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ABSTRACT:

In this paper, we develop and implement end-to-end deep learning approaches to automatically detect two important types of
structural failures, cracks and spalling, of buildings and bridges in extreme events such as major earthquakes. A total of 2,229 images
were annotated, and are used to train and validate three newly developed Mask Regional Convolutional Neural Networks (Mask R-
CNNGs). In addition, three sets of public images for different disasters were used to test the accuracy of these models. For detecting
and marking these two types of structural failures, one of proposed methods can achieve an accuracy of 67.6% and 81.1%,
respectively, on low- and high-resolution images collected from field investigations. The results demonstrate that it is feasible to use
the proposed end-to-end method for automatically locating and segmenting the damage using 2D images which can help human

experts in cases of disasters.

1. INTRODUCTION

Automation on Structural Damage Detection (SDD) and
Structural Health Monitoring (SHM) is made possible with the
rapid development of vision- and vibration-based technologies.
The necessity of using them to assist human experts is to
increase the accuracy, rapidness and efficiency of SSD and
SHM while reducing the overall cost. With the successful
application of deep learning methods on a wide range of
problems, it is imperative to apply these techniques on SDD and
SHM. Generally speaking, the application of deep learning on
SDD and SHM requires an interdisciplinary team. These teams
typically use low-cost sensors and autonomous platforms such
as Unmanned Aerial Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs) in field inspections for real-time inspection
and monitoring.

Detection and identification of structural damage can typically
be performed by image segmentation and image classification.
In case of classification, the goal is to identify the categories of
structural attributes, such as material types (e.g., steel, concrete,
masonry) or structural damage types (e.g., cracks, spalling,
collapse) without locating the position of damage from images.
On the other hand, the goal of image segmentation is to detect
and mark damage in specific regions where each pixel in the
image is labeled to denote types of material failures, such as
cracks, spalling and other indicators of structural failures.
Spalling refers to the concrete cover of the steel reinforcements
or part of nonstructural and structural materials that was split
and separated from the original materials. Cracks, on the other
hand, are the phenomena of discontinuity of materials observed
on the surface of them.

Structural damage can appear in images in different ways and
at various scales. Damage can span a larger or smaller extent,
or even be invisible (Gao and Mosalam, 2018). In addition, the
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image resolution may also cause problem for the same type of
damage when the deep learning models are utilized to detect it
(Bai et al.,, 2020b). Therefore, it is necessary to develop a
robust end-to-end solution to segment structural damage
automatically. Mask R-CNN has recently been successfully
applied to instance segmentation in computer vision (Cai and
Vasconcelos, 2019). Based on its success, this approach is
adopted to segment damage so that the buildings and bridges
can be continuously monitored. In particular, three variations of
Mask R-CNN networks are proposed to detect two major types
of structural damage, spalling and cracks, that works inde-
pendent of scale and image resolution. Publicly available image
datasets collected from field investigations in recent large
earthquakes are used to check the effectiveness of the models.

2. RELATED WORK
2.1 Deep learning with R-CNNs in image segmentation

There are several major deep learning methods for image
segmentation, including but not limited to Fully Convolutional
Networks (FCNs), encoder-decoder models, multi-scale and
pyramid networks, Regional Convolutional Neural Networks
(R-CNNs), etc. Each approach has its own advantages, and
some are typically used in benchmarking studies (Minaee et al.,
2020).

Multiple convolutional layers are typically utilized as feature
extractors while downsampling and then upsampling the data
within sliding windows. Its efficiency has been shown to be low
when FCNs are used. R-CNNs, on the other hand, can
preprocess the input image to produce thousands of Region of
Interests (Rols) for feature extraction with FCNs. Furthermore,
the R-CNN reduces the computational time compared to
alternative approaches and improves the accuracy of
segmentation. Its computational cost, however, is still high. To
improve it, Fast R-CNN and Faster R-CNN have been
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introduced and their structures are quite different from the
conventional R-CNN (Ren et al., 2015). The former applies
FCNs directly on the Rols of the feature maps which comes
after convolutional process on the original image. A network
referred to as Region Proposal Network (RPN) on the feature
maps is inserted to automatically produce the region proposal in
the case of Faster R-CNN. Thus, it improves the speed and
accuracy of prediction. But neither of these solutions are
applicable to instance segmentation. He et al. (2017) proposed a
benchmark network, Mask R-CNN, to predict the instance as
well as its bounding box and class. Recently, several variations
of Mask R-CNN were published where researchers use different
backbone network architectures for feature extraction, some of
which we adopted and developed for detecting spalling and
cracks automatically in this paper.

