
Lightweight Measurement and Analysis of HPC
Performance Variability

Jered Dominguez-Trujillo, Keira Haskins, Soheila Jafari Khouzani, Christopher Leap,
Sahba Tashakkori, Quincy Wofford, Trilce Estrada, and Patrick G. Bridges

Computer Science Department

University of New Mexico

{jereddt,wasp,sjafarikhouzani,cleap,stashakkori,wofford,trilce,patrickb}@unm.edu

Patrick M. Widener

Center for Computing Research

Sandia National Laboratories

pwidene@sandia.gov

Abstract—Performance variation deriving from hardware and
software sources is common in modern scientific and data-
intensive computing systems, and synchronization in parallel and
distributed programs often exacerbates their impacts at scale.
The decentralized and emergent effects of such variation are,
unfortunately, also difficult to systematically measure, analyze,
and predict; modeling assumptions which are stringent enough
to make analysis tractable frequently cannot be guaranteed at
meaningful application scales, and longitudinal methods at such
scales can require the capture and manipulation of impractically
large amounts of data. This paper describes a new, scalable, and
statistically robust approach for effective modeling, measurement,
and analysis of large-scale performance variation in HPC sys-
tems. Our approach avoids the need to reason about complex
distributions of runtimes among large numbers of individual
application processes by focusing instead on the maximum length
of distributed workload intervals. We describe this approach
and its implementation in MPI which makes it applicable to
a diverse set of HPC workloads. We also present evaluations
of these techniques for quantifying and predicting performance
variation carried out on large-scale computing systems, and
discuss the strengths and limitations of the underlying modeling
assumptions.

I. INTRODUCTION

Large-scale cloud and HPC systems and applications regu-

larly experience performance variation due to dynamic hard-

ware and software actions, configurations, and resource al-

locations common in modern systems. On dedicated nodes,

sources of this variation include operating system manage-

ment activities [12], processor clock speed changes to control

system power and temperature [1], competition for memory

bandwidth between processors and network cards [13], incon-

sistent system cooling patterns [22], changes in network links,

switch capacities, and routes [6], and inherent variation or

non-determinism in application behavior. On systems where

applications share node-level resources, something common

in cloud environments and increasingly prevalent in HPC

systems, resource competition from other applications can also

lead to performance variation [11], [18], [23], [28].

Accurately measuring, predicting, or otherwise assessing

performance variation in large-scale system performance to

vary is extremely difficult. First, because node and system

behavior can widely vary over time [1], [16], any approach that

seeks to quantify or predict variations in system performance

must collect large numbers of performance samples from

many nodes over significant time-scales, potentially requiring

collection, storage, and analysis of vast amounts of data. In

addition, any approach to quantifying variation in expected

application or system performance assumes an underlying

model of both application/system performance and necessarily

makes simplifying assumptions about its scope and behavior.

Variation in real-world parallel and distributed systems ex-

hibits complex behaviors which can invalidate many common

modeling and analysis assumptions (e.g. continuity, temporal

invariance, independence, identical distribution) [14].

As a result, there is currently no general approach to

measure, predict, or otherwise assess performance variation

in real-world large-scale computing systems. Multiple authors

have measured different performance variation sources on

specific nodes [1] or systems [12], but these approaches do not

generalize beyond a single system or predict how performance

variation changes with application or system scale. Similarly,

application performance prediction approaches predict only

average performance [20] and do not attempt to predict the

variation in performance common in real-world systems.

Because users, system architects, and system tools cannot

accurately measure or predict performance variation, they must

make pessimistic resource allocation and system configuration

decisions. Users, for example, generally request maximum

job lengths from the system scheduler because the cost of

underestimating application runtime is job termination; this

reduces the ability of the system scheduler to effectively

allocate system resources. Similarly, users or system architects

may disable dynamic resource allocation systems and policies

(e.g. OS VM, thread, process, or memory migration; automatic

processor power management) to achieve predictability at the

cost of performance. In addition, it also makes truly anomalous

system or application behavior difficult to detect.

In this paper, we describe a new approach to measuring,

analyzing, and predicting performance variation in large-scale

computing systems which combines a focus on the maxi-
mum length of distributed workload intervals with parametric

and non-parametric statistical bootstrapping techniques. Com-

pared to other approaches, focusing on estimating variation

in maxima significantly simplifies measurement and analysis

challenges because it avoids the need to reason about the

50

2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)

DOI 10.1109/PMBS51919.2020.00011
/20/$31.00 ©2020 IEEE978-1-6654-2265-9

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

complex distribution of runtimes on individual nodes. Relevant

background material on the statistics of maxima are provided

in Section II.

Our overall goal is to enable system and application archi-

tects to accurately assess and predict performance variation in

large-scale systems. Overall, this paper describes the following

contributions toward achieving this goal:

• A new approach to modeling, measuring, and analyzing

performance and performance variation in large-scale

systems based on bootstrapping either parametric or em-

pirical maxima distributions (Section III);

• An MPI implementation of the measurement approach

underlying this model that enables its application to a

range of HPC workloads and system (Section IV); and

• An evaluation of these techniques for quantifying and

predicting performance variation in large-scale systems,

including an analysis of the strengths and limitations

of the modeling assumptions underlying the different

analysis techniques (Sections V and VI).

In addition, the paper also discusses related research in

characterizing performance variation in large-scale computing

systems (Section VII), and then directions for future research

before concluding (Section VIII).

