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Abstract—Graphics Processing Units (GPUs) have rapidly evolved to enable energy-efficient data-parallel computing for a broad

range of scientific areas. While GPUs achieve exascale performance at a stringent power budget, they are also susceptible to soft

errors, often caused by high-energy particle strikes, that can significantly affect the application output quality. Understanding the

resilience of general purpose GPU (GPGPU) applications is especially challenging because unlike CPU applications, which are mostly

single-threaded, GPGPU applications can contain hundreds to thousands of threads, resulting in a tremendously large fault site space

in the order of billions, even for some simple applications and even when considering the occurrence of just a single-bit fault. We

present a systematic way to progressively prune the fault site space aiming to dramatically reduce the number of fault injections such

that assessment for GPGPU application error resilience becomes practical. The key insight behind our proposed methodology stems

from the fact that while GPGPU applications spawn a lot of threads, many of them execute the same set of instructions. Therefore,

several fault sites are redundant and can be pruned by careful analysis. We identify important features across a set of 10 applications

(16 kernels) from Rodinia and Polybench suites and conclude that threads can be primarily classified based on the number of the

dynamic instructions they execute. We therefore achieve significant fault site reduction by analyzing only a small subset of threads that

are representative of the dynamic instruction behavior (and therefore error resilience behavior) of the GPGPU applications. Further

pruning is achieved by identifying the dynamic instruction commonalities (and differences) across code blocks within this representative

set of threads, a subset of loop iterations within the representative threads, and a subset of destination register bit positions. The above

steps result in a tremendous reduction of fault sites by up to seven orders of magnitude. Yet, this reduced fault site space accurately

captures the error resilience profile of GPGPU applications. We show the effectiveness of the proposed progressive pruning technique

for a single-bit model and illustrate its application to even more challenging cases with three distinct multi-bit fault models.

Index Terms—GPGPU Applications, Reliability Analysis, Fault Site Pruning
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1 INTRODUCTION

PARALLEL Hardware Accelerators such as Graphics Pro-
cessing Units (GPUs) are becoming an inevitable part

of every computing system because of their ability to pro-
vide fast and energy-efficient execution for many general-
purpose applications. GPUs work on the philosophy of
Single Instruction, Multiple Threads (SIMT) programming
paradigm [1] and schedule multiple threads on a large
number of processing elements (PEs). Thanks to very large
available parallelism, GPUs are used in accelerating inno-
vations in various fields such as high-performance com-
puting (HPC), artificial intelligence, deep learning, and vir-
tual/augmented reality. Given the wide-spread adoption
of GPUs in many Top500/Green500 supercomputers and
cloud data centers, it is becoming increasingly important
to develop tools and techniques to evaluate the reliability
of such systems, especially since GPUs are susceptible to
transient faults from high-energy particle strikes [2], [3], [4].

The typical approach to evaluate general purpose GPU
(GPGPU) application resilience is by artificially but system-
atically injecting faults into various registers and then by
examining their effects on the application output. These
faults can result in: a) no change in application output (i.e.,
faults are masked), b) change in output due to data cor-
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ruption while execution terminates successfully (i.e., faults
are silent), and c) application crashes and hangs. With the
exception of approximate computing where some execu-
tions that result in silent faults may be acceptable to the
user [5], silent faults and crashes are considered undesirable.
Consequently, high-overhead protection mechanisms such
as check-pointing [6] and error correction codes (ECC) [7]
are employed to strive for reliable application execution.

One of the major challenges in evaluating error resilience
of applications even in the presence of a single-bit fault
during the application execution is to obtain a very high
fault coverage, i.e., inject a fault in all possible fault sites and
record its effect. This procedure is very time consuming and
tedious, especially in light of the fact that the total space of
fault sites can be in the order of billions. Assuming a single-bit
flip model, Table 1 quantifies the total number of fault injec-
tion sites for a large number of diverse GPGPU application
kernels. The tremendous size of single-bit fault sites is due
to the fact that each GPGPU kernel can spawn thousands
of application threads and each thread is assigned to a
dedicated amount of on-chip resources. For the calculation
of fault sites reported in Table 1, we only consider soft errors
that can occur in functional units (e.g., arithmetic logic unit
and load-store unit) that are not protected by ECC [8]. Yet,
the number of fault sites even for the single-bit case is
tremendous, making an exhaustive approach absolutely not
practical.
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TABLE 1: Various metrics (including the total number of possible fault sites) in the presence of a single-bit fault.

