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This paper derives a new data-driven reduced model for a challenging large-scale combus-
tion simulation and offers a detailed performance comparison with two state-of-the-art reduced
models that were previously developed for this application. In particular, we learn a physics-
based cubic reduced-order model (ROM) via the operator inference framework (OPINF). The
key to the efficiency and physics-based nature of the model lies in the use of variable transfor-
mations of the original highly nonlinear system that make the governing equations polynomial
in the new variables. We compare this approach with a quadratic operator inference ROM and
with dynamic mode decomposition with control (DMDc), a modal decomposition method that
has been shown to work well in many fluid dynamical applications. An extensive comparison of
these approaches yields interesting insights: in particular, we find that the cubic and quadratic
models based on operator inference capture more high-frequency content of the system com-
pared to DMDc; we also find that the presence of the cubic term in the operator inference
ROM improves stability properties of the system. Each of the reduced models we examine are
accurate and provide a significant computational speedup compared to the high-fidelity model.

L. Introduction

Low-dimensional, computationally efficient dynamical systems models are a key enabler of uncertainty quantification,
design, and control in combustion applications. The past several years have seen a spike in interest in data-driven
approaches to low-dimensional modeling, including physics-based methods, machine learning techniques, and hybrid
procedures combining elements of each. These advances are made possible by the increased availability of data—both
physically observed and numerically simulated—in all areas of aerospace engineering, as well as greater processing
power for extracting relevant information from such vast amounts of data. Combustion applications are no exception
to this trend, but low-dimensional modeling of combustion processes remains challenging due to their nonlinear,
multiscale, and highly advective nature. Nevertheless, several recent innovations in data-driven approaches have
produced encouraging results in combustion applications [1-4]. The subject of this work is to develop additional
computational tools for these combustion applications and to provide new analysis from a spectral decomposition
perspective.

There are a variety of modeling techniques for learning low-dimensional systems from data, each with their own
strengths and weaknesses. For systems where the structure is assumed to be linear, the Loewner framework [5-8],
the eigensystem realization algorithm [9-12], and vector fitting [13, 14] have all been shown to produce accurate and
fast simulation results. These methods are largely well established and applicable to different system domains, data
generation schemes, and so forth. For nonlinear systems, there are many low-dimensional model learning approaches
based on machine learning concepts for learning general nonlinear functions (see, e.g., [15] in the context of combustion)
or for representing the dynamical state in a nonlinear manner [16]. Moreover, nonlinear system identification methods
such as [17, 18] can learn governing equations from data, provided a proper library of basis functions that express
the data is found. Many learning approaches assume a specific form of the nonlinear terms, such as the Loewner
approach for quadratic-bilinear systems [19]. Additional consideration might be given to the nonlinear terms to enforce
efficient models, such as by using the discrete empirical interpolation method (DEIM) [20, 21]; see also [1, 22] for a
DEIM-based method applied to the combustion application considered herein.
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In this paper, we focus on two highly transparent data-driven methods for constructing low-dimensional models
of nonlinear systems. First, dynamic mode decomposition (DMD) is a modal decomposition technique related to
Koopman operator theory [23] that learns linear reduced models for nonlinear dynamical systems. The performance
of DMD can be greatly improved by including knowledge of suitable observables that make the input-output map
low-dimensional [24-26]. In this study, we make use of dynamic mode decomposition with control (DMDc) [27], an
extension of DMD for forced systems [28, 29]. Second, the operator inference (OPINF) approach introduced in [30]
learns low-dimensional nonlinear operators that are polynomial in the state and can have external forcing. The framework
has been extended to general nonlinear systems by utilizing variable transformations [2, 3, 31, 32] and can also work in
hybrid situations where part of the model is known in analytic form but other parts have to be learned [33]. Building on
the successful application of quadratic operator inference for combustion, we present a data-driven cubic reduced-order
model (ROM) for a high-dimensional discretization of a single-injector combustion application and compare it to the
quadratic operator inference ROM presented in [2, 3] to better understand the effect of including higher-order polynomial
terms. In addition, we construct a ROM based on DMDc where we use the original DMD model with an added control
term in the equation. Our numerical experiments compare the ROMs and their performance both in the time domain
and in the spectral domain, offering insight into the replication of flow frequencies and phase changes in the ROM. To
our knowledge, this is the first such comparison of these techniques for such a complex nonlinear transient problem.
The results provide valuable insights for predictive low-dimensional modeling in reactive flow applications.

