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As Graphics Processing Units (GPUs) are becoming a de facto solution for accelerating a wide range of

applications, their reliable operation is becoming increasingly important. One of the major challenges in the

domain of GPU reliability is to accurately measure GPGPU application error resilience. This challenge stems

from the fact that a typical GPGPU application spawns a huge number of threads and then utilizes a large

amount of potentially unreliable compute and memory resources available on the GPUs. As the number of

possible fault locations can be in the billions, evaluating every fault and examining its effect on the application

error resilience is impractical. Application resilience is evaluated via extensive fault injection campaigns based

on sampling of an extensive fault site space. Typically, the larger the input of the GPGPU application, the

longer the experimental campaign.

In this work, we devise a methodology, SUGAR (Speeding Up GPGPU Application Resilience Estimation

with input sizing), that dramatically speeds up the evaluation of GPGPU application error resilience by

judicious input sizing. We show how analyzing a small fraction of the input is sufficient to estimate the

application resilience with high accuracy and dramatically reduce the duration of experimentation. Key of

our estimation methodology is the discovery of repeating patterns as a function of the input size. Using

the well-established fact that error resilience in GPGPU applications is mostly determined by the dynamic

instruction count at the thread level, we identify the patterns that allow us to accurately predict application

error resilience for arbitrarily large inputs. For the cases that we examine in this paper, this new resilience

estimation mechanism provides significant speedups (up to 1336 times) and 97.0 on the average, while keeping

estimation errors to less than 1%.

CCS Concepts: • Hardware → Transient errors and upsets; • Computer systems organization → Re-

liability; Single instruction, multiple data; Multicore architectures; • Software and its engineering

→ Software reliability.
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1 INTRODUCTION

Graphics Processing Units (GPUs) are widely used for accelerating applications from domains

such as high performance computing (HPC) [13, 15, 37, 38, 40, 41, 45, 48], deep learning [10],

virtual/augmented reality, autonomous vehicles [7] and network functions [17]. As GPUs are

gaining popularity from data centers to mobile systems to self-driving cars, it is increasingly

important to develop tools and techniques to evaluate GPU application resilience, especially since

GPUs (as well as custom ML processors) are susceptible to transient faults [16, 22, 29, 33ś35].

A typical approach to evaluate application resilience is to conduct a systematic fault injection

campaign. An architectural register is selected, a bit is flipped, and the output of the application is

compared to the correct application output without a bit flip [32]. For GPGPU applications, fault

injection campaigns are typically based on statistical sampling since the entire fault site space is in

the order of billions [36]. Typically, 1000 experiments (one per different fault site, each randomly

selected) are done to obtain results with 95% confidence intervals and ±3% error margins for a

view of the application resilience. More accurate results (99.8% confidence intervals and ±0.63%
error margins) are given with 60,000 experiments. No matter the case, these numbers are daunting:

for inputs that typically represent actual applications, a single execution of the application can

take from several minutes to days, such time is further exacerbated if architecture simulators are

used [21, 52], effectively rendering the above approaches not practical as 1000 and 60,000 runs are

simply not possible. For the above reasons, existing methods are practical for small inputs only,

even if with state-of-the-art fault site pruning techniques [36, 54] that further reduce the sampling

space to even a few hundred sites while maintaining the same accuracy as with 60,000 runs.

In this paper, we propose a solution to the above problem: analyze the GPGPU application

resilience with the smallest possible input subset that the application can admit and accurately

project application resilience for a target larger input of practical significance. It is important to

untangle here two different but related concepts: input type and input size. Input type refers to the

actual input that the application admits: e.g., integers or floats and their range of values. Input size

refers to the actual number of input elements.

We introduce the concept of asymptotic application resilience: we show that resilience patterns

within the coordinated thread arrays (CTAs), the building blocks of GPGPU parallelism, can project

application resilience for larger inputs of arbitrary size. For asymptotically larger inputs of the

same type, the number of CTAs naturally increases but follows distinct patterns as dictated by the

parallelization logic. CTA pattern identification is key to calculate application resilience of larger

inputs of the same input type.

In this paper, we propose SUGAR, a new technique for Speeding Up GPGPU Application

Resilience Estimation with input sizing. SUGAR is based on the well-established fact [14, 36]

that GPGPU application error resilience is determined by the thread dynamic instructions (DI)

count. Since GPU organizes threads in a hierarchical way by grouping threads in an organized

manner, we leverage this thread grouping feature to identify CTA patterns.

The first key insight is that as the input size scales up, CTA patterns remain the same, and

only the number of patterns changes. We therefore extrapolate application resilience using the

observed CTA patterns that evolve as a function of the input size and show how to accurately

project application resilience from the smallest possible input to any arbitrary larger input of the

same type. The smallest possible input is defined by the application itself: its size is dictated by

having enough parallelism to fill a CTA. Therefore, as long as the larger input does not change

the sequence of dynamic instructions, the application error resilience can be predicted remarkably

accurately, with an average error less than 1% for arbitrarily larger inputs. For applications where

larger inputs affect branch outcomes (and consequently affect the number of instructions), we
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require only one additional dynamic instruction profiling which is achieved in just an additional

run to estimate error resilience.

The second key insight is that application resilience depends heavily on the application input. We

identify application input by its type as determined by the range of its possible values and its size as

determined by the number of its elements. Given a certain input type, application resilience can be

determined for any input size of the same type. We identify three trends of application resilience

as a function of the input size: it can improve, decrease, or remain flat, and this depends on the

resilience of the dominant CTA pattern of the benchmark. For the cases that the resilience trend is

not flat, as input size increases (but input type remains the same), application resilience reaches an

asymptotic state that remains unchanged for arbitrarily larger inputs.

In summary, we make the following research contributions:

• We perform a deep analysis of different inputs to understand the impact of input type and

input size on GPGPU application error resilience.

• We show that resilience can be easily predicted for applications with inputs that do not

change the dynamic instruction count. For other applications, a low overhead profiling

with the larger input (essentially just one additional run) is sufficient for accurate resilience

estimation.

• We identify the smallest input size (given a certain input type) that profiles application

characteristics that can be used to accurately project application asymptotic resilience for

arbitrarily large input sizes of the same type.

Overall, our new input-aware resilience estimation mechanism for the two large inputs that we

examine here can reduce the overall resilience evaluation time by achieving speedups from 1.2

to 1335. Collectively, for the cases considered here, the reduction of overall evaluation time for

medium input sizes is 7.3 and 186.6 for large sizes, while being remarkably accurate as it consistently

introduces errors of no more than 1%.

We stress that the above savings/speedups are conservative estimates as they are tied to the

specific input sizes for prediction that we consider here paper and commensurate to the size of

medium and large inputs used. Larger inputs would invariantly result in higher speedups.

2 BACKGROUND

We give a brief introduction to the baseline GPU architecture and GPGPU execution model. Then,

we introduce the fault model, fault injection methods, and benchmarks used.

2.1 GPUs and GPGPU Application Structure

Baseline GPU Architecture. A GPU typically is equipped with a large number of cores, also

known as streaming-multiprocessors (SMs) in NVIDIA terminology [4]. Each core has its private

L1 cache, software-managed scratchpad memory, and a large register file. An interconnection

network connects all cores to global memory, which consists of various memory channels. Every

memory channel has a shared L2 cache, and its associated memory requests are handled by a

GDDR5 memory controller.