II. BACKGROUND: MATHEMATICS OF MAXIMAS AND

BOOTSTRAPPING

Our methodology uses a combination of extreme value

theory and statistical bootstrapping to ensure two things,

respectively: 1) that we avoid making assumptions about the

workload as a whole (i.e., specifically about the type of

distribution governing the different workloads, as intra-node

variability can and will impact those assumptions), and 2)

that we can achieve robust conclusions with a relatively small

number of samples. The various methods that we use for

this work make use of these two aspects of extreme value

theory and statistical bootstrapping in different ways, as we

explain in detail in Section III. In the remainder of this section

we provide background on the different building blocks that

provide the mathematical basis for our approach.

A. Statistical Distribution of Maximas

The most commonly used statistical tool for characterizing

distributions of maxima is the Generalized Extreme Value

(GEV) distribution. The GEV distribution is a set of proba-

bility distributions comprising Gumbel, Fréchet, and Weibull,

which is characterized by a set of underlying i.i.d. random

variables. The GEV approximates the distribution of the max-

imum value of a set of independent and identically distributed

random variables. The cumulative distribution function (CDF)

of the GEV distribution is:

F (x|κ, ξ, α) = e−(1+κ(x−ξ
α))

−1
κ

(1)

where κ is shape, ξ is location, and α is a scale parameter.

When the shape parameter κ is 0, the extreme value distribu-

tion is type I or Gumbel. When ξ is greater than 0, it is type

II or Fréchet, and if κ is less than 0, it is type III or Weibull.

B. Estimate of Maxima Distributions

Several methods exist for estimating the parameters for the

GEV distribution. We compared three different methods for

our work: maximum likelihood estimators (MLE), probability

weighted moments (PWM), and the method of moments

(MOM). Maximum likelihood estimators are commonly used

in parametric distribution fitting, such as in the Python SciPy

Stats library [24]. However, multipe studies have found that

that MLE is unstable with smaller sample size (15 < n < 100)

[15] when compared to PWM. Madsen et al. also found that

MOM has lower root mean square error when dealing with

smaller sample sizes [19]. We have found that MOM and

PWM are more reliable than MLE for fitting GEV distribution

parameters in our experiments.

The method of moments [19] for estimating the parameters

of the GEV distribution is as follows: given the sample mean,

standard deviation, and skewness: μ̂, σ̂, and γ̂, it estimates

empirically the shape parameter κ̂ by minimizing the following

equation

γ̂ = sign(κ̂)∗ −Γ(1 + 3κ̂) + 3Γ(1 + κ̂)Γ(1 + 2κ̂)− 2[Γ(1 + κ̂)]3

{Γ(1 + 2κ̂)− [Γ(1 + κ̂)]2}3/2
with respect to κ̂ using the Nelder-Mead method and an

initial guess of κ̂ = 0 and where Γ(n) = (n − 1)!. After

approximating the shape, the scale α̂ and location ξ̂ are

estimated as:

α̂ =
σ̂|κ̂|

{Γ(1 + 2κ̂)− [Γ(1 + κ̂)]2}3/2

ξ̂ = μ̂− α̂

κ̂
{1− Γ(1 + κ̂)}

The method of probability weighted moments [15] considers

the first three moments, mean, variance, and skewness: μ̂,

σ̂2, and γ̂ respectively. It computes the shape parameter

κ̂ = 7.8590c+ 2.9554c2, where c = 2σ̂2−μ̂
3γ̂−μ̂ − log2

log3 . The scale

parameter α̂, and the location parameter ξ̂ are calculated as:

α̂ =
(2σ̂2 − μ̂)κ̂

Γ(1 + κ̂)(1− 2−κ)

ξ̂ = μ̂+ α̂
Γ(1 + κ̂)− 1

κ̂

C. Bootstrapping Maxima Confidence Intervals

Given a sufficiently large sample, and the assumption that

the empirical distribution of the observed data is representative

of the true population distribution, bootstrapping randomly re-

samples with replacement the empirical distribution. Although

this process yields only an approximate estimate, it has been

proven [7], [10] to produce more accurate population param-

eter estimates than if these parameters were calculated based

on an initial incorrect assumption of a specific distribution.

The parametric version of bootstrapping randomly generates

samples from a parametric distribution fitted to the data (e.g.,

a GEV distribution). The non-parametric bootstrap method

performs resampling with replacement from the given sample

51

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

and calculates the required statistic from a large number of

repeated samples. In both cases, standard errors and confidence

intervals can be calculated. Parametric and non-parametric

approaches have been compared as to their performance in

estimating uncertainties in extreme-value models. The non-

parametric bootstrap leads to confidence intervals that are too

narrow and underestimate the real uncertainties involved in the

frequency models [17], unless a large number of samples are

used.

III. MAXIMA-BASED PERFORMANCE VARIATION

ASSESSMENT

In addition to being a source of unpredictable behavior, per-

formance variance inherently limits the performance of large-

scale applications. This happens because periodic application-

wide communication in distributed applications requires all

processes to wait for the slowest process before any process

can proceed. As a result, even variability which manifests

in only a single process eventually affects every application

process. In traditional bulk-synchronous HPC applications,

for example, this frequently happens through explicit MPI

collective communication. Data-centric compute systems often

synchronize implicitly during global compute phases (e.g.

Hadoop reductions or Spark shuffle transformations) as well.

Our methodology focuses on efficiently and accurately mod-

eling this type of variability.

Our metholodology has two goals:

1) To reduce the amount of data that needs to be collected

to accurately measure system and application perfor-

mance characteristics

2) To accurately quantify performance variation in large-

scale systems and applications

In the remainder of this section, we discuss the basic per-

formance quantification and prediction model (and its as-

sumptions) on which we base our methodology, how we

leverage this model to measure system performance, and the

bootstrapping methodology we use to quantify variation in

measured and predicted workload performance.

