this resource allocation procedure with our proposed

accuracy-aware resilience characterization, which we show to

be an effective way to determine which resources at what

levels of the application hierarchy contribute to the user

acceptable (SDC-Accept) faults and hence can be protection-

free.

As a use case of the proposed hierarchical analysis of

GPGPU resilience, we consider the popular re-computation

model [44] as a way to provide protection and assure re-

liable computing: if the application outputs of the actual

computation and re-computation match, then execution can be

declared fault-free. Clearly, the overhead of re-computation

can be severe. For example, if re-computation is performed

in parallel to the actual execution, double hardware resources

(e.g., core/memory/register files) would be required. If per-

formed sequentially, the total execution time (including re-

computation) doubles. Our hierarchical approach first analyzes

the error resilience of representative threads of a kernel to

determine if the kernel has the level of resilience that is

required by the user. If it is the case, the re-computation of

the entire kernel is not required and its associated overheads

are saved. On the other hand, if the resilience coverage is not

adequate, we perform the error resilience analysis at a finer

granularity (i.e., at the CTA-level). If this analysis determines

that only a fraction of CTAs do not meet the resilience cover-

age requirements, we require only the re-computation of such

vulnerable CTAs. Consequently, the overall re-computation

overhead is reduced because not all CTAs need to be re-

computed. We show that our statistically-validated hierarchical

approach can provide significant reduction in re-computation

overhead while still meet user requirements for application

output accuracy and resilience coverage.

To the best of our knowledge, this is the first work to

systematically and comprehensively analyze the accuracy-

aware resilience for a diverse set of GPGPU applications. We

study a total of 15 benchmarks (26 kernels) and launch over

330K fault-injection runs (with an average of 10K runs per

kernel), leading to the following key contributions:

2Section II provides a detailed background on the GPGPU application
hierarchy.

• We introduce the concept of accuracy-aware resilience to

GPGPU applications, which provides more opportunities

for exploring low-overhead reliable GPU computing.

• We observe that the resilience of a diverse set of GPGPU

applications can be classified hierarchically at different

levels:

a) Kernel-level: Accuracy-aware error-resilience can in-

crease significantly if the user is able to tolerate a limited

amount of inaccuracy in the application outputs.

b) CTA-level: Accuracy-aware error-resilience can vary

significantly across groups of CTAs. Studying a few

CTAs per group is enough to represent the overall

accuracy-aware error-resilience of GPGPU applications.

c) Warp-level: Accuracy-aware error-resilience is similar

across warps within a group of CTAs. Therefore, it

is sufficient to perform accuracy-aware error-resilience

analysis only at the CTA-level.

• As a case study, we show that the proposed hierarchi-

cal approach can reduce protection overheads related to

re-computation based on user-defined fault tolerance and

resilience coverage. Specifically, we observe that: a) The

physical resources allocated to the entire kernel for re-

computation are saved (and potentially be used for other

useful work or be turned-off for power savings) if a user

is able to accept a certain resilience coverage and output

quality. b) Under stricter user-defined requirements, the

re-computation overhead can still be reduced by enabling

re-computation at a finer granularity (e.g., at CTA/warp

level). Overall, the proposed hierarchical approach is able

to reduce re-computation overhead while satisfying user-

defined output quality and resilience coverage.

II. BACKGROUND AND METHODOLOGY

This section provides a brief overview of the baseline

GPU architecture and GPGPU application hierarchy, followed

by a description of the fault injection methodology and the

evaluated applications.

A. GPU Architecture and GPGPU Application Hierarchy

Baseline GPU Architecture. A typical GPU consists of

multiple cores, also called streaming-multiprocessors (SMs)

in NVIDIA terminology [33]. Each core is associated with

private L1 data, texture and constant caches, software-managed

scratchpad memory, and register files. The cores are connected

to memory channels (partitions) via an interconnection net-

work. Each memory partition is associated with a shared L2

cache, and its associated memory requests are handled by a

GDDR5 memory controller.

Recent commercial GPUs use single-error-correction

double-error-detection (SECDED) error correction codes to

protect register files, L1/L2 caches, shared memory and

DRAM from soft errors, and use parity to protect the read-only

data cache. Other structures like arithmetic logic units (ALUs),

load control units (LCUs), thread schedulers, instruction dis-

patch units, and interconnect network are not protected [1]–[3].

GPGPU Applications and Execution Model. GPUs rely on

the single-instruction-multiple-thread (SIMT) philosophy and















TABLE IV
RESILIENCE COVERAGE VS. OVERHEAD REDUCTION.