Since GPUs are susceptible to transient faults from high-energy particle strikes [16, 33, 34].

protection techniques are omnipresent in recent commercial GPUs [2, 4, 5]. Such techniques

include single-error-correction double-error-detection (SEC-DED) error correction codes (ECCs) to

protect register files, L1/L2 caches, shared memory and DRAM against soft errors, and using parity

to protect the read-only data cache. Other structures such as arithmetic logic units (ALUs), thread

schedulers, instruction dispatch units, and the interconnect network are not protected [2, 4, 5].
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GPGPU Execution Model. Following the single-instruction-multiple-thread (SIMT) philoso-

phy [25], GPGPU applications execute thousands of threads concurrently, over large amounts

of data. A typical GPGPU application hierarchy is as follows: the application launches kernels

on the GPU. Each kernel is divided into groups of threads, known as thread blocks, also called

Cooperative Thread Arrays (CTAs) in NVIDIA terminology. A CTA encapsulates all synchronization

and barrier primitives among a group of threads [23, 25]. The CTA formation enables the GPU

hardware to relax the execution order of the CTAs, for the purpose of maximizing parallelism. CTAs

can be organized in 1-dimension, 2-dimensions, or 3-dimensions, depending on how application

programmers organize data and algorithm development. Threads inside one CTA can be further

divided into groups of 32 individual threads, known as warps. Warps execute a single instruction on

the functional units in lock step. This sub-division of warps is an architectural abstraction, which

is transparent to the application programmer.

2.2 Fault Model

We assume that register files and other components such as caches and memory are protected

by ECC (which is the case in almost all GPUs). We therefore consider here only commonly oc-

curring computation-related errors due to transient single-bit faults (known also as soft errors)

in ALUs/LSUs, i.e., in components that cannot be protected by ECC. These faults can lead to

wrong ALU output which would then be stored in destination registers. This erroneous computing

operation is what we emulate by injecting a single fault directly to destination register values. This

is standard experimental methodology for GPGPU reliability studies [14, 20, 27, 36, 43].

The fault injection methodology used here closely follows the one used in GUFI [49]: flip a bit at

a destination register identified by the thread id, the instruction id, and a bit position. We use the

single-bit fault model, considering more than one bit flips within a single execution is out of scope

of this work.

We perform reliability evaluations on GPGPU-Sim [6] with PTXPlus mode as other works

that estimate GPGPU reliability [36]. GPGPU-Sim is a widely-used cycle-level GPU architectural

simulator, and its PTXPlus mode provides a one-to-one mapping of instructions to actual ISA for

GPUs [6, 49]. Although we use GPGPU-Sim [6] in this work to evaluate our methodology, SUGAR

does not depend on this architecture simulator. SUGAR can be used with fault injectors that operate

on real hardware, e.g., SASSIFI [20] or NVBitFI [3] for a small input, and estimate application

resilience for larger input sizes.

For each fault injection experiment, there are three possible outcomes:

• masked outcome: the application output is identical to that of fault-free execution.

• silent data corruption (SDC) outcome: the fault injection run exits successfully without

any error, but the output is incorrect.

• other outcome: the fault injection run results in a crash or hang.

To obtain the reliability profile of an application run given an input, we conduct an experimental

campaign using the state-of-the-art fault site pruning methodology proposed by Nie et al. [36]. We

aggregate the outcome of fault injection experiments asmasked, SDC, and other to obtain the

application resilience profile. Note that this methodology, as others in the literature [14, 20, 49, 53],

provides the application resilience profile for the given input only. To the best of our knowledge, this

is the first study to accurately estimate input-dependent GPGPU application resilience.

2.3 Benchmarks and Inputs

We select applications from several commonly-used benchmark suites (i.e., CUDA [39], Poly-

bench [18], Rodinia [9] and AxBench [55]). Note that, as kernels of GPGPU applications normally
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Table 1. Selected Benchmarks and Inputs.

Suite Benchmark Kernel Name Kernel ID Input Size (#Elements) #Threads #Fault Sites

CUDA
BlackScholes BlackScholesGPU K1 {384, 12288, 98304} {61440, 61440, 61440} {7.49E+06, 1.89E+07, 1.01E+08}

NN
executeFirstLayer K1 {784, 25088, 100352} {1014, 32448, 129792} {1.05E+07, 3.37E+08, 1.35E+09}
executeFourthLayer K4 {784, 25088, 100352} {10, 320, 1280} {3.04E+05, 9.74E+06, 3.90E+07}

Polybench

2DCONV Convolution2D_kernel K1 {1024, 65536, 4194304} {1024, 65536, 4194304} {1.90E+06, 1.34E+08, 8.71E+09}
GEMM gemm_kernel K1 {192, 49152, 196608} {768, 16384, 65536} {7.91E+07, 6.23E+08, 4.94E+09}
MVT mvt_kernel1 K1 {65792, 1049600, 16781312} {256, 1024, 4096} {1.71E+07, 2.73E+08, 4.36E+09}
SYRK syrk_kernel K1 {256, 4096, 65536} {256, 4096, 65536} {1.02E+07, 7.93E+07, 4.94E+09}

Rodinia

BFS
Kernel K7 {4096, 65536, 1000448} {4096, 65536, 1000448} {1.99E+06, 1.18E+07, 1.60E+08}
Kernel2 K8 {4096, 65536, 1000448} {4096, 65536, 1000448} {8.88E+05, 1.08E+07, 1.60E+08}

Gaussian
Fan1 K1 {1088, 4224, 65536} {512, 512, 512} {1.35E+05, 2.19E+05, 3.30E+05}
Fan2 K2 {1088, 4224, 65536} {2048, 32768, 131072} {1.57E+06, 2.54E+07, 1.02E+08}

HotSpot calculate_temp K1 {8192, 18432, 131072} {9216, 30976, 123904} {3.43E+07, 8.43E+07, 3.37E+08}

K-Means
invert_mapping K1 {17408, 34816, 69632} {1024, 1024, 2304} {2.44E+07, 4.83E+07, 9.67E+07}
kmeansPoint K2 {17408, 34816, 69632} {2304, 4096, 6400} {3.73E+06, 7.34E+06, 1.47E+07}

PathFinder dynproc_kernel
K1 {64800, 410400, 3283200} {768, 4864, 38912} {1.63E+07, 1.15E+08, 9.23E+08}
K5 {64800, 410400, 3283200} {768, 4864, 38912} {1.55E+07, 1.09E+08, 8.77E+08}

AxBench Jmeint Jmeint_kernel K1 {18432, 184320, 1843200} {4096, 8192, 16384} {6.87E+06, 6.89E+07, 6.93E+08}

implement independent modules/functions, resilience analysis for each kernel is performed sep-

arately. We focus on every static kernel in a benchmark. For static kernels with more than one

dynamic invocations, we randomly select one invocation for the fault injection experiments.

Table 1 outlines the 11 benchmarks (15 kernels) studied here. In the rest of this paper, if the kernel

index is not specified, it implies that the benchmark contains one kernel only. Three input sizes per

benchmark are examined: small (S), medium (M), large (L), see the fifth column of Table 1 for the

exact sizes (in terms of the number of input elements) used per benchmark. Typically, a small input

is obtained as a subset of the larger target input such that there is enough thread parallelism to fill

one CTA.

The sixth and seventh columns correspond to the number of threads and the exhaustive number

of fault sites (provided that single-bit faults can occur in ALU/LSU units only, where no ECC

is available) for small, medium, and large inputs, respectively. The number of threads and fault

sites1 are indicative of the tremendous complexity of the problem for these benchmark/input

combinations. Note that from a small input to medium and large, the number of exhaustive fault

sites increases by orders of magnitude (from millions to billions), highlighting the magnitude of the

difficulty of the problem. Considering that in practice application resilience needs to be re-evaluated

for every different input type and size, providing a methodology to accurately estimate application

reliability from small to arbitrarily large inputs of the same type can result in significant savings.

Below we give an overview of the input selection of benchmarks. The ranges of input values are

typically given by the benchmarks themselves.

BlackScholes: This benchmark simulates the Black-Scholes model that captures the dynamics

of a financial market. The input consists of three parts: 1) stock price is provided by random float

numbers generated under a [5, 30] Uniform distribution; 2) exercise price, consists of random float

numbers generated with a [1, 100] Uniform distribution; 3) time, that consists of random float

numbers generated with a [0.25, 10] Uniform distribution. Here, the smallest input size to fill at

least one CTA is 384 (total number of elements). Input sizes of 12288 and 98304 elements correspond

to medium and large sizes, respectively.

