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Abstract—Graphics Processing Units (GPUs) are widely used
by various applications in a broad variety of fields to accelerate
their computation but remain susceptible to transient hardware
faults (soft errors) that can easily compromise application output.
By taking advantage of a general purpose GPU application
hierarchical organization in threads, warps, and cooperative
thread arrays, we propose a methodology that identifies the
resilience of threads and aims to map threads with the same
resilience characteristics to the same warp. This allows engaging
partial replication mechanisms for error detection/correction at
the warp level. By exploring 12 benchmarks (17 kernels) from
4 benchmark suites, we illustrate that threads can be remapped
into reliable or unreliable warps with only 1.63% introduced
overhead (on average), and then enable selective protection
via replication to those groups of threads that truly need it.
Furthermore, we show that thread remapping to different warps
does not sacrifice application performance. We show how this
remapping facilitates warp replication for error detection and/or
correction and achieves an average reduction of 20.61% and
27.15% execution cycles, respectively comparing to standard
duplication/triplication.

Index Terms—Reliability, GPGPU application resilience, Tran-
sient faults, Thread remapping

I. INTRODUCTION

As general purpose GPUs (GPGPUs) are becoming in-

creasingly susceptible to transient hardware faults (soft errors)

often from cosmic radiation [1] or from operating under low

voltage [2], their reliable operation is of critical importance.

With GPGPUs becoming omnipresent in fields such as high-

performance computing (HPC), artificial intelligence, deep

learning, virtual/augmented reality, and safety critical systems

such as autonomous vehicles [3]–[10], transient hardware

faults can lead to bit flips in storage devices including the reg-

ister file and DRAM. Such bit flips are increasing in frequency

as system scales increase especially in the HPC domain [11]–

[13]. If bit flips occur during application execution, they may

result in application crashes/hangs or even worse in silent

data corruption (SDC) where the application successfully

completes execution but its output is incorrect. Executions

that result in SDC outcomes are the most undesirable as they

erroneously provide the user with the illusion of correct output,

although cases of SDC output that is within certain user-

acceptable ranges may exist [14]. To ensure reliable appli-

cation execution, several mechanisms are widely employed

including error correction codes (ECC) [15]–[17], but ECC

cannot still provide protection to datapath errors that originate

from unprotected latches in functional units (e.g., arithmetic

logic and load-store units) [18].

Reliable execution of GPGPU applications requires high-

overhead protection mechanisms such as check-pointing [19],

[20] or software solutions that are based on replication. In the

GPU domain such replication can be done at different levels:

at the kernel, thread, or instruction level. At the thread level,

replication is based on using redundant copies of a thread (or

block of threads) and then on comparing their results [21].

Different compiler-based implementations of this idea [21],

[22] aim to reduce the unavoidable synchronization overhead

between the original and redundant threads. If replication

is done at the instruction level [23], then the overhead of

redundant multi-threading can still be significant. In addition,

not all dynamic instructions are typically covered.

In this paper, we offer an orthogonal approach that is based

on the fact that thread resilience profiles within a GPGPU

application may differ significantly – some threads are inher-

ently resilient, while some are not [24], thread resilience may

also depend on application input [25]. Application resilience

eventually depends on the thread organization of GPGPU

application software. In GPGPU applications threads are ar-

ranged at three levels: kernels, thread blocks (or cooperative

thread arrays (CTAs) in CUDA terminology), and warps. Each

GPU core schedules work at a granularity of warp, which is

usually a group of 32 threads. Each group executes the same

instruction in a lock-step manner. This is essentially the basis

of single-instruction-multiple-thread (SIMT) execution.

Our thesis is that GPGPU software resilience can be

achieved via selective warp replication provide that threads

remapped into warps such that warps consist of threads that

are either reliable or unreliable. Therefore, if warps consist of

threads that are inherently reliable, these warps (their threads

or their instructions) do not have to be replicated to increase

their resilience. Instead, only warps that contain unreliable

threads need to be replicated. The advantage here comes from

scheduling of warps in the single-instruction-multiple-data

(SIMD) paradigm: as threads within the warps are scheduled

in a lock-step way, it is a lot easier to replicate an entire warp

of unreliable threads rather than replicate individual threads

within warps (or instructions within threads) and reconcile

their outcome as the classic redundant multi-threading [21],
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[22] advocates.

