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ABSTRACT: 
 
In this paper, we develop and implement end-to-end deep learning approaches to automatically detect two important types of 
structural failures, cracks and spalling, of buildings and bridges in extreme events such as major earthquakes. A total of 2,229 images 
were annotated, and are used to train and validate three newly developed Mask Regional Convolutional Neural Networks (Mask R-
CNNs). In addition, three sets of public images for different disasters were used to test the accuracy of these models. For detecting 
and marking these two types of structural failures, one of proposed methods can achieve an accuracy of 67.6% and 81.1%, 
respectively, on low- and high-resolution images collected from field investigations. The results demonstrate that it is feasible to use 
the proposed end-to-end method for automatically locating and segmenting the damage using 2D images which can help human 
experts in cases of disasters. 
 
 

1. INTRODUCTION 

Automation on Structural Damage Detection (SDD) and 
Structural Health Monitoring (SHM) is made possible with the 
rapid development of vision- and vibration-based technologies. 
The necessity of using them to assist human experts is to 
increase the accuracy, rapidness and efficiency of SSD and 
SHM while reducing the overall cost. With the successful 
application of deep learning methods on a wide range of 
problems, it is imperative to apply these techniques on SDD and 
SHM. Generally speaking, the application of deep learning on 
SDD and SHM requires an interdisciplinary team. These teams 
typically use low-cost sensors and autonomous platforms such 
as Unmanned Aerial Vehicles (UAVs) and Unmanned Ground 
Vehicles (UGVs) in field inspections for real-time inspection 
and monitoring. 
 
Detection and identification of structural damage can typically 
be performed by image segmentation and image classification. 
In case of classification, the goal is to identify the categories of 
structural attributes, such as material types (e.g., steel, concrete, 
masonry) or structural damage types (e.g., cracks, spalling, 
collapse) without locating the position of damage from images. 
On the other hand, the goal of image segmentation is to detect 
and mark damage in specific regions where each pixel in the 
image is labeled to denote types of material failures, such as 
cracks, spalling and other indicators of structural failures. 
Spalling refers to the concrete cover of the steel reinforcements 
or part of nonstructural and structural materials that was split 
and separated from the original materials. Cracks, on the other 
hand, are the phenomena of discontinuity of materials observed 
on the surface of them. 
 
Structural damage can appear in images in different ways and 
at various scales. Damage can span a larger or smaller extent, 
or even be invisible (Gao and Mosalam, 2018). In addition, the 
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image resolution may also cause problem for the same type of 
damage when the deep learning models are utilized to detect it 
(Bai et al., 2020b). Therefore, it is necessary to develop a 
robust end-to-end solution to segment structural damage 
automatically. Mask R-CNN has recently been successfully 
applied to instance segmentation in computer vision (Cai and 
Vasconcelos, 2019). Based on its success, this approach is 
adopted to segment damage so that the buildings and bridges 
can be continuously monitored. In particular, three variations of 
Mask R-CNN networks are proposed to detect two major types 
of structural damage, spalling and cracks, that works inde-
pendent of scale and image resolution. Publicly available image 
datasets collected from field investigations in recent large 
earthquakes are used to check the effectiveness of the models. 

 
2. RELATED WORK 

2.1 Deep learning with R-CNNs in image segmentation  

There are several major deep learning methods for image 
segmentation, including but not limited to Fully Convolutional 
Networks (FCNs), encoder-decoder models, multi-scale and 
pyramid networks, Regional Convolutional Neural Networks 
(R-CNNs), etc. Each approach has its own advantages, and 
some are typically used in benchmarking studies (Minaee et al., 
2020). 
 
Multiple convolutional layers are typically utilized as feature 
extractors while downsampling and then upsampling the data 
within sliding windows. Its efficiency has been shown to be low 
when FCNs are used. R-CNNs, on the other hand, can 
preprocess the input image to produce thousands of Region of 
Interests (RoIs) for feature extraction with FCNs. Furthermore, 
the R-CNN reduces the computational time compared to 
alternative approaches and improves the accuracy of 
segmentation. Its computational cost, however, is still high. To 
improve it, Fast R-CNN and Faster R-CNN have been 
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introduced and their structures are quite different from the 
conventional R-CNN (Ren et al., 2015). The former applies 
FCNs directly on the RoIs of the feature maps which comes 
after convolutional process on the original image. A network 
referred to as Region Proposal Network (RPN) on the feature 
maps is inserted to automatically produce the region proposal in 
the case of Faster R-CNN. Thus, it improves the speed and 
accuracy of prediction. But neither of these solutions are 
applicable to instance segmentation. He et al. (2017) proposed a 
benchmark network, Mask R-CNN, to predict the instance as 
well as its bounding box and class. Recently, several variations 
of Mask R-CNN were published where researchers use different 
backbone network architectures for feature extraction, some of 
which we adopted and developed for detecting spalling and 
cracks automatically in this paper. 
  
