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Abstract—Performance variation deriving from hardware and
software sources is common in modern scientific and data-
intensive computing systems, and synchronization in parallel and
distributed programs often exacerbates their impacts at scale.
The decentralized and emergent effects of such variation are,
unfortunately, also difficult to systematically measure, analyze,
and predict; modeling assumptions which are stringent enough
to make analysis tractable frequently cannot be guaranteed at
meaningful application scales, and longitudinal methods at such
scales can require the capture and manipulation of impractically
large amounts of data. This paper describes a new, scalable, and
statistically robust approach for effective modeling, measurement,
and analysis of large-scale performance variation in HPC sys-
tems. Our approach avoids the need to reason about complex
distributions of runtimes among large numbers of individual
application processes by focusing instead on the maximum length
of distributed workload intervals. We describe this approach
and its implementation in MPI which makes it applicable to
a diverse set of HPC workloads. We also present evaluations
of these techniques for quantifying and predicting performance
variation carried out on large-scale computing systems, and
discuss the strengths and limitations of the underlying modeling
assumptions.

I. INTRODUCTION

Large-scale cloud and HPC systems and applications regu-
larly experience performance variation due to dynamic hard-
ware and software actions, configurations, and resource al-
locations common in modern systems. On dedicated nodes,
sources of this variation include operating system manage-
ment activities [12], processor clock speed changes to control
system power and temperature [1], competition for memory
bandwidth between processors and network cards [13], incon-
sistent system cooling patterns [22], changes in network links,
switch capacities, and routes [6], and inherent variation or
non-determinism in application behavior. On systems where
applications share node-level resources, something common
in cloud environments and increasingly prevalent in HPC
systems, resource competition from other applications can also
lead to performance variation [11], [18], [23], [28].

Accurately measuring, predicting, or otherwise assessing
performance variation in large-scale system performance to
vary is extremely difficult. First, because node and system
behavior can widely vary over time [1], [16], any approach that
seeks to quantify or predict variations in system performance

must collect large numbers of performance samples from
many nodes over significant time-scales, potentially requiring
collection, storage, and analysis of vast amounts of data. In
addition, any approach to quantifying variation in expected
application or system performance assumes an underlying
model of both application/system performance and necessarily
makes simplifying assumptions about its scope and behavior.
Variation in real-world parallel and distributed systems ex-
hibits complex behaviors which can invalidate many common
modeling and analysis assumptions (e.g. continuity, temporal
invariance, independence, identical distribution) [14].

As a result, there is currently no general approach to
measure, predict, or otherwise assess performance variation
in real-world large-scale computing systems. Multiple authors
have measured different performance variation sources on
specific nodes [1] or systems [12], but these approaches do not
generalize beyond a single system or predict how performance
variation changes with application or system scale. Similarly,
application performance prediction approaches predict only
average performance [20] and do not attempt to predict the
variation in performance common in real-world systems.

Because users, system architects, and system tools cannot
accurately measure or predict performance variation, they must
make pessimistic resource allocation and system configuration
decisions. Users, for example, generally request maximum
job lengths from the system scheduler because the cost of
underestimating application runtime is job termination; this
reduces the ability of the system scheduler to effectively
allocate system resources. Similarly, users or system architects
may disable dynamic resource allocation systems and policies
(e.g. OS VM, thread, process, or memory migration; automatic
processor power management) to achieve predictability at the
cost of performance. In addition, it also makes truly anomalous
system or application behavior difficult to detect.

In this paper, we describe a new approach to measuring,
analyzing, and predicting performance variation in large-scale
computing systems which combines a focus on the maxi-
mum length of distributed workload intervals with parametric
and non-parametric statistical bootstrapping techniques. Com-
pared to other approaches, focusing on estimating variation
in maxima significantly simplifies measurement and analysis
challenges because it avoids the need to reason about the
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complex distribution of runtimes on individual nodes. Relevant
background material on the statistics of maxima are provided
in Section II.

Our overall goal is to enable system and application archi-
tects to accurately assess and predict performance variation in
large-scale systems. Overall, this paper describes the following
contributions toward achieving this goal:

o A new approach to modeling, measuring, and analyzing
performance and performance variation in large-scale
systems based on bootstrapping either parametric or em-
pirical maxima distributions (Section III);

o An MPI implementation of the measurement approach
underlying this model that enables its application to a
range of HPC workloads and system (Section IV); and

o An evaluation of these techniques for quantifying and
predicting performance variation in large-scale systems,
including an analysis of the strengths and limitations
of the modeling assumptions underlying the different
analysis techniques (Sections V and VI).

