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ABSTRACT

Large-scale, high-throughput computational science faces an accel-
erating convergence of software and hardware. Software container-
based solutions have become common in cloud-based datacenter
environments, and are considered promising tools for addressing
heterogeneity and portability concerns. However, container solu-
tions reflect a set of assumptions which complicate their adoption
by developers and users of scientific workflow applications. Nor are
containers a universal solution for deployment in high-performance
computing (HPC) environments which have specialized and ver-
tically integrated scheduling and runtime software stacks. In this
paper, we present a container design and deployment approach
which uses modular layering to ease the deployment of containers
into existing HPC environments. This layered approach allows op-
erating system integrations, support for different communication
and performance monitoring libraries, and application code to be
defined and interchanged in isolation. We describe in this paper
the details of our approach, including specifics about container
deployment and orchestration for different HPC scheduling sys-
tems. We also describe how this layering method can be used to
build containers for two separate applications, each deployed on
clusters with different batch schedulers, MPI networking support,
and performance monitoring requirements. Our experience indi-
cates that the layered approach is a viable strategy for building
applications intended to provide similar behavior across widely
varying deployment targets.
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1 INTRODUCTION

Large-scale, high-throughput computational science faces an ac-
celerating convergence of software and hardware capabilities. Sci-
entists and developers of workflow-based solutions must navigate
a resulting complex set of heterogeneous hardware and software
environments. Software containers have become a popular option
in cloud systems for dealing with these issues. They offer the ability
create portable software stacks which can be easily deployed in
multiple locations and are well-suited to data-parallel problems.
At the same time, developers of such workflows are seeking ways
in which they can take advantage of the considerable investments
in tightly-bound compute and storage capacity which have been
made in high-performance computing (HPC) facilities. The abil-
ity to use similar container-based approaches in both cloud and
HPC environments would be a significant benefit for computational
scientists.

Using containers in HPC contexts is not straightforward, how-
ever. HPC systems do not provide the same container orchestration
mechanisms available in cloud systems; they require that users
launch containers through batch scheduling services originally
designed to launch applications on bare metal. As a result, HPC
container systems often couple a particular container runtime with
custom HPC scheduling and launch systems, undermining the cross-
system reusability and reproducibility benefits containers were
designed to provide. This has historically reduced the container
functionality available on these systems; current HPC container sys-
tems do not offer the equivalent of container “pods® which bundle
services like performance monitoring with the application itself that
are available in cloud deployment systems such as Kubernetes [1].

To address these issues, we propose a software environment
based on container layering which is portable to a wide range of
cloud and HPC systems, maximizes application dependency iso-
lation within the container, and does not sacrifice performance
to achieve these goals. This container layering approach creates
opportunities for HPC developers with increasingly complex soft-
ware dependencies. HPC applications benefit from the expertise
of many specialists, and require significant coordination effort. A
container development environment which enables niche experts
to implement their layer in a container stack, and then hand that
work off to another specialist for continued development, is useful.

The remainder of this paper describes the design and implemen-
tation of a containerization strategy which satisfies these design
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goals without imposing major changes to the cloud or HPC systems
they run on. It does so by:

e Defining the responsibilities and interfaces of the different
layers in the container image stack in a modular, extensible
manner;

e Providing layers which allow containers to be easily launched
on a range of HPC scheduling and job management systems;

o Enabling the creation of layers to differentially provide sys-
tem services which may not be broadly available (or desir-
able) in all data centers;

o Allowing users to balance system performance and container
portability considerations in the design of those layers; and

o Increasing the effectiveness of containerizing applications
by increasing their reproducibility in HPC environments.

We demonstrate how layering creates interfaces which are portable
across both applications and systems, and how this in turn enables
reproducible performance experimentation across applications and
systems. We also demonstrate the practical application of our de-
sign by describing its use in deploying an application designed to
measure performance variations across multiple HPC platforms.

The remainder of this paper is organized as follows: Section 2
describes background required to understand the layered container
approach; Section 3 describes how the container image stack is
defined and built; Section 4 describes complications associated with
container orchestration on HPC systems and the methods we use to
overcome them; Section 5 demonstrates the system and application
portability of our container image stack; Section 7 offers concluding
remarks.