Suite Application Kernel Name ID # Threads # Total Fault Sites

Rodinia

HotSpot calculate temp K1 9216 3.44E+07

K-Means
invert mapping K1 2304 1.47E+07

kmeansPoint K2 2304 9.67E+07

Gaussian Elimination

Fan1 K1 512 1.63E+05
Fan2 K2 4096 4.92E+06
Fan1 K125 512 1.09E+05
Fan2 K126 4096 8.79E+05

PathFinder dynproc kernel K1 1280 2.77E+07

LU Decomposition (LUD)
lud perimeter K44 32 1.75E+06
lud internal K45 256 6.84E+05
lud diagonal K46 16 5.26E+05

Polybench

2DCONV Convolution2D kernel K1 8192 6.32E+06
MVT mvt kernel1 K1 512 6.83E+07
2MM mm2 kernel1 K1 16384 5.55E+08

GEMM gemm kernel K1 16384 6.23E+08
SYRK syrk kernel K1 16384 6.23E+08

In order to develop a robust and practical reliability
evaluation for GPUs, prior works have considered a variety
of fault injection methodologies such as LLFI-GPU [9] and
SASSIFI [8] that sample a random subset of 1,000 fault
sites to capture a partial view of the overall error resilience
characteristics with 95% confidence intervals and error mar-
gins within a 6% range [10]. Here, we take an orthogonal
approach – our goal is to prune the tremendously large
fault site space using properties of GPGPU applications. Our
pruning mechanism dramatically reduces the total number
of required fault injections, in some cases to a few hundreds
only while still maintaining superior accuracy.

To this end, we focus on the following fundamental
observations relevant to GPGPU applications: a) GPGPU
applications follow the SIMT execution style that allow
many threads to execute the same set of instructions with
slightly different input values, b) There is ample common-
ality in code across different threads, c) Each GPU thread
can have several loop iterations that do not necessarily
change the register states significantly, and d) changes in
the precision/accuracy of register values do not necessarily
change the final output of an application. By leveraging
these properties, we propose a progressive pruning that
preserves the application error resilience characteristics and
consists of the following steps:

• Thread-wise Pruning: The first step focuses on reducing
the number of threads for fault injection. We find that
a lot of threads in a kernel have similar error resilience
characteristics because they execute the same number and
type of dynamic instructions. Based on the grouping of
threads based on their dynamic instruction count, we select
a small set of representative threads per kernel and prune
the redundant fault sites belonging to other threads.

• Instruction-wise Pruning: Many of these selected repre-
sentative threads still execute subsets of dynamic instruc-
tions that are identical across threads. This implies that the
replicated subsets across threads can be considered only
once. Therefore, the replicated fault sites are pruned while
preserving the application error resilience characteristics.

• Loop-wise and Bit-wise Pruning: We observe that there is
a significant redundancy in fault sites across loop iterations
and register bit positions. Therefore, such redundant fault
sites can be further pruned while accurately capturing the

application error resilience characteristics.
We illustrate the effectiveness of the proposed method-

ology by showing that is able to reduce the fault site space
by up to seven orders of magnitude while maintaining
accuracy that is close to that of ground truth. In addition, we
further investigate three multi-bit fault models: (1) multi-
bit faults in the same word, (2) multiple single-bit faults
occurring in the same thread, and (3) multiple single-bit
faults on different threads. We illustrate that the proposed
progressive fault site pruning technique can be readily
extended to capture the error resilience characteristics of
GPGPU applications for multi-bit fault models.