In addition, the paper also discusses related research in
characterizing performance variation in large-scale computing
systems (Section VII), and then directions for future research
before concluding (Section VIII).

II. BACKGROUND: MATHEMATICS OF MAXIMAS AND
BOOTSTRAPPING

Our methodology uses a combination of extreme value
theory and statistical bootstrapping to ensure two things,
respectively: 1) that we avoid making assumptions about the
workload as a whole (i.e., specifically about the type of
distribution governing the different workloads, as intra-node
variability can and will impact those assumptions), and 2)
that we can achieve robust conclusions with a relatively small
number of samples. The various methods that we use for
this work make use of these two aspects of extreme value
theory and statistical bootstrapping in different ways, as we
explain in detail in Section III. In the remainder of this section
we provide background on the different building blocks that
provide the mathematical basis for our approach.

A. Statistical Distribution of Maximas

The most commonly used statistical tool for characterizing
distributions of maxima is the Generalized Extreme Value
(GEV) distribution. The GEV distribution is a set of proba-
bility distributions comprising Gumbel, Fréchet, and Weibull,
which is characterized by a set of underlying i.i.d. random
variables. The GEV approximates the distribution of the max-
imum value of a set of independent and identically distributed
random variables. The cumulative distribution function (CDF)
of the GEV distribution is:

-
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where x is shape, £ is location, and « is a scale parameter.
When the shape parameter & is 0, the extreme value distribu-
tion is type I or Gumbel. When £ is greater than 0, it is type
IT or Fréchet, and if « is less than 0, it is type III or Weibull.

B. Estimate of Maxima Distributions

Several methods exist for estimating the parameters for the
GEV distribution. We compared three different methods for
our work: maximum likelihood estimators (MLE), probability
weighted moments (PWM), and the method of moments
(MOM). Maximum likelihood estimators are commonly used
in parametric distribution fitting, such as in the Python SciPy
Stats library [24]. However, multipe studies have found that
that MLE is unstable with smaller sample size (15 < n < 100)
[15] when compared to PWM. Madsen et al. also found that
MOM has lower root mean square error when dealing with
smaller sample sizes [19]. We have found that MOM and
PWM are more reliable than MLE for fitting GEV distribution
parameters in our experiments.

The method of moments [19] for estimating the parameters
of the GEV distribution is as follows: given the sample mean,
standard deviation, and skewness: [, &, and 4, it estimates
empirically the shape parameter £ by minimizing the following
equation
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with respect to 4 using the Nelder-Mead method and an

initial guess of & = 0 and where I'(n) = (n — 1)!. After

approximating the shape, the scale & and location é are

estimated as:
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The method of probability weighted moments [15] considers
the first three moments, mean, variance, and skewness: fi,
o2, and 4 respectively. It computes the shape parameter

& = 7.8590¢ + 2.9554¢2, where ¢ = 23‘;2:5 - ﬁzgg The scale

parameter &, and the location parameter ¢ are calculated as:
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C. Bootstrapping Maxima Confidence Intervals

Given a sufficiently large sample, and the assumption that
the empirical distribution of the observed data is representative
of the true population distribution, bootstrapping randomly re-
samples with replacement the empirical distribution. Although
this process yields only an approximate estimate, it has been
proven [7], [10] to produce more accurate population param-
eter estimates than if these parameters were calculated based
on an initial incorrect assumption of a specific distribution.

The parametric version of bootstrapping randomly generates
samples from a parametric distribution fitted to the data (e.g.,
a GEV distribution). The non-parametric bootstrap method
performs resampling with replacement from the given sample
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and calculates the required statistic from a large number of
repeated samples. In both cases, standard errors and confidence
intervals can be calculated. Parametric and non-parametric
approaches have been compared as to their performance in
estimating uncertainties in extreme-value models. The non-
parametric bootstrap leads to confidence intervals that are too
narrow and underestimate the real uncertainties involved in the
frequency models [17], unless a large number of samples are
used.

III. MAXIMA-BASED PERFORMANCE VARIATION
ASSESSMENT

In addition to being a source of unpredictable behavior, per-
formance variance inherently limits the performance of large-
scale applications. This happens because periodic application-
wide communication in distributed applications requires all
processes to wait for the slowest process before any process
can proceed. As a result, even variability which manifests
in only a single process eventually affects every application
process. In traditional bulk-synchronous HPC applications,
for example, this frequently happens through explicit MPI
collective communication. Data-centric compute systems often
synchronize implicitly during global compute phases (e.g.
Hadoop reductions or Spark shuffle transformations) as well.
Our methodology focuses on efficiently and accurately mod-
eling this type of variability.