2 BACKGROUND

In this section we discuss the suitability of containers for HPC uses
and the challenges associated with distributed container launch on
batch scheduling systems.

2.1 Containers vs. virtualization

Containers use partial virtualization to enable user defined software
stacks which are independent of the operating system on which
they run. Containers differ from full virtualization solutions in
that they share the host kernel, eliminating the kernel emulation
overhead required for full virtualization. They are widely used
in industry, where software developers need to test their work
on multiple platforms with limited hardware availability. Until
recently, containers were most commonly used in data centers or on
distributed systems where software developers and administrators
run trusted software with privileged access.

2.2 Container runtimes

Docker [2] is a container solution which is most often used to run
trusted software from privileged accounts. While Docker does in-
clude an unprivileged mode, the required Docker daemon (dockerd)
is potentially a point of failure and a performance bottleneck. Sev-
eral container runtimes exist which are suitable for users who
must run untrusted workloads. The expanding selection of HPC-
friendly container runtimes include: Podman [3], Singularity [4],
Charliecloud [5], and Shifter [6]. Each of these solutions provide
custom software stacks safely. Podman carries forward efforts by
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Figure 1: Local development is not cost constrained and
allows the user to take advantage of build instruction
cacheing. Remote development deploys pre-built container
to filesystem, so user can tweak host/container interfaces
and runtime configuration.

the Open Container Initiative (OCI) [7] to bring daemonless con-
tainer runtimes to HPC using OCI-compliant container images.
Charliecloud uses a Linux kernel feature called “namespaces” to
clone the state of the host system and make changes which only
affect the running container. Shifter uses a whitelist of acceptable
container images to limit risk, at the cost of total flexibility for
the user. Singularity either uses namespace kernel features like
Charliecloud, or makes selective use of privileged commands using
SETUID runtime binaries. In the latter case, Singularity allows the
user to execute privileged commands but only as granted by Sin-
gularity. We chose Singularity for this work due to its widespread
adoption at the time of writing.

2.3 Local vs. deployed development

A significant advantage of container-based development is the
ability to rapidly iterate on application development using a lo-
cal private system, such as a laptop, and then deploying the same
container to a shared system when a desired level of stability has
been achieved. Local development is useful when a connection to
the target infrastructure is unavailable or when compute time is
expensive. Local development uses a container builder that can
push images to a container registry (such as Dockerhub for Docker
images). Deployed development is useful when troubleshooting the
distributed functionality of an application, and Docker’s instruc-
tion cache greatly reduces the time to make and test changes to a
build recipe (Figure 1). Deployed development takes place on the
target infrastructure, where deployed containerized scripts can be
edited and re-run. The deployed container can be modified for quick
tests. Without deployed development mode, even simple changes to
the container image require that the entire, potentially hours-long
process depicted in Figure 1 take place.

2.4 Research artifacts

The container itself offers a reproducible software stack, and the
command script common to Dockerfile-like container specifica-
tions can define the series of steps that reproduces an experiment
procedure. A user can make simple changes to the host/container
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interface script to account for user-specific environment concerns,
and re-run the container exactly as it was configured during the
data collection phase of a previous experiment. This simple inter-
face allows users to validate previous work with little effort. The
container, along with metadata that associates the container with
an experiment, can be then be used, distributed, and archived as a
research artifact.

3 DEFINING A LAYERED CONTAINER IMAGE

A container is a deployed filesystem tree that a container runtime
may reference to execute commands from the container’s context.
A container recipe is a text file that describes the steps necessary to
produce a container. Most container recipes, including Dockerfiles,
begin with a line that specifies a base container from which to
apply changes. We refer to the practice of layering container recipe
files as container image layering. In contrast to layered container
instruction caching, common among Docker-like build systems,
we refer to the layering of containers, not just the instructions a
container recipe is composed of.

Each container layer is defined by a container recipe file com-
posed of build instructions for that layer. Building a container from
a recipe file takes time, so container layers may also be pre-built
and hosted in a container registry to reduce deployment time. If
the system where a container is built differs from the deployment
target, it’s possible to use Spack [8] and ArchSpec [9] to build a
container locally which is optimized for the deployment target.
These tools place no additional restrictions on the target system.