A. Modeling Approach

Our approach measures, models, and analyzes the distri-

bution of the maximum length of a fixed distributed com-

pute/communication workload at a given system scale. Such

a workload could be a simple computational kernel fenced by

synchronization operations, including a complex application

workload delineated with MPI_Init/MPI_Finalize, or a

Hadoop MapReduce kernel.

We then model workload performance as a generally-

distributed random variable of which a sample is the length

of one execution of this workload. We assume that this

random variable is the maximum of N random variables,

each of which describes the length of program runtime on an

individual node. We further assume that these distributions are

stationary (not time-varying). We do not, however assume that

the distributions of individual node runtimes are independent

or identical, or that either the node or overall system runtime

distributions are continuous.

This model allows us to measure only either (1) the

time between the end of successive synchronizing collectives,

which is useful if we are analyzing only the maximas of

workloads such in non-parametric bootstrap described below,

or (2) distribution of individual node inter-collective times

such as in the inter-node and intra-node parametric bootstraps

described below. In either case the amount of data needed

to quantify system variation is significantly less than that

required by approaches that rely on fine-grain tracing of all

applications.

B. Analytical Methods

In this section we describe how we use statistical bootstrap-

ping to augment an existing performance prediction technique

for quantifying expected changes in workload variation when

the size of the system or application under examination

is increased. More specifically, we use non-parametric and

parametric bootstrapping approaches.

The non-parametric bootstrap makes minimal assumptions

about the distribution of maxima on nodes, focusing on the

empirical distribution of maxima. In contrast, the parametric

bootstrap assumes that either individual nodes or sets of

nodes have independent, identically-distributed (i.i.d.) work-

load lengths. The non-parametric bootstrap’s weaker assump-

tions, however, require a large number of global maximum

samples to be effective, as described in Section II, while some

parametric bootstrap approaches require performance samples

from individual nodes to avoid assuming that all workload

samples are i.i.d.

1) Non-parametric bootstrapping: For the non-parametric

version of our approach, we do not perform explicit model

fitting. Instead, we re-sample maxima data to simulate the

effects of scaling-up the workload. In particular, we implement

the non-parametric bootstrapping by randomly resampling the

original maxima data k times with replacement and taking

the maximum of these k values as a new sample on a

system k times larger. We repeat this process n times to

generate bootstrap empirical samples for the larger system

being modeled. The 95% confidence interval is then directly

computed from the resulting set of maxima scaled up via

resampling.

2) Parametric bootstrapping: In the parametric approach,

we fit a GEV distribution to a collection of maxima, perform

a prediction of expected growth, and calculate its confidence

intervals. To perform the GEV fitting, we use the two methods

described in Section II: the method of probability weighted

moments (PWM) and the method of moments (MOM). Al-

though mixed methods combining MLE and MOM have been

explored before to fit GEV [3], PWM has shown greater

stability compared to MLE even though it can still break down

in the presence of outliers [9]; thus, the need to combine

them. By using both, PWM and MOM, in conjunction with

bootstrapping, we seek to leverage their strengths while reduc-

ing the likelihood of instability in the fitting. After obtaining

52

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

a good fitting, we can use the Expected Mean Maximum

Approximation [26] (EMMA) technique, which can be used

to predict the performance correctly when the distribution of

maxima are known a priori. The EMMA function estimates

the expected value of the maximum of n observations of a set

of i.d.d random variables Xi with distribution F as:

E (maxm
i=1Xi) ≈ F−1 (P)

where P ≈ 0.570376002
1
m , m is the projection scale, and F is

the GEV distribution. If we use EMMA for n iterations, we

will have a distribution of maximum values in the extrapolated

scale. As we are interested in exposing the variability that

happens naturally within a node, and across the system, we

systematically bootstrap in two ways:

• Inter-node Parametric, where we use one node at a time

to generate the 50 bootstrap replicas and repeat for the

total number of nodes in our sample (e.g., for 8 nodes

we generate 8×50 = 400 replicas per sample workload).

• Intra-node Parametric, where we select one rank for

each node to generate the 50 replicas, and repeat for the

total number of ranks per node (e.g., for 32 ranks per

node we generate 32 × 50 = 1600 replicas per sample

workload.

To obtain the 95% bootstrap confidence interval we extract

the 2.5th and 97.5th percentiles of the distribution of EMMA

projected runtimes. For a sample size n and a confidence inter-

val ci, the position in the ordered collection of resampled pro-

jections corresponding to the bounds of the empirical bootstrap

confidence interval are given by [n(1−ci)/2, n(1+ci)/2]. As

for the number of bootstrap replicas that are needed in practice

to compute a stable 95% confidence interval, Efron et al. [10]

suggested 200 replicas for calculating the bootstrap standard

error but 1000 or more for computing the bootstrap confidence

interval.

IV. IMPLEMENTATION AND WORKLOADS

We have implemented the general methodology described in

Section III in order to evaluate its ability to measure, analyze,

and predict performance variation in modern systems when

combined with different statistical performance prediction

techniques. In addition, we have also examined its ability to

characterize the potential performance variation of different

workloads on several modern HPC systems. This section

describes both our implementation for collecting runtime and

maxima samples from different workloads on HPC systems.