The process of thread remapping at the warp level is

transparent to the software developer and offers a simple way

to reorganize code with minimal effort. We stress that the

application resilience profile (i.e., the percentage of application

executions that result in crashes/hangs, SDC, and correct

executions in presence of bit flips) strongly depends on branch

divergence and input data taken by different threads [26]. Since

application resilience is tied to input, it cannot possibly guide

software development. The remapping that we propose in this

paper allows the developer to improve application resilience in

a transparent way, either by changing the thread-warp mapping

to activate replication for a fully transparent approach to the

code developers, or by providing guidance to the developer

to simply reorganize threads in such a manner that facilitates

replication but does not interfere with the parallelization and

synchronization logic of the software.

In summary, we make the following contributions:

• Based on individual thread resilience we categorize the

warps into three classes: a) Reliable warps where all

threads are resilient to single-bit errors, b) Unreliable

warps where all threads are unreliable, and c) Mixed

warps that contain both reliable and unreliable threads.

We show that mixed warps are abundant in kernels.

• We propose a low-overhead partial thread protection

mechanism by remapping threads such that the number

of mixed warps is minimized. In other words, we change

the thread to warp mapping such that distinct reliable

and unreliable warp groups are formed. This facilitates

the need for protecting only unreliable warps as this

remapping maintains the per-thread resilience profile.

• We present experiments using 12 benchmarks (17 ker-

nels) from the AxBench, CUDA, PolyBench, and Ro-

dinia suites [27]–[30] and show that 7 of these kernels

can benefit from remapping. We show that remapping

increases on the average the percentage of reliable warps

from 23.40% to 42.08%, while incurring only 1.63%

execution overhead due to increased number of stalls in

shared memory.

• By duplicating or triplicating the warps, we can easily

detect when an error occurs (if duplication is used) or

correct the error via triplication [21], [22]. We show that

by selectively replicating warps that contain unreliable

threads after remapping (i.e., unreliable or mixed warps),

we achieve average performance savings 20.61% and

27.15%, for detection and protection, respectively.

The remaining of the paper is organized as follows. Sec-

tion II describes the background of GPU architecture and the

fault model used in this paper. Section III presents character-

ization regarding various thread resilience patterns observed

in the studied benchmarks. Inspired by the characterization

results, we propose a partial thread protection mechanism via

remapping; the details can be found in Section IV. Section V

evaluates the performance gains as well as the overhead of

remapping. Then, Section VI discusses related work, and

eventually we conclude in Section VII.

II. BACKGROUND

In this section, we provide a brief introduction on the

baseline GPU architecture and the GPGPU execution model.

We also discuss the fault model, fault injection method, and

application resilience profile.

A. GPUs and GPGPU Application Structure

Baseline GPU Architecture. A GPU typically is equipped

with a large number of cores, also known as streaming-

multiprocessors (SMs) in NVIDIA terminology [15]. Each

core has its private L1 cache, software-managed scratchpad

memory, and a large register file. An interconnection network

connects all these cores to global memory, which consists of

various memory channels (partitions). Every memory channel

has a shared L2 cache, and its associated memory requests are

handled by a GDDR5 memory controller. There are various

protection techniques for single-bit faults in recent commer-

cial GPUs [15]–[17], including single-error-correction double-

error-detection (SEC-DED) error correction codes (ECCs)

that protect register files, L1/L2 caches, shared memory and

DRAM against soft errors. Other structures such as arithmetic

logic units (ALUs), thread schedulers, instruction dispatch

units, load/store units (LSUs), and interconnection network

are not protected [15]–[17].

Fig. 1. GPU Software Execution Model.

GPGPU Software Execution Model. Following the single-

instruction-multiple-thread (SIMT) philosophy [31], GPGPU

applications execute thousands of threads concurrently over

large amounts of data. This helps in masking the latency

and achieving high throughput. A typical GPGPU application

launches various kernels on the GPUs, see Figure 1. Each

kernel is divided into groups of threads, known as thread

blocks, which are called Cooperative Thread Arrays (CTAs) in

CUDA terminology. A CTA encapsulates all synchronization

and barrier primitives among a group of threads [31], [32].

This CTA formation enables the GPU hardware to relax the

execution order of the CTAs, for the purpose of maximizing

parallelism. Threads inside one CTA can be further divided

into groups of 32 individual threads, known as warps. As the

most fine-grained level in terms of scheduling, warps execute

a single instruction on the functional units in lock step. This
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TABLE I
SELECTED BENCHMARKS.