Our metholodology has two goals:

1) To reduce the amount of data that needs to be collected
to accurately measure system and application perfor-
mance characteristics

2) To accurately quantify performance variation in large-
scale systems and applications

In the remainder of this section, we discuss the basic per-
formance quantification and prediction model (and its as-
sumptions) on which we base our methodology, how we
leverage this model to measure system performance, and the
bootstrapping methodology we use to quantify variation in
measured and predicted workload performance.

A. Modeling Approach

Our approach measures, models, and analyzes the distri-
bution of the maximum length of a fixed distributed com-
pute/communication workload at a given system scale. Such
a workload could be a simple computational kernel fenced by
synchronization operations, including a complex application
workload delineated with MPI_Init/MPI_Finalize, or a
Hadoop MapReduce kernel.

We then model workload performance as a generally-
distributed random variable of which a sample is the length
of one execution of this workload. We assume that this
random variable is the maximum of N random variables,
each of which describes the length of program runtime on an
individual node. We further assume that these distributions are
stationary (not time-varying). We do not, however assume that
the distributions of individual node runtimes are independent
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or identical, or that either the node or overall system runtime
distributions are continuous.

This model allows us to measure only either (1) the
time between the end of successive synchronizing collectives,
which is useful if we are analyzing only the maximas of
workloads such in non-parametric bootstrap described below,
or (2) distribution of individual node inter-collective times
such as in the inter-node and intra-node parametric bootstraps
described below. In either case the amount of data needed
to quantify system variation is significantly less than that
required by approaches that rely on fine-grain tracing of all
applications.

B. Analytical Methods

In this section we describe how we use statistical bootstrap-
ping to augment an existing performance prediction technique
for quantifying expected changes in workload variation when
the size of the system or application under examination
is increased. More specifically, we use non-parametric and
parametric bootstrapping approaches.

The non-parametric bootstrap makes minimal assumptions
about the distribution of maxima on nodes, focusing on the
empirical distribution of maxima. In contrast, the parametric
bootstrap assumes that either individual nodes or sets of
nodes have independent, identically-distributed (i.i.d.) work-
load lengths. The non-parametric bootstrap’s weaker assump-
tions, however, require a large number of global maximum
samples to be effective, as described in Section II, while some
parametric bootstrap approaches require performance samples
from individual nodes to avoid assuming that all workload
samples are i.i.d.

1) Non-parametric bootstrapping: For the non-parametric
version of our approach, we do not perform explicit model
fitting. Instead, we re-sample maxima data to simulate the
effects of scaling-up the workload. In particular, we implement
the non-parametric bootstrapping by randomly resampling the
original maxima data k times with replacement and taking
the maximum of these k£ values as a new sample on a
system k times larger. We repeat this process n times to
generate bootstrap empirical samples for the larger system
being modeled. The 95% confidence interval is then directly
computed from the resulting set of maxima scaled up via
resampling.

2) Parametric bootstrapping: In the parametric approach,
we fit a GEV distribution to a collection of maxima, perform
a prediction of expected growth, and calculate its confidence
intervals. To perform the GEV fitting, we use the two methods
described in Section II: the method of probability weighted
moments (PWM) and the method of moments (MOM). Al-
though mixed methods combining MLE and MOM have been
explored before to fit GEV [3], PWM has shown greater
stability compared to MLE even though it can still break down
in the presence of outliers [9]; thus, the need to combine
them. By using both, PWM and MOM, in conjunction with
bootstrapping, we seek to leverage their strengths while reduc-
ing the likelihood of instability in the fitting. After obtaining

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.



a good fitting, we can use the Expected Mean Maximum
Approximation [26] (EMMA) technique, which can be used
to predict the performance correctly when the distribution of
maxima are known a priori. The EMMA function estimates
the expected value of the maximum of n observations of a set
of i.d.d random variables X; with distribution F as:

E (maz™, X;) ~ F~(P)
where P ~ 0.5703760027, m is the projection scale, and F is
the GEV distribution. If we use EMMA for n iterations, we
will have a distribution of maximum values in the extrapolated
scale. As we are interested in exposing the variability that
happens naturally within a node, and across the system, we
systematically bootstrap in two ways:

o Inter-node Parametric, where we use one node at a time
to generate the 50 bootstrap replicas and repeat for the
total number of nodes in our sample (e.g., for 8§ nodes
we generate 8 x 50 = 400 replicas per sample workload).

o Intra-node Parametric, where we select one rank for
each node to generate the 50 replicas, and repeat for the
total number of ranks per node (e.g., for 32 ranks per
node we generate 32 X 50 = 1600 replicas per sample
workload.