In some cases, it is not possible to isolate the application from the
host operating system. One common example is when proprietary
software is provided on the host, but not licensed to the container
developer for inclusion in a publicly hosted container. In these
situations, the container runtime can bind host-resources at build
time, and then again at runtime. Host-matching is an error-prone
process that increases development and deployment complexity.

The container stack we demonstrate in this paper is constructed
from a series of inherited container layers, beginning with a layer
that provides base OS functionality. The next layer in the container
image stack is built on this base layer, and subsequent layers are
defined by referencing a previous layer. The exact set of layers used
is a design issue; we discuss the layers we have used for HPC per-
formance assessment benchmarks and applications in Section 3.2.

Our system uses a Dockerfile-syntax build definition file [10] for
its compatibility with many local and cloud-based build systems. We
use Docker for build operations. We use the Singularity container
runtime, though multiple container solutions exist for HPC which
exhibit little or no overhead [11]. We use version control to track
container recipes with associated files to provide provenance and
reproducibility assurances for our work. We use the Dockerfile
FROM statement to build containers from sets of layers. When re-
using a layer of the image stack, we edit the container image layer
definition file to suit the needs of the new layer. When extending
the image stack, we create a new Dockerfile using a previous layer
as a template. Finally each layer includes a workload script which
can be used to drive execution of the container; in our Dockerfile
implementation, this script is accessed by the Docker CMD entry.
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3.1 Coordinating the host and container

Containers isolate software resources so that the containerized
application references containerized dependencies, ignoring those
provided by the host operating system except when requested.
Maintaining high performance interfaces between the host and the
container is a primary concern for all HPC applications. Explicit
treatment to maintain high performance interfaces are crucial to
any container solution for HPC. There are two ways containers do
not isolate from the host: a container can not isolate from the host
kernel, and the container must have some interface to the host’s
job scheduler. Host kernel sharing is an important performance
feature, as containers are not required to emulate kernel function-
ality. Instead, containerized processes are scheduled and executed
directly on the host kernel. The host’s job scheduler cannot be
isolated because this is the component that actually grants the user
permission to run on the individual nodes of the distributed system.

We separate the task of coordinating the host and container en-
vironment into two elements: the environment of the container in
isolation, and the shared host/container environment. This separa-
tion of concerns allows container image stack developers to more
easily modify and extend previously defined layers. The shared
host/container environment acts as a container image stack user
interface, and separating this handler simplifies the user experience.

Container environment handling. The container environment
handler sets environment variables relevant to the container execu-
tion environment that do not depend on host state. For example,
these scripts set environment variables such as LD_PRELOAD to en-
sure that container layer libraries are used by other software in the
final container. These environment variables must be inherited by
each layer that uses them. We use the Docker-style entrypoint. sh
as the container environment handler. We use entrypoint.sh to
append container-relevant PATH environment settings, and other
global variable that are important to our application.

Host/Container Shared Environment Handling. The host/container
shared environment handler manages environment attributes which
are shared by the host and container and which may change be-
tween successive application runs. Each of our container layers
have a host/container environment handler called env. sh. A con-
tainer image layer developer will modify the host/container shared
environment handler to suit an experimental use case, and a con-
tainer image layer user will modify the host/container environment
handler to manage application input parameters and user-specific
host information.

We use env. sh to define the elements of the host configuration
that must persist to the container. This includes output directories
and application input parameters. In our system, the env. sh file
exists outside of the container, and we copy it into the container at
runtime.

3.2 A container implementation in 4 layers
This section describes particular layers of the container image stack
developed through this work, as shown in Figure 2.

Base image layer The base image layer is the operating sys-
tem that will serve as the foundation of the container image
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mount centos7.iso
FROM: centos7

FROM: spack/centos7
RUN: spack install OMPI

FROM: docker_base
RUN: git pull Idms; build

BSP simulator
LDMS

FROM: docker_Ildms
COPY: bsp_prototype
RUN: cd bsp; build;

RUN: yum install python3

COPY: env.sh /home/docker
ENTRYPOINT: entrypoint.sh

CMD: ‘shell’

Figure 2: Four container image layers used in benchmarking
application container.