Suite Benchmark Kernel Name Kernel ID Pct. of reliable warps Pct. of reliable threads

AxBench

Jmeint Jmeint kernel K1 0.00% 55.15%

Laplacian LaplacianFilter K1 49.38% 54.08%

MeanFilter AverageFilter K1 17.19% 26.55%

CUDA

executeFirstLayer K1 100.00% 100.00%

NN executeSecondLayer K2 100.00% 100.00%

(NeuralNetwork) executeThirdLayer K3 100.00% 100.00%

executeFourthLayer K4 100.00% 100.00%

SCP scalarProdGPU K1 0.00% 0.00%

PolyBench
2DCONV Convolution2D kernel K1 0.00% 12.11%

MVT mvt kernel1 K1 0.00% 0.00%

Rodinia

Gaussian
Fan1 K1 87.50% 90.62%

Fan2 K2 63.89% 95.87%

HotSpot calculate temp K1 25.00% 43.75%

NearestNeighbor euclid K1 0.56% 0.57%

PathFinder dynproc kernel K1 8.33% 19.79%

SRAD
reduce K3 100.00% 100.00%

srad K4 100.00% 100.00%

sub-division of warps is an architectural abstraction, which is

transparent to the application programmer.

B. Fault Model

We assume that register files and other components such

as caches and memory are protected by ECC (which is the

case in almost all GPUs). We simulate commonly occurring

computation-related errors due to transient faults (known as

soft errors) in ALUs/LSUs. These faults can lead to wrong

ALU output which would then be stored in destination regis-

ters, or corrupted variables loaded by an LSU. This erroneous

computing operation is what we emulate by injecting faults

directly to destination register values. This is a standard

experimental methodology for GPGPU reliability studies [18],

[24], [33]–[35].

The fault injection methodology used here closely follows

the one used in [24], [36]: we flip a bit at a destination register

identified by the thread id, the instruction id, and a bit position.

We perform our reliability evaluations on GPGPU-Sim [37]

with PTXPlus mode. GPGPU-Sim is a widely-used cycle-

level GPU architectural simulator, and its PTXPlus mode pro-

vides a one-to-one mapping of instructions to actual ISA for

GPUs [36], [37]. Any fault injection tool or technique. (e.g.,

SASSIFI [18] or NVBitFI [38]) can be used for evaluating

the application reliability, i.e., the technique presented in this

paper does not depend on GPGPU-Sim.

GPGPU Application Resilience Profile. For each fault injec-

tion experiment, there are three possible outcomes:

• masked output: the application output is identical to that

of fault-free execution.

• silent data corruption (SDC) output: the fault injection

run exits successfully without any error, but the output is

incorrect.

• other: the fault injection run results in a crash or hang.

To obtain the resilience profile of an application run, we

conduct an experimental campaign using the state-of-the-art

fault injection methodology proposed by Nie et al. [24] that

aggressively prunes the fault space while achieving accuracy

that is remarkably close to the ground truth. Within the

pruned fault space, we conduct one run per fault location

(one single bit flip) and evaluate the application outcome as

masked, SDC or other. We aggregate the outcome of all

experiments to obtain the application resilience profile, i.e.,

what percentage of the runs are expected to result in masked,

SDC, or other outputs. The lower the SDC percentage, the

higher the application resilience. In this paper, we focus on

reducing the percentage of SDC outputs. Faults that lead to

masked outputs can be ignored, while faults that lead to a

crash or hang are easily detected.

In this work we focus on how to improve application

resilience protection when a single bit fault occurs. The

proposed methodology can be readily extended to multi-bit

fault models [39].

III. CHARACTERIZATION

We conducted experiments across 12 benchmarks (17 ker-

nels) selected from 4 benchmark suites [27]–[30], listed in

Table I. The selected benchmarks cover different application

domains including 3D gaming, image processing, and scien-

tific computations. Past work has established that different
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Fig. 2. All the threads are reliable in SRAD K3. Gray solid lines separate
different warps, and yellow dashed lines separate different CTAs. Due to space
constraint, here we only show the first 3 CTAs in the kernel. There are in
total 8 CTAs in SRAD K3.

