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Exploring the SenseMaking Process through Interactions and
fNIRS in Immersive Visualization

Alexia Galati, Riley Schoppa, and Aidong Lu

Fig. 1. This work examines user interactions during the sensemaking process in immersive visualization for spatial data clustering
tasks. Snapshots show a user performing the task (left), two examples of the virtual views used as stimuli, one cylindrical and one
planar layout (middle), and our visualization to explore data provenance of physical interactions in the sensemaking process (right).

Abstract— Theories of cognition inform our decisions when designing human-computer interfaces, and immersive systems enable
us to examine these theories. This work explores the sensemaking process in an immersive environment through studying both
internal and external user behaviors with a classical visualization problem: a visual comparison and clustering task. We developed
an immersive system to perform a user study, collecting user behavior data from different channels: AR HMD for capturing external
user interactions, functional near-infrared spectroscopy (fNIRS) for capturing internal neural sequences, and video for references.
To examine sensemaking, we assessed how the layout of the interface (planar 2D vs. cylindrical 3D layout) and the challenge level
of the task (low vs. high cognitive load) influenced the users’ interactions, how these interactions changed over time, and how they
influenced task performance. We also developed a visualization system to explore joint patterns among all the data channels. We
found that increased interactions and cerebral hemodynamic responses were associated with more accurate performance, especially
on cognitively demanding trials. The layout types did not reliably influence interactions or task performance. We discuss how these
findings inform the design and evaluation of immersive systems, predict user performance and interaction, and offer theoretical insights
about sensemaking from the perspective of embodied and distributed cognition.

Index Terms—Sensemaking, user behavior, immersive analytics, cognition load, mixed reality

1 INTRODUCTION

Previous work on sensemaking and distributed cognition has guided
the interface design of many computer systems. As a high level mental
process, sensemaking involves the analysis of facts and inferences, the
integration of learning from different areas, creative thinking, and the
evaluation and judgment of information [1,15]. From the perspective
of distributed cognition [39], sensemaking unfolds in a spatial envi-
ronment. Within the environment, spatial arrangement serves different
functions that support sensemaking, namely by simplifying choice,
simplifying perception, and simplifying internal computation [27].

Our understanding of sensemaking and distributed cognition is essen-
tial to the design of computer systems, including immersive visualiza-
tion systems that aim to assist the sensemaking of various information.
Compared to traditional desktop settings, immersive systems built with
VR/AR have several capabilities that could improve the sensemaking
process. Immersive systems assist distributed cognition by presenting
immersive environments designed appropriately and by allowing physi-
cal interaction through multi-sensory channels that are generally more
intuitive for users.
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At the same time, immersive systems provide new methodological
tools for studying the sensemaking process because they permit study-
ing behavior at a fine-grained level that could not be reached without
the latest tracking and analysis technology. Immersive technology now
permits examining how different uses of space come into play dur-
ing sensemaking, with data sampled frequently from both the spatial
and temporal dimensions. Examining users’ interactions (e.g., how
they orient their visual attention in space) can illuminate their think-
ing process [1, 38]. Effective analysis of these data will help us study
fundamental cognitive processes and develop advanced methods for
creating personalized interaction models.

The present work explores the capability of immersive systems as a
tool for unveiling the sensemaking process in immersive environments.
Our primary goal (G1) was to investigate how user interactions depend
on task constraints (cognitive load and layout type) in a visualization
task in immersive AR, with neural activity as an additional index of cog-
nitive load. Our secondary goal (G2) was to develop a visual analytics
system that permits researchers not only to assess the users’ interactions
and the neural indices of their cognitive processing individually, but
also to perform joint analysis for the intricate relationships among these
sources of data.

Our specific research questions with respect to G1 were: (Q1). How
do the users’ interactions differ across different types of spatial arrange-
ments and different levels of task difficulty? (Q2) How do the users’
interactions change over the process of sensemaking? (Q3) How do
the users’ interactions predict sensemaking performance (accuracy on
the task)?, and (Q4) How do the users’ neural activity, which we take
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to indicate their cognitive processing, relate to their interactions in the
task and task performance?