The paper is structured as follows: Section II describes the governing equations and discretization of the considered
combustion application; Section III presents details of the dynamic mode decomposition and operator inference methods
for low-dimensional modeling; numerical results are presented in Section IV; and conclusions are stated in Section V.

II. Combustion application
In this section, we give details on the combustion model, which is solved with the General Equation and Mesh Solver
(GEMS) CFD code [34]. Specifically, we consider the single-injector combustor computational model setup from [2]
with the computational domain shown in Figure 1a, which also shows the four locations where we monitor the state
variables. We briefly describe the model here and refer to [2, 34] for more details.
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Fig.1 Setup and geometry of the single-injector combustor.

A. Governing equations
The dynamics of the two-dimensional combustor are governed by the conservation equations for mass, momentum,
energy and species mass fractions,
ag°
ot
describing the evolution of the conservative variables ¢°(x, y,t) = [p pv pw pe pY; ... pY4]". Here, p is the
density (:I(T%), v and w are the x and y velocity (%), e is the total energy (#), and Y; is the /th species mass fraction with

+V-(K-K,) =5, (1)

]T

[ =1,2,3,4. The inviscid flux is K , viscous flux is denoted K v, and the vector S contains the source terms from the
chemical reactions. In this implementation, following [35], four chemical species are modeled in a 1-step combustion



reaction governed by
CH4 + 202 — C02 + 2H20,

and their molar concentrations are ¢; = [CHy], ¢y = [03], ¢3 = [CO;], and ¢4 = [H,0]. The general relationship
between a species molar concentration, ¢;, and a species mass fraction, Y;, is ¥; = C’TM’ where the molar mass of CHy is

M, =16.04-£ the molar mass of O, is M, = 32.0-%;, the molar mass of CO; is M3 = 44.01-%;, and the molar mass

of HyO is M4 = 18.0==. In this work, we relate density and pressure to temperature through the ideal gas state equation
-1

o= %, where R(Yy,...,Y) = % and M = (Z?zl (%)) is the average molar mass of the mixtures. Thus, we can

-
mol
. . _ p
obtain temperature via T = PRV Ya) from the states p, p, Y1, ..., Ya.

At the downstream end of the combustor, a non-reflecting boundary condition is imposed to maintain the chamber
pressure. The corresponding input is

u(t) = 10%(1 +0.1sin(27 f1))  [Pa], )

where f = S000Hz. The top and bottom wall boundary conditions are no-slip conditions, and for the upstream boundary
we impose constant mass flow at the inlets.

B. Spatially discretized high-fidelity model

GEMS uses the finite volume method to spatially discretize the conservation equations Eq. (1). The primitive
variables g°P = [p v w T Yy ...Y4] " are chosen as solution variables in GEMS. For a spatial discretization with n, cells,
this results in a dn,-dimensional system of nonlinear ordinary differential equations (ODEs)

dq® P P P

? = G(q ’ u(t))’ q (0) = q()’ (3)
for 0 <t < T, where we have d = 8 physical unknowns (four flow variables and four species concentrations) in the
PDE governing equations. In Eq. (3), q°(¢) € R is the discretized state vector at time , qg are the specified initial
conditions, and % is the time derivative of the state vector at time 7. The one-dimensional input u(¢) € R arises from
the time-dependent boundary condition, Eq. (2). The nonlinear function G : R%™> x R — R~ maps the discretized
states P and the input u to the state time derivatives, representing the spatial discretization of the governing equations
described in Section IL.A.

I11. Data-driven reduced-order modeling for nonlinear systems
Our goal is to learn low-dimensional dynamical systems models from data of the combustion simulations described
in the previous section. We describe in Section III.A our strategy for learning from transformed variables, which has
been shown in [2, 3, 31, 32] to significantly simplify the learning problem. Next, we discuss two different data-driven
reduced-order modeling strategies, which we compare numerically in Section IV. In Section III.B, we briefly introduce
dynamic mode decomposition (DMDc) [27-29], and in Section III.C, we review operator inference (OPINF) [30].