GPU threads have different resilience profiles and that the

thread dynamic instruction count (iCnt) can be used as a proxy

of individual thread resilience [24], [33]. Indeed, fault site

pruning [24] is based on this exact concept: it demonstrates

that threads with the same dynamic instruction count have the

same resilience profile, therefore it is sufficient to select one

thread from each group with the same iCnt for fault injection

and extrapolate the thread resilience of the entire group

from a single thread. Our experiments further corroborate

here what past work has also shown: different threads have

typically different resilience. Understanding the patterns of

thread resilience is helpful for scheduling purposes to improve

application resilience. We categorize benchmarks into three

cases: reliable, unreliable, and mixed, based on the thread

resilience within each warp. We focus on warps because a

warp is the smallest scheduling unit. In addition, it is not

desirable to change the thread-CTA mapping. If done so, it

breaks the synchronization and thread communication within

a CTA, requiring significant effort in redesigning the parallel

software logic.

The percentage of SDC outcomes across the various num-

bers of experiments can characterize one thread as reliable

or unreliable. For example, if the percentage of fault-injected

runs that result in SDC outcomes is smaller than a small

number (typically in the range from zero to 5%, essentially

if its resilience coverage is 95%), then we characterize the

thread as reliable, otherwise it is deemed unreliable. In the

following, we show some example cases.

1. All threads are reliable. Some applications are very

resilient to faults. Figure 2 shows the resilience scatter plot

of different threads in SRAD K3. Threads are organized in

thread launching order. We use the gray solid lines to separate

different warps, and use yellow dashed lines to separate

different CTAs. Due to space constraint, here we only show

the first 3 CTAs in SRAD K3, but the same pattern repeats

across all CTAs: all threads in SRAD K3 are reliable. Similar

to SRAD K3, SRAD K4 and all NN kernels are highly resilient

to soft errors.

2. All threads are unreliable. Some applications have

a high probability of SDC outputs when faults are injected.

Figure 3 shows the percentage of SDC outputs per thread

Fig. 3. All threads are unreliable in SCP. Gray solid lines separate different
warps, and yellow dashed lines separate different CTAs. There are 128 CTAs
in total, but due to space constraint, we only show the first 6 CTAs.

for SCP. Here, all threads have more than 40% SDC outputs.

An application with similar resilience behavior is MVT, with

63.82% SDC outputs for all of its threads.

3. Mixed Reliable and Unreliable Threads within Warps.

Reliable and unreliable threads can co-exist in the same

warp (and consequently CTA), see Figure 4. Reliable threads

are marked with a green ‘+’, while red ‘x’ represents unreliable

threads and marks their SDC probability. We start from

two simple benchmarks: Gaussian K1 and NearestNeighbor

(Figure 4(a) and (b), respectively). For Gaussian K1, there

are in total 512 threads organized in one CTA only. The

first 48 threads are unreliable, and the remaining threads

are very resilient (their percentage of SDC outputs is 0%).

NearestNeighbor shows a similar resilience pattern: threads

at the beginning are unreliable, those that are launched later

are reliable. There are in total 168 CTAs in NearestNeighbor.

Due to the space constraint, here we only show the last 6

CTAs which can best express the idea of well-organized warps.

For both Gaussian K1 and NearestNeighbor, reliable threads

and unreliable threads are already organized separately within

different warps (with the exception of a single warp either at

the start for Gaussian or at the tail for NearestNeighbor that

contains both reliable and unreliable threads).

However, there are benchmarks where their threads are

not that well-organized. For HotSpot, shown in Figure 4(c),

reliable and unreliable threads are mixed within different

warps. Due to space constraint, here we only show the first 6

CTAs at the beginning for HotSpot. As shown in Table I, the

percentage of reliable warps (warps containing only reliable

threads) is 25% for HotSpot, but there are in total 43.75%

reliable threads.

Similarly, in Jmeint, there is no reliable warp, because all of

the warps have both reliable and unreliable threads, as shown

in Figure 4(c). For Jmeint more than half (55.15%) of the

threads are reliable. However, since they are mixed in CTAs

with the remaining 44.85% unreliable threads, protecting via

replication would require replication of the entire kernel, i.e.,

every warp. Similar observations apply to Laplacian, MeanFil-

ter, 2DCONV, Gaussian K2, and PathFinder, see Figure 4(e)-

(h).

Figure 4 clearly illustrates that there is ample scope for

partial protection: If we group threads judiciously, then we can
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(a) Gaussian K1. (b) NearestNeighbor (last 6 CTAs).

(c) HotSpot (first 6 CTAs). (d) Jmeint (first 3 CTAs).