To obtain the 95% bootstrap confidence interval we extract
the 2.5th and 97.5th percentiles of the distribution of EMMA
projected runtimes. For a sample size n and a confidence inter-
val ci, the position in the ordered collection of resampled pro-
jections corresponding to the bounds of the empirical bootstrap
confidence interval are given by [n(1—ci)/2,n(1+ci)/2]. As
for the number of bootstrap replicas that are needed in practice
to compute a stable 95% confidence interval, Efron et al. [10]
suggested 200 replicas for calculating the bootstrap standard
error but 1000 or more for computing the bootstrap confidence
interval.

IV. IMPLEMENTATION AND WORKLOADS

We have implemented the general methodology described in
Section III in order to evaluate its ability to measure, analyze,
and predict performance variation in modern systems when
combined with different statistical performance prediction
techniques. In addition, we have also examined its ability to
characterize the potential performance variation of different
workloads on several modern HPC systems. This section
describes both our implementation for collecting runtime and
maxima samples from different workloads on HPC systems.

A. Measurement Implementation

To collect maxima samples from a wide range of workloads,
we designed and implemented a simple MPI application that
can be used to execute and measure the performance and
performance variation of a wide range of HPC workloads. This
system is based on a the well-known bulk-synchronous parallel
model (BSP) model of large-scale applications. As such, the
measurement program executes k intervals in which n pro-
cesses compute. Each interval begins with an MPI_Barrier,
after which the test program runs a specified MPIl/compute
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workload on each process (which may include communication
through an MPI subcommunicator), finally executing a second
MPI_Barrier. Each process logs the time taken to compute
the workload, and the rank O MPI process logs the time
between the completion of these two MPI barriers as the
maximum time taken to execute the specified workload across
all processes as the length of the kth interval. These logs
are stored in memory and written to a parallel file system
at program completion to minimize runtime overhead.

B. Synthetic and Application Workloads

We have implemented synthetic workloads that mimic com-
mon HPC computation/communication patterns and library
versions of several HPC applications in this framework, as
summarized in Table I. Specifically, we support parameterized
versions of multiple common synthetic single-node compute
workloads, and each of these synthetic compute workloads can
also be supplemented with a simple 2D halo exchange of a
configurable size in each iteration to mimic BSP applications
with different computational characteristics. In addition, we
have integrated two different distributed MPI applications into
this system, HPCG [8] and LAMMPS [21]. These application
workloads perform a fully distributed solve or simulation,
adding complex communication characteristics to our frame-
work.

For each of these workloads, the global synchronization step
guarantees that the distribution of runtimes is the maxima
of the local compute/communication times on each node.
When all local distributions are identical Gaussian distri-
butions, either given directly or established by the central
limit theorem, this distribution approaches a Gumbel distri-
bution. More generally, when the local distributions are all
continuous, and independent and identically distributed (IID),
the maximum distribution is the generalized extreme value
(GEV) distribution. It is important to note, however, that in
many cases the distributions of local compute/communication
times are not IID in real systems. For example, explicit com-
munication or indirect interference (e.g. L3 cache conflicts)
between processes can violate independence assumptions.
Similarly, differences in resource allocations between cores
and nodes (e.g. dynamic clock frequency management) can
violate identical distribution assumptions. These challenges
can have potentially significant impact on the suitability of
different analysis approaches, as discussed in the next section
and as evaluated in Section VI.

V. EXPERIMENTAL SETUP

To evaluate our statistical prediction techniques and their
ability to quantify and predict performance variation on vari-
ous workloads, we ran the six workloads outlined in Table 1
at various processor counts on two supercomputing platforms
(Table II) to collect maxima timings from each of the k inter-
vals of each workload. We then use the non-parametric and
parametric bootstrapping methods described in Section III-B
to evaluate the ability of each method to predict performance
variation at various scales.
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Workload | Description | Parameters

FTQ [2] | Spin for a statistically distributed length of time | Distribution and distribution parameters

FWQ [2] \ Perform a statistically distributed number of integer additions \ Distribution and distribution parameters

DGEMM | Single-Node Dense General Matrix Multiply | Size of matrix and number of multiplications per iteration
SPMV | Single-Node Sparse Matrix Vector Multiply | Size of matrix and number of multiplications per iteration
HPCG [8] Distributed Pre-conditioned Conjugate Gradient Linear Solver ‘ Global number of rows in matrix being solved