Docker image stack

Base OS
(Centos 7)

Communication
Library « » Library
(OpenMPI v1) i (OpenMPI v2)

Y

Monitoring
Abstraction
(LDMS)

‘, R LI L LI LI L
Workload Workload |
application |« » application
(BSP sim) (VPIC)

Figure 3: We demonstrate modular container communica-
tion and application layers.

stack. The base image layer for our container stack is Cen-
tOS 7 [12], as provided by Dockerhub [13]. CentOS is an
open source Linux distribution that is notable for its use on
many clusters. The base image distribution was chosen to

! Communication
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match the host operating system, but matching the host is
not necessary.

Communication layer The communication layer is respon-

sible for handling communication across a distributed ap-
plication during a batch scheduled HPC job. Our commu-
nication layer uses an MPI implementation, OpenMPI [14],
that includes an orchestration and launch mechanism, orted
and mpirun, respectively. We run our container image stack
on two systems, which requires some changes to the build
paramaters of the communication layer. We use Spack [8]
variants to configure OpenMPI for target systems.

If MPI on the host system is optimized by system administra-
tors, the container’s MPI build maybe not be. Similarly, if the
container’s communication library lacks a PMI interface to
enable efficient scheduler orchestration, our launch method
may use generic orchestration which fails to take advantage
of host-based optimizations. In these situations, it may be
preferable to create a communication layer that matches
the host’s MPI mechanisms. The Singularity documenta-
tion refers to this as the “hybrid launch method” [15]. Our
method emphasizes portability over potential performance
issues by using containerized MPI to orchestrate distributed
application launch.

Monitoring layer We anticipate that coupled system and ap-

plication sampling will be useful for other projects, so we

captured this functionality in a monitoring container image

layer. The Lightweight Distributed Metric Service (LDMS) [16]
provides a practical means to capture the state of every

worker node during the execution of a distributed applica-
tion. LDMS is also capable of measuring calls to the commu-
nication library by the distributed application. LDMS works

in the client/server paradigm, with system samplers acting

as clients, and one or more system aggregators working as

the server.

LDMS is an example of how service complexity can be con-
veniently expressed using layered container images, with

functionality similar to pod-services offered by container or-
chestration frameworks like Kubernetes [1] and Podman [3].
The term “pod-service” describes services that must run as

separate processes alongside a workload application. LDMS

runs as a daemon on each sampler node, and the aggregator

runs as a separate service on the manager/primary node.
Kubernetes and Podman require additional software infras-
tructure to run, however, and our method of providing a

launch example requires no special infrastructure.

Workload application layer The workload application layer

is responsible for launching an application for testing or ex-
periment. Our workload application is a bulk synchronous
parallel application simulator. A bulk synchronous parallel
application is any program that can be broken down into
periods of parallelism with cycles of synchronization. Mon-
dragon et al. show that under certain conditions, application
run-time can be predicted at scales previously untested [17].
This container image stack validates assertions made by this
performance prediction work. To demonstrate application
portability of this image layer stack, we constructed a second
stack by swapping out the workload application layer for
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one which encapsulates a Vector Particle-In-Cell (VPIC) [18]
application.

3.3 Benefits of the layered container approach

Deployed, layered image stacks make development and deployment
tasks easier in several ways:

Convenience and cost efficiency Containers allow develop-
ers to do most of their work on a local computer, where
compute time is not charged to a cost account. Working
locally also means that a connection to the distributed com-
puter is not required to make progress on a project. Deployed
development mode allows users to troubleshoot distributed
container launch problems without re-building the container
image stack.

Re-usability New layers can substitute for previously created
layers without interfering with other stack layers, or they
can extend functionality at any desired position within the
image stack.

Research artifacts The CMD file defines key functionality at
each layer of the container image stack, and the container it-
self resolves dependencies. Together this system can be used
as a research artifact with the reproducibility advantages
containers provide.

4 DISTRIBUTED APPLICATION LAUNCH

HPC centers rely on batch scheduling systems to assign work to
shared systems, and containers were not designed to run on batch
scheduled systems. Container deployment, orchestration, and the
container runtime context require special consideration in order to
run in HPC centers.

