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ABSTRACT: Nitroxyl (HNO) has gained a considerable amount of attention because

RSH
—>, RS-§ R or RS(O)NH,

of its promising pharmacological effects. The biochemical mechanisms of HNO activity /

are associated with the modification of regulatory thiol proteins. Recently, several studies
have suggested that hydropersulfides (RSSH), presumed signaling products of hydrogen
sulfide (H,S)-mediated thiol (RSH) modification, are additional potential targe’s o
HNO. However, the interaction of HNO with reactive sulfur species beyo 4 th s
remains relatively unexplored. Herein, we present characterization of HNO

H.
HNC “— % > H,S, or Sg

ﬁ RSSS,R and RSS-NH-S,R

s dVlt)

with H,S and RSSH. The reaction of H,S with HNO leads to the formation of .1, 'rogen | _.ysulfides and sulfur (Sg), suggesting a
potential role in sulfane sulfur homeostasis. Furthermore, we show that hydre=-=rsulfic < are more efficient traps for HNO than their
thiol counterparts. The reaction of HNO with RSSH at varied stoichiomr ries L. beel examined with the observed production of
various dialkylpolysulfides (RSS,SR) and other nitrogen-containir  dialky »olysuli le species (RSS—NH—S,R). We do not observe
evidence of sulfenylsulfinamide (RS—S(O)—NH,) formation, . pathway ¢. “ect- . by analogy with the known reactivity of HNO

with thiol.

1. INTRODUCTION

Nitroxyl (HNO), the one-electron reduced and - coto . ~d
form of nitric oxide (NO), is a potential therapeutic for seve -
conditions, including heart failure, alcok "-m, = scv ar
dysfunction, and cancer.'”* HNO shows a ch. nical and
biological profile distinct from that of 'O. Or : of the
important chemical properties of H* ™ is it. '~ .rophilicity
toward soft nucleophiles like thic s (RS 7).” . e chemical
biology of HNO indicates that tt. s and  :lated species are
likely targets for HNO-med: - bio. = . activity.””® It has
been reported that the rea: 1on o1 'NO ‘th thiols is relatively
fast (k = 2 to 20 x 10 M™' s ) and thermodynamically
favorable.”'? T .e rea. on ™ O with thiols proceeds via
initial attack »>f the thy ' sulfur atom on the electrophilic
nitrogen of F. TO, giving . short-lived N-hydroxysulfenamide
(RS—NH—-OH, ‘nterm’ .- (Scheme 1).%”'" At low thiol
concentrations, this .utermediate rearranges to a sulfinamide
(RS(O)NH,), presumably via dehydration of the protonated
N-hydroxysulfenamide intermediate to form an alkyliminosul-
fonium intermediate followed by reaction with water (Scheme
1, Path A). However, at high thiol concentrations, the N-
hydroxysulfenamide intermediate reacts with thiol to produce a

Scheme 1. Reaction of HNO with Thiols
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aisulfide (RSSR) and hydroxylamine (NH,OH) (Scheme 1,
Path B). HNO-mediated oxidation of protein thiols to
disulfides is considered a biologically reversible modification
because disulfides are readily reduced to thiols in the presence
of biological reductants. However, oxidation to RS(O)NH,
represents a modification more difficult to reverse in a
biological setting,'”

In the last decade, hydrogen sulfide (H,S) has emerged as a
cell signaling molecule along with NO and carbon monoxide."
In mammals, H,S is produced enzymatically mainly via three
enzymes: cystathionine y-lyase (CSE), cystathionine pJ-
synthase (CBS), and 3-mercaptopyruvate sulfurtransferase.'™'”
H,S is capable of influencing a myriad of physiological
functions."™"? In aqueous solution, H,S (pK, = 6.98) is in
equilibrium with its deprotonated HS~ form,”® which
predominates under physiological conditions (pH 7.4).
Despite the involvement of H,S in various physiological
processes, the biochemical mechanisms by which it elicits
different responses remain largely unknown. Oxidative post-
translational modification of protein cysteine residues to
hydropersulfides (RSSH) has been proposed as a significant
pathway for H,S-induced biological effects.”' Indeed, recently
it has been postulated that at least a part of the biological
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activities of H,S is attributed to the generation of RSSH rather
than H,S itself.”' ™ Recent advances in analytical methods
revealed the prevalent nature of small molecule and protein
RSSH in biological systems. For example, Ida and co-workers
reported that mammalian tissues contain >100 M of
glutathione hydropersulfide (GSSH).** Likewise, significant
levels of cysteine hydropersulfide (Cys-SSH) are also present
in cells.”* Furthermore, cysteine residues in a variety of
proteins/enzymes have been reported to be modified to the
corresponding hydropersulfide. For example, 10—25% of
proteins in mouse liver lysate are persulfidated under
physiological conditions.”’ Three enzymes, CSE, CBS, and
cysteinyl-tRNA synthetases, have been reported to catalyze the
formation of Cys-SSH.>*** Interestingly, RSSH display distinct
chemical properties that may be relevant to their biology. For
example, RSSH are more acidic than the corresponding RSH.
Everett and co-workers have estimated the pK, of 2-[(3-
aminopropyl)amino Jethane hydropersulfide to be 6.2, which is
1.6 units lower than the corresponding thiol.”® The pK, of
cysteine hydropersulfide was computationally estimated to be
~4 units lower than that of the cysteine.”” More recently,
Alvarez and co-workers reported the gKa of GSSH to be 5.45,
which is 3.49 units lower than GSH.*® These results indicate
that a higher ratio of RSS™/RSSH compared with RS™/RSH
under physiological conditions. Additionally, RSSH have
greater reducing potential than the corresponding RSH.” ™'
Also, RSSH are more nucleophilic than the corresponding
RSH,””**** presumably because of the alpha effect.