A. Measurement Implementation

To collect maxima samples from a wide range of workloads,

we designed and implemented a simple MPI application that

can be used to execute and measure the performance and

performance variation of a wide range of HPC workloads. This

system is based on a the well-known bulk-synchronous parallel

model (BSP) model of large-scale applications. As such, the

measurement program executes k intervals in which n pro-
cesses compute. Each interval begins with an MPI_Barrier,

after which the test program runs a specified MPI/compute

workload on each process (which may include communication

through an MPI subcommunicator), finally executing a second

MPI_Barrier. Each process logs the time taken to compute

the workload, and the rank 0 MPI process logs the time

between the completion of these two MPI barriers as the

maximum time taken to execute the specified workload across

all processes as the length of the kth interval. These logs

are stored in memory and written to a parallel file system

at program completion to minimize runtime overhead.

B. Synthetic and Application Workloads

We have implemented synthetic workloads that mimic com-

mon HPC computation/communication patterns and library

versions of several HPC applications in this framework, as

summarized in Table I. Specifically, we support parameterized

versions of multiple common synthetic single-node compute

workloads, and each of these synthetic compute workloads can

also be supplemented with a simple 2D halo exchange of a

configurable size in each iteration to mimic BSP applications

with different computational characteristics. In addition, we

have integrated two different distributed MPI applications into

this system, HPCG [8] and LAMMPS [21]. These application

workloads perform a fully distributed solve or simulation,

adding complex communication characteristics to our frame-

work.

For each of these workloads, the global synchronization step

guarantees that the distribution of runtimes is the maxima

of the local compute/communication times on each node.

When all local distributions are identical Gaussian distri-

butions, either given directly or established by the central

limit theorem, this distribution approaches a Gumbel distri-

bution. More generally, when the local distributions are all

continuous, and independent and identically distributed (IID),

the maximum distribution is the generalized extreme value

(GEV) distribution. It is important to note, however, that in

many cases the distributions of local compute/communication

times are not IID in real systems. For example, explicit com-

munication or indirect interference (e.g. L3 cache conflicts)

between processes can violate independence assumptions.

Similarly, differences in resource allocations between cores

and nodes (e.g. dynamic clock frequency management) can

violate identical distribution assumptions. These challenges

can have potentially significant impact on the suitability of

different analysis approaches, as discussed in the next section

and as evaluated in Section VI.

V. EXPERIMENTAL SETUP

To evaluate our statistical prediction techniques and their

ability to quantify and predict performance variation on vari-

ous workloads, we ran the six workloads outlined in Table I

at various processor counts on two supercomputing platforms

(Table II) to collect maxima timings from each of the k inter-

vals of each workload. We then use the non-parametric and

parametric bootstrapping methods described in Section III-B

to evaluate the ability of each method to predict performance

variation at various scales.

53

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

Workload Description Parameters

FTQ [2] Spin for a statistically distributed length of time Distribution and distribution parameters

FWQ [2] Perform a statistically distributed number of integer additions Distribution and distribution parameters

DGEMM Single-Node Dense General Matrix Multiply Size of matrix and number of multiplications per iteration

SPMV Single-Node Sparse Matrix Vector Multiply Size of matrix and number of multiplications per iteration

HPCG [8] Distributed Pre-conditioned Conjugate Gradient Linear Solver Global number of rows in matrix being solved

LAMMPS [21] Molecular Dynamics Solver Global number of molecules and timesteps to simulate

TABLE I
SYNTHETIC AND APPLICATION WORKLOADS CURRENTLY SUPPORTED BY MEASUREMENT TOOL

Platforms Cori Attaway

Processor Intel Xeon E5-2698 v3 (Haswell)
Intel Xeon Phi Processor 7250 (Knights Landing)

Intel Xeon Gold 6140

Clock Speed 2.3 GHz (Haswell) / 1.4 GHz (Knights Landing) 2.3 GHz

Cores per node 32 (Haswell) / 68 (Knight’s Landing) 36

Total Nodes 2388 (Haswell) / 9688 (Knights Landing) 1488

Memory per Node 128 GB (Haswell) / 96 GB (Knights Landing) 192 GB

TABLE II
PLATFORM HARDWARE DETAILS

We generated the data used in our evaluation on two

supercomputing systems: Cori at the National Energy Research

Scientific Computing Center, and Attaway at Sandia National

Laboratories. Each workload was run on some combination

of 8, 16, 32, and 64 nodes, with 32 MPI ranks per node,

corresponding to 256, 512, 1024, and 2048 MPI ranks respec-

tively. Generally, we performed 20 runs on 256 ranks, 5-10

runs on 512 ranks, 5-10 runs on 1024 ranks, and 3-5 runs on

2048 ranks. This provided ample data at “smaller” scales to

feed our bootstrapping techniques, while still providing test

data at “larger” scales to test the accuracy of our predictive

techniques in our limited system allocations. Additionally, the

FTQ, FWQ, DGEMM, and SPMV workloads were each run

with and without a 1MB 2-D halo exchange, as described in

Section IV-B. The halo exchange component was not included

for the HPCG and LAMMPS workloads as each already

contains communication and synchronization operations.

Each workload was controlled with several input parameters

(Table I). These were tuned to allow each workload to run

in reasonable amounts of time, to generate enough data for

bootstrapping, and to utilize appropriate amounts of memory

to minimize cache effects. Specifically, the FTQ workload was

run with 100 ms normally distributed intervals, while the FWQ

workload was similarly run with normally distributed loop

counts. Additionally, the SPMV and HPCG workloads were

initialized to utilize 1GB per rank of memory to minimize

cache effects, and the LAMMPS workload was performed on

64,000 atoms per rank for 250 timesteps utilizing the Lennard-

Jones potential.