2DCONV: 2DCONV performs a 2-Dimensional convolution on a matrix of Uniformly-distributed

floating-point numbers between 0 and 1. The smallest input size is 1024, medium and large inputs

are 65536 and 4194304 elements.

1The exhaustive fault sites have been calculated using the methodology in [36].
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GEMM: GEMM does general matrix-matrix multiplication and accepts as input three matrices

of floating-point elements sampled from Uniform [0, 1]. Inputs have 12288, 49152, and 196608

elements.

MVT: MVT performs matrix-vector multiplication. The elements of the matrix and vector are

floating-point and sampled from a Uniform distribution ranging from 0 to 10. Three inputs of size

65792, 1049600, and 16781312 are generated.

SYRK: SYRK performs symmetric rank-k operations. Three inputs of 1024, 4096, and 65536 floating-

point elements are generated using a [0, 1] Uniform distribution.

BFS: The input of this benchmark is a graph with vertices and edges. The original benchmark

provides 3 graphs with the number of vertices equal to {4096, 65536, 1000448}.

Gaussian: Gaussian solves systems of equations using Gaussian elimination. The system of equa-

tions to be solved is represented in a matrix format. The matrix is populated by floating-point

numbers generated by a [10000, 10001] Uniform distribution. The three inputs have matrices of

1088, 4224, and 65536 elements and all cases are solvable.

HotSpot: HotSpot simulates the temperature on a chip. This benchmark uses two input files in a

matrix form: temperature and power. In contrast to the inputs of the benchmarks already described,

HotSpot’s inputs are not generated by any distribution. The benchmark provides a script to scale

up the inputs. We scale up both temperature and power matrices from input size 8192 to 18432 and

131072. The range of temperature is (322, 345) and of power is (0, 0.002823].
K-Means: k-means (KMN) implements a clustering algorithm. We use the script provided by

the benchmark to generate different integers ranging from 0 to 255. The generated integers are

organized in a matrix format with 17920, 35840, and 71680 elements.

PathFinder: PathFinder does dynamic programming on a 2D grid to find the shortest weighted

path. The 2D grid is represented by path weights that are uniformly distributed in [0, 1]. The weights
are stored in a matrix format. Three matrices of 51200, 409600, and 3276800 elements are used.

Jmeint: Jmeint performs triangle intersection detection, which is widely used in 3D gaming. The

input is pairs of 3D triangle coordinates, which are all Equilikely random variates (integers) ranging

from −50 to 50. We use three input sizes here of 18432, 184320, and 1483200 integers.

NN: NN implements the testing phase of a pre-trained four-layer neural network model. The input

is images provided by CUDA benchmark suite. The number of images used in input S, M, and L is

1, 32, and 128, corresponding to 784, 25088, and 100352 input elements.

3 INPUT-WISE RESILIENCE

We present a detailed characterization of the effect of input size on the application dynamic

instruction (DI) count. We first show that error resilience is primarily determined by the thread

DI count, which is consistent with other works [14, 36]. We link thread (and consequently kernel)

resilience under different inputs by examining how the thread DI count and CTA patterns are

affected by the input size. We then show how to perform fast resilience estimation by identifying

resilience patterns at the CTA level. We stress that we have done experiments with many inputs

for each of the benchmarks in Table 1 but in the exposition below we present studies of specific

cases that are indicative examples of the identified resilience patterns.

3.1 DI-insensitive benchmarks

We first focus on applications where the DI count is not sensitive to input size. Following the

CTA structure in GPU applications, we start with analyzing the DI behavior of the application

and classify DI-insensitive benchmarks according to their CTA organization as 1-Dimensional or

2-Dimensional.
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3.1.1 Resilience Patterns with 1-Dimensional (1D) Structure.

DI Analysis. We use PathFinder K1 to show the effect of input size on DI count and resilience

patterns. We collect the DI profile using small, medium, and large inputs. This analysis helps classify

each thread by its DI count. Here, we plot the DI count as the function of thread id, see Figure 1.

Comparing threads in CTA(0,0,0) across the three inputs, it is clear that threads with the same id

share the same DI count. We mark this as Pattern-1. Across the three inputs, we observe a repeating

pattern, marked as Pattern-2, which occurs 1, 33, and 150 times for inputs S, M, and L, respectively.

(a) Input S. (b) Input M.

(c) Input L.

Fig. 1. DI count scatter plots for S, M, L inputs of PathFinder K1. Three distinct CTA patterns are clearly

discerned. There is only one Pattern-1 and one Pattern-3 in each of the inputs, while Pattern-2 occurs 1, 33,

and 150 times for input S, M, and L, respectively. PathFinder K1 is identified as a DI-insensitive benchmark.

(a) Input S. (b) Input M.

(c) Input L.

Fig. 2. Thread resilience (in terms of SDC outputs, y-axis) for S, M, and L inputs of PathFinder K1. CTA

resilience patterns follow the thread DI counts in Figure 1.
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The last CTA is marked as Pattern-3. Because of the above regularities, PathFinder K1 is categorized

as DI-insensitive.

Resilience Analysis. We group threads according to DI count, and perform fault injection ex-

periments for every thread group to obtain results of statistical significance according to the

methodology presented in [36]. We aggregate the fault injection results to get the resilience of

thread groups, i.e., distribution of masked, SDC, and other outputs. Figure 2 shows thread resilience

in terms of the percentage of SDC outputs which are anyway the most perilous being silent (similar

results exist for masked and other outputs but are not shown here due to lack of space). Comparing

the DI count scatter plot in Figure 1(a) and the resilience pattern in Figure 2(a) for input S, there

are stark similarities: threads with the same DI count have overwhelmingly similar resilience. In

addition, the one-to-one relationship between the thread DI count and resilience pattern discovered

for input S persists for inputs M and L. Within CTA(0,0,0) in Figure 2(a)-(c), we can clearly discern

3 groups of threads with different resilience behaviors:

• G1: Threads 1 ś 20 and 256 are the most resilient threads, with close to 0% SDC outputs;

• G2: Threads 21 ś 236 have SDC outputs near 15%;

• G3: Threads 237 ś 255 form the last group.

Here, we opt to cluster threads 237 ś 255 into a single group (G3) despite the fact that they have

a different DI-count for ease of presentation. In fact, each thread from the G3 group is treated

separately when their resilience profile is used for kernel estimation.

The resilience of each thread group is similar for different inputs. Most of PathFinder K1 threads

belong to G2, the dominant thread group in this kernel, this is consistent across inputs S, M, and L.

Note that for the G3 cluster, thread resilience is slightly different for inputs M and L comparing to

input S, see Figure 2(a)-(c). Since our purpose is to estimate the resilience of a large input from a

smaller subset (from input S, in our case), this slight difference will unavoidably contribute to an

error in estimations.

In general, we conclude that it is sufficient to use DI count as a proxy for thread resilience.

While individual thread resilience does not change from one input size to a larger input (or may

change marginally, as in the G3 case above), the percentage of each thread group in the kernel

may be different. For example, the percentage of G1 for input S, M, and L is 5.7%, 1.2%, and 0.9%,

respectively, and for G2 the percentage is always 84.4%. This difference may result in different

kernel resilience for different input sizes. We conclude that it is possible to infer individual thread

resilience from one input to a larger input, as changing the input for DI-insensitive benchmarks

does not have a significant effect on individual thread resilience.

The above patterns can be presented visually at the CTA level, see Figure 3. In this figure, every

cell is a CTA. Each unique color represents a unique CTA pattern. In this figure, P1, P2, and P3

correspond to Pattern-1, Pattern-2, and Pattern-3, respectively in Figure 1 and Figure 2. Figure 3

visualizes the 1D structure in the CTA pattern across different input sizes. The pattern repetitions

can be calculated according to input size. In fact, CTA patterns can be easily identified by looking

at the source code.