The ability of HNO to target thiols and thiol-containing
proteins makes it likely that small molecule and protein
hydropersulfides are additional potential targets for HNO.
While the reaction of HNO and various thiols has been well
characterized, the reaction between HNO and other  -~ctive
sulfur species such as H,S and RSSH remain® rel-.. lv
unexplored. Being highly thiophilic, HNO is expected o re: ..
with H,S as well as with RSSH. Indeed, it b- = ~np. »= od
that the specificity of HNO signaling may b a func “on of the
presence of cysteine hydropersulfide residuc n prot: ns.” This
suggestion is consistent with the i’ hat 1. "Z may react
preferentially with RSSH becarv 2 RSS ™ ha.  enhanced
nucleophilicity and reducing capa lity. Ir .eed, Fukuto and
co-workers have demonstrat " “he in. ._.on between RSSH
and HNO,* although tb chen. wal ac »ils of this reaction
remain to be further elucic ted. H -ein, we present character-
ization of HNf reacti. 7to. " .1,S and RSSH along with a
comparison ¢ this react. ty with RSH.

2. RESULTS ; ''D DI€ __JSION

2.1. Reactivity of HNO with H,S. Because of HNO’s
inherent reactivity, it must be generated in situ. We used
Angeli’s salt (AS, Na,N,0;) as a HNO donor.”® AS
decomposes spontaneously under physiological conditions via
protonation of the dianion to produce equimolar amounts of
nitrite and HNO with a half-life of about 2.4 min at 37 °C.** In
the absence of chemical traps, HNO rapidly dimerizes (k = 8 X
10° M~! s7!) and dehydrates to form nitrous oxide (N,0).*?
However, addition of a chemical trap such as thiol competes
with HNO dimerization leading to a reduction in N,O yield.
The inorganic salt, sodium sulfide (Na,S), was used as the
source of H,S.

Initially, we examined the reaction of HNO with H,S by
membrane inlet mass spectrometry (MIMS). This technique
can monitor the relative amounts of small hydrophobic gases
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dissolved in aqueous solution using a semipermeable
membrane that allows the dissolved gases, but not water, to
enter a mass spectrometer.”> > When AS (500 uM) is
incubated with H,S (100 uM) in pH 7.4 phosphate-buffered
saline (PBS) under anaerobic conditions, a reduction in the
signal corresponding to the HNO dimerization product N,O
(m/z = 44) is observed (Figure la). Consistent with this
observation, a reduction in the signal corresponding to H,S
(m/z = 34) is also observed (Figure 1b), confirming that H,S
reacts with HNO.

(a)

5000- N,O (m/z = 44) 300 Vs -34)
50001 250] WWW
2 20w
g 4000 7 —HS
§ 3000 —AS o 150 h ——AS+H,S
82000 —AS+H25 81(‘ 1
c =
o 3
= 1000/ 50
N 0
0 5 10 15 . .= 0 5 10 15 20 25
Ty (min) Time (min)

Figure 1. M-S signa. ~k _rved at (a) m/z = 44 corresponding to
N,O" and (b) . 'z = 34 corresponding to H,S* during incubation of
AS (507 "1 ana %S (100 yM) alone or together in argon-purged
PBS pH 7.4, 100 mM) containing the metal chelator DTPA (100
uM) 37 °C.

Tc verify the reaction between HNO and H,S, we
inde endently analyzed the yield of N,O by gas chromatog-
- pay (GC) headspace analysis. For comparison, analogous
experiments were conducted with N-acetylcysteine methyl
ester (gKa = 7.28) because of its similar pK, to H,S (pK, =
6.98).”" As the thiolate anion is the active species in this
reaction, thiol concentrations were adjusted such that equal
amounts of thiolate anion were present in solution. Incubations
of AS (200 yM) with varying concentrations of H,S show a
marked decrease in N,O production relative to AS only
(Figure 2, black bars). Similarly, addition of N-acetylcysteine
methyl ester to buffer solutions containing AS also results in a
decrease in N,O production (Figure 2, red bars). Quantifica-
tion of the N,O yields reveals that H,S is a more efficient trap

1104
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Concentration of HS™ or RS™

Figure 2. GC-determined relative yields of N,O in the presence of
increasing concentrations of HNO trap, H,S (black bars), or N-
acetylcysteine methyl ester (red bars). Incubations were performed
with 0, 50, and 100 M HS™ or RS™ and 200 uM AS in phosphate
buffer (pH 7.4, 100 mM) with DTPA (100 uM) at 37 °C for 3 h.
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for HNO compared with N-acetylcysteine methyl ester. In
addition, a comparison between H,S and thiophenol (PhSH)
reactivity with HNO reveals that H,S is likewise a better trap
for HNO compared with PhSH (Supporting Information,
Figure S1).

After confirming HNO trapping by H,S, we examined the
mechanism of this reaction. Based on previous reports on the
reaction of HNO with thiols, we expected that the HNO
reaction with H,S should proceed via the intermediacy of N-
mercaptohydroxylamine 1 (HSNHOH), and depending on the
relative concentrations of H,S, this intermediate would either
produce hydrogen disulfide (H,S,) and NH,OH (Scheme 2,

Scheme 2. Proposed Mechanism of HNO Reaction with H,S
Path A

HSSH + NH,OH
/ H,S 2

(0}
H I
—_— {Hst*OH} Path B, PN

HNO + H,S H NH,
1
\ Path C
HNS
-H,0

Path A) or sulfinamide (Scheme 2, Path B). In addition, the N-
mercaptohydroxylamine intermediate might also undergo
dehydration to yield thionitrosyl hydride (HNS) (Scheme 2,
Path C).

First, we analyzed the products of this reaction unde
conditions of excess H,S. We anticipated that if the N-
mercaptohydroxylamine intermediate 1 reacts further with
H,S, we should observe H,S, and NH,OH (Scheme 2, Path
A). We examined H,S, generation by trapping with B8-(4-
hydroxyphenyl)ethyl iodoacetamide (HPE-IAM) (€ .aen ?).