LAMMPS [21] ‘ Molecular Dynamics Solver

Global number of molecules and timesteps to simulate

TABLE 1
SYNTHETIC AND APPLICATION WORKLOADS CURRENTLY SUPPORTED BY MEASUREMENT TOOL

Platforms | Cori | Attaway
Processor Intel Xegrlltelih)i(i’orl(l)clz;zf (‘;825‘/03 ((Il({r?ifgﬁtesuianding) Intel Xeon Gold 6140
Clock Speed \ 2.3 GHz (Haswell) / 1.4 GHz (Knights Landing) \ 2.3 GHz
Cores per node | 32 (Haswell) / 68 (Knight’s Landing) | 36

Total Nodes | 2388 (Haswell) / 9688 (Knights Landing) | 1488
Memory per Node ‘ 128 GB (Haswell) / 96 GB (Knights Landing) ‘ 192 GB

TABLE I
PLATFORM HARDWARE DETAILS

We generated the data used in our evaluation on two
supercomputing systems: Cori at the National Energy Research
Scientific Computing Center, and Attaway at Sandia National
Laboratories. Each workload was run on some combination
of 8, 16, 32, and 64 nodes, with 32 MPI ranks per node,
corresponding to 256, 512, 1024, and 2048 MPI ranks respec-
tively. Generally, we performed 20 runs on 256 ranks, 5-10
runs on 512 ranks, 5-10 runs on 1024 ranks, and 3-5 runs on
2048 ranks. This provided ample data at “smaller” scales to
feed our bootstrapping techniques, while still providing test
data at “larger” scales to test the accuracy of our predictive
techniques in our limited system allocations. Additionally, the
FTQ, FWQ, DGEMM, and SPMV workloads were each run
with and without a IMB 2-D halo exchange, as described in
Section I'V-B. The halo exchange component was not included
for the HPCG and LAMMPS workloads as each already
contains communication and synchronization operations.

Each workload was controlled with several input parameters
(Table I). These were tuned to allow each workload to run
in reasonable amounts of time, to generate enough data for
bootstrapping, and to utilize appropriate amounts of memory
to minimize cache effects. Specifically, the FTQ workload was
run with 100 ms normally distributed intervals, while the FWQ
workload was similarly run with normally distributed loop
counts. Additionally, the SPMV and HPCG workloads were
initialized to utilize 1GB per rank of memory to minimize
cache effects, and the LAMMPS workload was performed on
64,000 atoms per rank for 250 timesteps utilizing the Lennard-
Jones potential.

Overall, we performed 467 runs on Cori and 330 runs on
Attaway, broken down between the 6 workloads of interest

54

System \ Cori (# of experiments) \ Attaway (# of experiments)
Workload | No Halo | Halo | No Halo | Halo
FTQ | 38 | 38 | 30 | 30
FWQ | 53 | 53 | 30 | 30
DGEMM | 53 | 53 | 40 | 40
SPMV | 53 | 53 | 35 | 35
HPCG | 38 | 0 | 30 | 0
LAMMPS | 35 | 0 | 30 | 0
TABLE III

EXPERIMENT OVERVIEW

and with or without the inclusion of the additional 2D halo
exchange as seen in Table III. With these runs, we were able to
collect data and characterize the performance of a significant
portion of the Cori and Attaway systems. Shown in Figure
1, our experiments utilized 1461 of the 2388 unique Haswell
nodes on Cori and 319 of the 1488 unique Xeon Gold nodes
on Attaway. On both Cori Haswell nodes and Attaway nodes,
we used 32 cores per node. Cori nodes are configured to allow
hardware use of Intel Turbo Boost by default and we did not
explicitly disable it. Attaway nodes do not have have Turbo
Boost enabled.

VI. EVALUATION

We evaluated the non-parametric and parametric bootstrap-
ping techniques described in Section III with the measurement
and analysis framework described in Section IV for its ability
to accurately quantify and predict variation of the six chosen
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Fig. 1. Heatmap of Nodes Utilized for Cori Experiments. Overall Coverage
of 61% of Haswell Nodes Available on Cori.
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workloads in Table I. We find that both non-parametric and
parametric bootstrapping can reliably predict the performance
and variation of controlled workloads and commonly used
kernels such as DGEMM and SPMV, which only synchronize
after each iteration, but do not internally communicate. For
workloads that contain internal communication and network
dependencies, the parametric bootstrapping is able to capture
the scaling behavior, but would require more calibration data
to robustly narrow and test its confidence intervals due to their
sensitivity to the internal synchronization and communication
overheads of these workloads.