To answer these research questions, we designed and performed a
user study involving visual correlation, a classical visualization problem
[9]. Visual correlation relies on sensemaking because it requires evalu-
ating data similarity through visual comparison and making decisions
by clustering subsets of similar data. By examining visual correlation,
we can gain insights about other visualization tasks that share common
cognitive underpinnings (e.g., as evaluating data similarity, [40]). We
developed an AR system (the user’s interface) for performing cluster-
ing tasks with interactions. The user interactions we considered include
direct, external interactions with the virtual artifacts in an immersive
system (e.g., the user moving images) and internal behaviors that do
not involve the direct manipulation of virtual artifacts (e.g., the user
rotating their body; their gaze fixations on images). We manipulated
two variables that would allow us to tap into embodied and distributed
cognition: the cognitive load incurred by the task (two challenge levels
with different numbers of images) and the type of spatial layout (two
commonly adopted interfaces in immersive environments: planar 2D vs.
cylindrical 3D). With respect to cognitive load, we reasoned that with
more images the number of comparisons needed to be made to evaluate
data similarity would increase, making it those clustering judgments
more cognitively demanding.

To assess the users’ processing under different cognitive demands,
different layout types, and different time points in the trial (G1), we
collected data from three different channels: AR HMD, video, and
functional near-infrared spectroscopy (fNIRS). In statistical models, we
addressed our research questions by examining how user interactions
and measures from fNIRS were predicted by cognitive load and layout
type, how they predicted user performance, and how they changed over
the course of the trial.

To further support joint analysis of these rich datasets (G2), we devel-
oped a visualization system (the researcher’s interface) that permitted
exploring the relationship between user interactions, their neural activ-
ity, user performance across task features (e.g., cognitive load, layout
time), and across task epochs (time periods in the trial or the task).
By elucidating how interactions and neural signatures in immersive
analytics aid sensemaking, this work can inform theories of embodied
and distributed cognition [12, 23, 27] and demonstrate the potential of
analyzing user interactions to evaluate and predict user performance in
future immersive systems.

2 RELATED WORK

We review related work on the effects of spatial arrangement (including
layout type) on sensemaking in immersive analytics, the relevance of
cognitive load to the sensemaking process, and use of fNIRS as indices
of the sensemaking process.

2.1 The Spatial Arrangement of Information Influences
Sensemaking

There is robust evidence that spatial arrangement of information in
the task environment influences cognition. For example, in line with
Kirsh’s [27] insights about the functions of space, Andrews et al. [1]
showed that analysts used space to encode the relationships between
multiple elements, such as data, documents, display, and analyst. The
space provided a semantic layer as a form of rapid access to external
memory, which supported the analysis process. The distribution of
information across space has also been shown to impact learning per-
formance and the strategies used for learning from abstract data [16].
With distributed layouts, participants maintained better memory of the
locations where information was presented. Similarly, Geymayer et
al. [18] showed that the availability of sensemaking tools in the envi-
ronment affected the use of display space, consistent with theories of
distributed cognition. For immersive visualization, Batch et al. [4]
studied space use and embodiment with 3D scatter plots in VR. The
results showed that participants did not use the full available 3D space,
which supported the most adopted design of immersive interface on
2D and 3D surfaces. Other work has further examined the use of space
from a distributed cognition perspective: Mahmood et al. [35] explored

the organization of subspaces, and Lee et al. [32] also examined the
uses of space in collaborative visualization.

A consistent finding is that users’ performance [40] and subjective
satisfaction [1, 7] is improved when using large displays compared to
small displays in analysis tasks. Large display users employ sophis-
ticated strategies to exploit the available space for spatial cognition,
such as dividing the space into focus and context areas [7, 19], plac-
ing application windows as reminders [22], and using windows for
clustering or piling [1, 46]. Large displays can therefore be thought
to act as externalized memory, as users employ the space to organize
and memorize information [1]. Similar to large displays, immersive
systems can utilize large physical spaces to create effective interfaces.