Scheme 3. Polysulfide Trapping with HPE-T*~ to 1 od- ce

Bis-(S),-HPE-AM
H . H
N H-(S)n !
O )
HO HO - 2
. (Y {PE-AM;n=1-3

HPE-IAM

HPE-IAM war chosen . <ausc _. 1s a soft electrophile and has
been shown o be rela rely resistant toward electroghile-
mediated dec. nposition Hf longer chain polysulfides,®” if
they are formc A~ expected, ultraperformance liquid
chromatography—mass spectrometry (UPLC—MS) analysis
of H,S incubation with HPE-IAM shows thioether bis-S-
HPE-AM formation as a major product (Figure 3a, bottom
trace). However, analogous analysis of H,S (4 equiv)
incubation with HNO shows a significant increase in bis-SS-
HPE-AM formation with concomitant decrease in bis-S-HPE-
AM (Figure 3b), consistent with H,S, generation. In addition,
a small amount of bis-SSS-HPE-AM is also observed,
presumably produced by disproportionation of H,S, to H,S;
and H,S. Interestingly, no longer-chain polysulfides are
observed under these conditions. We also examined NH,OH
formation, another anticipated product of HNO reaction with
excess H,S (Scheme 2, path A), by derivatization with 4-
cyanobenzaldehyde. High-performance liquid chromatography
(HPLC) analysis shows 4-cyanobenzaldehyde oxime formation
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@) (b) 3000
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" ©
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Figure 3. (a) Analysis of polysulfides generated from t* e H.¢ reaction
with HNO. AS (25 uM) was incubated with Na < (. 0 .M) ir pH
7.4 ammonium bicarbonate buffer (25 mM) co taining T . (100
uM) at 37 °C. After 15 min, an aliquot of the ~action mixture was
withdrawn and incubated with HPE-IAM (1 mM. for 1S min. The
asterisk indicates the presence of imr .ty  the cc amercial HPE-
IAM sample. HS-HPE-AM coelutes w.th } .-SS  "PE-AM under these
conditions. (b) A comparison of wlfur = recies (e.g, H,S, H,S,, and
H,S;) measured by detection of t. * trap,  IJPE-AM species from
H,S alone vs H,S reaction v .. N \.

(Supportine L ™ .nation, = wure S7), confirming NH,OH
generatior under “ese conditions.

We then nalyzea he ceaction of H,S with excess HNO,
analogous to ; ~viously studied thiol-HNO reactions, which
prima- , -ult 1. sulfinamide formation.* Incubation of H,S
with :xcess ¢ (4 equiv) results in a purple solution that turns
color. ss with a S min with concomitant formation of a white
precipita.  We speculate that the white solid formed under
«nesc -onditions is Sg. To explore this possibility, we analyzed
for € by a triphenylphosphine (PPh;)-based *'P NMR assay.
P73 is known to react with Sg to form triphenylphosphine
sulfide (S=PPh;), which can be detected by *'P NMR
spectroscopy.’” We extracted the white precipitate formed
during the reaction of H,S with excess HNO in CDCI; and
incubated with PPh,. *'P NMR analysis of this mixture shows a
new peak at 43.3 ppm (Figure 4b), indicating Sy generation
under these conditions. The same species is also generated
from the reaction of authentic Sg with PPh, (Figure 4a). Based
on a calibration curve generated from the reaction of known

(a) 433
S=PPh,

r T T T T T T T T T 1

-40 -30 -20 -10 O 10 20 30 40 50 60

Chemical shift (ppm)
b 7.7
( ) 43.3
O=P(OPh),

S=PPh,

60

50

10 0 10 20 30 40
Chemical shift (ppm)

-20

Figure 4. Selected region of the 3P NMR spectra following
incubation of (a) authentic Sg, and (b) the white precipitate produced
during the reaction of H,S (5 mM) with HNO (20 mM) extracted in
CDCI, with PPhy (—S5.3 ppm). S=PPh; is observed at 43.3 ppm. The
peak at —17.7 ppm corresponds to triphenyl phosphate (O=
P(OPh);), which is used as an internal standard.
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amounts of commercially available elemental sulfur (Sg) with
PPh;, we determined the Sq yield to be approximately 79% of
the sulfur introduced into the reaction mixture. To verify Sq
generation, the white solid was independently analyzed by
electron ionization (EI)-MS. As anticipated, a new peak with
m/z = 257.8 (expected m/z = 257.5) is observed (Supporting
Information, Figure S8), confirming Sg generation.

Two pathways can be envisioned for Sg generation under
conditions of H,S reaction with excess HNO (Scheme 4). As

Scheme 4. Proposed Mechanism of Sg Generation from H,S
Reaction with Excess HNO

o (™)
H,S + HNO [Hs—N-OH]
1
HNO HoH H
H _N. _OH
[Hs—N-oH] — Ho N5 Non 3 |HOTTN — N +2H,0 (2
1 2 s°
H n HS-HN-OH ~ H
[Hs—N-OH ———= | s-sn-\r\iHOH] Ss + NH,OH  (3)
1 >
n NH,OH

shown in Scheme 4, eq 2, reaction of the initial N-
mercaptohydroxlamine intermediate 1 with a second equiv-
alent of HNO would lead to the formation of intermediate 2.
This pathway is supported by our GC data (Figure 2) in which
H,S incubation with 4 equiv of HNO shows nearly 2 equiv of
HNO trapping, supporting that intermediate 1 reacts with ¢
second equivalent of HNO to produce intermediate 2. We
propose that intermediate 2 can undergo a sulfur extrusion
reaction to generate S, and dihydroxyhydrazine, which then
decomposes to produce nitrogen (N,) and water.”! To test
this hypothesis, we analyzed for N, generation usj- g M '1S.
Incubation of H,S under conditions of excess HNU sk ws

increase in the m/z = 28 signal (Figure S) indicc ing "{,

5000 e
v
4000 7
<
e —_— m/z44
= 30004 /
2 — m/z28
3 2000
5 /
10,4
_.Fj/
: 10 15 20 25
Time (min)