The remainder of this section presents validation that our
measurement technique is scalable, a quantification of the
performance variability observed, our evaluation approach, and
an evaluation of the ability of each bootstrapping technique to
capture the performance variation of each workload on the two
supercomputing systems.

A. Validation of Data Collection

To validate the scalability of our measurement technique,
we measured the time spent in the barrier after each iteration
of a workload. We chose to look at a sample of the DGEMM
workload at 1024 ranks in order to characterize the average
amount of time spent in the barrier after each iteration. On
average, the DGEMM workload took 790 milliseconds on
Cori and 820 milliseconds on Attaway, while the average time
spent in the barrier was 24 microseconds and 15 microseconds
on each system respectively. This indicates that a negligible
amount of the workload is spent in the barrier at some of the
largest scales we ran at, showing our measurement technique
to be highly scalable on both systems.

B. Assessment of Performance Variation

We evaluated the overall runtimes of each run to assess the
performance variation observed for each workload on each
platform. We present the runtimes both with and without halo
exchanges, but do not specifically discuss variance in the halo
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exchange runs. As seen in Figure 2, the runtime performance
on Cori showed minimal variability for the FTQ workload (less
than 1%), while compute-bound workloads (e.g. DGEMM)
showed up to 10% variability across identical runs. The Att-
away runtimes in Figure 3 showed less variability for the FTQ,
FWQ, DGEMM, and SPMV workloads, but experienced 15%
and 94% variability for the HPCG and LAMMPS workloads,
respectively, most likely due to significant internal network
dependencies.

Cori Runtimes

FTQ FWQ DGEMM
[ H s
LU | . l
H [ i ' .
I I ’
8 ! i
' o | v
E—— 12 -
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0 50
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Fig. 2. Experiment runtimes of each workload at various scales on the

NERSC Cori supercomputer

While the controlled workloads of FTQ and FWQ were
well-behaved, the DGEMM and SPMV workloads exhib-
ited larger variances since they are real compute-bound and
memory-bound kernels subject to processor speed control
and memory contention. Similarly, the HPCG and LAMMPS
workloads exhibited more unpredictable behavior due to their
internal communication patterns and network dependencies.
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Fig. 3. Experiment runtimes of each workload at various scales on the SNL
Attaway supercomputer

Beyond the visual inspection, we can characterize the vari-

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.



ability of workloads across runs by analyzing their GEV fitting
parameters. For example, Figure 4 shows MOM fittings for the
very stable FTQ workload, and for the more unpredictable
HPCG. For space purposes we depict only MOM fittings;
however we compare both PWM and MOM. For FTQ, both
PWM and MOM agree across runs that this is a Type II
distribution. On the other hand, for HPCG the fitting methods
do not reach an agreement. PWM characterizes the distribution
as Type III, while MOM characterizes runs 1 and 3 as Type
I, and run 2 as Type II (see Section II for the definition of
the different types). This assessment of distribution type and
agreement between fitting methods provides us with valuable
insight into whether we can trust the predictive capabilities of
our methods for specific workloads.
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Fig. 4. Characterization of maxima for FTQ and HPCG across Cori runs

C. Evaluation Approach

Our evaluation approach consists of four steps:

« Utilization of the data collected to calculate the total
runtime of each experiment.

 Prediction of performance variation at larger scales with
the bootstrapping techniques described in Section III-B
applied to the smallest data set collected, the 256 rank
data.

« Evaluation of the ability of each technique to accurately
predict and quantify performance variation.

o Discussion of the trade-offs of the various techniques,
their underlying assumptions, and their performance.

For each method, the data resulting from running each work-
load with 256 ranks (the smallest data set collected) on Cori
and Attaway was supplied as input to the performance vari-
ation prediction techniques of Section III-B. These methods
were then used to generate medians and confidence intervals
of the predicted runtimes at various scales. The actual runtimes
at 256, 512, 1024, and 2048 ranks were then used to evaluate
whether each method was able to successfully quantify and
predict the performance variation observed. Evaluation criteria
were then applied in order to determine whether the observed
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runtimes fell within the predicted confidence intervals, and
whether the confidence interval reasonably reflected the ob-
served variance at larger scales.

D. Prediction of Performance Variation

Workloads that are more controlled (e.g. FTQ) can be
predicted well by techniques (e.g. EMMA, GEV) that further
characterize variance, but those techniques make strong as-
sumptions (e.g. known distribution or i.i.d.) which don’t work
well on workloads with more complicated behaviors. On those,
more general techniques that cannot bound variation as tightly
are necessary.