A. Learning reduced models from transformed data

In [2], it was shown that the highly nonlinear governing equations Eq. (3) admit a largely quadratic form when
expressed in the variables {p, v, w, p‘l, 1, - ..c4}. The authors then showed that quadratic data-driven reduced models
of Eq. (3) accurately reproduce many of the quantities of interest, such as pressure oscillations, species concentration,
and even full state fields. Subsequently, [3] showed that including the temperature as an additional variable leads to an
even better set of learning variables for reduced models. Drawing from these results, we focus herein on the vector of

discretized variables .
qg=|p" v w' TT (1/p7 Y[ - Y, eR" “)
as the data that we use for model learning (1/p denotes the componentwise inverse). Here we use n = 9n, to simplify
the notation of the state dimension. Our goal is to learn a reduced-order dynamical system in these variables. The next

two sections discuss two alternative methods and strategies to achieve that task.



B. Dynamic mode decomposition with control (DMDc)

Dynamic mode decomposition (DMD) originated in the fluid dynamics community as a method to decompose
complex flows into a representation based on spatiotemporal coherent structures and their dynamic evolution [28, 29].
DMDc is an extension of DMD that capitalizes on all of the advantages of DMD and provides the additional innovation
of being able to disambiguate between the underlying dynamics and the effects of actuation, resulting in accurate
input-output models [27]. The chosen variables q evolve in the form of a general finite-dimensional dynamical system,
written in discrete-time form as

qQr+1 = Ga(qx, ug), k=0,1,2,..., )

where for times 0 = 1) <t} < --- <tg =T, ur = u(ty) € R™ is the input, q; = q(tx) € M C R" is the discretized
state, M is the solution manifold, and G4 denotes the discretized forward operator. Let g be a function defined on
M whose outputs are observables of the system, that is, we have access to g(qo), g(q1), - - -, g(qx ). The Koopman
operator K for the dynamical system Eq. (5) is an infinite-dimensional linear operator that acts on such observable
functions as

[Kgl(ar) = 8(Ga(qx,ur)) = g(qr+1)-

Thus, the Koopman operator is the propagator of observables. The DMD algorithm yields a reduced-order approximation
of the Koopman operator in the space of observables. In many cases, the observable is chosen as the full state, i.e.,
g(q) = q, yet other linear or nonlinear observables might yield better results. Moreover, extending the observables by
nonlinear functions of the state variables has also been shown to improve the approximation properties of DMD [24].
Here, we focus on the learning variables from Eq. (4) as observables. We then collect the data of K + 1 observables and
inputs in the snapshot matrices

QZ[QO q - gk-1 ]GR"XK,

(6)

Q':[ql qQ - qK]ER"XK, Uz[uo u - uK_l]ERmXK.

Since the (infinite-dimensional) Koopman operator K is linear, we approximate the dynamics of observables in
finite dimensions as linear in the state and linear in the inputs, i.e.,

Q' = APMPQ +BU (7)

with a control operator B € R that, in our application, encodes the location of the the external pressure force acting
on the downstream end of the combustion chamber, see Eq. (2).* Defining Q;, = Q' — BU € R™X Eq. (7) can be
written as Q/, = APMPeQ, hence APMP can be learned by minimizing ||Q/, — APMP¢Q||£. This yields the solution

ADMDC — Q,/,,QT,

where Q is Moore—Penrose pseudoinverse of Q. However, this strategy is numerically problematic due to ill-conditioning
of the matrix Q, and the resulting DMDc matrix APMP¢ ¢ R™" is large and therefore expensive to analyze directly. For
these reasons, and to achieve a computational speedup, DMDc seeks a low-dimensional approximation of the Koopman
operator by approximating the state snapshot matrix Q with its rank-r singular value decomposition,

Q~ VIW', ®)

where V € R™" ¥ € R™", and W € RX*" contain the left singular vectors, singular values, and right singular vectors
of Q, respectively. The reduced rank r can be chosen based on an energy criterion, e.g., Y.I_ o7/ Z;i"lk(o) o’ > &,
where g0 is a chosen threshold; one commonly uses € = 0.95 or &£ = 0.99, which is interpreted as the basis covering
95% or 99% of the variation/energy in the data. We then obtain a low-dimensional approximation of the DMDc operator,

ADMDC — VTADMDCV — VTQ;WZ_I c Rr)(r-
The corresponding DMDc ROM is defined by

P~ A DMD.
k+1 = A ¢

q qi + Buy,

*One can also treat the control operator B as an unknown in the learning problem, as demonstrated in [27].



where B = VTB € R™™ States in the original high-dimensional space are approximated as q ~ Vq.
To see that DMDc is a modal decomposition technique, consider the eigenvalue decomposition of the low-dimensional
operator,
APMPeq) — OM.