Code and Input Analysis. To further explain the structure of the observed patterns, we turn

into the source code. A code snippet of PathFinder K1 is shown in Figure 4. PathFinder leverages

dynamic programming to find the shortest weighted path given a certain input. The input data is

broken into chunks, and every chunk of data is assigned to a CTA. Although every CTA has the

same amount of data to process, from the chunk start position blkX (Line 4) till the end position

2Source code Line 3 in Figure 4 computes small_block_cols . Given BLOCK_SIZE = 256, iteration = 10, and

HALO = 2, we can get small_block_cols = 216. In addition, the number of rows in the input data is 100, so each CTA

processes 21600 elements.
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(a) Input S. (b) Input M. (c) Input size=N .

Fig. 3. CTA patterns for different inputs for PathFinder K1.

Fig. 4. Code snippet of PathFinder K1. Input has no effect on branch divergence, hence CTA resilience patterns

across inputs of different size persist.

blkXmax (Line 5), this range may cover some invalid data at the boundary. Therefore, a boundary

check is performed to check whether the thread is inside the valid range [validXmin,validXmax]
(Line 11). A loop starts at Line 13, and its condition check depends on the number of iterations,

which is a pre-defined parameter for each kernel. Only threads whose thread id is inside the valid

range execute the if condition in Line 15 and process the data. In both cases, the input value does not

affect branch divergence. Consequently, the instruction execution context persists across different

inputs. Therefore, even if input changes, resilience patterns remain similar, and the benchmark is

identified as DI-insensitive.

Table 2. Parameters of different CTAs from PathFinder K1 with input M. Some threads from the boundary

CTAs are filtered due to boundary checking, resulting in different CTA resilience patterns.

Pattern CTA start_pos end_pos validXmin validXmax

P1 (0,0,0) -20 235 20 255

P2 (1,0,0) 196 451 0 255

P2 (2,0,0) 412 667 0 255

...

P2 (33,0,0) 7108 7363 0 255

P3 (34,0,0) 7324 7579 0 235

Following the code snippet shown in Figure 4, we calculate the start and end positions of each

CTA’s data chunk2(see Line 3-5), as well as the valid chunk intervals (see Lines 7-9) using the

default CTA size 256. An example using input M is shown in Table 2. Note that the CTAs with
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Table 3. Benchmarks with 1-Dimensional CTA structure

Benchmark Pattern Number of CTAs
Dominant

Pattern

BlackScholes
P1 ⌈ input_size

num_thd_per_cta
⌉ ✓

P2 512 − ⌈ input_size
num_thd_per_cta

⌉
MVT P1 ⌈ ⌊√input_size⌋

num_thd_per_cta
⌉ ✓

Gaussian K1 P1 ⌊ ⌊√input_size⌋
num_thd_per_cta

− 1⌋ ✓

K-Means K1

P1
input_size/34

num_thd_per_cta
✓

P2 ( ⌈
√

input_size/34
num_thd_per_cta

⌉)2 − input_size/34
num_thd_per_cta

K-Means K2

P1
input_size/34

num_thd_per_cta
✓

P2 ( ⌈
√

input_size/34
num_thd_per_cta

⌉)2 − input_size/34
num_thd_per_cta

PathFinder K12
P1 1

P2 ⌈ input_size
21600

⌉ − 2 ✓

P3 1

PathFinder K52
P1 1

P2 ⌈ input_size
21600

⌉ − 2 ✓

P3 1

pattern P2 have the same [validXmin,validXmax] intervals, because they are in the middle part of

the data. ThevalidXmin of the starting CTA (0,0,0) with pattern P1 is different from the others, and

thevalidXmax of the last CTA (34,0,0) with pattern P3 is also different. This validation check filters

some of the threads at the boundary from the first CTA and the last CTA, leading to a different

control flow path that results in a different DI set (thus, different DI count). This is the reason that

these two boundary CTAs exhibit different resilience patterns. Since these filtered threads do not

touch any input data, they are very resilient, with close to 0% SDC outputs shown in Figure 2 (G1

group).

Based on the source code, the number of each repeating CTA pattern can be calculated. Pattern P1

and P3 are the boundary CTAs (one CTA). For pattern P2, the number of CTAs is given by2:

num_repeatinд = ⌈input_size
21600

⌉ − 2 (1)

Based on Equation 1, the CTA pattern shown in Figure 3(c) and the detailed resilience pattern

shown in Figure 2, we can calculate the number of CTAs within each pattern and then extrapolate

their resilience for a larger input.

Across all benchmarks in this study, if branch divergence is not affected by input values, then

thread DI count does not change with larger inputs and the CTA resilience pattern persists. Similar

benchmarks with 1-Dimension patterns include BlackScholes, MVT, Gaussian K1, K-Means K1

and K2, and PathFinder K1 and K5. For the above benchmarks, we followed the same steps as those

depicted above for Pathfinder K1 and determined their CTA patterns. A summary of salient features

of CTA resilience patterns for the above benchmarks is shown in Table 3, and the CTA patterns

using the input sizes used in this paper can be found in Appendix A, Table 7. Note that different

benchmarks have different CTA resilience patterns (e.g., P1 in BlackScholes is different from P1 in

MVT). We also identify the dominant pattern of each kernel, which can be used to estimate the

asymptotic resilience, see Section 4.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 1. Publication date: March 2021.



SUGAR: Speeding Up GPGPU Application Resilience Estimation with Input Sizing 1:11

Summary: DI-insensitive benchmarks exhibit repeating CTA resilience patterns across inputs

of different size. Benchmark resilience can be derived using the 1-Dimensional structure of CTA

patterns, which is identified using code inspection.

3.1.2 Resilience Patterns with a 2-Dimensional (2D) Structure.

We now focus on benchmarks with CTAs organized in 2-Dimensions and use HotSpot as an

example to illustrate our findings. HotSpot computes the temperature on a single chip. CTAs are

grouped across both x and y dimensions, see Figure 5. For different inputs, the CTA patterns are

similar. The boundary check of HotSpot is more complicated compared to PathFinder K1, resulting

in 16 different CTA patterns within a single kernel. For input S shown in Figure 5(a), the blue cells

at the center occur 3 × 3 times. We revisit later in the section how this repeating pattern evolves as

a function of input size.

DI and Resilience Analysis. The scatter plots of DI count and thread resilience are given in

Figure 6 and Figure 7, respectively. Due to space limitations, we only show here a part of the

pattern, CTAs from the second bottom row in Figure 5(a). There are 6 CTAs at the second bottom

row for input S, with 4 different CTA patterns, repeating 1,3,1,1 times, respectively. Comparing

input S and another larger input shown in Figure 5(b), Pattern-1 is exactly the same across the

two inputs. Similar observations can also be made for Pattern-2, Pattern-3, and Pattern-4. The only

difference in Figures 7(a) and (b) is the number of repetitions for Pattern-2: 3 for input S and 8 for

the larger input M. Clear similarities emerge when comparing the DI count in Figure 6 and the

resilience patterns in Figure 7.

(a) Input S. (b) Input M. (c) Larger input.

Fig. 5. HotSpot CTA structure. The number of columns and rows the center can be calculated using Equations 2

and 3.

(a) Input S. (b) Input M.

Fig. 6. DI count scatter plot for inputs S and M of HotSpot for the CTAs in the bottom row of Figure 5. DI

counts are consistent across CTA patterns for S and M.
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(a) Input S. (b) Input M.

Fig. 7. Thread resilience for inputs S and M of HotSpot. CTA resilience patterns across the two inputs are

similar and follow the DI count trends of Figure 6.

Fig. 8. Code snippet of HotSpot. Branch divergence only depends on CTA ID and thread ID, but not input

data itself, thus HotSpot is DI-insensitive.

We use the second row from the bottom in Figures 5(a) and 5(b) to show the results of fault

injection experiments on different threads. In CTA(0,1,0) there are in total 3 different resilience

groups of threads, also marked as G1śG3 in Figure 7:

• G1: threads at the bottom, with around 0% SDCs;

• G2: threads in the middle, with about 20% SDCs;

• G3: threads at the top, with more than 40% SDCs.