Kernel-Level CTA-/Warp-

Level

Benchmark Perfect OQ (OR) Default OQ (OR) Default OQ

(OR)

BlackScholes 31.8% (0%) 89.0% (100%) –

RAY 83.2% (0%) 96.0% (100%) –

Sort k8 81.5% (0%) 97.8% (100%) –

JPEG 76.1% (0%) 84.6% (0%) –

SCP 62.1% (0%) 71.6% (0%) –

FWT k6 36.0% (0%) 51.5% (0%) –

FWT k13 28.3% (0%) 54.2% (0%) –

HotSpot 66.2% (0%) 83.8% (0%) 99.6% (26%)

NN k4 89.6% (100%) 89.6% (100%) 91.9% (92%)

WC k5 87.9% (100%) 88.9% (100%) 96.6% (75%)

WC k91 94.9% (100%) 94.9% (100%) 100% (75%)

WC k114 89.8% (100%) 89.8% (100%) 93.4% (94%)

BFS k3 88.5% (100%) 88.5% (100%) 100% (100%)

BFS k9 84.9% (0%) 84.9% (0%) 86.1% (95%)

BFS k11 82.1% (0%) 83.9% (0%) 99.2% (90%)

KMN k1 82.2% (0%) 82.6% (0%) 100% (7%)

KMN k2 81.0% (0%) 85.4% (100%) 100% (7%)

* The resilience coverage requirement is set to be 85%.

* Kernels with no values in the fourth column only contain one fault distribution

group, thus are not applicable for fine-grain analysis.

find that for kernels such as RAY, Sort k8, and KMN k2, the

resilience coverage requirement of 85% is met and hence its

re-computation can be completely avoided leading to 100%

reduction in protection overhead by accepting Default OQ

instead the Perfect OQ. However, we also find that some other

kernels (see cells in bold in Table IV) do not meet the 85%

resilience coverage requirement even at the Default OQ. For

such kernels, we have to resort to fine-grain analysis to seek

opportunities of overhead reduction.

Fine-grain Protection Overhead Analysis. If the kernels do

not meet the resilience coverage requirement, the protection

overhead can still be reduced by exploiting the fact that some

CTAs or warp groups are significantly more error-resilient

than others (see Observations #6 and #7). We propose not

to re-compute such groups and hence reduce the associated

protection overhead. As CTAs are independent of each other,

output of only those CTAs will be required to be compared that

have lower resilience coverage. After applying our resilience

characterization (Section IV), we find that the resilience cover-

age has increased significantly for most kernels (see “Default

OQ (OR)” column under “CTA-/Warp-Level”) and still with

a significant overhead reduction. For example, for HotSpot,

at the CTA level, users can obtain 99.6% resilience coverage

while still reducing overhead by 26% (i.e., G1 in Figure 9(e)

can be protection-free). In addition, for kernels with over 85%

resilience coverage (i.e., NN k4, WC k5, WC k91, WC k114,

and BFS k3), it is still possible to further improve their

resilience coverage at a finer granularity (see fourth column).

Although the above analysis is for the 85% resilience coverage

requirement, similar analysis can be performed for any other

threshold.

Observation#8: Hierarchical error-resilience analysis offers

flexibility for resilience coverage and overhead reduction.

VI. RELATED WORK

There is a large number of studies that focus on leveraging

simulation-based analysis to detect critical hardware structures

that are more vulnerable to soft errors. Prior works [10],

[17] have conducted architectural vulnerability factor (AVF)

analysis, which tracks every bit during the application run

and calculates the likelihood of the output being affected.

Although there is a large body of work on fault injection

models/frameworks [4], [12], [13], [34]–[36], [39] in the

context of CPUs, only a limited set of fault injector models

have been proposed for GPUs [9], [14], [23], [30], [46], [47].

Yim et al. [47] build a source-to-source translator, SWIFI, to

investigate error resilience in GPUs and demonstrate that the

ratio of silent data corruption (SDC) in GPUs is much higher

than that observed in CPUs.

Prior works [9], [30], [46] use the number of dynamic

instructions (DI) per thread as a proxy for thread behavior.

The rationale is that threads with the same dynamic instruction

count are likely to execute the exact same set of instructions,

thus resulting in similar error resilience behavior. In this paper,

we typically put threads with the different DI count in the

same group based on additional hierarchical information (Sec-

tion IV-B). This allows higher overhead reduction compared

to GPU-Qin because vulnerable threads are encapsulated into

fewer CTAs, which then can be recomputed.

While the purpose of fault protection is to completely avoid

faults, approximate computing explores the trade-off between

accuracy, performance, and energy efficiency. Prior studies

have considered this trade-off in specific areas including

bioinformatics [16], [25], performance analysis [42], data

mining [26], and image recognition [24]. Approxilyzer [44]

has been proposed to evaluate the three-way trade-off among

output quality, resilience coverage, and overhead reduction.

It is built for single-threaded CPU applications and is not

clear how it can be extended for GPGPU applications with

thousands of threads and billions of fault sites.

VII. CONCLUSIONS

In this paper, we characterize the of accuracy-aware re-

silience of GPGPU applications. We propose a hierarchical

thread classification and selection approach to understand

the application resilience coverage. Through a large number

of fault injection runs (330, 000 in total) on a variety of

GPGPU applications, we obtain several interesting observa-

tions. First, the error resilience of GPGPU application kernels

can significantly increase by embracing some loss in output

quality. Second, the accuracy-aware error-resilience of a kernel

can be captured by analyzing threads of only a few thread-

blocks. Third, the proposed hierarchical approach facilitates

the overhead reduction of protection/recovery mechanisms to

ensure reliable output.
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