2 BACKGROUND AND METHODOLOGY

Baseline GPU Architecture. A typical GPU consists of
multiple cores, also called streaming-multiprocessors (SMs)
in NVIDIA terminology. Each core is associated with private
L1 data, texture and constant caches, software-managed
scratchpad memory, and a large register file. The cores are
connected to memory channels (partitions) via an intercon-
nection network. Each memory partition is associated with
a shared L2 cache, and its associated memory requests are
handled by a GDDR5 memory controller. Recent commer-
cial GPUs typically employ single-error-correction double-
error-detection (SEC-DED) error correction codes (ECCs) to
protect register files, L1/L2 caches, shared memory and
DRAM against soft errors, and use parity to protect the
read-only data cache. Other structures like arithmetic logic
units (ALUs), thread schedulers, instruction dispatch unit,
and interconnect network are not protected [7].
GPGPU Applications and Execution Model. GPGPU ap-
plications leverage the single-instruction-multiple-thread
(SIMT) philosophy and concurrently execute thousands of
threads over large amounts of data to achieve high through-
put. A typical GPGPU application execution starts with the
launch of kernels on the GPU. Each kernel is divided into
groups of threads, called thread blocks, which are also known
as Cooperative Thread Arrays (CTAs) in CUDA terminology. A
CTA encapsulates all synchronization and barrier primitives
among a group of threads [11]. Having such an abstraction
allows the underlying hardware to relax the execution order
of the CTAs to maximize parallelism.

We selected applications from commonly used suites
(i.e., Rodinia [12] and Polybench [13]) that cover a vari-
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ety of workloads. As kernels of GPGPU applications im-
plement independent modules/functions, we perform re-
silience analysis separately for each kernel. We focus on
every static application kernel. For static kernels with more
than one dynamic invocations, we randomly select one for
fault injection experiments. Table 1 shows the evaluated 10
applications (16 kernels). In the rest of this paper, if the
kernel index is not specified, it implies that the application
contains only one kernel.

2.1 Baseline Fault Injection Methodology

We employed a robust fault injection methodology based on
GPGPU-Sim [14], a widely-used cycle-level GPU architec-
tural simulator. The usability of GPGPU-Sim with PTXPlus
mode (which provides a one-to-one instruction mapping to
actual ISA for GPUs [14], [15]) for reliability assessment is
validated by GUFI [15], a GPGPU-Sim based framework.
We inject faults using GPGPU-Sim with the PTXPlus mode.

For each experiment, we examine the application output
to understand the effect of the injected fault. We classify the
outcome of a fault injection into: (1) masked output, where
the injected fault leads to no change in the application
output, (2) silent data corruption (SDC) output, where the
injected fault allows the application to complete successfully
albeit with an incorrect output, and (3) other output, where
the injected fault results in application hangs or crashes.
The distribution (or percentage) of fault injection outcomes
in these three different categories form the error resilience
profile of a GPGPU application.

2.2 Baseline Fault Model

We focus on injecting faults in the destination registers to
mimic the effect of soft errors occurred in the functional
units (e.g., arithmetic and logic units (ALUs) and the load-
store units (LSUs)) [8], [16]. The destination registers and
associated storage are identified by thread id, instruction
id, and bit position. Table 1 shows the number of threads
spawned by each kernel and the total number of fault
sites (also called fault coverage). The fault coverage for
each application kernel (consisting of N threads) is calcu-
lated using Equation (1). Suppose that a target thread t

(t ∈ [1, N ]) consists of M(t) dynamic instructions and that
the number of bits in the destination register of instruction
i (i ∈ [1,M(t)]) is bit(t, i). The number of exhaustive fault
sites is the summation of every bit in every instruction from
every thread in the kernel:

FaultCoverage =
N∑

t=1

M(t)∑

i=1

bit(t, i). (1)

This number for the GPGPU kernels that we consider here is
reported in the rightmost column of Table 1. These numbers
are obtained under the context of a single-bit fault model.
We start with the single-bit fault model to build a fault site
pruning technique. Then, we extend the proposed technique
to our multi-bit fault model.