2.2 Spalling and cracks detection with deep learning

Several researchers have adopted deep learning methods for
detecting structural damage. Hoskere et al. (2018) illustrate an
experiment with 23-layer ResNet and 9-layer VGG networks to
classify and segment seven classes of structural damage,
including cracks, spalling, exposed reinforcement, corrosion,
fatigue cracks, asphalt cracks, and no damage. Ali et al. (2019)
introduce Faster R-CNN for defect detection in historical
masonry buildings with high resolution images. Kong and Li
(2018) describe an application that detects and tracks the
propagation of cracks in a steel girder in image streams. Atha et
al. (2018) explain the difference between two CNN methods
used in detecting metallic corrosion. Gao and Mosalam (2020)
started the Phi-Net Challenge for collecting pictures of building
structural failures in 2018. Their large dataset, which is also
used in this paper, is suitable for training and testing different
methods for structural damage detection at different scales (Bai
et al., 2020b).

Recent research in image segmentation have significantly ad-
vanced application of deep learning on structural damage
detection. Yang et al. (2018) employed a hybrid network,
composed of Holistically-Nested Edge Detection (HED)
network and U-Net to detect cracks and spalling on concrete
structures, and then reconstruct 3D model through Simultaneous
Localization and Mapping (SLAM) for UAV images. Cha et al.
(2018) applied Fast R-CNN on detecting five types of structural
damage, including concrete cracks, steel corrosion of two levels
(medium and high), bolt corrosion, and steel delamination. For
this purpose, authors labelled 2,366 images with the size of
500x375 for training. Attard et al. (2019) trained a Mask R-
CNN with 200 images to locate cracks on the concrete surface
at pixel level. Kim and Cho (2019) used 376 images in their
training data for Mask R-CNN to find the cracks on a concrete
wall with high resolution cameras and utilized an additional
image processing procedure on each bounding box to
quantitatively measure the width of these cracks. Kalfarisi et al.
(2020) introduced structured random forest edge detection into
bounding boxes of a Faster R-CNN to detect cracks on
infrastructures and compared it with the performance of Mask
R-CNN. A total of 1,250 images were included in training and
validation process with the size varying from 344x296 to
1,024x796. These models are verified with images acquired
from field inspections on structural members, including
building walls, bridge columns, tunnel walls and roads. The
results show that both approaches are robust for this task.
Finally, they used photogrammetry software to construct a 3D
reality mesh model so that the cracks can be visualized and
quantified further. Mondal et al. (2020) used Faster R-CNN to
automatically detect four common types of structural damage,

including surface cracks, spalling (which includes facade
spalling and concrete spalling), and severe damage with
exposed rebars and severely buckled rebars, but they didn’t
mark the enclosing regions of these damage. Instead, they used
bounding boxes to give the scope of them.

Based on conclusions drawn from the aforementioned papers,
some researchers also have started to conduct their studies on
defect detection, identification and localization. Some cited
researchers prefer to only classify the structural damage as it
does not require time-commitment for labeling the damage (Zha
et al., 2019). As a result, the location and position of cracks on
structural components or structures are unknown until a human
expert manually checks and marks them out. Simplicity of
annotation process makes these models to be trained with a
large number of images which is not the case for segmentation
networks that faces problems due to insufficient training
samples. In order to inherit the advantage of classification
networks, it is necessary to employ a segmentation network to
locate the damage once various types of structural damage have
been classified.

