
Workflows for Performance Predictable and
Reproducible HPC Applications

Keira Haskins
Department of Computer Science

University of New Mexico
Albuquerque, NM USA

keirahaskins@cs.unm.edu

Quincy Wofford
Department of Computer Science

University of New Mexico
Albuquerque, NM USA
qwofford@cs.unm.edu

Patrick G. Bridges
Department of Computer Science

University of New Mexico
Albuquerque, NM USA

patrickb@unm.edu

Abstract—This poster presents an HPC application workflow
system whose goal is to provide verifiably-reproducible HPC
application performance. This system combines existing con-
tainer, experiment, and data management techniques with HPC
performance models, allowing it to both maximize performance
reproducibility and inform users when application performance
deviates from what should be expected even when running at
scales or for lengths of time at which the application had never
run.

Index Terms—container, HPC, experiment workflow, repro-
ducibility

I. INTRODUCTION

Performance predictability and reproducibility is important
for high-performance computing (HPC) applications. Pre-
dictable performance allows the system to better allocate
resources to the applications, and significant variation from
expected performance can be stronger indication of potential
application correctness problems. Predicting HPC application
performance, however, can be difficult in the face of changing
application inputs, scales, systems, and software configura-
tions.

This poster presents our ongoing research on creating HPC
application workflows that provide verifiably-reproducible
HPC application performance. This system does so by combin-
ing performance-predictive HPC application models with ex-
isting container, experiment, and data management techniques.
This allows the system to both maximize performance re-
producibility and inform users when application performance
deviates from what should be. Importantly, it can do so even
when running at scales or for lengths of time at which the
application had never run.

a) Overall Architecture:: Our general workflow, shown
in Figure 1, relies on a variety of different tools and tech-
niques in order to build a flexible architecture which may
easily be adapted for use on many different systems. First,
we integrate git and docker-based source code control, data
storage, and container management systems into end-to-end
experiment workflows based on the Popper convention [1].
These experiments are executed on standard HPC systems
using container execution systems such as Singularity [2].
Performance monitoring data is collected and pre-processed

on this infrastructure using performance monitoring tools such
as Open SpeedShop [3] or LDMS [4]. Finally, data analysis
and machine learning techniques then process the resulting
performance data and generate a model of application perfor-
mance which can then be used to guide and optimize future
application execution. The resulting continuous integration
pipeline can also be used to regularly validate application
behavior and associated research results.

b) Modeling Approach:: We build on recent work using
Extreme Value Theory (EVT) to model large-scale application
performance [5]. This approach provides a foundation for
using big-data analytics techniques to reason about HPC
application performance, and focuses on estimating the dis-
tribution of the lengths of the application’s bulk synchronous
parallel (BSP) intervals. Our current approach is focusing
on using traces of application performance to estimate BSP
interval lengths, but we are also examining other approaches to
allow lower overhead sampling-based approaches to construct
application performance models. These analyses are performed
in an iPython environment, providing both a convenient
dashboard for application scientists to visualize application
performance characteristics and access to state-of-the-art data
analytics techniques.

The contributions of this research are:
• A performance-predictability oriented workflow design

that integrates state-of-the-art HPC container, data and
experiment management, and performance monitoring
tools;

• A model-based approach to HPC application perfor-
mance prediction, regression testing, and anomaly detec-
tion in these workflows; and

• A demonstration of the ability of the resulting system
to provide performance predictability and reproducibility
across varying systems, system scales, and applications.

II. RESULTS

Our HPC application workflow consists of the following
Popper experiment pipeline stages:

1) An LDMS aggregator launches on the head node, moni-
toring hardware and software samplers at 2 second inter-
vals across all allocated nodes: /proc/stat, /proc/vmstat,
/proc/meminfo, /proc/interrupts, OpenMPI Send, Open-
MPI Recv.978-1-7281-4734-5/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:19:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overall Workflow Design

2) A pre-configured Docker image is pulled from Docker-
hub into the UNM-CARC Wheeler cluster.

3) The bsp prototype image is launched as a Singularity
container on a Wheeler compute node

4) An LDMS sampler is launched within the container
before running an OpenMPI workload.

5) Data are output by the aggregator in CSV format for
post-hoc analysis.

Fig. 2. LDMS OpenMPI Sampler data

Figure 2 shows output from the OpenMPI samplers described.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. OAC-1807563.

REFERENCES

[1] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, and J. Lofstead, “The
popper convention: Making reproducible systems evaluation practical,” in
2017 IEEE International Parallel and Distributed Processing Symposium
Workshops, (IPDPSW), 2017.

[2] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLoS ONE, vol. 12, no. 5, 2017.

[3] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and
S. Cranford, “Open speedshop: An open source infrastructure for parallel
performance analysis,” Sci. Program., vol. 16, no. 2-3, pp. 105–121,
Apr. 2008. [Online]. Available: http://dx.doi.org/10.1155/2008/713705

[4] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The lightweight distributed metric
service: A scalable infrastructure for continuous monitoring of large scale
computing systems and applications,” International Conference for High
Performance Computing, Networking, Storage and Analysis, SC, vol.
2015, pp. 154–165, 01 2015.

[5] O. H. Mondragon, P. G. Bridges, S. Levy, K. B. Ferreira, and P. Widener,
“Understanding performance interference in next-generation hpc sys-
tems,” in Conference: 2016 ACM/IEEE Conference on Supercomputing
(SC’16), November 2016.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on August 05,2021 at 18:19:09 UTC from IEEE Xplore. Restrictions apply.