2.2 Spalling and cracks detection with deep learning 

Several researchers have adopted deep learning methods for 
detecting structural damage. Hoskere et al. (2018) illustrate an 
experiment with 23-layer ResNet and 9-layer VGG networks to 
classify and segment seven classes of structural damage, 
including cracks, spalling, exposed reinforcement, corrosion, 
fatigue cracks, asphalt cracks, and no damage. Ali et al. (2019) 
introduce Faster R-CNN for defect detection in historical 
masonry buildings with high resolution images. Kong and Li 
(2018) describe an application that detects and tracks the 
propagation of cracks in a steel girder in image streams. Atha et 
al. (2018) explain the difference between two CNN methods 
used in detecting metallic corrosion. Gao and Mosalam (2020) 
started the Phi-Net Challenge for collecting pictures of building 
structural failures in 2018. Their large dataset, which is also 
used in this paper, is suitable for training and testing different 
methods for structural damage detection at different scales (Bai 
et al., 2020b). 
 
Recent research in image segmentation have significantly ad-
vanced application of deep learning on structural damage 
detection. Yang et al. (2018) employed a hybrid network, 
composed of Holistically-Nested Edge Detection (HED) 
network and U-Net to detect cracks and spalling on concrete 
structures, and then reconstruct 3D model through Simultaneous 
Localization and Mapping (SLAM) for UAV images. Cha et al. 
(2018) applied Fast R-CNN on detecting five types of structural 
damage, including concrete cracks, steel corrosion of two levels 
(medium and high), bolt corrosion, and steel delamination. For 
this purpose, authors labelled 2,366 images with the size of 
500×375 for training. Attard et al. (2019) trained a Mask R-
CNN with 200 images to locate cracks on the concrete surface 
at pixel level. Kim and Cho (2019) used 376 images in their 
training data for Mask R-CNN to find the cracks on a concrete 
wall with high resolution cameras and utilized an additional 
image processing procedure on each bounding box to 
quantitatively measure the width of these cracks. Kalfarisi et al. 
(2020) introduced structured random forest edge detection into 
bounding boxes of a Faster R-CNN to detect cracks on 
infrastructures and compared it with the performance of Mask 
R-CNN. A total of 1,250 images were included in training and 
validation process with the size varying from 344×296 to 
1,024×796. These models are verified with images acquired 
from field inspections on structural members, including 
building walls, bridge columns, tunnel walls and roads. The 
results show that both approaches are robust for this task. 
Finally, they used photogrammetry software to construct a 3D 
reality mesh model so that the cracks can be visualized and 
quantified further. Mondal et al. (2020) used Faster R-CNN to 
automatically detect four common types of structural damage, 

including surface cracks, spalling (which includes facade 
spalling and concrete spalling), and severe damage with 
exposed rebars and severely buckled rebars, but they didn’t 
mark the enclosing regions of these damage. Instead, they used 
bounding boxes to give the scope of them. 
 
Based on conclusions drawn from the aforementioned papers, 
some researchers also have started to conduct their studies on 
defect detection, identification and localization. Some cited 
researchers prefer to only classify the structural damage as it 
does not require time-commitment for labeling the damage (Zha 
et al., 2019). As a result, the location and position of cracks on 
structural components or structures are unknown until a human 
expert manually checks and marks them out. Simplicity of 
annotation process makes these models to be trained with a 
large number of images which is not the case for segmentation 
networks that faces problems due to insufficient training 
samples. In order to inherit the advantage of classification 
networks, it is necessary to employ a segmentation network to 
locate the damage once various types of structural damage have 
been classified. 
 