Figure S. MIMS signals observed at m/z = 44 corresponding to N,O"
and m/z = 28 corresponding to a combination of N,O fragmentation
to N," and N, generated from the reaction of H,S with excess HNO.

generation. However, the detection of N, is complicated by
N,O (m/z = 44) fragmentation, which also generates an m/z =
28 signal (Supporting Information, Figure S2). Hence, we
compared the ratio of 44:28 signals from AS alone with that for
AS + H,S. The 44:28 ratio for N,O alone produced from AS
decomposition was found to be 9.5:1 (Supporting Information,
Figure S3). This result is consistent with the NIST reported a
44:28 ratio of 9.25:1 for the EI mass spectrum of N,O.* In
contrast, MIMS monitoring of the H,S reaction with excess
HNO results in a 44:28 ratio that varies from 2:1 at early time

871

points to 8:1 at the 25 min mark (Supporting Information,
Figure S3). These results suggest another contributor to the
m/z = 28 signal, which we attribute to N,. The variation in the
44:28 ratio over the course of the experiment suggests that N,
is generated at early times and decreases as the experiment
progresses.

We independently examined the H,S reaction with excess
HNO using 2-bromo-Piloty’s acid (2-BrPA). In aqueous
solution, 2-BrPA produces HNO and 2-bromophenylsulfinic
acid as a byproduct.?’8 Incubation of H,S with ~ R«PA (4
equiv) in pH 7.4 PBS again shows the formatior of S. .nd N,
(Supporting Information, Figures S4 and S9, Tais r ult
confirms that nitrite, a byproduct of AS d= ompo. ‘~~ .s not
involved in Sg and N, formation during th. ,S reaction with
excess HNO.

Alternatively, Sg can also be pre .uce” . - disproportionation
of the N-mercaptohydroxlamine int .mec ..e 1 followed by
intramolecular cyclization as show i~ Scheme 4, eq 3.
However, HPE-IAM tra, ‘~g . udies at early time points,
before the formation of t. » w. " precipitate, show that no
longer-chain pelysv'dde. “re ormed (Supporting Information,
Figure S17,, 1 cating tn. the proposed mechanism in
Scheme 4, ~0 5 is . “ely not operative under these conditions.
Furthermo ., ‘nterme ".ce 1 could also undergo homolytic
cleavage to prc Mce hydrosulfide radicals (HS®), which can
lead » hig. v orc.r sulfur species in a process catalyzed by
eithc trace , etals or residual oxygen present in solution.*
Howe r. wr do not observe changes in the Sg yield from the
T N reaction with H,S under aerobic versus anaerobic
cond ‘ons (Supporting Information, Figure S10). In addition,
the resence or lack of a metal chelator diethylenetriamine-
} -ntaacetic acid (DTPA) in solution also does not influence
the final products of the reaction, indicating that HS® is likely
not involved in this reaction.

Based on the significant Sg formation observed under
conditions of excess HNO, it appears that sulfinamide
formation is not a major pathway under these conditions;
however, more studies are required. In addition, as suggested
in Scheme 2, Path C, the N-mercaptohydroxylamine
intermediate 1 could undergo dehydration to yield HNS. If
formed, HNS may undergo further reaction, similar to HNO,
yielding N,S and H,S. However, MIMS analysis shows no
evidence of HNS or N,S formation under conditions of either
excess HNO or H,S (Supporting Information, Figure SS),
indicating that this reaction pathway is presumably not
operative. Taken together, our results indicate that H,S reacts
with HNO to produce either short-chain hydrogen polysulfides
(H,S,) or Sy depending on their relative concentrations. With
excess H,S, H,S, formation is favored (Scheme 2, Path A). In
contrast, Sg is produced under conditions of excess HNO
(Scheme 4, egs 1 and 2).

2.2, Reactivity of HNO with Hydropersulfides. The
propensity of RSSH to undergo decomposition under aqueous
conditions precludes convenient and direct accessibility of
RSSH for chemical and biological studies. Hence, donor
molecules capable of releasing RSSH in situ are needed. We
utilized our recently developed alkylamine-substituted perthio-
carbamate 3a as a primary alkyl RSSH donor, and 3b as a
tertiary alkyl RSSH donor (Scheme 5).** At physiological pH,
these precursors release RSSH and 1,3-dimethyl-2-imidazoli-
dinone (4) as a byproduct (Scheme S, eq 1). In the absence of
trapping agents, RSSH reacts with the precursor producing
dialkyltrisulfide (S;) and a thiocarbamate intermediate
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Scheme 5. RSSH Release from Precursors 3a and 3b
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(Scheme 4, eq 2), which rapidly decomposes to release
carbonyl sulfide (COS) (Scheme S, eq 3). In addition, RSSH
also undergoes disproportionation reactions to produce
dialkylpolysulfides (Scheme S, eqs 4 and 5).**

Initially, the reaction of HNO with RSSH was examined by
MIMS. Incubation of AS (100 uM) with 3a (25 uM) in PBS
(pH 7.4) shows a reduction in the signal corresponding to
N,O (m/z = 44) (Figure 6a), indicating that RSSH reacts with

(a) (b)