(e) Laplacian (first 5 CTAs). (f) MeanFilter (first 3 CTAs).

(g) 2DCONV. (h) Gaussian K2 (first 3 CTAs).

(i) PathFinder.

Fig. 4. Reliable and unreliable threads exist together in the same warp. Due to space constraints, we only show the a part of the CTAs for NearestNeighbor,
HotSpot, Jmeint, Laplacian, MeanFilter, and Gaussian K2.

increase the percentage of reliable warps, and avoid redundant

protection of warps (threads) that are anyway resilient. Table II

summarizes the benchmark categorization.

Summary. From the reliability perspective, there is no

need to protect reliable threads. Benchmarks where all threads

are reliable, result in reliable kernel executions. Similarly, for

benchmarks that have warps that are all unreliable, protection

needs to be applied to the entire kernel. Approaching kernel

reliability from the scheduling perspective, threads are grouped

and scheduled in units of warps, which is transparent to

software developers. For benchmarks that consist of both

reliable and unreliable threads, we explore ways to remap

threads into warps such that warps consist of only reliable

or unreliable threads. If this is done, then it is not necessary

5



TABLE II
BENCHMARK CATEGORIES

Category Benchmark

All threads are reliable
NN K1, NN K2, NN K3,

NN K4, SRAD K3, SRAD K4

All threads are unreliable SCP, MVT

Mixed
warps

Well-organized Gaussian K1, NearestNeighbor

Need Remapping
Jmeint, MeanFilter, 2DCONV,

HotSpot, Gaussian K2,

PathFinder, Laplacian

Fig. 5. Workflow.

to protect the application fully but instead focus on protecting

unreliable warps only.

IV. RESILIENT SOFTWARE PROTECTION VIA REMAPPING

In [24], threads are identified as the most important GPGPU

component, and the resilience pattern of an application can

be derived from thread resilience. Here, we propose a low-

overhead partial protection mechanism that leverages thread

resilience patterns via remapping. The main idea is to remap

threads to warps for the purpose of separating reliable and

unreliable threads, as scheduling of threads can be done at the

warp granularity. By addressing the problem at the warp level,

we propose to recompute warps that contain unreliable threads,

essentially offering partial protection to a subset of warps

and not the entire kernel, without compromising application

reliability.

Figure 5 shows the workflow of the proposed protection

mechanism. There are two components: 1) Offline analysis,

to obtain the resilience-aware thread order, and 2) Online

protection, which uses this resilience-aware thread order to

achieve low-overhead protection.

1) Offline Analysis. For any target kernel and for a specific

input, the resilience of each thread needs to be first

obtained. There is no restriction on which method of re-

liability analysis is used. Fault injection campaigns [18],

[24], [33], ACE (Architecturally Correct Execution)

analysis, or a combined method leveraging both fault

injection and ACE analysis [40] can be used. The only

requirement is that the resilience of every thread needs to

be evaluated. This is not difficult to do, despite the fact

that most GPGPU applications have tens of thousands of

threads, because for most benchmarks threads with the

same DI count have the same resilience behavior [24],

[33]. This reduces the number of experiments that need

to be done to obtain the thread resilience profile. In this

work, we evaluate thread and kernel resilience using the

fault site pruning technique [24].

We first identify the resilience profile of threads in

their launching order (see Figure 4). Then, threads are

re-ordered into warps following the remapping logic:

threads with similar resilience are remapped into the

same warp. Detailed explanation is in Subsection IV-A.

2) Online Protection. Based on the resilience-aware

thread order obtained from offline analysis, we can

remap threads before execution. The actual remapping

idea can be implemented in various ways. In this

work, we directly change the thread-warp mapping

(see Subsection IV-A for implementation details). Af-

ter remapping, threads are executed, and error detec-

tion/correction is applied to unreliable warps only. Error

detection/correction can be implemented and applied

in various ways. Here, we use warp duplication for

error detection, and warp triplication for error correction.

Details are given in Subsection IV-B.

A. Remapping

CTAs are collections of threads defined by the CUDA

programmer. The thread to warp mapping is done linearly by

default (i.e., threads are allocated to warps in groups of 32

as shown in Figure 6(a)). To change the mapping between

thread to warp, we first identify reliable/unreliable threads

in offline analysis, then remap threads, see Figure 6(b). By

changing the linear thread order, we can group threads with

the same resilience (i.e., percentage of SDC outputs) into the

same warp, and use different resilience protection at the warp

level according to their reliability profile. Note that remapping

is done within each CTA, but not across CTAs. This is be-

cause synchronization is ensured inside each CTA. Remapping

across different CTAs can affect their synchronization, hence

introduce errors in the software logic.