The eigenvalues yy, ..., u, € C on the diagonal of M are called DMDc eigenvalues, and the DMDc modes (in the
original high dimension) are the columns of the matrix

®=Q Wz lQecr,

One can easily verify that the DMDc eigenvalues and modes are a subset of the eigenpairs of APMP¢ i e  APMPc@ = @M.
This makes DMDc a popular method for understanding the dynamics in complex systems from the perspective of
individual DMDc modes evolving according to their associated eigenvalues and adjusted by the control at each step.

C. Polynomial operator inference

Polynomial operator inference [30] is a model learning procedure that mimics the projection-based ROM setting
but obtains the operators defining the ROM in a fully data-driven way. Results regarding the convergence and error of
the learned model operators compared to their intrusive projection-based counterparts can be found in [30, 36]. The
starting point of any projection-based ROM method is to approximate the high-dimensional state q in a low-dimensional
basis V € R™, with r < n, as q ~ Vq. Using a Galerkin projection, it is straightforward to see that the polynomial
structure of a full-order model is retained in the ROM after projection. Thus, our goal is to learn a ROM of the form

¢
—_Aqg Ng® +Bu+¢
P _Aq+;N[q +Bu+t, ©))

where A € R™ is the linear operator, the N i € ]RA’X"' are matricized higher-order tensors, and q@ is a i-times Kronecker
product of q (e.g., % = ¢ ® 4 ® q). Moreover, B € R”™™ and ¢ € R’ is a constant vector.

As a first step, we collect K snapshots of the state by solving the high-fidelity model. We store the snapshots and the
inputs used to generate them in the matrices

nxK mxK
Q=|q q - qg-1 [ER™T, U=|uw w -+ wg_; |€R s

which are similar to the data matrices used in DMDc, but which include data from the initial and final times. In general,
n > K, so the matrix Q is tall and skinny. Second, since we want to learn a low-dimensional model, we need to
identify a low-dimensional subspace of the high-fidelity solutions in which to learn the ROM. We elect to use the proper
orthogonal decomposition [37] (POD), also known as principal component analysis, to compute the low-dimensional
subspace. The POD method computes the rank-r approximation of the snapshot matrix via singular value decomposition

Q~VIW',

so that V € R™, which in this context is called the POD basis. Third, we project the state snapshot data onto the POD
subspace spanned by the columns of V and obtain the reduced snapshot matrices

QZVTQZ[QO al aK—l €RNK7 Q=[ﬁo fil I'1\1(71 ERVXK’

where the columns of 6 are computed from the columns of 6 using any time derivative approximation (see, e.g., [38-40]),
or which can be obtained—if available—by collecting and projecting snapshots of G, i.e., q; = V' G(qg, ug).

Operator inference solves a least-squares problem to find the reduced operators that best match the projected snapshot
data in a minimum residual sense. In order to learn a polynomial ROM as in Eq. (9), operator inference solves the
least-squares problem

2

min

_ _ n_ s (10)
AeR™r N; eRrxr' BeRr*m ¢eRr

F

[ .
AQ + ZN,Q@ +BU +Cly — Q
=




where 1x = [1,1,...,1]T € RK and 69 = [ﬁ%a ﬁ? e ﬁ%_l] e R™K In sum, operator inference enables us to

compute the ROM operators K, Ni, B,and ¢ directly from data of the high-fidelity solver, but without access to any of
its internal codes or routines.
The unknown operators of Eq. (9) can be concatenated in a matrix

0= [ ;& NZ e N€ B ¢ ] c Rrx(r+r2+...+r(’+m+1)
and the known low-dimensional data in the data matrix
D=|Q" @) - @7 U Ig |eRRxrrteartm, (11)