In a recent study, a cascaded network that includes a ResNet
and a U-Net to detect cracks (Bai et al., 2020b) is proposed. A
152-layer ResNet which meets the accuracy requirements of
identifying scene level, material types, and damage types, is
applied at the first step. Even the severity of structural damage
can be quantified by it (Zha et al.,, 2019). U-Net has been
utilized in the second step to mark the damage region, such as
cracks, at various image scales. Tests on public datasets have
shown that the cascaded network improves the accuracy of the
detection dramatically in larger scale detection tasks (Bai et al.,
2020b). The Cascaded network, however, take a long time to
detect the cracks. Therefore, two end-to-end networks are
introduced, such as one of Mask R-CNN with attention
mechanism and Path Aggregation Network (PANet), and the
other with a new backbone called High-resolution Network
(HRNet) (Bai et al., 2020a). Tests for crack detection have
shown that these new models can achieve an accuracy of 75.1%
with 2,021 labeled images for training and validation. Both of
the networks are used as the primary methods in this paper.
Moreover, another method named Cascade Mask R-CNN (Cai
and Vasconcelos, 2019) is also employed here. New training
and validation images are curated for spalling and cracks
detection.

3. METHODOLOGY

In this section, the dataset and the network structures we utilized
are introduced along with the final architecture used to solve the
problem at hand. These methods are chosen here because two of
them have a good performance in our previous study (Bai et al.,
2020).

3.1 Data preparation and augmentation

In training process, a dataset similar to Common Objects in
Context (COCO) is generated from the public sites and from
Yang et al. (2018). The images in this dataset are labeled by the
tool referred as the COCO Annotator (Brooks, 2019), in which
the polygons are used to define the boundaries of the cracks and
spalling and the closed region of these polygons are the damage
in images. Some examples from this process are shown in
Figure 1. In these labeled images, cracks, spalling and
background are in yellow, green and purple, respectively. Size
of the training and labeling images varies from 147x288 to
4600x3070. By excluding steel structures, these surface cracks

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-2-2021-161-2021 | © Author(s) 2021. CC BY 4.0 License. 162



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2021
XXIV ISPRS Congress (2021 edition)

on structural or nonstructural materials are at various scales, and
the reinforcements may be exposed or not in spalling cases.

In order to increase the training dataset, albumentation is
employed for data augmentation. Buslaev et al. (2020) develop
this method with pixel-level transformation and spatial
transformation, including flipping, rotating, cropping, etc.
Spatial transformation is adopted to preprocess our training data
since it can change the input images, masks and bounding boxes

simultaneously.
-
" il

i

=

original label

original ‘ label

Figure 1. Some examples of training data.

3.2 Mask R-CNN with Path Aggregation Network (PANet)
and Spatial Attention Mechanisms

He et al. (2017) proposed Mask R-CNN for instance
segmentation, which is an extension of Faster R-CNN. A RPN
is inserted onto feature maps to automatically produce Rols,
then a small FCN is applied on each Rol to segment the instance
of objects with masks. In addition, different depth of ResNet
and the Feature Pyramid Network (FPN) are combined to
extract high-quality feature maps. Since Mask R-CNN is a
benchmark for instance segmentation in image processing,
many improvements have been made since its publication. The
framework of Mask R-CNN is shown in Figure 2. Liu et al.
(2018) improved Mask R-CNN by replacing FPN with PANet
to improve performance. Because features of low layers in the
pyramid can reach high layers by skip-connections and a
technique called adaptive feature pooling can fuse all levels of
features for each proposal, their proposed method achieves a
higher accuracy when a modified approach on mask prediction
is adjusted. Figure 3 shows the framework of PANet, which is
in part used in our paper. Furthermore, we also introduce spatial
attention mechanisms as suggested by Zhu et al. (2019) into our
approach. The goal of this study is to facilitate the backbone of
Mask R-CNN to extract more useful features in cracks and
spalling detection. This method is called as APANet Mask R-
CNN in this paper.

717 - classbox

P
Figure 2. The Mask R-CNN framework for instance
segmentation of structural damage.

3.3 Mask R-CNN with High-resolution Network

CNN can have a number of different backbones when applied
for segmentation problem. For example, the original Mask
RCNN uses a 101-layer ResNet as its backbone. But Sun et al.
(2019) developed a new network named HRNet to extract
features from an original image. Utilizing repeated multiscale
fusions across these convolutional blocks, this network
maintains high-resolution representations via inter-connections
between high- and low-resolution convolutional modules within
a parallel
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Figure 3. Illustration of the framework of PANet for SDD. (a)
FPN backbone. (b) Bottom-up path augmentation. (c) Adaptive
feature pooling. (d) Box branch. (e) Fully-connected fusion. Pi
and Ni are ith of the original pyramid layers and new feature
layers, respectively.

structure. As shown in Figure 4, there are four stages in HRNet.
High-resolution features are kept until the end of convolutional
operation, and low-resolution ones are added to each new stage.
The connection between them may be the key for better feature
extraction. In this paper, HRNet is employed as the backbone of
another Mask R-CNN to detect the aforementioned two types of
structural failures, spalling and cracks. This approach is named
as HRNet Mask R-CNN for this study.