900 N,O (m/z=44) 600 COS (m/z=60)

800 3a

700 AS 500 ——AS +3a
< - <
S 600  AS+3a 3 400
@ 500 @ 300
S 400 5 A "
O 300 O 200
c c
© 200 o 100

100

0 0 SEIND
0 5 10 15 20 25 30 0 5 0 15 2z 25 30
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Figure 6. MIMS signals observed at i) m/z = 14 co. sponding to
N,O" during incubation of either AS \ 10 M) Ione or with RSSH
precursor 3a (25 uM), and (B </z = - _esponding to COS*
during incubation of either R* ,H pre tsor . (25 uM) alone or with
AS (100 yM) in argon-purg 1 PBS { H 7.4, .00 mM) containing
DTPA (100 yM> .. =

HNO. In addr »n, aredv don in the signal attributed to COS
(m/z = 60) is a.. ~h= vea (Figure 6b), also supporting that
RSSH reacts with HNO, and as a result it is less available to
react with precursor 3a itself to produce dialkyltrisulfide (S;)
and thiocarbamate-derived COS (Scheme S, eqs 2 and 3).
Analogous experiments with precursor 3b also show HNO
trapping (Supporting Information, Figure S6), albeit better
than 3a presumably because of the sterically hindered disulfide
bond in precursor 3b inhibiting its reaction with released
RSSH.

The ability of RSSH to react with HNO was independently
analyzed by GC headspace analysis. A thiol comparison was
used to examine the nucleophilicity of RSSH. We began by
determining the pK,s of N-acetylcysteine methyl ester (Sa, pK,
= 7.28) and N-acetylpenicillamine methyl ester (5b, pK, =
7.02). Because of the unstable nature of RSSH in the
deprotonated state, there is not a reliable way to determine
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their pK,. We assumed a pK, difference of 1.5 units for this
study. With this assumption, the hydropersulfide is 98%
deprotonated at physiological pH. After correcting for
differences in pK,, we find that RSSH (3a and 3b) are better
traps for HNO than their thiol counterparts (Sa and Sb)
(Figure 7). Additionally, 3b exhibited better HNO-trapping

1201
I 3a
100+ I 3b
I 5a
e
80
<
E 60
=
o
= 404 i
04
0uM S0 uM 100 vt 200 uM
Cor =n. ‘o, fRSS/RS”

Figure 7. GC-doterr 'nea  'at e yield of N,O in the presence of
increasing - ace. ations of . (black bars), 3b (red bars), N-
acetylcystei = r othy. ster (Sa, blue bars), and N-acetylpenicillamine
methyl ester %, green - ,. Incubations were performed with 0, 50,
100, and 200 p1. RSS™ or RS™ and 200 uM AS in PBS (pH 7.4, 100
mM) .. "TPA |\ 20 uM) at 37 °C for 3 h.

efficier. -tk .1 3a, likely because of competitive RSSH trapping

, = sterically accessible disulfide bond in the precursor 3a
itself. We note that even if the pK, of RSSH is 4 units lower
tha the corresponding thiol, the RSSH anion concentration
voould be 99.9% (rather than 98%) under the conditions of our
experiments, a negligible impact on the RSSH concentrations
employed.

Next, we studied the mechanism of this reaction. Based on
the known thiol -HNO reaction, a variety of outcomes for the
reaction between RSSH and HNO are possible. The initial
reaction of HNO with RSSH is expected to proceed through
an N-hydroxy-perthiosulfenamide (RSS—NH—OH) intermedi-
ate 6 (Scheme 6). As with thiols, we anticipate that the
concentration of RSSH relative to that of HNO will play an
important role in the nature of the observed products.

Initially, 3a decomposition was examined in the absence of
HNO by UPLC—MS. Incubation of 3a in pH 7.4 buffer shows
dialkyldisulfide (labelled as S,) generation as a major product
(Figure 8a, bottom trace). In addition, a small amount of
dialkyltrisulfide, dialkyltetrasulfide, dialkylpentasulfide, and

Scheme 6. Proposed Mechanism of HNO Reaction with
RSSH
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R.g-S~g-R + Hs-N-OH
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Figure 8. (a) UPLC—MS chromatograms of primary alkyl hydro-
persulfide precursor 3a (50 pM) incubated without and with
increasing concentrations of AS (50, 200, 400, and 800 xM) in
ammonium bicarbonate buffer (pH 7.4, 25 mM) containing DTPA
(100 uM) at 37 °C for 15 min, followed by quenching in 1% formic
acid. RSSH-derived symmetrical dialkyl polysulfide, labeled as S, to S¢
(RSS,SR, n = 0—4) formation is evident. A peak at 3.52 min
attributed to the byproduct 4 is also observed. A small peak at 5.4 mi
corresponding to RSS—NH—SSR coelutes with S,. (b) Comparison ot
RSSH-derived symmetrical dialkyl polysulfide, labelled as S, to S4
(RSS,SR, n = 0—4) from the 3a and 3a + AS reaction mixtures.

dialkylhexasulfide (labeled as S;, S,, Ss, and Sg, r sper.ve )
formation is also observed, presumably via RSSH dispr port »-
nation reactions (Scheme S, eqs 4 and §). In one. t,w . 3a
is incubated with AS (1 equiv), a slight ¢ - rease ir. S, with a
concomitant increase in S; is observe ' (Fir ire 8b).
Furthermore, as the ratio of AS to 7. 1» <reas 1, an increase
in the relative amount of S; with. -oncom ant a. -ease in S,
is observed. These results suggest hat R’ sH indeed reacts
with HNO to produce in* ... “iate  which reacts further
with RSSH producing 5 and N-me. aptohydroxylamine
intermediate 1 /7 " ~me Patt A). The intermediate 1
might react fu ner wit.. SS1. .o produce RSSSH. Consistent
with this obs: vation, we lso observe reduced levels of S,, S;,
and S¢ with 1 -reasing ¢ ncentrations of AS, demonstrating
that RSSH traps "™NO  .aa thus it is less available to undergo
disproportionation reactions to produce longer-chain poly-
sulfides. Alternatively, RSSH can also react with the external
sulfur of intermediate 6 to produce S, and NH,OH (Scheme 6,
Path B). However, a lack of major change in the S,
concentration with increasing concentration of HNO suggests
that Path B is likely not operative under these conditions,
presumably because of the sterically accessible internal sulfur
atom of intermediate 6 being available to react with RSSH to
produce S;. We anticipated that the intermediate 6 might
rearrange to sulfenylsulfinamide (RS—S(O)—NH,) under
conditions of excess HNO (Scheme 6, Path C). However,
UPLC—MS analysis shows no evidence of its formation.
Instead, a minor new peak at 5.4 min with m/z = 454.0199 is
observed (Supporting Information, Figure $22). We assign this
new peak to RSS—NH—SSR (Figure 8a, labeled as S,NHS,).
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These results suggest that intermediate 6 undergoes dehy-
dration to produce the intermediate 7 (Scheme 6, Path C),
which can be trapped either by water to produce RS—S(O)—
NH, or by RSSH to produce RSS—NH—SSR. The lack of RS—
S(O)—NH, formation does not exclude its formation because
it can react further with RSSH under these conditions to
produce S;.