It was proven in [30] that Eq. (10) can be rewritten as r independent least-squares problems, which makes the method
efficient and scalable. Additionally, to avoid overfitting and combat model form error, [2, 3] noted that regularization
becomes necessary. More details on the regularization choices are given in Section IV. With these observations, Eq. (10)
becomes

2
pO"-Q | +|ro"|> (12)
F

min
o

where I’ = dlag(/lll(r), AZI(;«Z), e /lfl(rl"), /lll(m)» /ll) c R(r+r2+...+rf+ln+l)><(r+r2+...+rf+m+l) is a diagonal regulariza—
tion matrix with I, the p X p identity matrix.

Similar to the case of regularization for quadratic operator inference (£ = 2) in [3], we define the regularized
learning problem for cubic operator inference (¢ = 3) as

__min _

—~— o~ o~ —~ o~ —~ . =112 —~ —~ . - —~
in | [AQ+R2Q0 + NsQ® + BU 1L ~ Q|+ 4 (IAIZ + IBI + [€3) + A2lINallr + 3l Ns |
A,N,,N;3,B,¢

Here, 1; regularizes the linear, input, and constant operators, A, regularizes the quadratic operator, and A3 regularizes
the cubic operator. In this case, the optimization takes the form of Eq. (12) with the matrices

0= [Z Nz N3 ﬁ ’é] c Rrx(r+r2+r3+m+1)
D= [QT (6®)T (6®)T UT IK] e RKX(V+V2+V3+m+1)
I' = diag(11(), 212y, 4313y, Ay, A1) € R+ 247 m D)X (4247 4 )

The solution to Eq. (12) is then obtained by solving the normal equations

T
(D'D+T'T)0" =D'Q .

IV. Numerical results
This section presents our numerical findings for the single-injector combustion process. Section IV.A presents
details of the numerical tests and their implementation, and Sections IV.B and IV.C present the final results. The
public repository https://github.com/Willcox-Research-Group/ROM-OpInf-Combustion-2D contains the
code and details for these numerical experiments.

A. Data and implementation details

1. Discretization and data size

The computational domain of the combustion chamber displayed in Fig. 1a is discretized into finite volumes with a
total number of n, = 38,523 cells. We use the physical variables in Eq. (4) for model learning, for a total of d = 9
physical variables. Consequently, the dimension n of each snapshot qy is n = 9n,, = 346, 707. The full-order model is
simulated for a time duration of 6ms with a time step size of 1 x 107’s, resulting in 60,000 snapshots of the high-fidelity
GEMS model. The data set is publicly available at [41]. We use K = 20,000 snapshots for the model training and the
remaining 40,000 snapshots in time for the model validation. The training data matrix Q is thus arranged as follows:


https://github.com/Willcox-Research-Group/ROM-OpInf-Combustion-2D

20,000 columns = snapshots in time

Po P1 s P19,999
Vo Vi xx V19,999
Wo Wi ax W19,999

P o (e ™H1 - (P D009 (13)

Q= Ty T, cee T19,999 346,707 rows = spatial values of 9 variables

Yg . Yfm o Y1C9},I 999
Yo02 Y?z o Y?92,999
vy Lyl
| YGY Y

2. Scaling of data

The range of the data, i.e., the minimum, maximum, and mean values are listed in Table 1. This illustrates that there
is a significant difference in magnitude, for instance, the mean H,O concentration and the mean pressure differ by nine
orders of magnitude. Therefore, scaling is necessary for this problem, as is common in multiphysics and multiscale
applications. For our experiments, we scale each variable entrywise to the interval [—1, 1] via a maximum absolute
scaling: pressure, temperature, and specific volume are first centered about 0, then each variable is normalized by its
maximum absolute value. To be precise, let py ; be the jth entry of the kth pressure snapshot py € R"~; the pressure is
scaled as

Pki—P -1
i = PP P 2 e
n{}g_x{lpg,j —pl} X k=1 i=1

Temperature and specific volume are transformed in the same way. Velocity and species concentration data are
normalized without additional centering, e.g., vj‘fjkd = vi,i [ maxe, ; {|V5, jl} . In addition to significantly improving the
conditioning of the learning problem, this scaling strategy preserves the null velocities, null molar species concentrations,
and mean pressure, temperature, and specific volume in each ROM.