The grouping in G1, G2, and G3 is done to facilitate the discussion by providing a higher-level

overview of their resilience profile. For each thread group, the distributions of masked, SDC, and

other outputs for different inputs remain remarkably close. We conclude that we can directly use

the resilience of the smallest input to infer the resilience of larger ones as the dominant thread

group, G3, has the most SDC outputs. Note that this is also repeating in CTA(1,1,0), CTA(2,1,0),

CTA(3,1,0), CTA(4,1,0), and CTA(5,1,0). The percentage of G3 increases as input size gets larger (as

the repeating times of the middle CTA pattern increase), which indicates that HotSpot becomes

less resilient when input size increases. We also mark the repeating CTA patterns, P1 (Pattern-1)

to P4 (Pattern-4) in Figure 5. Note that for HotSpot the specific input values for sizes S and M are

not exactly the same (although they are derived from the same distribution), this is the reason that

there are some changes in the SDC values from S to M. Since the S values are used to estimate the

resilience for input M, this discrepancy leads to a small estimation error for the larger input.

Code and Input Analysis.We turn to code analysis to understand why the resilience profile of the

above groups persists across different inputs. A code snippet of HotSpot is shown in Figure 8. Similar

to PathFinder K1, the logic is to first calculate the data chunk size and chunk boundary, then load
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Table 4. Benchmarks with 2-Dimensional CTA Structure

Benchmark Pattern Number of CTAs
Dominant

Pattern

2DCONV

P1 1

P2 1

P3
⌊√input_size⌋

32
✓

P4
⌊√input_size⌋

8
✓

GEMM P1
⌊
√
input_size/3⌋2

num_thd_per_cta
✓

SYRK P1 ⌈ input_size
num_thd_per_cta

⌉ ✓

Gaussian K2

P1
⌊√input_size⌋

8
− 1

P2 1

P3 ( ⌊
√
input_size⌋

16
− 1) × ( ⌊

√
input_size⌋

8
− 1) ✓

P4
⌊√input_size⌋

16
− 1

P5
⌊√input_size⌋

16
× ( ⌊

√
input_size⌋

8
− 1) ✓

P6
⌊√input_size⌋

16

HotSpot 16 patterns, shown in Figure 5(b).

data and perform computation only if the current thread falls in the valid chunk boundaries. This

is only related to CTA ID and thread ID, but not input data itself, so thread resilience persists in the

context of different inputs. HotSpot is therefore classified as DI-insensitive, exhibiting remarkably

similar resilience patterns across different input sizes.

Looking at Figure 5 where the CTA patterns are visually illustrated, we note that the cen-

ter blue CTAs are the dominant group. Given the user-defined parameters num_thd_per_cta,

pyramid_heiдht and Expand_rate , we can calculate the number of the center blue CTAs as a

function of the input size NX × NY as follows:

#rows = ⌈ NX

num_thd_per_cta − pyramid_heiдht × Expand_rate
⌉ − 3 (2)

#columns = ⌈ NY

num_thd_per_cta − pyramid_heiдht × Expand_rate
⌉ − 3 (3)

Equations 2 and 3, as well as Figure 5 and Figure 7, can be used to infer the resilience of a larger (or

smaller) inputs of the same type for HotSpot.

We have examined all benchmarks with a 2D organization in their CTAs, they include 2DCONV,

GEMM, SYRK, Gaussian K2, and HotSpot. For the above benchmarks, branch divergence has no

effect on the eventual DI count, they are therefore classified as DI-insensitive. The number of CTAs

for these benchmarks as a function of the input size is shown in Table 4, while the CTA patterns

using the input sizes used in this paper can be found in Appendix A, Table 8. We also point out the

dominant patterns of each kernel.

Summary: For DI-insensitive benchmarks with 2-Dimensional patterns and if branch divergence

is not affected by input values, it is feasible to extract resilience trends for larger inputs of the same

type from smaller ones.

3.2 DI-sensitive benchmarks

Some benchmarks have branch divergence which is affected by input data. Such benchmarks

include BFS K7, BFS K8, Jmeint, NN K1, and NN K4. Thread DI count in these benchmarks changes

when input size changes, thus these benchmarks are DI-sensitive. We use BFS K8 as an example.
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(a) Input S. (b) Input M.

(c) Input L.

Fig. 9. DI count scatter plot for S, M, and L inputs of BFS K8 (first 6 CTAs only). Although all inputs have

only 2 DI groups, there is no clear trend.

DI Analysis. The DI count scatter plot for S, M, and L inputs3 of BFS K8 is shown in Figure 9. Due

to space constraints, we only show the first 6 CTAs. Different from the one-to-one mapping in

DI-insensitive benchmarks, there are no clear trends across the three input sizes. Nevertheless,

some similarities still exist: the three inputs still have the same DI groups.

Resilience Analysis. After fault injection experiments on all thread groups, we obtain the re-

silience patterns, see Figure 10. Comparing the three different inputs in Figure 10(a), (b), and (c),

the resilience of each thread group is similar, i.e., they all have one horizontal line at the bottom

(dominant group), and another set of threads at the top (minority group). Comparing with Figure 9,

the dominant/minority grouping is the same as the one implied by the DI pattern. Therefore, DI

count can still be used to link these inputs.

Figure 10 shows the resilience of different inputs for G1 (dominant thread group) and G2 (minority

group). Irrespective of input size, the resilience of G1 and G2 remains the same. G1 is more resilient,

and its percentage in the whole kernel is increasing as input size increases, directly implying that

in BFS K8 larger inputs are more resilient.

We can still extrapolate thread resilience from a small input to larger inputs for DI-sensitive

benchmarks. Compared to the deterministic model that we use for extrapolating the resilience

profile of DI-insensitive benchmarks, here we need one more profiling run to get the DI profile, and

add fault injection experiments if threads execute a new DI set that has not been observed with the

small input. Still, there is no need to repeat experiments for the dominant group, as its resilience

profile persists.

Code and Input Analysis. The source code reveals the reason for this DI-sensitivity, see the

snippet in Figure 11. Input to BFS K8 is g_updating_graph_mask, which is given by the previous

kernel, BFS K7(Lines 2-3). g_updating_graph_mask is calculated and updated in the previous kernels

based on the input of BFS, which is the nodes and edges of the studied graph. Input for BFS consists

of two parts: g_graph_nodes for vertices in the graph (Line 5) and g_graph_edges for edges in the

graph (Line 8). Note that the input g_graph_visited in BFS K7 is given by the previous kernel, BFS K6

(Line 9, in K6). When an edge in the input graph changes, g_updating_graph_mask is different and

the branch divergence in Line 2 is affected. The context of both threads and their instructions

3Note that for BFS input S is a subgraph of input M, and input M is a subgraph of input L.
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(a) Input S. (b) Input M.

(c) Input L.

Fig. 10. Resilience scatter plot for S, M, and L inputs of BFS K8 (first 6 CTAs). Similar to the DI count scatter

plot in Figure 9, there is no clear trend across inputs.

Fig. 11. Code snippet of BFS K8. Input data affects the branch divergence, therefore results in DI-sensitivity.

changes, causing the change of resilience patterns. Depending on input size, the dominant thread

group shown in Figure 9 occupies 64.45% ś 99.997% of the whole kernel. These threads skip the if

condition at Line 2 with very limited access to input data; thus are more resilient.

Benchmarks that are sensitive to input when the branch divergence is affected by input values

are classified as DI-sensitive benchmarks. In addition to BFS K8, DI-sensitive kernels are BFS K7,

Jmeint, NN K1, and NN K4. The discovery of CTA patterns of the above DI-sensitive benchmarks

for the three input sizes used in this paper is outlined in Appendix B.

We stress that even for the DI-sensitive case, if the majority group persists across input sizes, its

resilience dominates, and we can still estimate kernel resilience from a subset of input to the target

one. What we need to do for the larger input, is to estimate the percentage of the majority group in

the mix of threads. An additional DI profiling run with the larger/target input is needed in this

case to carefully calculate the the percentage of the majority/minority groups. Note that this is just

a DI profiling run. No fault injection runs are required to evaluate thread resilience profile, which

is already known.