We also examined the HNO reaction with the tertiary alkyl
RSSH precursor 3b. UPLC—MS analysis of 3b incubation in
the absence of HNO shows a peak at 5.67 min cor ~nonding
to RSSH as well as polysulfides (RSS,SR, n = —4) .nd N-
acetylpenicillamine methyl ester (Sb) (Firur. ©, bot om
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o 4 SNHS™ TSN
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S U N
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Figure 9. (a) UPLC—MS chromatograms of tertiary alkyl hydro-
persulfide precursor 3b (50 uM) incubated without and with
increasing concentrations of AS in ammonium bicarbonate buffer
(pH 7.4, 25 mM) containing DTPA (100 yM) at 37 °C for 15 min,
followed by quenching in 1% formic acid. RSSH-derived symmetrical
dialkylpolysulfide, labelled as S; to S4 (RSS,SR, n = 1—4), formation is
evident. A peak at 3.52 min attributed to the byproduct 4 is also
observed. The asterisk indicates an unknown product. (b)
Comparison of RSSH-derived symmetrical dialkylpolysulfide, labeled
as S5 to S¢ (RSS,SR, n = 1—4) and RSS—NH-S R (n = 1-3) from 3b
and 3b + AS reaction mixtures.

trace). This result indicates that RSSH undergoes dispropor-
tionation reactions and its presence is likely because of
equilibrium reactions with polysulfides.** We then examined
the RSSH reaction with HNO under conditions of excess
RSSH. When 4 equiv of 3b is incubated with AS, the peak
attributed to RSSH disappears and the level of S; increases
(Figure 9b, red bars). In addition, small peaks at 6.14, 6.43,
and 6.74 min that we ascribe to RSS—NH—SR, RSS—NH-—
SSR, and RSS—NH-SSSR, respectively (Figure 9a and
Supporting Information, Figures $33—S35, labeled as S,NHS,
S,NHS,, and S,NHS;) are observed, presumably formed by
the reaction of intermediate 7 with RSH, RSSH, and RSSSH,
respectively. We then examined the 3b reaction with AS at
equimolar concentrations. UPLC—MS analysis shows the
reduced level of S; and increased levels of S, and RSS—
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J. Org. Chem. 2021, 86, 868—877


http://pubs.acs.org/doi/suppl/10.1021/acs.joc.0c02412/suppl_file/jo0c02412_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.joc.0c02412/suppl_file/jo0c02412_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c02412?fig=fig9&ref=pdf
pubs.acs.org/joc?ref=pdf
https://dx.doi.org/10.1021/acs.joc.0c02412?ref=pdf

The Journal of Organic Chemistry

pubs.acs.org/joc

NH-S,R (n = 1-3) (Figure 9b, blue bars). Furthermore, the
3b reaction was also checked under conditions of excess HNO
and we observe reduced levels of polysulfides (S, S,, and S;)
and RSS—NH—-S,R (n = 1-3). In addition, two new minor
peaks at 2.9 and 3.3 min with m/z = 205.643 were observed
(Figure 9a, top trace and Supporting Information Figures S30
and S31). We assign these peaks to N-(2-hydroxy-S,S-
dimethyl-3-oxoisothiazolidin-4-yl)acetamide isomers 9, pre-
sumably formed by the intramolecular cyclization of
intermediate 8 as shown in Scheme 7. Intermediate 8 can be

Scheme 7. Proposed Mechanism of 9 Formation from the
3b Reaction with Excess HNO

0]
Path A 5b

MeOMSH + HNO / >
NHAG \

5b
AcHN s
~ *N-OH
o HN=0 ~ N
o 0 $
Ve s-SonOH Patne 8\ AcHN N,
H -MeOH 4
s
6 9

NHAc
>, ,-OH
N

RSSR + NH,OH

obtained by the HNO reaction with thiol Sb, produced either
by RSSH exchange reactions with RS—S,—SR or HNO-
induced decomposition of intermediate 6 (Scheme 7, Path B).
To verify this observation, Sb was independently incubated
with excess HNO and we observe HNO-mediated thiol
oxidation to disulfide as a major product (Supporting
Information, Figure S$36). In addition, similar peaks at 2.9
and 3.3 min were evident in the case of the reaction of Sb with
HNO, suggesting that cyclization product 9 is likely formed
during the 3b reaction with excess HNO.

We predicted that the concentration of RSSH rel: .ive st ¢
of HNO would have an important role in the natur of t €
observed products. However, all conditic .s . ~die. ".cre
indicate that HNO-induced modification - RSSh -esults in
the formation of various dialkylpolysulfic <. In’ restingly,
several unique species such as . NH- K are also
observed.