After scaling the raw data, the SVD of the scaled data is computed (details are in the next section), the ROM is built
and simulated, and the states generated by the ROM simulation are then unscaled before errors are computed. In other
words, learning and reduced-order computing are done in a scaled space, but input and output states are compared in the

original state space.

Table 1 The minimum, mean, and maximum of each of the nine physical variables in the state vector q over
the entire data set of 60,000 snapshots.

Variable Minimum Mean Maximum
Pressure (p) 8.5797 x 10° | 1.1478 x 10° | 1.5359 x 10°
x-velocity (v) —427.0257 72.5567 332.6312
y-velocity (w) —324.4188 1.3172 212.9931
Temperature (T) 262.2406 1041.6196 2804.4548
Specific Volume (p~!) 0.0995 0.3574 1.0583
CH,4 Molar Concentration (¢“H4) 0.0000 0.0334 0.6269
05 Molar Concentration (¢©2) 0.0000 0.0369 0.0715
H,0 Molar Concentration (¢H29) 0.0000 0.0019 0.0081
CO, Molar Concentration (c¢©°2) 0.0000 0.1022 0.1671




3. Randomized singular value decomposition

The computation of the full singular value decomposition (SVD) of the snapshot matrix Q €
Eq. (13) has complexity O(Kn? + K?) and is therefore prohibitively expensive. Randomized methods for computing the
SVD, abbreviated RSVD, are often faster and quite robust [42]. The basic idea of RSVD is to sample the range space of
Q by computing the action of Q on random vectors (that are orthonormal with high probability). Once the range space
is found, orthonormalization is performed and a smaller deterministic SVD is computed to obtain the right singular
vectors. This prototype RSVD algorithm, presented also in [42], is summarized here in Algorithm 1 and implemented
in the python package Scikit-learn [43] under the function sklearn.utils.extmath.randomized_svd().

R346’707X20’000 in

Algorithm 1 Randomized SVD

Input: Data Q € R™K rank r € Z*, oversampling parameter £ € Z* (£ + r < min{n, K})

Output: Approximate SVD factors V € R, X € R™", WT € R™*K

. Pick an integer exponent k € Z* (say « = 1 or x = 2).

Generate a Gaussian test matrix I' € R™>(¢+7),

Form Y = (QQT)*QI € R™(+7) by multiplying alternately with Q and QT.

Construct a matrix P € R (*") whose columns form an orthonormal basis for the range of Y.
Let B=PTQ e R(+)xK

Compute the SVD factors V € R 5 ¢ RUENXUEr) apnd WT e RIHXK of the (small) matrix B, i.e.,
B=VEIW™.

Set V =PV € R™(&+7),

8: Extract the rank-r SVD factors V=V. 1, e R>" L =%, 1, e R™ and W' = er:r’: e R™*K,

A Ao

~

4. Regularization of the operator inference optimization problem

As reported in [2, 3], regularization of the operator inference problem Eq. (12) is necessary to produce stable
ROMs. For the quadratic case (£ = 2), we find that the regularization hyperparameters A; = 10> for the linear terms
and 1, = 10° for the quadratic terms yield good OPINF ROMs. In the cubic case (£ = 3), we use A = 10%, 1, = 10°
and A3 = 10°. In both the cases we have chosen the model basis size as r = 44. These hyperparameter choices are not
necessarily optimal, but they suffice for our numerical comparison; see [3] for a discussion on algorithmically selecting
hyperparameters that are optimal in an empirical sense.