2.3 Statistical Considerations

Looking at the number of exhaustive fault sites shown in
Table 1, it is clear that it is not practical to perform fault
injection runs for all fault sites. This is especially true when

application execution time is very long. Taking GEMM from
Polybench as an example and assuming that it takes (nom-
inal) one minute to execute one fault injection experiment,
then 7.73E+08 minutes (or about 1331 years) are needed to
complete experiments for the entire fault site space (see the
first row in Table 2). Therefore, it is desirable to reduce the
number of fault injection experiments but also guarantee
a statistically sound resilience profile (i.e., percentages of
masked, SDC, and other outputs – see Section 2.1) of the
considered kernel. Prior work [10] has shown that given
an initial population size N (in our case, N is the number
of exhaustive fault sites), a desired error margin e, and a
confidence interval (expressed by the t-statistic), the number
of required experiments n (in our case, fault sites) is:

n =
N

1 + e2 × N−1
t2×p×(1−p)

. (2)

Note that p in the above equation is the program vulnera-
bility factor, i.e., the percentage of fault injection outcomes
that are in the masked output category. If n � N , (e.g.,
if the percentage of samples is less than 5% of the entire
population), then N can be approximated by ∞, resulting
in the following equation [17]:

lim
N→∞

n = lim
N→∞

N

1 + e2 × N−1
t2×p×(1−p)

=
t2

e2
×p×(1−p). (3)

Since p is the result of fault injection experiments, p is
still unknown. To ensure that the number of fault injection
experiments n is sufficient to capture the true p [10], then

n = max{
t2

e2
× p× (1− p)} =

t2

4× e2
, (4)

where n is the minimum sample size (i.e., number of fault
injection experiments) required to calculate the fraction of
fault injection outcomes in the masked output category, with
a certain confidence interval and a user-given error margin
e. To maximize the term p× (1− p), p is set to 0.5.

Table 2 presents the required number of fault injection
experiments (i.e., fault sites) in GEMM given a confidence
interval and an error margin. We consider the reliability
profile results of 60K experiments (with 99.8% confidence
interval and an error margin of e = 0.63%) as the ground
truth [18]. Clearly, there is a significant discrepancy between
the percentage of masked outputs for 60K versus 1K fault
injections (see last column). Similarly to techniques in the
CPU domain that aim at high accuracy [18], the goal of fault
site pruning is to achieve the accuracy of the 60K results but
with a much reduced number of experiments. Indeed, as we
show in later sections for the 13 out of the 16 kernels that
we analyzed here, we achieve the high accuracy of ground
truth but with 1K experiments or less, for some kernels with
as few as 318 experiments only (see Figure 10).

TABLE 2: Fault sites and other statistics for GEMM.

Confidence
Interval

Error
Margin

# Fault
Sites

Estimated
Time

Masked
Output (%)

100% 0.0% 7.73E+08 1331 years ?
99.8% ±0.63% 60,181 40 days 24.2%
95% ±3.0% 1,062 16 hours 21.6%
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TABLE 5: Effect of instruction-wise pruning for two threads.

Application Thread
% % %

Common Insn. MSK SDC

PathFinder
a 92.1% 89.4% 0.0%
b 100.0% 90.1% 0.4%

percentage of SDC outputs (both minimal variations), but
with a significant reduction of 12, 344 fault sites.

To confirm that this behavior persists across kernels,
we conduct exhaustive experiments across the fault site
space after CTA-wise and thread-wise pruning and confirm
that common blocks of instructions across threads share a
surprisingly similar distribution of fault injection outcomes
(Table 6). The third column of Table 6 shows the percent-
age of pruned common instructions, and the 4th and 5th
columns show the error of pruned results, compared to
the exhaustive experiments before pruning common instruc-
tion blocks. Table 6 shows that the percentage of common
instructions pruned in applications kernels ranges from
42.86% to 92.81% and that the error introduced by pruning
common instruction blocks for masked and SDC outputs is
−0.15% and −0.1%, respectively.

TABLE 6: Summary of instruction-wise pruning.

Application Kernel
% Pruned Introduced Error

Common Insn. MSK SDC

HotSpot K1 92.81% -0.14% 0.14%
PathFinder K1 92.80% 0.03% -0.09%

LUD k46 80.00% -0.78% -0.70%
2DCONV k1 66.67% 0.09% -0.09%
Gaussian K2 62.50% -0.13% 0.13%
Gaussian K126 42.86% 0.00% 0.00%

Average 72.94% -0.15% -0.10%

Note that several application kernels (e.g., 2MM, MVT,
SYRK, and GEMM) after thread-wise pruning end up with
only one representative thread. These kernels are not suit-
able for instruction-wise pruning and are therefore not
included in the table. For Gaussian K1 and K2, and K-
Means K1, instruction-wise pruning is also not applicable.
For these application kernels, there are two representative
threads, one with very few instructions (i.e., less than 10)
and other with many (i.e., hundreds or thousands), leaving
few opportunities to explore code commonality.