In a recent study, a cascaded network that includes a ResNet 
and a U-Net to detect cracks (Bai et al., 2020b) is proposed. A 
152-layer ResNet which meets the accuracy requirements of 
identifying scene level, material types, and damage types, is 
applied at the first step. Even the severity of structural damage 
can be quantified by it (Zha et al., 2019). U-Net has been 
utilized in the second step to mark the damage region, such as 
cracks, at various image scales. Tests on public datasets have 
shown that the cascaded network improves the accuracy of the 
detection dramatically in larger scale detection tasks (Bai et al., 
2020b). The Cascaded network, however, take a long time to 
detect the cracks. Therefore, two end-to-end networks are 
introduced, such as one of Mask R-CNN with attention 
mechanism and Path Aggregation Network (PANet), and the 
other with a new backbone called High-resolution Network 
(HRNet) (Bai et al., 2020a). Tests for crack detection have 
shown that these new models can achieve an accuracy of 75.1% 
with 2,021 labeled images for training and validation. Both of 
the networks are used as the primary methods in this paper. 
Moreover, another method named Cascade Mask R-CNN (Cai 
and Vasconcelos, 2019) is also employed here. New training 
and validation images are curated for spalling and cracks 
detection.  
 

3. METHODOLOGY 

In this section, the dataset and the network structures we utilized 
are introduced along with the final architecture used to solve the 
problem at hand. These methods are chosen here because two of 
them have a good performance in our previous study (Bai et al., 
2020).  

3.1 Data preparation and augmentation 

In training process, a dataset similar to Common Objects in 
Context (COCO) is generated from the public sites and from 
Yang et al. (2018). The images in this dataset are labeled by the 
tool referred as the COCO Annotator (Brooks, 2019), in which 
the polygons are used to define the boundaries of the cracks and 
spalling and the closed region of these polygons are the damage 
in images. Some examples from this process are shown in 
Figure 1. In these labeled images, cracks, spalling and 
background are in yellow, green and purple, respectively. Size 
of the training and labeling images varies from 147×288 to 
4600×3070. By excluding steel structures, these surface cracks 
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on structural or nonstructural materials are at various scales, and 
the reinforcements may be exposed or not in spalling cases. 
 
In order to increase the training dataset, albumentation is 
employed for data augmentation. Buslaev et al. (2020) develop 
this method with pixel-level transformation and spatial 
transformation, including flipping, rotating, cropping, etc. 
Spatial transformation is adopted to preprocess our training data 
since it can change the input images, masks and bounding boxes 
simultaneously. 

     original                 label                  original                  label 
Figure 1. Some examples of training data. 

 
3.2 Mask R-CNN with Path Aggregation Network (PANet) 
and Spatial Attention Mechanisms 

He et al. (2017) proposed Mask R-CNN for instance 
segmentation, which is an extension of Faster R-CNN. A RPN 
is inserted onto feature maps to automatically produce RoIs, 
then a small FCN is applied on each RoI to segment the instance 
of objects with masks. In addition, different depth of ResNet 
and the Feature Pyramid Network (FPN) are combined to 
extract high-quality feature maps. Since Mask R-CNN is a 
benchmark for instance segmentation in image processing, 
many improvements have been made since its publication. The 
framework of Mask R-CNN is shown in Figure 2. Liu et al. 
(2018) improved Mask R-CNN by replacing FPN with PANet 
to improve performance. Because features of low layers in the 
pyramid can reach high layers by skip-connections and a 
technique called adaptive feature pooling can fuse all levels of 
features for each proposal, their proposed method achieves a 
higher accuracy when a modified approach on mask prediction 
is adjusted. Figure 3 shows the framework of PANet, which is 
in part used in our paper. Furthermore, we also introduce spatial 
attention mechanisms as suggested by Zhu et al. (2019) into our 
approach. The goal of this study is to facilitate the backbone of 
Mask R-CNN to extract more useful features in cracks and 
spalling detection. This method is called as APANet Mask R-
CNN in this paper. 

 
Figure 2. The Mask R-CNN framework for instance 

segmentation of structural damage. 
 

3.3 Mask R-CNN with High-resolution Network 

CNN can have a number of different backbones when applied 
for segmentation problem. For example, the original Mask 
RCNN uses a 101-layer ResNet as its backbone. But Sun et al. 
(2019) developed a new network named HRNet to extract 
features from an original image. Utilizing repeated multiscale 
fusions across these convolutional blocks, this network 
maintains high-resolution representations via inter-connections 
between high- and low-resolution convolutional modules within 
a parallel 

 
Figure 3. Illustration of the framework of PANet for SDD. (a) 
FPN backbone. (b) Bottom-up path augmentation. (c) Adaptive 
feature pooling. (d) Box branch. (e) Fully-connected fusion.  Pi 

and Ni are ith of the original pyramid layers and new feature 
layers, respectively. 

structure. As shown in Figure 4, there are four stages in HRNet. 
High-resolution features are kept until the end of convolutional 
operation, and low-resolution ones are added to each new stage. 
The connection between them may be the key for better feature 
extraction. In this paper, HRNet is employed as the backbone of 
another Mask R-CNN to detect the aforementioned two types of 
structural failures, spalling and cracks. This approach is named 
as HRNet Mask R-CNN for this study. 
 