5. Signal analysis in frequency domain

We compare the time series for several physical variables at specific locations in the combustor for our learned
ROMs with the full-order GEMS data. A more complete picture of the approximation quality, however, arises when
we compute the spectral information inherent in the signals, such as amplitude and phase. The frequency resolution
for the spectral analysis depends on the number of time snapshots available. We have K = 60,000 snapshots in time
with time step AT = 1 x 1077s, so the sampling frequency is f; = 1/(AT) = 10MHz. We analyze the training and
testing data separately. Therefore, the lowest frequency resolution for the training data is f;/20,000 = 5S00Hz, and for
the testing data it is f;/40,000 = 250Hz. To analyze the data, we employ the standard Fast Fourier Transform (FFT)
from SciPy-fft [44]. The FFT of the length-K time-domain sequence {xg, X1, ...,Xx_1} is the length-K sequence
{Xo,X1,...,Xg_1} where

K-1 kj
X = Zexp(—Zni?)xj k=0,1,...,K—1.
j=0
In our context, x; € R represents the value a single physical variable at a particular location in the domain at time 7,
while X; € C is the amplitude of the kth frequency of that signal.

B. Comparison of learned DMDc and OPINF ROM performance

In this section we present a numerical comparison, in both the temporal and frequency domains, of quadratic and
cubic OPINF reduced models and DMDc reduced models, all of which are compared to the full-order GEMS data
(we also refer to the GEMS data as the full-order model, or FOM). We use r = 44 basis vectors for both the quadratic
operator inference (Q-OPINF) and the cubic operator inference (C-OPINF). As stated earlier, the training data contains
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Fig. 2 Training and prediction at monitor location 2. The black vertical line denotes the end of the training
data and the beginning of the test data. All the three models, Q-OPINF, C-OPINF, and DMDc have the same
basis size of r = 44.

K = 20,000 snapshots and the testing data contains another 40,000 snapshots. Therefore, the results show a true
prediction of ROM simulations for 200% past the training data.

Figures 2 and 3 show the pressure, temperature, and two chemical species—CO, and CH4—at monitor locations 2
and 3 in the combustor, respectively (marked in Figure 1a). The end of the training data is marked by the vertical black
line. These two locations are physically representative of different phenomena that are both challenging to capture with
a low-dimensional representation: at monitor location 3, significant mixing occurs due to the merging of the fuel and
oxidizer inlets; at monitor location 2, the combustion is most active with high rates of heat release. From Figure 2, we
observe that the Q-OPINF model for this particular setting has large oscillations, and seems to have an onset of an
instability toward the end of the testing interval. Adding the cubic nonlinear terms to the OPINF model dampens the
oscillations, increasing the stability of the ROM. The same pattern is observed in Figure 3. The DMDc model also
predicts the dynamics quite well, with generally smaller oscillations than the Q-OPINF model.

Figure 4 and Figure 5 show the spectral content (amplitude vs frequency) of the signals at the monitoring locations.
The left column of these figures shows that information for the training interval, and the right column analyzes the
time traces purely on the testing interval. It is evident that each ROM captures the low-frequency content well and that
pressure is best approximated in all models. The peak in the pressure plot at 5,000Hz is the dominant frequency in the
flow, a result of the external forcing term u(¢) from Eq. (2). Both DMDc and OPINF produce accurate ROMs on the
training interval. However, Q-OPINF and C-OPINF include more dynamics in the higher frequency range. Furthermore,
at the monitor location 3—where there is not much mixing and turbulence in the flow—each ROM method predicts the
pressure, temperature and the species accurately.
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Fig. 3 Training and prediction at monitor location 3. The black vertical line denotes the end of the training
data and the beginning of the test data. All the three models, Q-OPINF, C-OPINF, and DMDc have the same
basis size of r = 44.

The high quality of the three low-dimensional modeling techniques on a problem of such complexity is significant.
We attribute much of the good predictive performance of the ROMs to the fact that each strategy is based on the
underlying structure of the physical equations, resulting in stable predictions well beyond the training regime.

C. Further assessment of cubic OPINF ROM

Since this is the first time that a cubic OPINF ROM has been developed for this combustion application, we also
assess the performance of the cubic operator inference at different values of . For the quadratic OPINF models, detailed
analyses are available in [2, 3]. Figure 6 shows several different errors between the C-OPINF and the GEMS data at
different values of r. Missing dots indicate that the resulting model is numerically unstable for that value of r. As
previously stated, we use 1; = 10%, 1, = 10° and A3 = 10° as the regularization parameters. The errors are computed
after the ROM solutions are reconstructed in the full-order dimension and rescaled to the original variable ranges.
Following [2], the pressure and temperature error are calculated using [|€yOM — £ZOM|| /]|£°M ||, where &, denotes the
value of one of the physical variables at the kth snapshot in time. Because of the small values of species concentrations,
dividing by the true value can skew a small error. Similarly, velocities range from positive to negative, including zero.
Thus, for the four species concentrations and horizontal and vertical velocities, we use a normalized error defined as

1€, OM = £ROMI / max;; ([1€7OM]).