3.4 Cascade Mask R-CNN

Cascade Mask R-CNN solves the overfitting problem when a
larger threshold used to compute Intersection of Union (IoU)
and disproportion of the quality over the inference and training
when Mask R-CNNs are used (Cai and Vasconcelos, 2019). The
stages of object detection architecture are increased from two to
four on processing object proposals after features are extracted
by CNN from the original input image. For a typical Mask R-
CNN shown in Figure 5, HO is the feature proposal network to
produce massive proposals for each ROI and H1 is the RPN for
automatically generating accurate candidate proposals. B, C and
S respectively denote bounding box, class score and seg-
mentation branch. Cascade Mask R-CNN increases the stages to
combine these candidate bounding boxes in previous stage and
features are resampled from the feature map in the next step.
There are different strategies to insert the regression process on
segmenting the instances, but the final mask prediction is the
result from the single segmentation branch of Figure 5(b) and
5(c), and from three segmentation branches of Figure 5(d).
Thus, position of bounding boxes and class scores can be kept
consistent and the regions of the instances can be refined to be
more accurate. This method focuses on improving the capability
of the detector to find better candidate bounding boxes, class
scores and mask predictions.

4. IMPLEMENTATION

In our study, we adopt the source codes of the Mask R-CNNs
provided in MMDetection (Chen et al., 2019). There are some
modifications including revising part of the program and
finetuning parameters during the training and testing. The
augmented images are provided to the modified models to train
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Figure 4. Framework of high-resolution network (HRNet). There are four stages. The 1st stage consists of high-resolution
convolutions. The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution, four-resolution).
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Figure 5. Mask R-CNN (a) vs. three Cascade Mask R-CNN strategies for instance segmentation (b)-(d). “I” is input image, “conv” is
backbone convolutions, “pool” is region-wise feature extraction, “H” is network head, “B” is bounding box, “C” is classification, and
“S” denotes a segmentation branch. Note that the segmentation branches do not necessarily share heads with the detection branch.

and evaluate at first. The data from Phi-Net dataset (Gao and
Mosalam, 2020), 2017 Pohang earthquake dataset (Sim et al.,
2018) and 2017 Mexico City earthquake dataset (Purdue
University, 2018) at various scales are used to test the
algorithm. In the training process, the hyperparameters are set
as: learning rate is 0.002, momentum is 0.9 and decay rate of
weights is 0.0001. The loss function for mask is cross-entropy
and for bounding boxes is smooth L1. The training and testing
for the model are executed with NVIDIA GeForce GTX 2080
Super. Total number of epochs for training each model is set to
100. Based on testing on our own data, all above parameters are
finally selected after we compared and optimized them.

4.1 Evaluation on the proposed models

Considering that the labeled data of our training and validation
are similar to COCO dataset, we follow the same standard
metrics to evaluate our models based on our validation dataset.
The results can be show in Table 1, AP (Average Precision) is
based on IoU, different threshold values and various scales
provide [APso, AP7s, AP, APs, APy, APL].

Mask AP (box) is reported here. Both Cascade Mask R-CNN
and APANet Mask R-CNN employ 101-layer ResNet as
backbone. HRNet Mask R-CNN uses four-stage high resolution
networks. But the 4Ps of these Mask R-CNNs on the validation
data are very low (see Table 1 and 2), even though they are
close. For damage detection, it is more important to identify and
mark the damage as many and precisely as possible for large
image datasets.

In the following tests, the criterion for a valid prediction is
defined as at least one of the structural failures, such as spalling
and cracks, being inside a bounding box or mask, although
sometimes there are several bounding boxes or masks in an
image when the threshold is low. Metrics including recall,
precision and total accuracy are used for evaluating the
performance of these models:

TP
TP+FN (1)

Recall =

TP
TP+ FP
TP+TN
TP+ FP+FN+FN

Precision =

@
3)

where TP and TN are true positive and negative, FP and FN are
false positive and negative, respectively.