Overall, we performed 467 runs on Cori and 330 runs on

Attaway, broken down between the 6 workloads of interest

System Cori (# of experiments) Attaway (# of experiments)

Workload No Halo Halo No Halo Halo

FTQ 38 38 30 30

FWQ 53 53 30 30

DGEMM 53 53 40 40

SPMV 53 53 35 35

HPCG 38 0 30 0

LAMMPS 35 0 30 0

TABLE III
EXPERIMENT OVERVIEW

and with or without the inclusion of the additional 2D halo

exchange as seen in Table III. With these runs, we were able to

collect data and characterize the performance of a significant

portion of the Cori and Attaway systems. Shown in Figure

1, our experiments utilized 1461 of the 2388 unique Haswell

nodes on Cori and 319 of the 1488 unique Xeon Gold nodes

on Attaway. On both Cori Haswell nodes and Attaway nodes,

we used 32 cores per node. Cori nodes are configured to allow

hardware use of Intel Turbo Boost by default and we did not

explicitly disable it. Attaway nodes do not have have Turbo

Boost enabled.

VI. EVALUATION

We evaluated the non-parametric and parametric bootstrap-

ping techniques described in Section III with the measurement

and analysis framework described in Section IV for its ability

to accurately quantify and predict variation of the six chosen

54

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Heatmap of Nodes Utilized for Cori Experiments. Overall Coverage
of 61% of Haswell Nodes Available on Cori.

workloads in Table I. We find that both non-parametric and

parametric bootstrapping can reliably predict the performance

and variation of controlled workloads and commonly used

kernels such as DGEMM and SPMV, which only synchronize

after each iteration, but do not internally communicate. For

workloads that contain internal communication and network

dependencies, the parametric bootstrapping is able to capture

the scaling behavior, but would require more calibration data

to robustly narrow and test its confidence intervals due to their

sensitivity to the internal synchronization and communication

overheads of these workloads.

The remainder of this section presents validation that our

measurement technique is scalable, a quantification of the

performance variability observed, our evaluation approach, and

an evaluation of the ability of each bootstrapping technique to

capture the performance variation of each workload on the two

supercomputing systems.

A. Validation of Data Collection

To validate the scalability of our measurement technique,

we measured the time spent in the barrier after each iteration

of a workload. We chose to look at a sample of the DGEMM

workload at 1024 ranks in order to characterize the average

amount of time spent in the barrier after each iteration. On

average, the DGEMM workload took 790 milliseconds on

Cori and 820 milliseconds on Attaway, while the average time

spent in the barrier was 24 microseconds and 15 microseconds

on each system respectively. This indicates that a negligible

amount of the workload is spent in the barrier at some of the

largest scales we ran at, showing our measurement technique

to be highly scalable on both systems.

B. Assessment of Performance Variation

We evaluated the overall runtimes of each run to assess the

performance variation observed for each workload on each

platform. We present the runtimes both with and without halo

exchanges, but do not specifically discuss variance in the halo

exchange runs. As seen in Figure 2, the runtime performance

on Cori showed minimal variability for the FTQ workload (less

than 1%), while compute-bound workloads (e.g. DGEMM)

showed up to 10% variability across identical runs. The Att-

away runtimes in Figure 3 showed less variability for the FTQ,

FWQ, DGEMM, and SPMV workloads, but experienced 15%

and 94% variability for the HPCG and LAMMPS workloads,

respectively, most likely due to significant internal network

dependencies.

Fig. 2. Experiment runtimes of each workload at various scales on the
NERSC Cori supercomputer

While the controlled workloads of FTQ and FWQ were

well-behaved, the DGEMM and SPMV workloads exhib-

ited larger variances since they are real compute-bound and

memory-bound kernels subject to processor speed control

and memory contention. Similarly, the HPCG and LAMMPS

workloads exhibited more unpredictable behavior due to their

internal communication patterns and network dependencies.

Fig. 3. Experiment runtimes of each workload at various scales on the SNL
Attaway supercomputer

Beyond the visual inspection, we can characterize the vari-

55

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

ability of workloads across runs by analyzing their GEV fitting

parameters. For example, Figure 4 shows MOM fittings for the

very stable FTQ workload, and for the more unpredictable

HPCG. For space purposes we depict only MOM fittings;

however we compare both PWM and MOM. For FTQ, both

PWM and MOM agree across runs that this is a Type II

distribution. On the other hand, for HPCG the fitting methods

do not reach an agreement. PWM characterizes the distribution

as Type III, while MOM characterizes runs 1 and 3 as Type

I, and run 2 as Type II (see Section II for the definition of

the different types). This assessment of distribution type and

agreement between fitting methods provides us with valuable

insight into whether we can trust the predictive capabilities of

our methods for specific workloads.

��������	
��

����������
�����������������

�������	
��

����������
�����������������

Fig. 4. Characterization of maxima for FTQ and HPCG across Cori runs

C. Evaluation Approach

Our evaluation approach consists of four steps:

• Utilization of the data collected to calculate the total

runtime of each experiment.

• Prediction of performance variation at larger scales with

the bootstrapping techniques described in Section III-B

applied to the smallest data set collected, the 256 rank

data.

• Evaluation of the ability of each technique to accurately

predict and quantify performance variation.

• Discussion of the trade-offs of the various techniques,

their underlying assumptions, and their performance.

For each method, the data resulting from running each work-

load with 256 ranks (the smallest data set collected) on Cori

and Attaway was supplied as input to the performance vari-

ation prediction techniques of Section III-B. These methods

were then used to generate medians and confidence intervals

of the predicted runtimes at various scales. The actual runtimes

at 256, 512, 1024, and 2048 ranks were then used to evaluate

whether each method was able to successfully quantify and

predict the performance variation observed. Evaluation criteria

were then applied in order to determine whether the observed

runtimes fell within the predicted confidence intervals, and

whether the confidence interval reasonably reflected the ob-

served variance at larger scales.