We use GPGPU-Sim [37] to implement the above. At the

initialization phase, CTAs are constructed. Without remapping,

threads are launched linearly. With remapping, we fill each

CTA according to its resilience-based launching order. This

resilience-based launching order is decided based on offline

profiling. We start fetching threads from the beginning of the

linear launching order, and put reliable threads into a warp.

Meanwhile, we organize unreliable threads into another warp,

if any. When a warp is filled (32 threads), the warp is ready for

execution, and a new warp is formed for the upcoming threads.

When all the threads are remapped into warps, if there are any

partially filled reliable or unreliable warps, they are combined

6



(a) Thread-warp mapping.

(b) Remapping.

(c) Remapping and protection.

Unreliable warps are replicated once for detection.

If applying error correction, there are two replicas.

Fig. 6. Logic of mapping, remapping, and protection.

into one mixed warp and ready for execution. It is important to

note that thread remapping to different warps does not affect

their reliability profile because thread resilience is typically

determined by branch divergence and input data and not the

order of thread execution [41].

B. Partial Protection

In addition to remapping, error detection/correction can

be applied to unreliable warps. Here, we use warp replica-

tion/triplication, to demonstrate how partial protection works.

During remapping, when an unreliable warp is filled (32

threads), we replicate it into another warp and send both warps

to execute. After these two warps finish execution, thread

outputs (usually the outputs are the computation results to

be written into memory by store instructions) are compared

to detect whether there is any difference, see Figure 6(c).

Since warps are the smallest unit for scheduling at the GPU

level, duplication at the warp level is transparent for the

programmer to handle than at the thread level. Duplication

at the CTA level would require redoing the logic of communi-

cation/synchronization among threads, a far more challenging

software effort. This is fully avoided by handling replication

at the warp level.

If error correction is applied, then each unreliable warp is

triplicated, according to triple modular redundancy (TMR).

In Figure 6(c), warp-2 is triplicated into warp-2’ as well as

warp-2” for error correction. Since reliable warps do not need

error detection/correction, they are not replicated/triplicated.

Note that, mixed warps that have both reliable and unreliable

threads also need to be duplicated or triplicated for error

detection/correction.

V. EVALUATION

In this section we present a detailed evaluation of thread

remapping (Section V-A). Then, we discuss the overhead mag-

nitude when applying protection via remapping (Section V-B).

A. Effectiveness of Thread Remapping

We first show the resilience pattern of different benchmarks

after remapping, see Figure 7. In this figure, if a thread has

an SDC probability less or equal to 5%, it is considered

reliable, and remapping is performed based on this 5% SDC

threshold, i.e., our goal is a 95% reliability coverage. Gray

solid lines in Figure 7 separate different warps, and yellow

dashed lines separate different CTAs. For HotSpot, in the first

CTA, originally all the reliable threads in Figure 4(c) are

distributed across all warps. After remapping, these reliable

threads are gathered and scheduled in the first and last warp

of the CTA. We end up with 1, 5, 1, and 5 reliable warps

for the second, third, fourth, and sixth CTA, respectively.

There is a mixed warp at the end of the third CTA. Since

there are still unreliable threads in this mixed warp, it still

needs protection. For the fifth CTA, all threads are unreliable,

therefore the thread resilience pattern is the same before and

after remapping. The resilience patterns after remapping for

Jmeint, Laplacian, MeanFilter, 2DCONV, Gaussian K2, and

PathFinder are shown in Figure 7(b)-(f).

The improvement in terms of the percentage of reliable

warps for applications is shown in Figure 8. On average,

originally the percentage of reliable warps is 23.40%. By

remapping, the percentage increases to 42.08%. The biggest

improvement happens on Jmeint, where there are 52% reliable

warps after remapping from the original 0%.

Changing the SDC tolerance threshold can result in different

remappings. Figure 9 shows how remapping changes the

resilience pattern when different SDC thresholds are applied

in Jmeint. If the SDC threshold is set to 2%, there are a few

reliable threads to be remapped, see Figure 9(a). For increased

SDC thresholds, remapping results in more reliable warps, see

the changes of resilience patterns in Figure 9(a) to (d).