Accuracy =

Methods AP | APso | AP75 | APs | APy | AP,

Cascade Mask R-CNN 74214 |33 42 | 139 |65
APANet Mask R-CNN 63213 |17 49 9.0 7.1

HRNet Mask R-CNN 591199 |21 50 | 6.9 6.8
Table 1. Comparison on Mask R-CNNs with Validation Data
for Cracks.

Methods AP | APs50 | AP75s | APs | APy | APy

Cascade Mask R-CNN 20.3 1390 | 192 | 1.2 16.7 |23.2
APANet Mask R-CNN 13.9 1 33.0 | 10.7 | 0.7 12.2 | 16.1

HRNet Mask R-CNN 14.7 1333 | 108 |02 |123 |16.9
Table 2. Comparison on Mask R-CNNs with Validation Data
for Spalling.

4.2 Tests on Phi-Net dataset (Gao and Mosalam, 2020)

In the dataset, the following classes are annotated for eight
tasks: 1) scene levels; 2) damaged or undamaged states; 3)
spalling or nonspalling; 4) material types; 5) collapse modes; 6)
component types: including beams, columns, walls and others;
7) damage levels; 8) damage types. Totally, 36,413 images are
collected in this dataset, but just for training and testing with
classification. In addition, all images are low-resolution ones
since the image size is uniformly resized as 224x224. From
these images, we merged Task 3 which includes spalling and
nonspalling cases and Task 8 which collects cracks and no
cracks scenarios into a new testing dataset. The total number of
the dataset is 5,853. The threshold for spalling and cracks being
detected is set as 0.2 instead of 0.5 as most studies used. Figure
6 shows the examples of successful prediction by three Mask R-
CNN:s. In these overlaid images, the bounding boxes, and masks
of spalling and cracks are in green, purple, and yellow colors,
respectively. These colors have the same meaning in Figures 6,
8,7,and 9.
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Methods Accuracy | Recall Precision
Cascade Mask R-CNN 78.9% 70.7% 88.7%
APANet Mask R-CNN 81.1% 84.8% 83.8%
HRNet Mask R-CNN 58.6% 95.5% | 57.7%

Table 3. Predictions of Mask R-CNNs on Phi-Net dataset.

From Table 3, it can be observed that the accuracy of Mask R-
CNN + HRNet is quite low, but Cascade Mask R-CNN and
APANet Mask R-CNN is higher over this low-resolution image
dataset. Furthermore, both of them have a very high recall and
precision.

¢ 4

(a) (b) (©) (d)

Figure 6. Prediction of three Mask R-CNNs for Phi-Net dataset
(Gao and Mosalam, 2020). (a), (b), (c), and (d) denote original
image, overlaid image of Cascade, APANet, and HRNet Mask
R-CNN, respectively.

4.3 Tests on 2017 Mexico City earthquake dataset (Purdue
University, 2018)

In this dataset, there are 4,136 images with two image
resolutions, 2740x3650 and 6000x4000. All of the images are
taken by experts at Purdue University when they conducted the
field investigation in Mexico City after a Richter magnitude 7.1
earthquake in 2017. Figure 7 shows some examples of correct
prediction from our models.

The accuracy of APANet Mask R-CNN is higher than the
others, and the accuracy of other two methods is close (see
Table 4). The recall and precision of APANet Mask R-CNN and
HRNet Mask R-CNN are above 73.0%, but the recall of
Cascade Mask R-CNN is low.

Methods Accuracy | Recall | Precision
Cascade Mask R-CNN 69.4% 45.5% | 90.9%
APANet Mask R-CNN 74.7% 70.4% | 85.7%
HRNet Mask R-CNN 69.1% 73.5% | 73.4%

Table 4. Predictions of Mask R-CNNs on 2017 Mexico City
earthquake dataset.

4.4 Tests on 2017 Pohang earthquake dataset (Sim et al.,
2018)

In this dataset, a research group supported by the American
Concrete Institute (ACI) collected images during their
inspection after an earthquake with the Richter magnitude of 5.2
happened in Pohang of South Korea in 2017. The total number
of images used for testing is 4,109, and their resolutions are
2600%3890 and 5180%3460. Some examples of good predic-
tions are shown in Figure 8. The accuracy, recall and precision
of three models are shown in Table 5.