D. Prediction of Performance Variation

Workloads that are more controlled (e.g. FTQ) can be

predicted well by techniques (e.g. EMMA, GEV) that further

characterize variance, but those techniques make strong as-

sumptions (e.g. known distribution or i.i.d.) which don’t work

well on workloads with more complicated behaviors. On those,

more general techniques that cannot bound variation as tightly

are necessary.

For controlled workloads, such as FTQ and FWQ, both non-

parametric and parametric methods exhibited good predictive

performance. As seen in Figure 5, the intra-node parametric

technique was able to successfully predict the runtimes of

the FTQ and FWQ workloads at 512, 1024, and 2048 ranks

successfully while maintaining reasonable confidence inter-

vals. Note that LAMMPS was run at 1728 ranks instead to

satisfy exact weak scaling at 64000 atoms per rank. The inter-

node results were excluded for brevity, but exhibit the same

behavior.

For less-controlled workloads that are representative of

common kernels in HPC applications, the parametric methods

again provided good predictive power. Since the DGEMM and

SPMV workloads were run such that each rank was respon-

sible only for its own operations, with no internal communi-

cation except for the synchronization after each iteration was

performed. The kernels exhibit almost perfect weak scaling,

and the parametric methods are able to accurately capture

this as seen in Figure 6. However, since the DGEMM kernel

is compute bound and subject to CPU frequency variation

and other sources of noise, and because SPMV is memory

bound and subject to memory latency variations, there can be

substantial variation of up to 10% in runtimes across identical

runs, as seen in Figures 2 - 3. As seen in Figure 6, the inter-

node parametric method also captures this variation accurately.

This time, we have excluded the intra-node results for brevity,

but they exhibit similar behavior.

The resampling non-parametric prediction method and the

intra-node and inter-node parametric prediction methods can

behave differently in evaluation of real-world applications

such as the HPCG and LAMMPS workloads. The commu-

nication and synchronization within each iteration of HPCG

and LAMMPS result in an additional dependency on network

performance which may produce extreme outliers as network

traffic fluctuates. This internal communication and synchro-

nization occurs before our measurement framework runs at

each step, effectively masking the variation in performance

between the various ranks. The same synchronization ahead of

our measurement point can cause all ranks of the application

to be reported as outliers in an iteration if even one rank is

delayed due to communication overhead. The net effect is that

the measured time of each rank is equal to the maximum time

of all the ranks since synchronization has already occurred

within the HPCG and LAMMPS applications at the time of

56

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

(a) Parametric intra-node prediction of performance variation of Cori FTQ
workload

(b) Parametric intra-node prediction of performance variation of Cori FWQ
workload

Fig. 5. Cori FTQ and FWQ performance variation prediction

(a) Parametric inter-node prediction of performance variation of Attaway
DGEMM workload

(b) Parametric inter-node prediction of performance variation of Attaway
SPMV workload

Fig. 6. Attaway DGEMM and SPMV performance variation prediction

measurement. Instrumenting and estimating variation using the

bulk-synchronous communication points in the applications

themselves would also potentially address this.

As seen in Figure 7, a consequence of this is increased

sensitivity of the parametric methods to tail behavior and larger

predicted confidence intervals and variation than observed.

This may happen more frequently on larger systems whose

networks are more likely to experience performance variations;

in the specific case of our results, Cori is much larger than

Attaway. Hence, the likelihood of having large outliers due

to internal synchronization barriers within HPCG is higher on

Cori. This results in an overestimation of variability on Cori,

compared to the accurate prediction of variability on Attaway

for the HPCG workload. Similar behavior was observed for

both parametric methods, but only the intra-node results are

provided for brevity.

(a) Parametric intra-node prediction of performance variation of Cori HPCG
workload

(b) Parametric intra-node prediction of performance variation of Attaway
HPCG workload

Fig. 7. Parametric performance variation prediction of HPCG workload

The non-parametric prediction method exhibits a similar

behavior, but to a lesser degree. Rather than utilizing GEV

estimation and iteration runtime data from each rank, it simply

re-samples the maximas. The result is that the tail is still am-

plified due to the internal communication and synchronization

overhead within HPCG and LAMMPS, but the tail is not over-

counted from each rank since the non-parametric re-sampling

method discards all non-maxima data. The end result is Figure

8, where the Cori prediction still overpredicts runtime due to

the communication and synchronization overhead, but by a

much lesser degree than the parametric methods. Similarly,

since Attaway is a quieter system it is less affected by internal

network overheads and still provides a relatively accurate

characterization and prediction of performance variation.

Evaluating the quantification and prediction of performance

variation on LAMMPS workloads, a similar pattern is ob-

57

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

(a) Non-parametric re-sampling prediction of performance variation of Cori
HPCG workload

(b) Non-parametric re-sampling prediction of performance variation of Attaway
HPCG workload

Fig. 8. Non-parametric performance variation prediction of HPCG workload

served. The parametric methods over-estimate the performance

variability, resulting in large confidence intervals. The inter-

node method also results in non-physical negative runtime

predictions as seen in Figure 9(b), since the GEV estimation is

unable to negotiate the amplified tail. Increasing the granular-

ity of GEV estimation to per-rank data alleviates this problem

(Figure 9(c)) as the GEV estimation is able to provide higher

fidelity parameters. On the other hand, the non-parametric re-

sampling method slightly overestimates performance variabil-

ity, but does an acceptable job of capturing and predicting

the performance variation of the LAMMPS workload. It does

this despite the internal communication and synchronization

overhead present within the LAMMPS workload. It is worth

noting that even though the parametric methods overestimate

confidence intervals for workloads like HPCG and LAMMPS,

the predicted medians are still very close to the actual scaled-

up workloads. Following our discussion of assessment of

performance variation, we can use the insight provided by the

GEV parameter estimation to determine when these confidence

intervals are likely to be overestimated.