4.1 Deployment

We use the Popper [19] experiment workflow manager to manage
overall container construction and launch, though a wide variety
of scripting and workflow systems could be used for that purpose.
This system is responsible for obtaining a job allocation, assembling
the container stack from its layers, deploying the container, and
running the container on the chosen system. We also use Popper’s
experiment verification features to validate that container output
is reasonable, though such functionality is not necessary in all
container deployments.

Our overall experiment pipeline consists of three sequential
stages: setup, run, and validate.

setup The purpose of the setup stage is to synchronize a con-
tainer with the host, and to define an input deck for the
application being studied. In this stage the container is re-
trieved from the Dockerhub container registry and deployed
to the NFS filesystem, then the host/container interface script
(env.sh) is copied from the experiment pipeline home into
the deployed container. The user will alter run-time configu-
ration by altering the env. sh script.

run The run stage is responsible for running the application
workload. The run stage makes requests to a job scheduler
from the workflow manager. The run stage requests an inter-
active allocation, and starts container orchestration with a
call to the host’s container runtime (Singularity, in our case).
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Figure 4: A typical launch of phase 1 and phase 2 containers
on an HPC system

Run parameters which affect job launch and runtime behav-
ior were set in the env. sh file, described in the setup section.
It is possible and useful to store and track the env. sh script
in the workflow manager, and copy env. sh to the mounted
container in the run stage. This way, if the host/container
shared environment script is not defined on the host and
passed to the container, the container will fail. This makes
explicit the need for host/container sharing.

validate The validation stage ensures that reasonable outputs
exist; the pipeline fails if they do not.

4.2 Container orchestration

One of the design goals of this system is to encapsulate the container
environment so that the only host software dependency is the
container runtime itself. In order to achieve this isolation goal, a
communication library is built for an arbitrary batch job scheduler.
In order for orchestration to work with an arbitrary scheduler,
the communication library must establish communication paths
between nodes that will run the distributed application. Open MPI
includes the Open RTE daemon (orted), which is suitable for this
task.

4.3 Two-phase distributed application launch

The container runtime launch occurs in two phases. This tech-
nique deploys the same container twice, but in different ways. This
method does not require two deployed containers, but it does re-
quire two separate container runtime calls. The first container
launch happens on the primary compute node, and puts container-
ized paths into the environment, including the path to mpirun. The
second container launch is orchestrated by mpirun, and results in
a call to containerized orted on the remaining compute nodes.

The phase 1 container The phase 1 container is launched on
a primary compute node using the host-provided container
runtime. The communication library inside the container
may be built for a specific job scheduler. This container
will call the container-hosted distributed launch mechanism
(Open MPI’s mpirun). The communication library uses a
launch agent script for the orchestration mechanism to ref-
erence (Open MPI’s orted references
OMPI_MCA_orte_launch_agent). The launch agent script
loads the host system’s container runtime module if it exists,
and then uses the container runtime to launch orted with
all command line arguments.

The phase 2 container The phase 2 container is launched by
the communication library’s orchestration mechanism (Open
MPT’s orted), and each phase 2 container is a worker node.
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Once the phase 2 container launches the orchestration mech-
anism, it joins the communication network with the man-
ager/primary node and participates in communications as
required by application code.

Our workload application, a BSP application simulator, is launched
by the container via commands. sh with a call to mpirun. The com-
munication library "self-orchestrates" the distributed application
launch. Although our approach to container orchestration is spe-
cific to OpenMPI, similar methods exist for MPICH using environ-
ment variable passing via ssh. For some system schedulers, such
as Slurm, building a communication library with PMI flags is suf-
ficient to enable schedulers to orchestrate a distributed container
launch without a self-orchestration tool like orted. Our approach
uses OpenMPI for the availability of orted, which is well suited to
porting containers between systems with arbitrary schedulers.