Recently, Pluth and coworkers . nortec that RSSH react
with nitrite to produce N .. ‘nory uc polysulfides and a
perthionitrite (ONSS™) ir >rmedi. »."> U "—vis analysis of the
ONSS™ interme””  ~btai. ~d fror the reaction of adamantyl
persulfide with cetrabut, ‘mmc__.um nitrite in THF exhibits an
absorbance af 146 nm. D¢ omposition of ONSS™ subsequently
leads to the fo. ~ation of I O and inorganic polysulfide. To test
if a similar react:.  »2*' say 1s operative during the reaction of
3b with AS (which produces nitrite as byproduct), we analyzed
this reaction by UV—vis spectroscopy. Incubation of 3b with
AS in pH 7.4 PBS at 37 °C shows no absorption band between
400 and 450 nm (Supporting Information, Figure S43),
indicating that ONSS™ is likely not produced under these
conditions. We also examined the 3b reaction with sodium
nitrite and UV—vis analysis shows no absorption band between
400 and 450 nm (Supporting Information, Figure S44). We
then analyzed NO generation from the reaction of 3b with AS,
and nitrite by GC headspace analysis. We see no evidence of
NO generation (Supporting Information, Figure S$46),
indicating that RSS™ is likely not reacting with nitrite under
these conditions. We also examined the RS(S),H, and
HS(S),H generation during the reaction of 3b with HNO by
trapping with HPE-IAM (Supporting Information, Figure
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S41). As expected, UPLC—MS analysis shows a significant
reduction in RSS-HPE-AM adduct formation during the 3b
reaction with HNO compared with 3b alone, confirming that
RSSH indeed reacts with HNO. However, no evidence of
inorganic polysulfide formation is observed, suggesting that
RSSH reacts efliciently with HNO and as a result is less
available to undergo disproportionation reactions to produce
inorganic polysulfides. Taken together, these results indicate
that ONSS™ is likely not formed under these conditions.

3. CONCLUSIONS

Reactive sulfur species (RSS) and reactive ait. en sr cies
play diverse and critical roles in cellul - signali, .ud the
fundamental chemistry of these species s well as their
generation and consumption are ... 2l for nderstanding
their participation in signaling m cha .si.  In this work, we
first studied the reaction of HNC witl I,S. Our results
indicate that H,S also reacts -ith . 7 to produce either
hydrogen polysulfides (H, ., ~r  depending on their relative
concentrations. H,S, repr. 'ents a emerging class of RSS
whose presenc ar i pow ‘i’ roles in biological systems are
only rece Jdy '. ‘nning to oe appreciated.”® In addition,
compariso. . the ~actiity of thiol with analogous RSSH
shows that 1 "SH are more potent traps for HNO. These
results © Jicate “e specificity of HNO signaling may be a
func’ on ot . action with RSSH. Furthermore, HNO reaction
with :mall r slecule RSSH produces various RSS,SR and
RSS—1 ""- R species with no evidence of RS—S(O)—NH,
the conditions studied.

PO

4. " _XPERIMENTAL PROCEDURES

4.1. General Methods. All chemicals were purchased from
commercial sources and used as received unless stated otherwise.
NMR spectra were obtained on a 400 MHz FT-NMR spectrometer.
All chemical shifts of spectra were reported in parts per million (ppm)
relative to tetramethylsilane (6 = 0). The pH measurements were
performed using a Fisher Scientific Accumet AB1S pH-meter.
Ultraviolet—visible (UV—vis) absorption spectra were obtained
using a diode-array spectrophotometer. GC analysis was performed
on an instrument equipped with an electron capture detector and
Restek column (ShinCarbon ST 80/100, 2m, 1/8” OD). HPLC was
performed on Agilent Technologies 1100 Series, attached with a C-18
column (Hichrom, S ym, 4.6 X 150 mm). High-resolution mass
spectra were obtained from a Waters Acquity Q-ToF MS/MS
instrument. UPLC—MS analysis was carried out with a Waters
Acquity/Xevo-G2 UPLC—MS system equipped with ACQUITY
UPLC BEH C18 column (2.1 X 50 mm, 1.7 gm). The mass signals
for products of polysulfides trapping with HPE-IAM and dialkylpo-
lysulfides were obtained via deconvolution using MassLynx 4.1
software. EI-MS spectra were acquired using a VG-70S Magnetic
Sector Mass Spectrometer. To ensure that equal amounts of anion
(HS™ and RS™ or RSS™ and RS™) are present in solution during the
reaction of sulfur nucleophiles with HNO, we calculated the
concentration of anion using the pK, of H,S and thiol/RSSH of
interest to determine the percentage of anion present at pH 7.4; pH =
pK, + log(A™)/(HA)

4.2. Synthesis and Characterization. The HNO donors,
Angeli’s salt,”” and 2-bromo-N-hydroxybenzenesulfonamide (2-
BrPA)*® were prepared as previously described. Hydropersulfide
precursors (3a and 3b), N-acetyl-penicillamine methyl ester (Sb), and
4-cyanobenzaldehyde oxime were synthesized as previously reported,
and anf}g‘gical characterization data were consistent with the reported
values.™

4.3. Analysis of HNO Reaction with H,S and RSSH by MIMS.
MIMS was carried out using a Hiden HPR-40 system containing a 20
mL sample cell and a membrane selective for detecting gases dissolved
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in aqueous solution. The sample cell was filled with 20 mL of PBS
(pH 7.4, 100 mM) containing DTPA (100 yM) and purged with
argon for at least 30 min prior to analysis. A stock solution of AS was
prepared in 10 mM NaOH. A preweighed solid sample of Na,S was
dissolved in PBS to obtain the desired concentration of H,S in
solution. Hydropersulfide precursor and thiol stock solutions were
prepared in DMSO. These stock solutions were purged with nitrogen
for 10 min and used shortly after preparation. Aliquots (200 uL) of
these solutions were injected into the sample cell using a gastight
syringe and masses of interest were monitored with continuous
sampling in positive ion mode.