For Hotspot, even for SDC threshold equal to 0%, there are

still several reliable warps (two warps in Figure 10(a) within

the first 6 CTAs and in total 25% for the whole kernel). With

the SDC threshold increasing, see Figure 10(b)-(d), remapping

changes the resilience pattern, and more reliable threads are

gathered together.
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(a) HotSpot (first 6 CTAs). (b) Jmeint (first 3 CTAs).

(c) Laplacian (first 5 CTAs). (d) MeanFilter (first 3 CTAs).

(e) 2DCONV. (f) Gaussian K2 (first 3 CTAs).

(g) PathFinder.

Fig. 7. Resilience patterns after remapping. If a thread has SDC probability less or equal to 5%, it is considered reliable. Due to space constraint, we only
show the first several CTAs for HotSpot, Jmeint, Laplacian, MeanFilter, and Gaussian K2.

Fig. 8. Percentage of reliable warps before and after remapping.

Figure 11 shows how the percentage of SDC outputs

changes when the SDC threshold increases for all 7 bench-

marks eligible for remapping. Jmeint and PathFinder are the

first two benchmarks reaching 100% reliable warps, with SDC

threshold less than 20%. Gaussian K2 has 94% reliable warps

when the SDC threshold is 3.6% only. This is because the

SDC percentage of its major thread group is 3.6%. HotSpot

reaches 100% reliable when SDC threshold is about 50%, and

2DCONV requires SDC threshold to be 80% to get 100%

reliable warps. MeanFilter is the most complicated benchmark,

and it reaches 100% reliable only when SDC threshold is set

to 100%, because 15% of the threads have 100% SDC outputs.

In general, we see that if we set the SDC threshold to 5% only,

there is still ample room for remapping for most benchmarks,

as shown in Figure 8.

B. Overhead Introduced by Remapping and Protection

Thread remapping (and protection) may affect the perfor-

mance of program execution. Because of the shared cluster

environment we are using, pure timing measurement is not

accurate. Instead, we use the number of instruction cycles

measured using GPGPU-Sim performance mode to reflect the

execution performance.
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(a) threshold = 2%

(b) threshold = 5%

(c) threshold = 12%

(d) threshold = 15%

Fig. 9. Remapped resilience patterns of Jmeint under different SDC threshold.
Due to space constraint, we only show the first 3 CTAs.

For overhead analysis, we first present the performance

overhead due to remapping. The remapping overhead of each

benchmark kernel is shown in Figure 12. On average, the

remapping overhead is only 1.63%. Note that there are some

benchmarks with negative overhead in Figure 12, such as

Laplacian, 2DCONV, HotSpot, and PathFinder, in these cases

execution cycles reduce with remapping.

To better understand why remapping may result in better

performance, we look into various performance measures that

are normalized over the original thread mapping. Figure 13

shows the normalized L1 data cache miss rate and the number

of stalls caused by accessing shared memory. The numbers

are normalized by the execution without remapping. On the

one hand, from Figure 13(a), we observe that the L1 data

cache miss rate is decreasing. On the other hand, Figure 13(b)

shows that the number of stalls increases for 2DCONV,

Jmeint, HotSpot, and PathFinder; for Laplacian, MeanFilter,

(a) threshold = 0%

(b) threshold = 5%

(c) threshold = 22%

(d) threshold = 25%

Fig. 10. Remapped resilience patterns of HotSpot under different SDC
threshold. Due to space constraint, we only show the first 6 CTAs.

Fig. 11. Percentage of reliable warps grows as the SDC tolerance threshold
increases.

and Gaussian K2, the number of stalls decreases. Trends are

not consistent across benchmarks, therefore some gain and

some lose performance with remapping. In sum, we claim

that remapping does not significantly affect performance which

9



Fig. 12. Overhead of remapping.

(a) L1 Data Cache Miss Rate (b) Number of Stalls

Fig. 13. Detailed metrics of remapping overhead. All numbers are normalized
by the execution without remapping.

remains in the same ballpark as the original cases.

Last but not least, we show the performance savings of

applying error detection/correction after remapping. In the case

of error detection, we compare our technique with RMT (Re-

dundant Multi-Threading), where all the threads (all warps) are

duplicated for error detection. Figure 14 shows the execution

performance of our remapping technique in execution cycles,

comparing to RMT. We also present the percentage of saved

execution cycles at the top of each application bar. On average,

the percentage of saved execution cycles for error detection

is 20.61%, while Gaussian K2 achieves a significant 42.39%

savings.