Summary: Benchmarks with branch conditions affected by input values are DI-sensitive. We

need one additional DI-profiling run for the resilience estimation of the target (large) input.

4 RESILIENCE ESTIMATION METHODOLOGY

Based on the parallel code organization (CTA patterns and DI counts) and their resilience as

identified in the previous section, we present SUGAR (Speeding Up GPGPU Application Resilience
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Estimation with input sizing), a methodology for the resilience estimation of a target application

with a target input. While the main ideas behind the methodology are established in Section 3,

we present here the sequence of steps to evaluate application resilience. The overview of the

methodology is given in Figure 12.

Step 1 : Classify Application Type (DI-Insensitive or DI-Sensitive) and CTA Pattern (1D

or 2D). As a first step, we check the effect of input data on branch statements that could potentially

affect the DI set, to determine whether the target application is DI-insensitive or DI-sensitive. This

is obtained by examining if there is any branch divergence that depends on the actual input. If

the DI sets of thread groups remain the same for different inputs, then the application is deemed

DI-insensitive. Otherwise, if branch divergence is present, then the application is DI-sensitive.

DI-insensitive applications are further categorized into 1- or 2-Dimensional based on their CTA

organizational structure. For the benchmarks examined in this work, their categorization is shown

in Table 5.

CTA Pattern Extraction. Naturally, for DI-insensitive benchmarks, the DI sets of thread groups can

be captured deterministically, by the organization of threads in their launching order. This allows

the discovery of repeating patterns and resilience trends. The repeating patterns are an outcome

of the thread organization in the software development process. For the benchmarks considered

in this paper, pattern discovery is fairly straightforward, it is essentially a high-level view of the

parallel code and is done by code inspection. As established in Section 3, using the size of the target

input, it is possible to calculate the number of the CTA patterns, see Tables 3 and 4 that illustrate

the CTA patterns for the DI-insensitive benchmarks examined here.

DI-sensitive benchmarks do not have deterministic DI patterns for different input sizes. Deter-

mining how the DI patterns change as a function of input size is typically not easy to discern with

just code review. For such cases, an additional DI profiling using the target input is needed to obtain

the updated DI counts and corresponding patterns. This step is necessary to determine the updated

pattern, i.e., the updated percentages of different thread groups and especially the percentage of

the majority thread group that dominates resilience.

Step 2 : Form Input S. To this end, we perform exploratory runs where we explore a few small

input sizes. These exploratory runs are used to obtain the DI patterns of small input sizes to

determine the smallest input size that fills at least one CTA for each pattern. These are exploratory

runs without any fault injection, consequently their cost is negligible. Typically, inputs are in the

form of matrices, vectors, or graphs. Given a target input, we use random sampling on the matrix

and/or vector elements to form the smallest size S. For applications such as BFS that have graphs as

input, random sampling is not possible as it breaks the original features of the input data structure.

For graph-based inputs, we select a subgraph that maintains similar characteristics as the target

input, e.g., similar degree.

Step 3 : Perform Experiments. Fault injection experiments are performed with input S (formed

in Step 2 ) to measure the kernel resilience profile, i.e., the percentage of expected SDC, masked,

and other outputs if a single bit flip occurs. The fault injection campaign is the most expensive

part of the resilience estimation as it is based on a large number of experiments in order to reach a

resilience profile that is statistically significant [14, 36]. Yet, this step provides pivotal information

for the subsequent step, where the resilience of the target input is estimated as it provides the

resilience Res(X ) ofX , whereX is a benchmark kernel, a CTA pattern Pi , or a thread groupGi . Note

that for DI-sensitive applications, if a thread group with a new DI count is found while obtaining

the DI profile of the target input, then additional fault injection experiments for this thread group

are needed.
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Fig. 12. Methodology Overview: SUGAR

Table 5. Benchmark Classification

Criterion Benchmarks

DI-insensitive

1D structure

BlackScholes, MVT, Gaussian K1,

K-Means K1, K-Means K2,

PathFinder K1, PathFinder K5.

2D structure
2DCONV, GEMM, SYRK,

Gaussian K2, HotSpot.

DI-sensitive BFS K7, BFS K8, Jmeint, NN (K1, K4)

Step 4 : Estimate Application Kernel Resilience. This last step estimates application resilience

for the target input. For DI-insensitive applications, assuming that there aren different CTA patterns

in the whole kernel, let Res(Pi ) be the resilience of CTA pattern Pi for i < n (calculated in Step

3 ) , where i < n, and let its frequency f req(Pi ) be calculated by Step 1 , see Tables 3 and 4. To

calculate kernel resilience, each CTA pattern is weighted by the frequency of each pattern, and the

effect of scaling the input size is captured:

Res(kernel) =
n
∑

i=1

Res(Pi ) × f req(Pi ). (4)

For DI-sensitive workloads, we estimate the kernel resilience at the granularity of a thread.

Because of their non-deterministic DI patterns, we use the additional profiling of Step 1 (note that

this is just a regular, fault-free run) to obtain the frequency of each thread group Gi to calculate

kernel resilience:

Res(kernel) =
n
∑

i=1

Res(Gi ) × f req(Gi ), (5)

where n is the number of thread groups inside the target kernel, and Res(Gi ) and f req(Gi ) are
the resilience and frequency of thread group Gi . We stress that the above formulas are key to

extrapolate kernel resilience for larger inputs.

4.1 Arbitrary Large Input: Asymptotic Resilience for DI-insensitive benchmarks

For DI-insensitive kernels, based on the resilience of a small input subset and the extrapolated

CTA patterns, our methodology can estimate application resilience for any input size, including
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asymptotically large ones. We first use Gaussian K1 as an example, then generalize resilience

estimation for asymptotically large inputs.

Gaussian K1 has 2 CTA patterns, see Table 3. P1 occurs ⌈ ⌊√input_size ⌋
num_thd_per_cta ⌉ − 1 times, while P2

occurs only once (tail). Let P to be the total number of patterns in Gaussian K1:

P = ⌈ ⌊√input_size⌋
num_thd_per_cta

⌉ (6)

The percentages of the two composing CTA patterns are:

Pct(P1) = P − 1

P
, Pct(P2) = 1

P
(7)

and the kernel resilience of Gaussian K1 is obtained by:

Res(Kernel) = Pct(P1) × Res(P1) + Pct(P2) × Res(P2) (8)

For Gaussian, num_thd_per_cta in Eq.6 is a predefined number which does not change by the

input size. Therefore, when input_size becomes asymptotically large, the percentage of each pattern

becomes:
lim

input_size→∞
Pct(P1) = lim

P→∞
Pct(P1) = 1

lim
input_size→∞

Pct(P2) = lim
P→∞

Pct(P2) = 0
(9)

and the resilience of Gaussian K1 depends only on the dominant pattern P1:

lim
input_size→∞

Res(Kernel) = 1 × Res(P1) + 0 × Res(P2) = Res(P1) (10)

The dominant pattern for each kernel is marked on Tables 3 and 4 and is therefore used to derive

the asymptotic resilience for arbitrarily large inputs as follows:

lim
input_size→∞

Res(Kernel) = Res(Dominant_Pattern) (11)

Summary: When input size is asymptotically large, only the dominant patterns (the CTA

resilience patterns for DI-insensitive benchmarks or the thread resilience patterns for DI-sensitive

benchmarks) contribute to the final kernel resilience. The resilience of the whole kernel is dominated

by the resilience of the dominant pattern.

5 EVALUATION

We perform the fault injection campaign using GPGPU-Sim [6]. The detailed configurations of

the simulated GPGPU are shown in Table 6. We use fault site pruning [36], the state-of-the-art

fault injection methodology, to obtain the percentage of masked, SDC, and other outputs. Higher

percentage of masked outputs corresponds to higher application resilience.

Table 6. Detailed configurations of the simulated GPGPU.