4.4 Open MPI orchestration

The mechanism we use to launch an MPI workload is dependent
on the MPI implementation. In Open MPL, when mpirun is called,
a connection is established to the participating worker nodes, and
the service daemon (orted) is launched along with a list of derived
arguments from mpirun. These arguments establish what hardware
is used for communication, and other launch configuration details.
Ordinarily, each newly connected worker node will search system
paths for orted. Since our container provides its own communica-
tion library, relying on system orted would break our distributed
container environment.

Open MPI provides a shim that allows us to launch a script rather
than the orted available in the host system path. The environment
variable that must be set is OMPI_MCA_orted_launch_agent. This
environment variable is set to refer to a script which loads the
container environment, just before the mpirun command.

When mpirun is invoked, the launching process is already in the
container environment, so no further action is required on the MPI
manager/primary node. However, before Open MPI sets up com-
munication on the worker nodes, orted must launch from the con-
tainer. The script that does this, in this case, is called ompi_launch. sh:

module load singularity
singularity run bsp_prototype orted $@

When singularity invokes the run command, entrypoint.sh is
executed first. The name of the container image referenced above
is bsp_prototype. The next argument, orted, falls through a case
statement in the entrypoint script until it matches on the orted
string, and then launches orted from the container context.

The OMPI launch script defines the phase 2 container context,
and passes orted command line parameters through entrypoint. sh
to call orted $@ from the container context in the entrypoint.

5 RESULTS

We demonstrate system portability by running our image stack
on the Wheeler cluster at the University of New Mexico’s Center
for Advanced Research Computing and on the Stampede2 cluster
located at the Texas Advanced Computing Center. Wheeler uses
a Torque/PBS scheduling system, while Stampede2 uses a Slurm
scheduling system. The communication layers of these two con-
tainer image stacks differ to accommodate the scheduling system.
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Figure 5: The BSP collective interval is shown paired with
system state data, per rank and timestep. Together this
demonstrates paired system performance and application
data.

All other layers are re-used. In the configuration shown, each BSP
simulator sleeps for an amount of time drawn from a Gaussian
random variable. The seeds are random, which is why we see some
difference between the Wheeler and Stampede2 runs. The sleep
times shown in Figure 6 are measured, not obtained from the ran-
dom variable samples.

We demonstrate application portability of the container layering
approach by swapping the BSP simulator application workload
layer for a VPIC [18] application workload layer. The layered con-
tainer approach allowed us to easily port both the complex VPIC
application and the LDMS monitoring tools to different systems.
Because both VPIC and LDMS are generally difficult and complex to
install, this demonstrated that our approach provided a significant
improvement in application and monitoring portability.

We demonstrate paired application and system performance data,
as collected from the performance monitoring layer of the container
image stack in Figure 5. The MPI application was run using one
rank per node. Each rank is shown at a particular interval of the BSP
simulator, along with the number of free memory pages as reported
by the LDMS performance monitoring layer of our container image
stack.

6 RELATED WORKS
6.1 User-defined software stacks (UDSS)

Several projects address portable user-defined software stacks for
HPC. Ours focuses on providing lean, application-centric containers
which require minimal changes to the host OS.

6.1.1 Bare-metal UDSS. Spack [8] was designed to build packages
from source on demand. Spack environments define a set of pack-
ages and an associated build toolchain. Spack isolates the environ-
ment in a user specified unprivileged filesystem root. We use Spack
environments to manage the communication library in our con-
tainer stack; rrecent efforts toward the spack containerize script
are increasingly useful and interesting to HPC-focused container
projects.

6.1.2  Container-based UDSS for HPC. The Extreme-scale Scientific
Software Stack (E4S) [20] is a container-based software stack built
for exascale machines. E4S containers include a variety of HPC
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Figure 6: BSP simulator data collected from two systems, where

to move from a Torque/PBS system to a Slurm system.

applications delivered as a pre-built container, or offered through
an E4S-hosted Spack build cache. E4S containers offer pre-built HPC
software stacks for target systems and architectures; our method
requires a build service and/or a container registry.

6.2 Orchestration systems

Science clouds offer orchestration mechanisms to coordinate vir-
tualization tasks on data center hardware. Configurable hardware
with access to full virtualization and high speed filesystem access
are the focus of projects such as Bridges [21] and Jetstream [22].
The Chameleon Cloud project [23] provisions high speed network
devices along with a configurable amount of virtualization on allo-
cated nodes. However, each of these systems is specially designed
and does not support of batch scheduling workloads without sub-
stantial effort on the part of the user. In contrast, our approach
produces viable containers for unmodified HPC systems.