Despite evidence that immersive technologies improve performance
and reduce cognitive load [6], it should be noted that some of the
inherent restrictions of head-mounted displays (e.g. the limited field of
view) can increase the users’ cognitive load. It is therefore important to
identify tools, affordances, and interaction strategies that can reduce
that load in immersive technologies.

2.2 Sensemaking in Immersive Analytics

With the development of immersive technology, complex information
processing has become a common application of immersive systems.
Immersive analytics [11] extends the classical desktop visualization
into a variety of immersive environments and enables new analytics
capabilities. While still in its early stages, immersive analytics has
attracted the interest of many researchers. This is demonstrated by a
surge of recent work using virtual or physical 3D space (and interactions
with that space) to explore cognitive processes during data analytic
tasks [13,29,33,44,51,52]. Researchers have also started to evaluate the
effectiveness of immersive visualization techniques. Recently, Lages
and Bowman [31] identified desirable properties of adaptation-based
interface techniques for augmented reality workspaces centered around
walking. Whitlock et al. [49] examined how visual analytics tools can
transform field practices by more deeply integrating data into these
operations. Liu et al. [34] studied 2D small-multiples visualization in
3D spaces and suggested that flat layout or semi-circular layout over
fully surrounding.

Interaction in immersive systems is often achieved through multi-
sensory channels including gaze, voice, and gestures that are signifi-
cantly different from desktop programs. The physical movements and
interactions are often mixed and coordinated during the use of immer-
sive systems, which could affect the users’ performance. Immersive
analytics demonstrates advantages, especially with stereoscopic tech-
niques producing favorable results [13, 14,29, 48]. For example, during
immersive navigation [50] in VR and AR environments performance is
significantly improved on tasks that include tracking, matching, search-
ing, and ambushing objects of interest. Interaction logs have also been
explored for evaluation and understanding analyst behaviors [20,45].
In all, understanding how users apprehend information and how they
deploy interactions in 3D is necessary for designing better immersive
analytics systems.

2.3 Assessing Cognitive Load in Immersive Systems

Cognitive load refers to the working memory resources used in a task.
These working memory demands stem from the amount of information
that one has to hold in working memory (intrinsic cognitive load), the
format or complexity of the instructed actions (extraneous cognitive
load), and the work one puts into processing and representing that
information for the long-term (germane cognitive load) [8]. Cognitive
load has been examined in the context of information gathering and
reasoning in complex virtual environments [41].

Cognitive load has also been examined in the context of examin-
ing the potential cognitive cost or benefit of using augmented reality
displays [6]. There is evidence that immersive technologies can be
employed to reduce extraneous cognitive load to make it easier to com-
prehend instructions, thus optimizing the germane load. In a study
comparing three different augmented reality display technologies (spa-
tial augmented reality, the optical see-through Microsoft HoloLens, and
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Fig. 1. This work examines user interactions during the sensemaking process in immersive visualization for spatial data clustering
tasks. Snapshots show a user performing the task (left), two examples of the virtual views used as stimuli, one cylindrical and one
planar layout (middle), and our visualization to explore data provenance of physical interactions in the sensemaking process (right).

Abstract— Theories of cognition inform our decisions when designing human-computer interfaces, and immersive systems enable
us to examine these theories. This work explores the sensemaking process in an immersive environment through studying both
internal and external user behaviors with a classical visualization problem: a visual comparison and clustering task. We developed
an immersive system to perform a user study, collecting user behavior data from different channels: AR HMD for capturing external
user interactions, functional near-infrared spectroscopy (fNIRS) for capturing internal neural sequences, and video for references.
To examine sensemaking, we assessed how the layout of the interface (planar 2D vs. cylindrical 3D layout) and the challenge level
of the task (low vs. high cognitive load) influenced the users’ interactions, how these interactions changed over time, and how they
influenced task performance. We also developed a visualization system to explore joint patterns among all the data channels. We
found that increased interactions and cerebral hemodynamic responses were associated with more accurate performance, especially
on cognitively demanding trials. The layout types did not reliably influence interactions or task performance. We discuss how these
findings inform the design and evaluation of immersive systems, predict user performance and interaction, and offer theoretical insights
about sensemaking from the perspective of embodied and distributed cognition.
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1 INTRODUCTION

Previous work on sensemaking and distributed cognition has guided
the interface design of many computer systems. As a high level mental
process, sensemaking involves the analysis of facts and inferences, the
integration of learning from different areas, creative thinking, and the
evaluation and judgment of information [1,15]. From the perspective
of distributed cognition [39], sensemaking unfolds in a spatial envi-
ronment. Within the environment, spatial arrangement serves different
functions that support sensemaking, namely by simplifying choice,
simplifying perception, and simplifying internal computation [27].