Observation-3: Different representative threads may share
significant portions of common instructions. Therefore,
distributions of fault injection outcomes of these common
portions are similar. Consequently, a large number of fault
sites can be pruned while achieving significant accuracy.

3.3 Loop-Wise Pruning

Table 7 shows the total number of instructions and the num-
ber of loop iterations. The kernels are sorted in increasing
order by the portion of instructions in loops (after the loop
is unrolled). Excluding kernels with no loops, a large portion
of instructions in a kernel come from loop iterations, ranging
from 65.79% in LUD K46 to 99.71% in MVT. We aim to
discover whether the distribution of fault injection outcomes
can be captured by a subset of loop iterations.

Towards this goal, we consider a number of randomly
sampled iterations for fault injections. We present results
for different fault site sizes, defined by the total number

TABLE 7: Statistics related to loops.

Application Kernel # Thd.
# Loop

Iter.
% Insn. in

Loop

HotSpot K1 9216 0 0.0%
2DCONV K1 8192 0 0.0%

NN K1 43008 0 0.0%

Gaussian

K1 512 0 0.0%
K2 4096 0 0.0%

K125 512 0 0.0%
K126 4096 0 0.0%

LUD
K45 256 0 0.0%
K46 16 120 65.79%
K44 32 120 78.75%

K-Means
K1 2304 34 82.42%
K2 2304 170 87.6%

PathFinder K1 1280 20 92.84%
SYRK K1 16384 128 98.13%
2MM K1 16384 128 98.18%

GEMM K1 16384 128 98.21%
MVT K1 512 512 99.71%

of sampled iterations (num iter) ranging from 1 to 15.
Figure 6 shows the impact of num iter on the distribution
of fault injection outcomes for PathFinder, SYRK, and K-
Means K1. For K-Means K1, we show the effect of two
different random seeds for sampling the loop iterations.
The distribution of fault injection outcomes is stable after
a certain number of sampled loop iterations. Looking closer
into the application source code, we observe that: 1) several
loop conditions are controlled by constants and not vari-
ables that are changed within the loop and 2) there is no data
communication among different loop iterations. Therefore,
there is no error propagation among loop iterations, thus
sampling is sufficient for obtaining the distribution of fault
injection outcomes.

Figure 6 shows that different applications require differ-
ent numbers of sampled loop iterations to reach stability
for the percentage of masked, SDC, and other outputs. Fig-
ure 6(a) shows that PathFinder requires 3 sampled loop iter-
ations. Figure 6(b) shows that the output of SYRK becomes
stable after 8 sampled loop iterations. In both cases the trend
is clear. For K-Means K1 (Figure 6(c)), there is no clear
trend with a few sampled iterations but results stabilize
when the number of sampled loop iterations reaches 15.
To further explore the behavior of this kernel, we sample
the loop iterations of K-Means K1 using another random
seed. Figure 6(d) reports the results and shows that stability
is again achieved with 15 loop iterations, as shown in
Figure 6(c). Even with different seeds, stability occurs with
the same number of loop iterations for K-Means K1. Since
different loop iterations process similar data, changing the
seed does not make a significantly affect the application
reliability profile. In general, different benchmark kernels
need different number of loop iterations; this shows the
differences of data among different applications.

To summarize, Figure 6 suggests that randomly sam-
pling a few iterations is generally sufficient in capturing
the distribution of fault injection outcomes of application
kernels. This offers another way to further reduce the fault
sites within a thread. Therefore, we randomly add iterations
one by one, until the result is stable. For the examined
kernels, the number of iterations sampled among loops
differs from a minimum of 3, to a maximum of 15, with
an average of 7.22 iterations across all application kernels.
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