4.4, GC Headspace Analysis of HNO Reaction with H,S and
RSSH. Hydropersulfide precursor and thiol stock solutions were
prepared in DMSO. In order to compare the inherent nucleophilicity
of the hydropersulfide compared to its thiol counterpart, the
concentrations of hydropersulfide and thiol were corrected to have
the same amount of anion present in solution. As the pK, values of
hydropersulfides are not known, it was assumed to be 1.5 units lower
than the determined thiol pK,. In a 15 mL vial sealed with rubber
septum, S mL PBS (pH 7.4, 100 mM) containing DTPA (100 uM)
was purged with argon for 25 min. These vials were placed in a heated
cell block, which was held at 37 °C. The Na,S or RSSH precursor or
thiol and AS solutions were added to each vial to obtain 5 mL total
volume, and the resulting solutions were incubated for 2 h at 37 °C.
Headspace gas samples (60 uL) were injected into Agilent 8860 GC
attached with Restek column (ShinCarbon ST 80/100, 2m, 1/8”
OD) to analyze N,O. These experiments were carried out in triplicate
for each concentration of interest and three injections were performed
for each vial.

4.5. Analysis of Polysulfides by UPLC—MS. Polysulfides
generated from the reaction of H,S with HNO were analyzed by
trapping with HPE-IAM by UPLC—MS. The reaction was performes
in a 20 mL scintillation vial with a total reaction volume of 3 mL. H,$
(1 equiv) was incubated with various concentrations of AS (0.25 or 4
equiv) in freshly prepared ammonium bicarbonate buffer (pH 7.4, 50
mM) containing DTPA (100 zM). A 200 uL aliquot was taken from
the reaction mixture at specified times and added to a > of
HPE-IAM (10 equiv) in ammonium bicarbonate buffer a. d in- .pa 1
for 30 min. The samples were then loaded into vials in an aut samp 21
maintained at 4 °C and analyzed using UPLC—M" a5 . Tows oile
phase: 0—1 min 90% water + 0% ACN + 10% ft nic acia 0.1%); 1—
7.5 min gradient up to 10% water + 80% ACL. - 10% rmic acid
(0.1%); 7.5—8.4 min 10% water + 80 ~“N + ™ rormic acid
(0.1%); 8.4—8.5 min gradient up to § % war  + 0. ACN + 10%
formic acid (0.1%); and 8.5—10 min 1% wate + 0% ..CN + 10%
formic acid (0.1%). Flow rate = 0.3 1. mi- *. Similarly, various
RSS,SR and RSS—NH-S R pecie. rodu 4 from the reaction of
RSSH with HNO were analy >d by U, .C—M. The mass signals for
bis-(S),-HPE-AM =~ ") SR, 'nd RS ,—NH—(S),R were obtained
via deconvoluti’ « using 1v 3sLyi.. ..1 software.

4.6. Hydro: rlamine Ai 'lysis. An HPLC-based assay has been
used for the de -tion of hy oxylamine (NH,OH) by derivatization
with vanillin® V. used ~.say with slight modification. Briefly,
H,S (400 M) was mwvated with AS (100 xM) in pH 7.4 PBS (100
mM, 2 mL total volume) containing DTPA (100 #M) for 30 min at
37 °C. This mixture was then incubated with 4-cyanobenzaldehyde (1
mM) in pH 5.5 sodium acetate buffer (100 mM) for 2 h at 37 °C to
convert NH,OH to 4-cyanobenzaldehyde oxime. The resulting
mixture was analyzed by Agilent high-performance liquid chromatog-
raphy (HPLC). HPLC method—mobile phase A: water, and mobile
phase B: ACN, flow rate: 1 mL/min, run time: 24 min, and the
gradient elution method: 10 to 25% B from 0 to 18 min, 25 to 90% B
from 18 to 24 min. Detection wavelengths: 254 and 268 nm. Column:
Hichrom C-18 reversed phase column (150 mm X 4.6 mm, S ym).

4.7. Analysis of Sy Using a Triphenylphosphine-*'"P NMR-
Based Assay. A white precipitate formed in the reaction of H,S with
HNO was analyzed using a triphenylphosphine (PPh;)-based *'P
NMR assay. In a 20 mL scintillation vial, Na,S (5 mM) was incubated
with AS (20 mM) in ammonium bicarbonate buffer (pH 7.4, SO mM)
containing DTPA (100 uM) (final volume S mL) for 2 h at 37 °C.
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The reaction mixture was then extracted with CDCl; (1.5 mL X 3).
To this, S00 uL of PPh; (50 mM, stock solution prepared in CDCly)
was added and the resulting solution was incubated overnight at rt in
a sealed vial. An internal standard triphenyl phosphate (1 mM) was
added to the reaction mixture and analyzed using *'P NMR
spectrometry. A calibration curve was generated by reacting known
amounts of commercially available sulfur (Sg) with equimolar
amounts of PPh; along with 1 mM O=P(OPh); as an internal
standard. *'P NMR spectra were acquired in CDCl; on a Bruker
AVANCE I 400 MHz UltraShield NMR spectrometer.

4.8. Analysis of Sg by EI-MS. As a second —-othod of
confirmation, the white precipitate produced from * e re> .on of
H,S with HNO (4 equiv) was analyzed by EI-M. Ir a 20 mL
scintillation vial, a reaction mixture was pre area vith - final
concentration of 2 mM Na,S and 8 mM AS - ving a hu.. reaction
volume of 10 mL in pH 7.4 PBS (100 mM) co. “ining DTPA (100
uM). The reaction was allowed tc .. ~eed . til completion
(approximately 2—3 h) and was t' :n e .c. ‘ed with chloroform
(1.5 mL X 3). The solvent was evaporat d un: ¢ vacuum to yield a
white solid that was analyzed by . ™-MS.
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