For controlled workloads, such as FTQ and FWQ, both non-
parametric and parametric methods exhibited good predictive
performance. As seen in Figure 5, the intra-node parametric
technique was able to successfully predict the runtimes of
the FTQ and FWQ workloads at 512, 1024, and 2048 ranks
successfully while maintaining reasonable confidence inter-
vals. Note that LAMMPS was run at 1728 ranks instead to
satisfy exact weak scaling at 64000 atoms per rank. The inter-
node results were excluded for brevity, but exhibit the same
behavior.

For less-controlled workloads that are representative of
common kernels in HPC applications, the parametric methods
again provided good predictive power. Since the DGEMM and
SPMV workloads were run such that each rank was respon-
sible only for its own operations, with no internal communi-
cation except for the synchronization after each iteration was
performed. The kernels exhibit almost perfect weak scaling,
and the parametric methods are able to accurately capture
this as seen in Figure 6. However, since the DGEMM kernel
is compute bound and subject to CPU frequency variation
and other sources of noise, and because SPMV is memory
bound and subject to memory latency variations, there can be
substantial variation of up to 10% in runtimes across identical
runs, as seen in Figures 2 - 3. As seen in Figure 6, the inter-
node parametric method also captures this variation accurately.
This time, we have excluded the intra-node results for brevity,
but they exhibit similar behavior.

The resampling non-parametric prediction method and the
intra-node and inter-node parametric prediction methods can
behave differently in evaluation of real-world applications
such as the HPCG and LAMMPS workloads. The commu-
nication and synchronization within each iteration of HPCG
and LAMMPS result in an additional dependency on network
performance which may produce extreme outliers as network
traffic fluctuates. This internal communication and synchro-
nization occurs before our measurement framework runs at
each step, effectively masking the variation in performance
between the various ranks. The same synchronization ahead of
our measurement point can cause all ranks of the application
to be reported as outliers in an iteration if even one rank is
delayed due to communication overhead. The net effect is that
the measured time of each rank is equal to the maximum time
of all the ranks since synchronization has already occurred
within the HPCG and LAMMPS applications at the time of
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Fig. 6. Attaway DGEMM and SPMV performance variation prediction

measurement. Instrumenting and estimating variation using the
bulk-synchronous communication points in the applications
themselves would also potentially address this.

As seen in Figure 7, a consequence of this is increased
sensitivity of the parametric methods to tail behavior and larger
predicted confidence intervals and variation than observed.
This may happen more frequently on larger systems whose
networks are more likely to experience performance variations;
in the specific case of our results, Cori is much larger than
Attaway. Hence, the likelihood of having large outliers due
to internal synchronization barriers within HPCG is higher on
Cori. This results in an overestimation of variability on Cori,
compared to the accurate prediction of variability on Attaway
for the HPCG workload. Similar behavior was observed for
both parametric methods, but only the intra-node results are
provided for brevity.
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Fig. 7. Parametric performance variation prediction of HPCG workload

The non-parametric prediction method exhibits a similar
behavior, but to a lesser degree. Rather than utilizing GEV
estimation and iteration runtime data from each rank, it simply
re-samples the maximas. The result is that the tail is still am-
plified due to the internal communication and synchronization
overhead within HPCG and LAMMPS, but the tail is not over-
counted from each rank since the non-parametric re-sampling
method discards all non-maxima data. The end result is Figure
8, where the Cori prediction still overpredicts runtime due to
the communication and synchronization overhead, but by a
much lesser degree than the parametric methods. Similarly,
since Attaway is a quieter system it is less affected by internal
network overheads and still provides a relatively accurate
characterization and prediction of performance variation.

Evaluating the quantification and prediction of performance
variation on LAMMPS workloads, a similar pattern is ob-
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Fig. 8. Non-parametric performance variation prediction of HPCG workload

served. The parametric methods over-estimate the performance
variability, resulting in large confidence intervals. The inter-
node method also results in non-physical negative runtime
predictions as seen in Figure 9(b), since the GEV estimation is
unable to negotiate the amplified tail. Increasing the granular-
ity of GEV estimation to per-rank data alleviates this problem
(Figure 9(c)) as the GEV estimation is able to provide higher
fidelity parameters. On the other hand, the non-parametric re-
sampling method slightly overestimates performance variabil-
ity, but does an acceptable job of capturing and predicting
the performance variation of the LAMMPS workload. It does
this despite the internal communication and synchronization
overhead present within the LAMMPS workload. It is worth
noting that even though the parametric methods overestimate
confidence intervals for workloads like HPCG and LAMMPS,
the predicted medians are still very close to the actual scaled-
up workloads. Following our discussion of assessment of
performance variation, we can use the insight provided by the
GEV parameter estimation to determine when these confidence
intervals are likely to be overestimated.