E. Discussion

The performance of our parametric and non-parametric

methods on these six workloads performed on two different

systems leads us to conclude the following:

• The performance variation of trivial and controlled work-

loads, such as FTQ and FWQ, can be accurately modeled

and predicted by parametric and non-parametric methods.

• Computation and memory-bound kernels without any

only local (e.g. halo) communication can be accurately

(a) Non-parametric re-sampling prediction of performance variation of Cori
LAMMPS workload

(b) Parametric inter-node prediction of performance variation of Cori
LAMMPS workload

(c) Parametric intra-node prediction of performance variation of Cori
LAMMPS workload

Fig. 9. Performance variation prediction of LAMMPS workload

measured, and their performance variation accurately

quantified and predicted using both parametric and non-

parametric methods.

• Parametric methods that rely on GEV estimation and

either node or rank level granularity of data rather than

iteration maxima granularity of data overestimate per-

formance variation on workloads with internal commu-

nication and synchronization overhead. However, their

median estimates remain accurate.

• Parametric methods can still be useful in evaluation

and predicting performance variation on workloads with

internal communication and synchronization overhead if

and only if the network behaves predictably and with

minimal fluctuations.

• Non-parametric methods can provide a technique to

characterize and predict real workloads with internal

communication and synchronization overhead with less

overestimation that parametric methods.

58

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

VII. RELATED WORK

In addition to the many evaluations of the underlying

mechanisms that cause performance variation, there are several

benchmarking studies of HPC systems in the literature. CPU

throttling and power capping mechanisms, such as Intel Turbo

Boost, can amplify the effect of manufacturing variability on

CPU frequency and has been shown to degrade performance

of HPC applications [1]. OS jitter and interference have been

shown to affect application performance and to limit applica-

tion scalability [12]. There is also evidence that nearby jobs

are another source of performance variation that is difficult

to model and predict as HPC jobs increase in scale [5]. As

a result, libraries that simulate common interference patterns

that stress the CPU, cache, memory, and network subsystems

have been developed to aid the evaluation, benchmarking, and

reproducibility of performance variation [4].

One of the many challenges of modeling performance

variability is that HPC systems and applications have both

spatial and temporal variability [16]. Many authors have

measured and modeled performance variation using machine

learning techniques [27], statistical analysis [20], and neigh-

borhood analysis [6], but do not provide a framework to

predict the scaling behavior of variability in applications.

A machine learning model has been developed to identify

runtime anomalies and performance variation in near real-

time [27]. Furthermore, a method of performance analysis and

extrapolation for bulk synchronous programs which utilizes

extreme value theory was developed [20].

Network counters and neighborhood analysis have also been

used to investigate the causes of performance variability in

HPC systems and forecast execution time [6]. Researchers

have also demonstrated broader sources of software and hard-

ware architecture and application level variability, measured

the performance loss caused by variability, and tried to control

and decrease these sources and measure the resulting perfor-

mance improvement [25].

Similar performance variability studies have also been

undertaken on EC2 and FutureGrid/Eucalyptus cloud plat-

forms [11]. They showed that the performance variation be-

tween their experiments is mostly related to the communica-

tion time and the type of solver/preconditioner they applied,

rather than OS load.

HPC system performance variability also poses challenges

to the evaluation of the effectiveness of performance tuning,

specifically in the case when the amplitude of variability, due

to differences in hardware manufacturing and HPC center

cooling patterns, masks the change in performance caused by

certain tuning enhancements [22].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a new approach to quantifying and

measuring performance variation in HPC applications. Overall,

the proposed combination of bootstrapping and a maxima-

based approach to measuring, quantifying, and predicting

performance variation significantly reduces the scale of the

measurement and analysis problem compared to handling and

integrating performance variation from individual nodes. The

parametric and non-parametric bootstrap methods we exam-

ined for predicting changes in performance variance under this

model have different strengths. The non-parametric bootstrap

is more effective at predicting applications with complex com-

munication behaviors. The parametric bootstrap can quantify

application variance and scaling with fewer parameters and

samples, but is also less accurate for complex applications

whose communications can violate GEV distribution modeling

assumptions.

In future work, we plan to examine hybrid parametric and

non-parametric bootstrapping approaches which can predict

application scaling for complex applications while minimizing

data collection requirements. Our statistical approach to quan-

tifying application performance and scaling could also serve

as the basis for performance anomaly detection in large scale

systems; it could also be used to inform and optimize system

schedulers and other resource allocators. We also plan to

examine the use of this technique in predicting and mitigating

performance variation in cloud and big data systems.

ACKNOWLEDGEMENTS

This paper was supported in part by the National Science

Foundation under Grant No. OAC-1807563, and by the Direc-

tor, Office of Advanced Scientific Computing Research, Office

of Science, of the United States Department of Energy.

This research used resources of the National Energy Re-

search Scientific Computing Center (NERSC), a U.S. De-

partment of Energy Office of Science User Facility operated

under Contract No. DE-AC02-05CH11231, resources at the

UNM Center for Advanced Research Computing, and from

the Extreme Science and Engineering Discovery Environment

(XSEDE), which is supported by National Science Foundation

grant number ACI-1548562 through allocation ASC190036.

Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology & Engineering

Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-

eywell International Inc., for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-

NA0003525. SAND2020-9636C.

This work was funded in part by Los Alamos National Lab-

oratory, supported by the US Department of Energy contract

DE-FC02-06ER25750 (Los Alamos Publication Number LA-

UR-20-28021).

REFERENCES

[1] B. Acun, P. Miller, and L. V. Kale. Variation among processors
under Turbo Boost in HPC systems. Proceedings of the International
Conference on Supercomputing, 01-03-June, 2016.

[2] Advanced Simulation and Computing, Lawrence Livermore Na-
tional Laboratory. ASC Sequoia Benchmark Codes, 2008.
https://asc.llnl.gov/sequoia/benchmarks/FTQ summary v1.1.pdf.

[3] P. Ailliot, C. Thompson, and P. Thomson. Mixed methods for fitting
the gev distribution. Water Resources Research, 47, 2011.

[4] E. Ates, Y. Zhang, B. Aksar, J. Brandt, V. J. Leung, M. Egele, and A. K.
Coskun. HPAS: An HPC performance anomaly suite for reproducing
performance variations. ACM International Conference Proceeding
Series, 2019.

59

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

[5] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs. There goes the
neighborhood: performance degradation due to nearby jobs. In SC’13:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2013.

[6] A. Bhatele, J. J. Thiagarajan, T. Groves, R. Anirudh, S. A. Smith,
B. Cook, and D. K. Lowenthal. The case of performance variability
on dragonfly-based systems. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 896–905, 2020.

[7] G. Calmettes, G. B. Drummond, and S. L. Vowler. Making do with what
we have: use your bootstraps. The Journal of Physiology, 590:3403–
3406, 8 2012.

[8] J. Dongarra, M. A. Heroux, and P. Luszczek. High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems. The International Journal of High
Performance Computing Applications, 30(1):3–10, 2016.

[9] D. J. Dupuis and C. A. Field. A comparison of confidence intervals for
generalized extreme-value distributions. Journal of Statistical Compu-
tation and Simulation, 61:341–360, 1998.

[10] B. Efron. Better bootstrap confidence intervals. Journal of the American
Statistical Association, 82:171, 3 1987.

[11] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar. Exploring the
performance fluctuations of hpc workloads on clouds. In 2010 IEEE
Second International Conference on Cloud Computing Technology and
Science, pages 383–387. IEEE, 2010.

[12] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application
sensitivity to OS interference using kernel-level noise injection. 2008
SC - International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2008, pages 1–20, 2008.

[13] T. Groves, R. E. Grant, and D. Arnold. Nimc: Characterizing and elimi-
nating network-induced memory contention. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 253–
262, 2016.

[14] T. Hoefler and R. Belli. Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance
results. In SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–12, 2015.

[15] J. R. M. Hosking, J. R. Wallis, and E. F. Wood. Estimation of the
generalized extreme-value distribution by the method of probability
weighted moments. Technometrics, 27(3):251–261, 1985.

[16] B. Kocoloski. Scalability in the Presence of Variability. PhD thesis,
University of Pittsburgh, 2018.

[17] J. Kyselý. A cautionary note on the use of nonparametric bootstrap for
estimating uncertainties in extreme-value models. Journal of Applied
Meteorology and Climatology, 47:3236–3251, 2008.

[18] P. Leitner and J. Cito. Patterns in the chaos—a study of performance
variation and predictability in public iaas clouds. ACM Transactions on
Internet Technology (TOIT), 16(3):1–23, 2016.

[19] H. Madsen, P. F. Rasmussen, and D. Rosbjerg. Comparison of annual
maximum series and partial duration series methods for modeling
extreme hydrologic events. Water Resources Research, 33(4):747–757,
1997.

[20] O. H. Mondragon, P. G. Bridges, S. Levy, K. B. Ferreira, and P. Widener.
Understanding Performance Interference in Next-Generation HPC Sys-
tems. International Conference for High Performance Computing,
Networking, Storage and Analysis, SC, 0(November):384–395, 2016.

[21] S. Plimpton. Fast parallel algorithms for short-range molecular dynam-
ics. J. Comput. Phys., 117(1):1–19, Mar. 1995.

[22] A. Porterfield, S. Bhalachandra, W. Wang, and R. Fowler. Variability: A
tuning headache. Proceedings - 2016 IEEE 30th International Parallel
and Distributed Processing Symposium, IPDPS 2016, pages 1069–1072,
2016.

[23] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements in
the cloud: observing, analyzing, and reducing variance. Proceedings of
the VLDB Endowment, 3(1-2):460–471, 2010.

[24] Scipy. scipy.stats.rv continuous.fit, 2020. Last accessed September 11,
2020.

[25] D. Skinner and W. Kramer. Understanding the causes of perfor-
mance variability in HPC workloads. Proceedings of the 2005 IEEE
International Symposium on Workload Characterization, IISWC-2005,
2005:137–149, 2005.

[26] J. Sun and G. D. Peterson. An effective execution time approximation
method for parallel computing. Parallel and Distributed Systems, IEEE
Transactions on, 23(11):2024–2032, 2012.

[27] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele,
and A. K. Coskun. Online Diagnosis of Performance Variation in HPC
Systems Using Machine Learning. IEEE Transactions on Parallel and
Distributed Systems, 30(4):883–896, 2019.

[28] Y. Ueda and T. Nakatani. Performance variations of two open-source
cloud platforms. In IEEE International Symposium on Workload
Characterization (IISWC’10), pages 1–10. IEEE, 2010.

60

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:15:27 UTC from IEEE Xplore. Restrictions apply.