3.4 Cascade Mask R-CNN 

Cascade Mask R-CNN solves the overfitting problem when a 
larger threshold used to compute Intersection of Union (IoU) 
and disproportion of the quality over the inference and training 
when Mask R-CNNs are used (Cai and Vasconcelos, 2019). The 
stages of object detection architecture are increased from two to 
four on processing object proposals after features are extracted 
by CNN from the original input image. For a typical Mask R-
CNN shown in Figure 5, H0 is the feature proposal network to 
produce massive proposals for each ROI and H1 is the RPN for 
automatically generating accurate candidate proposals. B, C and 
S respectively denote bounding box, class score and seg-
mentation branch. Cascade Mask R-CNN increases the stages to 
combine these candidate bounding boxes in previous stage and 
features are resampled from the feature map in the next step. 
There are different strategies to insert the regression process on 
segmenting the instances, but the final mask prediction is the 
result from the single segmentation branch of Figure 5(b) and 
5(c), and from three segmentation branches of Figure 5(d). 
Thus, position of bounding boxes and class scores can be kept 
consistent and the regions of the instances can be refined to be 
more accurate. This method focuses on improving the capability 
of the detector to find better candidate bounding boxes, class 
scores and mask predictions. 
 

4. IMPLEMENTATION 

In our study, we adopt the source codes of the Mask R-CNNs 
provided in MMDetection (Chen et al., 2019). There are some 
modifications including revising part of the program and 
finetuning parameters during the training and testing. The 
augmented images are provided to the modified models to train  
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and evaluate at first. The data from Phi-Net dataset (Gao and 
Mosalam, 2020), 2017 Pohang earthquake dataset (Sim et al., 
2018) and 2017 Mexico City earthquake dataset (Purdue 
University, 2018) at various scales are used to test the 
algorithm. In the training process, the hyperparameters are set 
as: learning rate is 0.002, momentum is 0.9 and decay rate of 
weights is 0.0001. The loss function for mask is cross-entropy 
and for bounding boxes is smooth L1. The training and testing 
for the model are executed with NVIDIA GeForce GTX 2080 
Super. Total number of epochs for training each model is set to 
100. Based on testing on our own data, all above parameters are 
finally selected after we compared and optimized them.  
 
4.1 Evaluation on the proposed models 

Considering that the labeled data of our training and validation 
are similar to COCO dataset, we follow the same standard 
metrics to evaluate our models based on our validation dataset. 
The results can be show in Table 1, AP (Average Precision) is 
based on IoU, different threshold values and various scales 
provide [AP , AP , AP, APS, APM, APL . 
 
Mask AP (box) is reported here. Both Cascade Mask R-CNN 
and APANet Mask R-CNN employ 101-layer ResNet as 
backbone. HRNet Mask R-CNN uses four-stage high resolution 
networks. But the APs of these Mask R-CNNs on the validation 
data are very low (see Table 1 and 2), even though they are 
close. For damage detection, it is more important to identify and 
mark the damage as many and precisely as possible for large 
image datasets. 
 
In the following tests, the criterion for a valid prediction is 
defined as at least one of the structural failures, such as spalling 
and cracks, being inside a bounding box or mask, although 
sometimes there are several bounding boxes or masks in an 
image when the threshold is low. Metrics including recall, 
precision and total accuracy are used for evaluating the 
performance of these models: 

                                       (1) 

                                 (2) 

                   (3) 

where TP and TN are true positive and negative, FP and FN are 
false positive and negative, respectively. 
 

Methods AP AP50 AP75 APS APM APL 
Cascade Mask R-CNN 7.4 21.4 3.3 4.2 13.9 6.5 
APANet Mask R-CNN  6.3 21.3 1.7 4.9 9.0 7.1 
HRNet Mask R-CNN  5.9 19.9 2.1 5.0 6.9 6.8 
Table 1. Comparison on Mask R-CNNs with Validation Data 

for Cracks. 
 

Methods AP AP50 AP75 APS APM APL 
Cascade Mask R-CNN 20.3 39.0 19.2 1.2 16.7 23.2 
APANet Mask R-CNN  13.9 33.0 10.7 0.7 12.2 16.1 
HRNet Mask R-CNN  14.7 33.3 10.8 0.2 12.3 16.9 
Table 2. Comparison on Mask R-CNNs with Validation Data 

for Spalling. 
 