Core Features 1400MHz core clock, 15 cores, 32 SIMD width

Resources per Core 48KB shared memory, 32768 registers, Max. 1536 threads (48 wavefronts × 32)

L1 Caches per Core
16KB 4-way L1 data cache, 2KB 4-way I-cache, 12KB 24-way texture cache,

8KB 2-way constant cache, 128B cache block size

L2 Cache 8KB 8-way per sub partition; 786KB in total. 128B cache block size

Memory Model 6 GDDR5 memory controllers, 16 DRAM-banks, FR-FCFS scheduling, 924 MHz memory clock

Interconnect 350MHz interconnect clock
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Fig. 13. Resilience profile for different benchmark kernels with medium and large inputs. We use the small

input to extrapolate the application resilience for medium and large inputs, this extrapolation is close to

ground truth (experimentation).

Accuracy. We use the results of the fault injection campaign of the smallest possible input that

each benchmark admits predicting kernel resilience of larger inputs of the same type. Recall that

the small input is a subset of the larger one and is defined as the smallest input that can fill a CTA.

The smallest input depends on the parallelization choices of the software developer. We evaluate

SUGAR’s prediction accuracy for two target sizes (medium and large) by comparing to results of a

detailed experimental campaign according to the existing state of the art (the fault site pruning

methodology) [36].

Figure 13 shows the comparison between estimation (solid bars) and experimentation (shaded

bars). For the small input, estimation and experimentation are identical, so it is pointless to evaluate

any accuracy. Across all benchmarks and for medium input, the average differences between

estimation and experimentation in terms of masked, SDC, and other outputs are 0.68%, 0.64%, and

0.25%, respectively. Accuracy remains excellent for large input: average errors are as low as 1.14%,

1.07%, and 0.31% for masked, SDC, and other outputs. Average errors across all cases (M and L), for

masked, SDC, and other outputs become 0.89%, 0.83%, and 0.28%, respectively.

The figure also presents the asymptotic resilience of DI-insensitive benchmarks (bar with the

tiled pattern, rightmost bar for each kernel). Naturally, for asymptotically large inputs, we only

report the estimation curve as the input size is practically infinity. For DI-sensitive benchmarks,

since an additional DI profiling is needed, estimating their asymptotic resilience is not possible. For

several kernels, the L input already reaches asymptotic resilience.

Finally, it is interesting to note three distinctive trends:

a) As input size increases, resilience drops for BlackScholes, Gaussian K1, and HotSpot. For

these benchmarks, the dominant CTA pattern is the most vulnerable one with the least

masked outputs. As size increases, the percentage of dominant CTA pattern also increases,

consequently the percentage of masked outputs decreases.

b) BFS K8 has the opposite trend: as input increases, reliability increases. For this kernel, the

dominant thread group is the more resilient one, and this is reflected with larger inputs.
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Fig. 14. Raw number of execution cycles for S, M, and L inputs. The resilience estimation speedup for M and

L is also given as a raw number for the M and L bars. On average, we achieve a speed-up of 7.3 for medium

inputs, a speedup of 186.6 for large inputs.

c) For the remaining benchmarks, resilience remains flat. For MVT, K-Means K1 and K2,

PathFinder K1 and K5, 2DCONV, GEMM, SYRK, and BFS K7, even for the smallest input, the

percentage of dominant pattern is already large enough to capture the asymptotic resilience.

Efficiency. Because of the shared cluster environment we are using, pure timing measurements

are not accurate, we therefore evaluate the performance of SUGAR as a function of instruction

cycles, see Figure 14. Although we analyze the resilience of kernels separately, to perform the

fault injection run, the whole benchmark including all kernels needs to be executed. We therefore

measure the number of execution cycles for the entire application, rather than for each kernel. We

show the raw number of execution cycles in the bar plot of Figure 14, note that the y-axis is in

logscale. On top of the M and L bars, we also report the actual speedup achieved with SUGAR.

For DI-insensitive benchmarks, the estimation overhead is only the fault injection campaign for

input S. For DI-sensitive benchmarks (i.e., BFS, Jmeint, and NN), the estimation overhead is the

fault injection campaign for input S, plus 1 additional dynamic instruction profiling run for each

larger input. We achieve an average speed-up of 97.0 across all benchmarks and both M and L sizes.

Note that this speed-up is tied to the two input sizes that we consider (M and L). If we consider

only the input L (essentially if we ignore the input M), the average speed up increases by 186.6. If

larger inputs than those used here were to be considered, then speed ups would have been higher.

Sensitivity to input type. The above discussion focuses on kernel resilience for different input

size but for the same input type. Here, we try to answer the following question: How does benchmark

resilience change depending on the input type? We select two benchmarks: one with flat resilience

profile (2DCONV) and one with a decreasing resilience trend (Blacksholes) as input size increases.

For 2DCONV we generate four inputs types: using a Uniform distribution with mean 0.5, using

an Exponential distribution with mean 0.5, and two inputs of two different images. Recall that

BlackScholes’s input has three parts (stock price, exercise price, and time, as described in Section 2.3).

The first input type uses data that are generated with a Uniform distribution, the second type is

generated with an Exponential distribution with the same mean as the Uniform, and two more types

are generated under Uniform distributions with means that are two and four orders of magnitude

larger than the first two input types.

Results are presented in Figure 15. The figure shows that trends (flat, decreasing) persist across

different input types but application resilience is strongly tied to the range of input values: the differ-

ence in resilience between the Exponential and Uniform inputs with the same mean is insignificant.

When inputs with dramatically different ranges or values are used (lower values for 2DCONV,

and higher values for BlackScholes), resilience dramatically increases. Consistent with the results

presented in Figure 13, SUGAR’s estimation is in excellent agreement with experimentation.
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(a) 2DCONV. (b) BlackScholes.

Fig. 15. Influence of different input types.

The above experiments illustrate that the input type can have a tremendous effect on GPGPU

application resilience. The topic deserves more detailed analysis but it is out of scope here.

6 RELATED WORK

GPGPU application resilience analysis: Fault-injection is commonly used to evaluate the reliability

of GPGPU applications [14, 20, 32, 36, 42, 44, 56]. SWIFI [56] injects faults by modifying programs

at the source level. The process is simple and fast but is too coarse-grained to accurately capture

resilience features at finer levels. GPU-Qin [14] injects faults at the micro-architecture level. The

authors leverage the GPU debugging tool cuda-gdb [1] to inject single bit errors into destination

registers. SASSIFI [20] directly injects faults into low-level SASS instructions, also with the help of

cuda-gdb. Unlike the compiler-based methods used in GPU-Qin and SASSIFI, Tselonis et al. [49]

propose GUFI to validate the feasibility of using the commonly used GPGPU simulator, GPGPU-

Sim [6] to study the reliability of GPGPU applications. Nie et al. [36] leverage GPGPU-specific

features to dramatically prune the fault site space without sacrificing accuracy. This pruned fault

site space can be used for evaluating how application resilience deteriorates in the presence of

multi-bit faults [54]. PCFI [42] accelerates fault injection guided by program counters to predict

fault injection outcomes. NVBitFI [3] is a fault injector for NVIDIA GPUs built on top of NVBit [51].

CPU resilience analysis: At the CPU domain, application resilience is measured using the Ar-

chitectural Vulnerability Factor (AVF) estimation or fault injection. Duan et al. [12] use Boosted

Regression Trees to model the relationship between AVF and various performance metrics. Nair et

al. [31] introduce a first-order mechanistic model for AVF, with inexpensive profiling to calculate

AVF. This model can also be used to explore factors that affect AVF. In addition to AVF, Sridharan

et al. [46] introduce the concept of Program Vulnerability Factor (PVF) and provide the method of

calculating PVF. Another detailed analysis of PVF to explain AVF behaviors is presented in [47].

Fault injection techniques are applied in CPU domain at different hardware and software levels[8,

11, 19, 24, 28, 50]. Relyzer [19] analyzes applications to generate a subset of fault sites for fault

injection. Approxilyzer [50] is built on top of Relyzer[19] to identify vulnerable instructions which

lead to SDC outputs. MeRLiN [24] accelerates the fault injection campaign for reliability assessment

by performing ACE-like analysis, grouping similar fault sites, and pruning fault sites. Trident [28]

analyzes error propagation at different levels to predict the percentage of SDC outputs for the

whole application and its instructions.