E. Discussion

The performance of our parametric and non-parametric
methods on these six workloads performed on two different
systems leads us to conclude the following:

o The performance variation of trivial and controlled work-
loads, such as FTQ and FWQ, can be accurately modeled
and predicted by parametric and non-parametric methods.

o Computation and memory-bound kernels without any
only local (e.g. halo) communication can be accurately
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measured, and their performance variation accurately
quantified and predicted using both parametric and non-
parametric methods.

o Parametric methods that rely on GEV estimation and
either node or rank level granularity of data rather than
iteration maxima granularity of data overestimate per-
formance variation on workloads with internal commu-
nication and synchronization overhead. However, their
median estimates remain accurate.

e Parametric methods can still be useful in evaluation
and predicting performance variation on workloads with
internal communication and synchronization overhead if
and only if the network behaves predictably and with
minimal fluctuations.

o Non-parametric methods can provide a technique to
characterize and predict real workloads with internal
communication and synchronization overhead with less
overestimation that parametric methods.
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VII. RELATED WORK

In addition to the many evaluations of the underlying
mechanisms that cause performance variation, there are several
benchmarking studies of HPC systems in the literature. CPU
throttling and power capping mechanisms, such as Intel Turbo
Boost, can amplify the effect of manufacturing variability on
CPU frequency and has been shown to degrade performance
of HPC applications [1]. OS jitter and interference have been
shown to affect application performance and to limit applica-
tion scalability [12]. There is also evidence that nearby jobs
are another source of performance variation that is difficult
to model and predict as HPC jobs increase in scale [5]. As
a result, libraries that simulate common interference patterns
that stress the CPU, cache, memory, and network subsystems
have been developed to aid the evaluation, benchmarking, and
reproducibility of performance variation [4].

One of the many challenges of modeling performance
variability is that HPC systems and applications have both
spatial and temporal variability [16]. Many authors have
measured and modeled performance variation using machine
learning techniques [27], statistical analysis [20], and neigh-
borhood analysis [6], but do not provide a framework to
predict the scaling behavior of variability in applications.
A machine learning model has been developed to identify
runtime anomalies and performance variation in near real-
time [27]. Furthermore, a method of performance analysis and
extrapolation for bulk synchronous programs which utilizes
extreme value theory was developed [20].

Network counters and neighborhood analysis have also been
used to investigate the causes of performance variability in
HPC systems and forecast execution time [6]. Researchers
have also demonstrated broader sources of software and hard-
ware architecture and application level variability, measured
the performance loss caused by variability, and tried to control
and decrease these sources and measure the resulting perfor-
mance improvement [25].

Similar performance variability studies have also been
undertaken on EC2 and FutureGrid/Eucalyptus cloud plat-
forms [11]. They showed that the performance variation be-
tween their experiments is mostly related to the communica-
tion time and the type of solver/preconditioner they applied,
rather than OS load.

HPC system performance variability also poses challenges
to the evaluation of the effectiveness of performance tuning,
specifically in the case when the amplitude of variability, due
to differences in hardware manufacturing and HPC center
cooling patterns, masks the change in performance caused by
certain tuning enhancements [22].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a new approach to quantifying and
measuring performance variation in HPC applications. Overall,
the proposed combination of bootstrapping and a maxima-
based approach to measuring, quantifying, and predicting
performance variation significantly reduces the scale of the
measurement and analysis problem compared to handling and

integrating performance variation from individual nodes. The
parametric and non-parametric bootstrap methods we exam-
ined for predicting changes in performance variance under this
model have different strengths. The non-parametric bootstrap
is more effective at predicting applications with complex com-
munication behaviors. The parametric bootstrap can quantify
application variance and scaling with fewer parameters and
samples, but is also less accurate for complex applications
whose communications can violate GEV distribution modeling
assumptions.

In future work, we plan to examine hybrid parametric and
non-parametric bootstrapping approaches which can predict
application scaling for complex applications while minimizing
data collection requirements. Our statistical approach to quan-
tifying application performance and scaling could also serve
as the basis for performance anomaly detection in large scale
systems; it could also be used to inform and optimize system
schedulers and other resource allocators. We also plan to
examine the use of this technique in predicting and mitigating
performance variation in cloud and big data systems.
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