4.2 Tests on Phi-Net dataset (Gao and Mosalam, 2020) 

In the dataset, the following classes are annotated for eight 
tasks: 1) scene levels; 2) damaged or undamaged states; 3) 
spalling or nonspalling; 4) material types; 5) collapse modes; 6) 
component types: including beams, columns, walls and others; 
7) damage levels; 8) damage types. Totally, 36,413 images are 
collected in this dataset, but just for training and testing with 
classification. In addition, all images are low-resolution ones 
since the image size is uniformly resized as 224×224. From 
these images, we merged Task 3 which includes spalling and 
nonspalling cases and Task 8 which collects cracks and no 
cracks scenarios into a new testing dataset. The total number of 
the dataset is 5,853. The threshold for spalling and cracks being 
detected is set as 0.2 instead of 0.5 as most studies used. Figure 
6 shows the examples of successful prediction by three Mask R-
CNNs. In these overlaid images, the bounding boxes, and masks 
of spalling and cracks are in green, purple, and yellow colors, 
respectively. These colors have the same meaning in Figures 6, 
8, 7, and 9. 

 
Figure 4. Framework of high-resolution network (HRNet). There are four stages. The 1st stage consists of high-resolution 

convolutions. The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution, four-resolution). 
 

 
Figure 5. Mask R-CNN (a) vs. three Cascade Mask R-CNN strategies for instance segmentation (b)-(d). “I” is input image, “conv” is 
backbone convolutions, “pool” is region-wise feature extraction, “H” is network head, “B” is bounding box, “C” is classification, and 

“S” denotes a segmentation branch. Note that the segmentation branches do not necessarily share heads with the detection branch. 
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Methods Accuracy Recall Precision 
Cascade Mask R-CNN 78.9% 70.7% 88.7% 
APANet Mask R-CNN  81.1% 84.8% 83.8% 
HRNet Mask R-CNN  58.6% 95.5% 57.7% 

Table 3. Predictions of Mask R-CNNs on Phi-Net dataset. 
 
From Table 3, it can be observed that the accuracy of Mask R- 
CNN + HRNet is quite low, but Cascade Mask R-CNN and 
APANet Mask R-CNN is higher over this low-resolution image 
dataset. Furthermore, both of them have a very high recall and 
precision. 

 
           (a)                     (b)                          (c)                       (d) 
Figure 6. Prediction of three Mask R-CNNs for Phi-Net dataset 
(Gao and Mosalam, 2020). (a), (b), (c), and (d) denote original 
image, overlaid image of Cascade, APANet, and HRNet Mask 

R-CNN, respectively. 
 
4.3 Tests on 2017 Mexico City earthquake dataset (Purdue 
University, 2018) 

In this dataset, there are 4,136 images with two image 
resolutions, 2740×3650 and 6000×4000. All of the images are 
taken by experts at Purdue University when they conducted the 
field investigation in Mexico City after a Richter magnitude 7.1 
earthquake in 2017. Figure 7 shows some examples of correct 
prediction from our models. 
 
The accuracy of APANet Mask R-CNN is higher than the 
others, and the accuracy of other two methods is close (see 
Table 4). The recall and precision of APANet Mask R-CNN and 
HRNet Mask R-CNN are above 73.0%, but the recall of 
Cascade Mask R-CNN is low. 

 
Methods Accuracy Recall Precision 

Cascade Mask R-CNN 69.4% 45.5% 90.9% 
APANet Mask R-CNN  74.7% 70.4% 85.7% 
HRNet Mask R-CNN  69.1% 73.5% 73.4% 

Table 4. Predictions of Mask R-CNNs on 2017 Mexico City 
earthquake dataset. 

 

4.4 Tests on 2017 Pohang earthquake dataset (Sim et al., 
2018) 

In this dataset, a research group supported by the American 
Concrete Institute (ACI) collected images during their 
inspection after an earthquake with the Richter magnitude of 5.2 
happened in Pohang of South Korea in 2017. The total number 
of images used for testing is 4,109, and their resolutions are 
2600×3890 and 5180×3460. Some examples of good predic-
tions are shown in Figure 8. The accuracy, recall and precision 
of three models are shown in Table 5.  