Our understanding of sensemaking and distributed cognition is essen-
tial to the design of computer systems, including immersive visualiza-
tion systems that aim to assist the sensemaking of various information.
Compared to traditional desktop settings, immersive systems built with
VR/AR have several capabilities that could improve the sensemaking
process. Immersive systems assist distributed cognition by presenting
immersive environments designed appropriately and by allowing physi-
cal interaction through multi-sensory channels that are generally more
intuitive for users.
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At the same time, immersive systems provide new methodological
tools for studying the sensemaking process because they permit study-
ing behavior at a fine-grained level that could not be reached without
the latest tracking and analysis technology. Immersive technology now
permits examining how different uses of space come into play dur-
ing sensemaking, with data sampled frequently from both the spatial
and temporal dimensions. Examining users’ interactions (e.g., how
they orient their visual attention in space) can illuminate their think-
ing process [1, 38]. Effective analysis of these data will help us study
fundamental cognitive processes and develop advanced methods for
creating personalized interaction models.

The present work explores the capability of immersive systems as a
tool for unveiling the sensemaking process in immersive environments.
Our primary goal (G1) was to investigate how user interactions depend
on task constraints (cognitive load and layout type) in a visualization
task in immersive AR, with neural activity as an additional index of cog-
nitive load. Our secondary goal (G2) was to develop a visual analytics
system that permits researchers not only to assess the users’ interactions
and the neural indices of their cognitive processing individually, but
also to perform joint analysis for the intricate relationships among these
sources of data.

Our specific research questions with respect to G1 were: (Q1). How
do the users’ interactions differ across different types of spatial arrange-
ments and different levels of task difficulty? (Q2) How do the users’
interactions change over the process of sensemaking? (Q3) How do
the users’ interactions predict sensemaking performance (accuracy on
the task)?, and (Q4) How do the users’ neural activity, which we take

to indicate their cognitive processing, relate to their interactions in the
task and task performance?

To answer these research questions, we designed and performed a
user study involving visual correlation, a classical visualization problem
[9]. Visual correlation relies on sensemaking because it requires evalu-
ating data similarity through visual comparison and making decisions
by clustering subsets of similar data. By examining visual correlation,
we can gain insights about other visualization tasks that share common
cognitive underpinnings (e.g., as evaluating data similarity, [40]). We
developed an AR system (the user’s interface) for performing cluster-
ing tasks with interactions. The user interactions we considered include
direct, external interactions with the virtual artifacts in an immersive
system (e.g., the user moving images) and internal behaviors that do
not involve the direct manipulation of virtual artifacts (e.g., the user
rotating their body; their gaze fixations on images). We manipulated
two variables that would allow us to tap into embodied and distributed
cognition: the cognitive load incurred by the task (two challenge levels
with different numbers of images) and the type of spatial layout (two
commonly adopted interfaces in immersive environments: planar 2D vs.
cylindrical 3D). With respect to cognitive load, we reasoned that with
more images the number of comparisons needed to be made to evaluate
data similarity would increase, making it those clustering judgments
more cognitively demanding.

To assess the users’ processing under different cognitive demands,
different layout types, and different time points in the trial (G1), we
collected data from three different channels: AR HMD, video, and
functional near-infrared spectroscopy (fNIRS). In statistical models, we
addressed our research questions by examining how user interactions
and measures from fNIRS were predicted by cognitive load and layout
type, how they predicted user performance, and how they changed over
the course of the trial.