Input-dependent resilience analysis: A common limitation of the above works in both the CPU

and GPU domains is that they are input-dependent. In other words, fault injection experiments

have to be redone for different inputs. In the CPU domain, there are some works that consider the

effect of input on reliability. Li et al. [26] study the impact of different inputs on the probabilities

of silent data corruption (SDC) for CPU applications. Their solution, vTrident is compiler-based
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and bounds the SDC probability under multiple inputs using fault injection results obtained by

only one input. Inspired by software testing, Minotaur [30] leverages techniques from the software

engineering domain to speed up the reliability analysis for CPU applications. Specifically, they use

the test-case minimization concept to minimize the inputs selected for reliability assessment and

use binary search to find inputs that are small but representative. The above two solutions focus

on sequential execution and while well-suited to the CPU domain, they cannot be directly applied

to GPU applications as analysis needs to be performed for every single thread. Given the number

of threads and huge exhaustive fault sites shown in Table 1, straight-forward application of the

above techniques is not viable.

To our best knowledge, SUGAR is the first methodology in the GPU domain for estimating

application resilience for arbitrary large inputs given the smallest possible input of the same type.

This is achieved by identifying how CTA patterns are organized (and evolve) as a function of the

input size.

7 CONCLUSIONS

We deeply analyze the impact of different input sizes on application resilience and propose a new

resilience estimation methodology for large inputs that result in significant speedups (up to 1336 for

the cases considered here and 97.0 on the average) while being remarkably accurate with average

errors less than 1%. We show that the thread dynamic instruction (DI) count and CTA patterns

have a significant impact on the overall application resilience. The proposed methodology, SUGAR,

allows for the use of a small subset of input to extrapolate the resilience of arbitrarily large inputs

of the same type. As an immediate extension of this work, we are looking into analyzing the effects

of multi-bit faults by applying the methodology outlined in [54], the input-dependent resilience

of benchmarks with more thread communications, and the effect of the input type (especially the

range of input values) to application resilience.
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A PATTERNS OF DI-INSENSITIVE BENCHMARKS.

In Section 3.1 we use PathFinder K1 and HotSpot to showcase how to derive the patterns of

DI-insensitive kernels. The number of patterns of 1D and 2D benchmarks with input size N are

summarized in Table 3 and 4. Tables 7 and 8 illustrate the patterns of the specific input sizes used

in this paper (their generic formulas are provided in Table 1, column 5).

Table 7. 1D Patterns.

Benchmark Pattern
Number of CTAs

S M L

BlackScholes P1 1 32 256

P2 479 448 224

MVT P1 1 1 1

Gaussian K1 P1 1 2 8

K-Means K1 P1 2 4 8

P2 2 0 1

K-Means K2 P1 2 4 8

P2 2 0 1

PathFinder K1 P1 1 1 1

P2 1 33 150

P3 1 1 1

PathFinder K2 P1 1 1 1

P2 1 33 150

P3 1 1 1

Table 8. 2D Patterns.

Benchmark Pattern
Number of CTAs

S M L

2DCONV P1 1 1 1

P2 1 1 1

P3 1 8 64

P4 4 32 256

GEMM P1 1 64 256

SYRK P1 1 16 256

Gaussian K2 P1 3 7 31

P2 1 1 1

P3 3 21 465

P4 1 3 15

P5 6 28 496

P6 2 4 16

HotSpot #row 3 8 19

#column 3 8 19

B PATTERNS OF DI-SENSITIVE BENCHMARKS

In this appendix, we show the CTA patterns of all DI-sensitive benchmarks used in this paper and

show how to derive their resilience for different inputs.

Jmeint. Figure 16 shows the DI patterns of Jmeint for different inputs. There are mainly three DI

groups clearly shown in Figure 16: one at the bottom with 152 dynamic instructions per thread,

one in the middle with 225 dynamic instructions per thread, and one at the top with DI count

around 300. However, these patterns are not deterministic. A code snippet of Jmeint is presented in

Figure 17. The input of Jmeint is several arrays stores the 3D triangle coordinates, and the arrays

initialized in Line 5 are assigned with input data (Line 10ś27). All these arrays, v0, v1, v2, u0, u1,

and u2 are defined using input data. After several hops of variable calculations, du0du1 and du0du2

are compared to 0.0 in Line 58 (if condition). Because these two variables are derived using input

data, there is branch divergence due to input data. Therefore, Jmeint is DI-sensitive. The resilience

patterns of Jmeint are shown in Figure 18. Since Jmeint is DI-sensitive, one additional DI profiling

run with the target input is needed to determine its resilience.
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(a) Input S. (b) Input M (First 2 CTAs, 20 CTAs in total).

(c) Input L (First 2 CTAs, 200 CTAs in total).
Fig. 16. DI count scatter plot for S, M, and L inputs of Jmeint.

Fig. 17. Code snippet of Jmeint.

(a) Input S. (b) Input M (First 2 CTAs, 20 CTAs in total).

(c) Input L (First 2 CTAs, 200 CTAs in total).
Fig. 18. Resilience scatter plot in terms of the percentage of SDC outcomes for S, M, and L inputs of Jmeint.
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(a) Input S. (b) Input M (First 6 CTAs, 192 CTAs in total).

(c) Input L (First 6 CTAs, 768 CTAs in total).

Fig. 19. DI count scatter plot for S, M, and L inputs of NN K1.

(a) Input S. (b) Input M (First 6 CTAs, 192 CTAs in total).

(c) Input L (First 6 CTAs, 768 CTAs in total).

Fig. 20. Resilience scatter plot for S, M, and L inputs of NN K1.

NN K1. There are two DI groups in NN K1, see Figure 19, the resilience scatter plot is in Figure 20.

Because there are nearly no SDC outcomes in NN K1, we take this opportunity to also plot the

percentage of masked, SDC, and other outcomes (it is not possible to do the same in the remaining

of the benchmarks because SDCs have a strong presence across most CTAs and if masked and

other outcomes are also plotted, the figures become visually unattractive).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 1. Publication date: March 2021.



1:28 Lishan Yang et al.

(a) Input S. (b) Input M.

(c) Input L.

Fig. 21. DI count scatter plot for S, M, and L inputs of NN K4. Here we don’t plot the CTA lines, because every

CTA has only one thread.

(a) Input S. (b) Input M.

(c) Input L.

Fig. 22. Resilience scatter plot in terms of the percentage of masked outcomes for S, M, and L inputs of NN

K4. Because there is no SDC outcome in NN K4, we use the percentage of masked outcomes to show the

resilience patterns. Here we don’t plot the CTA lines, because every CTA has only one thread.

NN K4. The DI count and resilience scatter plots are shown in Figure 21 and Figure 22, respectively.

Here we do not plot the CTA lines (vertical pink lines), because every CTA has only one thread.

This is the original implementation and setup of NN K4 in the CUDA benchmark suite.
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(a) Input S (First 6 CTAs, 8 CTAs in total). (b) Input M (First 6 CTAs, 128 CTAs in total).

(c) Input L (First 6 CTAs, 1954 CTAs in total).

Fig. 23. Resilience scatter plot in terms of the percentage of masked outcomes for S, M, and L inputs of BFS

K7.

(a) Input S (First 6 CTAs, 8 CTAs in total). (b) Input M (First 6 CTAs, 128 CTAs in total).

(c) Input L (First 6 CTAs, 1954 CTAs in total).

Fig. 24. Resilience scatter plot in terms of the percentage of masked outcomes for S, M, and L inputs of BFS

K7.

BFS K7. Figure 23 and Figure 24 shows the DI count patterns and resilience patterns of BFS K7,

respectively. Similar to BFS K8, there is a main DI group at the bottom, and minor DI groups with

more dynamic instructions.
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