 
           (a)                     (b)                          (c)                       (d) 

Figure 7. Prediction of three Mask R-CNNs for 2017 Mexico 
City earthquake dataset (Purdue University, 2018). (a), (b), (c), 

and (d) denote original image, overlaid image of Cascade, 
APANet, and HRNet Mask R-CNN, respectively. 

 
Methods Accuracy Recall Precision 

Cascade Mask R-CNN 66.0% 37.3% 91.8% 
APANet Mask R-CNN  67.6% 57.6% 79.3% 
HRNet Mask R-CNN  68.1% 67.0% 75.6% 
Table 5. Predictions of Mask R-CNNs on 2017 Pohang 

earthquake dataset. 

In Table 5, the accuracy of these three models is close to each 
other. Cascade Mask R-CNN have the highest precision. but its 
recall is quite low. The precision for APANet Mask R-CNN is 
also higher than HRNet Mask R-CNN while its recall is lower 
than the later in this dataset. 
 
4.5 Failure cases 

It should be noted that these models have been distracted by the 
crack-like or spalling-like objects during the tests. The major 
reason is that the training data are insufficient to cover all kinds 
of scenes when spalling and cracks appeared on the structures or 
its components are captured by the cameras. It is also a common 
problem for training and testing deep learning methods of 
instance segmentation. Some examples of wrong prediction for 
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these three public datasets are shown in Figure 9. We associate 
the distractions as these: 1) wires or cables; 2) trees; 3) fences; 
4) shadow; 5) edges of windows, buildings or other artifact 
objects. 

 
           (a)               (b)                          (c)                       (d) 

Figure 8. Prediction of three Mask R-CNNs for 2017 Pohang 
earthquake dataset (Sim et al., 2018). (a), (b), (c), and (d) denote 

original image, overlaid image of Cascade, APANet, and 
HRNet Mask R-CNN, respectively. 

 
5. DISCUSSION 

With an aim to find an end-to-end framework to detect cracks 
and spalling automatically and accurately, three Mask R-CNNs 
have been evaluated on three different public image datasets 
collected in different extreme events. In our analysis, the 
followings are observed: 
 
1) Low resolution is commonly used with high-speed cameras 
whereas high resolution is standard for lower fps but high- 
quality data collection. Our testing results show that APANet 
Mask R-CNN can be a robust model to detect cracks and 
spalling with low- or high-definition images. 
 
2) The scale of the scene in the image is also another important 
factor affecting the success rate to detect the structural damage, 
namely spalling and cracks. The models have higher accuracy 
when the cameras are closer to the damage, but they fail when 
the damage, especially cracks, are viewed from far and become 
invisible if the camera and the damage are so distant. In 
addition, the false predictions are very common when there are 
many crack-like or spalling-like objects at large scales. It may 
be solved through collecting more similar images and labelling 
them for training. 
 
3) Compared to low resolution, implementation of these models 
takes longer time on high-resolution images. This is due to the 
increase in the number of pixel-wise processes with an increase 

1) Phi-Net datasets 

 

2) 2017 Mexico City earthquake dataset 

 

3) 2017 Pohang earthquake dataset 

 
           (a)               (b)                          (c)                       (d) 

Figure 9. Some examples of wrong predictions of three Mask 
R-CNNs for three public datasets. (a), (b), (c), and (d) denote 

original image, overlaid image of Cascade, APANet, and 
HRNet Mask R-CNN, respectively. 

 
in image size. We also found out that the masks of the models 
do not exactly fit the shapes and positions of these two types of 
structural damage in some cases. Furthermore, not every piece 
of cracks or spalling is marked separately. Exploring solutions 
for this problem is a future task. 
 
4) This paper is a good showcase to apply the latest instance 
segmentation networks on detecting SDD for field inves-
tigations. 
 

6. CONCLUSIONS 

In this study, we tested three different Mask R-CNN 
architectures for detecting and segmenting cracks and spalling. 
Our goal is to show that these frameworks can be used as an 
end-to-end solution for the task independent of damage scales 
or image resolutions, which cause issues for instance 
segmentation of structural damage like cracks and spalling. 
Although the damage to the buildings and bridges in affected 
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regions vary significantly in extreme events, the APANet Mask 
R-CNN was shown to achieve an accuracy above . for 
automatically detecting spalling and cracks on concrete and 
masonry structures. In the future, a more comprehensive dataset 
for better training will be made to quantify the damage and 
detect more types of structural failures while increasing the 
accuracy and precision of the damage position and boundary.  
 
The link for the training and validation data of this study is here: 
https://github.com/OSUPCVLab/CrSpEE. 
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