10



x10%

® FOM

64 Q-OPINF
% C-OPINF
5 DMDc

T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
freq

(a) Pressure data training results.

%109
254 @ FOM
Q-OPINF
% C-OPINF
204 DMDe

0.54
0.0 1
0 2000 4000 6000 8000 10000 12000 14000
freq
(c) Temperature data training results.
20.0 4
® FOM
17.5 4 Q-OPINF
* C-OPINF
15.0 4 DMDe
12.5 4
10.0 4
754
5.0 4
2.5 4
0.0 4

0 2000 4000 6000 8000 10000 12000 14000
freq

(e) CH4 concentration data training results.

® FOM
61 Q-OPINF
% C-OPINF
5 DMDe

T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
freq

(g) CO; concentration data training results.

x10°

® FOM
Q-OPINF
% C-OPINF

[ DMDe

2.04

Amplitude

: . : . ; : :
0 2000 4000 6000 8000 10000 12000 14000
freq

(b) Pressure data testing results.

x107

® FOoM
1.04 Q-OPINF
* C-OPINF

084 DMDe

= 06
2
g
-
0.44
0.2 4
0.0 4
0 2000 4000 6000 8000 10000 12000 14000
freq
(d) Temperature data testing results.
60 4 n @ FOM
T
" Q-OPINF
1 L
50 4 h : % C-OPINF
l| 1 DMDec
i
[
) 1
'S [
E=S [
B ok
= [
- 1 )
1 1
1}
1
\
0 2000 4000 6000 8000 10000 12000 14000
freq
(f) CH4 concentration data testing results.
309 @ FoM
Q-OPINF
251 % C-OPINF
DMDec
204
.
=1
z
‘i 15 4
z
-
10 A
5
o]
0 2000 4000 6000 8000 10000 12000 14000
freq

(h) CO; concentration data testing results.

Fig. 4 Training (left column) and prediction (right columns) at monitor location 2. All the three models,
Q-OPINF, C-OPINF, and DMDc have the same basis size of r = 44.
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Fig. 5 Training (left column) and prediction (right columns) at monitor location 3. All the three models,
Q-OPINF, C-OPINF, and DMDc have the same basis size of r = 44.
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We observe that for 26 < r < 35, the C-OPINF models were unstable, yet lower-order (as low as r = 16) and
higher-order models (up to » = 44) were again stable. However, for each r the same regularization hyperparameters were
utilized, and choosing different hyperparameters may improve stability. While higher-order C-OPINF ROMs might be
slightly more accurate, there is a trade-off regarding computational cost, as the size of the learning problem scales with
r3. We also observe again that pressure is the easiest physical variable to predict, and that species are rather challenging
to predict correctly pointwise. This is unsurprising due to the highly advective nature of the chemical concentrations.

V. Conclusion

We presented a detailed numerical study comparing the performance of learned reduced models based on dynamic
mode decomposition with control (DMDc) and operator inference with quadratic (Q-OPINF) and cubic (C-OPINF)
terms on the challenging problem of a single-injector rocket combustor. This is the first time that a cubic OPINF model
has been built for such a complex application, from which we derive new insights. The frequency domain analysis
showed, as expected, that the OPINF models can capture higher frequency content, whereas DMDc does very well in
capturing low-frequency content. After all, DMD is founded upon the notion of separating individual frequencies in
the flow, and OPINF has POD-like characteristics in that it targets energetic modes that mix frequency content. In the
time domain, we found that while each method performed well, the cubic OPINF model oscillates less wildly than its
quadratic counterpart, indicating that the addition of the cubic term to the dynamical system equations has a stabilizing
effect. The DMDc model also performed well on this test model; a difference of DMDc and OPINF is that DMD
requires both the right and left singular vectors of the data matrix, V, W, whereas OPINF requires only V. This could
also hint at additional information that DMD uses versus OPINF and remains a topic of further study.
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