Figure 7. Prediction of three Mask R-CNNs for 2017 Mexico
City earthquake dataset (Purdue University, 2018). (a), (b), (¢),
and (d) denote original image, overlaid image of Cascade,
APANet, and HRNet Mask R-CNN, respectively.

Methods Accuracy | Recall | Precision
Cascade Mask R-CNN 66.0% 37.3% | 91.8%
APANet Mask R-CNN 67.6% 57.6% | 79.3%
HRNet Mask R-CNN 68.1% 67.0% | 75.6%

Table 5. Predictions of Mask R-CNNs on 2017 Pohang
earthquake dataset.

In Table 5, the accuracy of these three models is close to each
other. Cascade Mask R-CNN have the highest precision. but its
recall is quite low. The precision for APANet Mask R-CNN is
also higher than HRNet Mask R-CNN while its recall is lower
than the later in this dataset.

4.5 Failure cases

It should be noted that these models have been distracted by the
crack-like or spalling-like objects during the tests. The major
reason is that the training data are insufficient to cover all kinds
of scenes when spalling and cracks appeared on the structures or
its components are captured by the cameras. It is also a common
problem for training and testing deep learning methods of
instance segmentation. Some examples of wrong prediction for
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these three public datasets are shown in Figure 9. We associate
the distractions as these: 1) wires or cables; 2) trees; 3) fences;
4) shadow; 5) edges of windows, buildings or other artifact
objects.

Figure 8. Prediction of three Mask R-CNNs for 2017 Pohang
earthquake dataset (Sim et al., 2018). (a), (b), (c), and (d) denote
original image, overlaid image of Cascade, APANet, and
HRNet Mask R-CNN, respectively.

5. DISCUSSION

With an aim to find an end-to-end framework to detect cracks
and spalling automatically and accurately, three Mask R-CNNs
have been evaluated on three different public image datasets
collected in different extreme events. In our analysis, the
followings are observed:

1) Low resolution is commonly used with high-speed cameras
whereas high resolution is standard for lower fps but high-
quality data collection. Our testing results show that APANet
Mask R-CNN can be a robust model to detect cracks and
spalling with low- or high-definition images.

2) The scale of the scene in the image is also another important
factor affecting the success rate to detect the structural damage,
namely spalling and cracks. The models have higher accuracy
when the cameras are closer to the damage, but they fail when
the damage, especially cracks, are viewed from far and become
invisible if the camera and the damage are so distant. In
addition, the false predictions are very common when there are
many crack-like or spalling-like objects at large scales. It may
be solved through collecting more similar images and labelling
them for training.

3) Compared to low resolution, implementation of these models
takes longer time on high-resolution images. This is due to the
increase in the number of pixel-wise processes with an increase

1) Phi-Net datasets

3) 2017 Pohang earthquake dataset

o ey e -

(a) (b) (© (d)
Figure 9. Some examples of wrong predictions of three Mask
R-CNN:ss for three public datasets. (a), (b), (c), and (d) denote

original image, overlaid image of Cascade, APANet, and
HRNet Mask R-CNN, respectively.

in image size. We also found out that the masks of the models
do not exactly fit the shapes and positions of these two types of
structural damage in some cases. Furthermore, not every piece
of cracks or spalling is marked separately. Exploring solutions
for this problem is a future task.

4) This paper is a good showcase to apply the latest instance
segmentation networks on detecting SDD for field inves-
tigations.

6. CONCLUSIONS

In this study, we tested three different Mask R-CNN
architectures for detecting and segmenting cracks and spalling.
Our goal is to show that these frameworks can be used as an
end-to-end solution for the task independent of damage scales
or image resolutions, which cause issues for instance
segmentation of structural damage like cracks and spalling.
Although the damage to the buildings and bridges in affected
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regions vary significantly in extreme events, the APANet Mask
R-CNN was shown to achieve an accuracy above 67.6% for
automatically detecting spalling and cracks on concrete and
masonry structures. In the future, a more comprehensive dataset
for better training will be made to quantify the damage and
detect more types of structural failures while increasing the
accuracy and precision of the damage position and boundary.

The link for the training and validation data of this study is here:
https://github.com/OSUPCVLab/CrSpEE.
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