Sweeney and Thain [24] describe dynamic and static container
orchestration, referring to containers which are deployed once per
job run, or once per worker node respectively. In this context, we
use a dynamic approach to container orchestration. Our containers
are deployed to an NFS filesystem once, prior to job submission
and before compute node allocation. This dynamic approach is
useful when deploying pod services, like our LDMS layer, where
separate processes must be launched for LDMS samplers and for
the workload application. A static approach would require two
container deployments per node: one for LDMS and another for
the workload application.

Our approach uses the Open Runtime Environment (orted) ref-
erence implementation from Open MPI to orchestrate job launch
with arbitrary batch schedulers. As long as an Open MPI config-
uration exists which supports the target scheduler in the orted
reference implementation, a communication layer may be built
for an arbitrary batch scheduler. Increasingly, however, schedulers
are performing orchestration through the PMI interface [25]. This
affects our system in two ways: orchestration is no longer a role
fulfilled by the communication library, and the phase 2 workload
launch will need to reference a scheduler specific launch agent
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only the communication layer of the required modification

rather than a communication library launch agent (e.g. srun rather
than mpirun).

Kubernetes [26] and Docker Swarm [27] are two container de-
ployment systems which have gained widespread adoption in in-
dustry for persistent workloads and cloud services, and are gaining
traction for HPC workloads as well. Many such systems use Kuber-
netes systems as a management layer which deploys nodes with
job schedulers installed and ready to accept batch workloads. These
workloads may themselves be containerized applications. The or-
chestration mechanism presented in this work does nothing to
manage the compute nodes themselves. Our orchestration mech-
anism is suitable for any target system that supports a container
runtime.

Hursey [28] describes a modular approach for MPI components,
which facilitates distributed application launch without the use
of a specific system scheduler. This approach requires the host to
support a generic MPI interface to the system scheduler, and a
container that includes an MPI implementation that makes use of
the host-supported generic MPI interface.

7 CONCLUSION

In this paper, we presented a design and implementation that
achieves modular, composable, and lightweight software stacks
which are capable of self-orchestration through Open MPT’s orted,
as provided by the communication layer in the software stack. We
defined the responsibilities and interfaces of different container
layers in our implementation, we presented modular layers as
a tool to balance system performance and container portability,
and we demonstrated that this solution is portable across multiple
job launch/process management/container orchestration systems.
We offer our container recipes as research artifacts which may be
referenced to validate this work or re-used to accommodate new
application workloads and functionality.

The layered container approach could change the way system
administrators and users collaborate to reach meaningful research
outcomes. If HPC centers embrace the layered container image
approach, the responsibilities of system admins and users would
be clearly and separately defined: administrators build base images
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for target infrastructures which offer high performance access to
hardware, while users are free to implement any software packages
they like over the top of the available high-performance base im-
ages. Ongoing work toward converged clusters that support batch
scheduling systems alongside cloud scheduling systems may also
become less complicated if HPC clusters more fully adopt container
approaches widely used on cloud platforms.

All components of our container image stack are available for
download and referenced in Section 3.2. These container images
are also hosted in Dockerhub [13] and available for validation on
target systems (Wheeler and Stampede2).

Base image layer The container image stack associated with
this layer is managed by its upstream container registry,
Dockerhub. The base image layer is available from https:
//hub.docker.com/r/spack/centos7.

Communication layer The firstimage layer developed specif-
ically for this work is docker_base (available from https:
//github.com/unm-carc/docker_base). In this git repo, and
all associated git repos, there is a branch associated with each
target infrastructure. The relevant branches are carc-wheeler
and tacc-stampede2. The image recipe includes a Docker-
file, and Spack environment files.

Monitoring layer The container image stack associated with
this layer is available from https://github.com/unm-carc/
docker_ldms.

Workload application layer The container image stack cor-
responding to this layer is available from https://github.com/
unm-carc/bsp_prototype.
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