In addition, we compare partial protection via remapping

with TMR (Triple Modular Redundancy), results are shown

in Figure 15. The average saving in terms of execution cycles

is 27.15%, and again, Gaussian K2 has the highest savings

of 60.02%. Generally performance results are similar for

both error detection and correction, and the saving of error

correction is always higher for every benchmark. This is

expected, since partial protection using triplication avoids the

execution of two copies for all reliable warps, while for error

detection with duplication, we only save one copy execution

of reliable warps. The per benchmark savings are related to

the benchmark resilience profile, i.e., the percentage of reliable

threads in each CTA. Since 95.87% of threads in Gaussian K2

is reliable, this benchmark achieves the highest savings.

Summary. We show the effectiveness of remapping by

analyzing the percentage of reliable warps, which increases on

Fig. 14. Comparison of execution performance using duplication for error
detection between remapping and RMT.

Fig. 15. Comparison of execution performance using triplication for error
correction between remapping and TMR.

average from 23.40% to 42.08% with remapping. Remapping

introduces moderate to insignificant overhead. After applying

remapping with protection, an average saving of 20.61% and

27.15% execution cycles for error detection (duplication of

CTAs without remapping) and correction (triplication of CTAs

without remapping), respectively.

VI. RELATED WORK

Several works address reliability within the software engi-

neering domain. Chiminey [42] provides a reliable platform

for cloud computing. Bleser et al. [43] presents an automated

approach to analyze the resilience of actor programs in dis-

tributed systems. Chan et al. [44] uses invariants to study error

propagation in multi-threading applications using software

fault injection. Yang et al. [45] uses a software fault injection

tool to evaluate different anomaly detectors. However, none of

these works are applied in the context of GPUs.

Redundancy-based solutions are used to protect GPGPU

applications from errors. Such solutions rely on double execu-

tion [21], [23], [46] for error detection, called dual-modular

redundancy (DMR) and triple execution [47], [48] for error

correction, called triple-modular redundancy (TMR). Dimitrov

et al. [46] first evaluate the overhead of introduced redundancy

at kernel level, thread level, and instruction level and show

that at all levels the overhead can be over 90%. Wadden et

al. [21] take a deeper look at two different ways of applying

redundant multithreading (RMT) at the granularity of CTAs

(i.e., intergroup RMT and intragroup RMT) and present the

trade-off between overhead and resilience coverage. Mahmoud

et al. [23] choose instruction-level redundancy as it is trans-

parent to programmers and propose SInRG, a collection of
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several software and hardware optimizations, to further reduce

overhead. In addition to those works targeting error detection,

researchers also propose various solutions to correct errors

with reduced overhead [47], [48] as compared to a naive

implementation of TMR with triple overhead.

While the aforementioned solutions all focus on comparing

and analyzing various redundancy-based protection solutions

and seeking opportunities to reduce redundancy overhead,

the “partial protection” methodology approaches this problem

from a totally different perspective by focusing on reducing the

portion of threads that require protection and on organizing the

threads in such a manner that result in more reliable software.

VII. CONCLUSIONS

We presented a methodology to remap threads into warps

according to their resilience profile. Looking into 12 bench-

marks (17 kernels) from four benchmark suites, we identified

that 7 of them are amenable to remapping for resilience.

The proposed solution reduces overhead by identifying the

portion of threads that are unreliable and by applying any

detection/protection mechanism only on them instead of the

entire kernel. In other words, our solution reduces overhead

by identifying the portion of threads that are unreliable and

by organizing them into warps that consist of threads that are

either reliable or unreliable. Then, any detection/protection

technique (including RMT and TMR) can be applied upon

the identified unreliable warps only, instead of the entire

kernel. Even with the simplest error detection and correction

technique (warp duplication and triplication), we achieve an

average saving of 20.61% and 27.15% execution cycles for

error detection and error correction, respectively.

DATA AVAILABILITY

This paper is based on already available open-source bench-

mark data and existing fault injection tools. The proposed

technique offers a methodology for re-organizing threads af-

ter evaluating thread resilience using the fault site pruning

methodology [24]. Any resilience evaluation technique in the

literature can be also used to derive thread resilience [18],

[33], [36], [38] to guide remapping.
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