To further support joint analysis of these rich datasets (G2), we devel-
oped a visualization system (the researcher’s interface) that permitted
exploring the relationship between user interactions, their neural activ-
ity, user performance across task features (e.g., cognitive load, layout
time), and across task epochs (time periods in the trial or the task).
By elucidating how interactions and neural signatures in immersive
analytics aid sensemaking, this work can inform theories of embodied
and distributed cognition [12, 23, 27] and demonstrate the potential of
analyzing user interactions to evaluate and predict user performance in
future immersive systems.

2 RELATED WORK

We review related work on the effects of spatial arrangement (including
layout type) on sensemaking in immersive analytics, the relevance of
cognitive load to the sensemaking process, and use of fNIRS as indices
of the sensemaking process.

2.1 The Spatial Arrangement of Information Influences
Sensemaking

There is robust evidence that spatial arrangement of information in
the task environment influences cognition. For example, in line with
Kirsh’s [27] insights about the functions of space, Andrews et al. [1]
showed that analysts used space to encode the relationships between
multiple elements, such as data, documents, display, and analyst. The
space provided a semantic layer as a form of rapid access to external
memory, which supported the analysis process. The distribution of
information across space has also been shown to impact learning per-
formance and the strategies used for learning from abstract data [16].
With distributed layouts, participants maintained better memory of the
locations where information was presented. Similarly, Geymayer et
al. [18] showed that the availability of sensemaking tools in the envi-
ronment affected the use of display space, consistent with theories of
distributed cognition. For immersive visualization, Batch et al. [4]
studied space use and embodiment with 3D scatter plots in VR. The
results showed that participants did not use the full available 3D space,
which supported the most adopted design of immersive interface on
2D and 3D surfaces. Other work has further examined the use of space
from a distributed cognition perspective: Mahmood et al. [35] explored

the organization of subspaces, and Lee et al. [32] also examined the
uses of space in collaborative visualization.

A consistent finding is that users’ performance [40] and subjective
satisfaction [1, 7] is improved when using large displays compared to
small displays in analysis tasks. Large display users employ sophis-
ticated strategies to exploit the available space for spatial cognition,
such as dividing the space into focus and context areas [7, 19], plac-
ing application windows as reminders [22], and using windows for
clustering or piling [1, 46]. Large displays can therefore be thought
to act as externalized memory, as users employ the space to organize
and memorize information [1]. Similar to large displays, immersive
systems can utilize large physical spaces to create effective interfaces.

Despite evidence that immersive technologies improve performance
and reduce cognitive load [6], it should be noted that some of the
inherent restrictions of head-mounted displays (e.g. the limited field of
view) can increase the users’ cognitive load. It is therefore important to
identify tools, affordances, and interaction strategies that can reduce
that load in immersive technologies.

2.2 Sensemaking in Immersive Analytics

With the development of immersive technology, complex information
processing has become a common application of immersive systems.
Immersive analytics [11] extends the classical desktop visualization
into a variety of immersive environments and enables new analytics
capabilities. While still in its early stages, immersive analytics has
attracted the interest of many researchers. This is demonstrated by a
surge of recent work using virtual or physical 3D space (and interactions
with that space) to explore cognitive processes during data analytic
tasks [13,29,33,44,51,52]. Researchers have also started to evaluate the
effectiveness of immersive visualization techniques. Recently, Lages
and Bowman [31] identified desirable properties of adaptation-based
interface techniques for augmented reality workspaces centered around
walking. Whitlock et al. [49] examined how visual analytics tools can
transform field practices by more deeply integrating data into these
operations. Liu et al. [34] studied 2D small-multiples visualization in
3D spaces and suggested that flat layout or semi-circular layout over
fully surrounding.

Interaction in immersive systems is often achieved through multi-
sensory channels including gaze, voice, and gestures that are signifi-
cantly different from desktop programs. The physical movements and
interactions are often mixed and coordinated during the use of immer-
sive systems, which could affect the users’ performance. Immersive
analytics demonstrates advantages, especially with stereoscopic tech-
niques producing favorable results [13, 14,29, 48]. For example, during
immersive navigation [50] in VR and AR environments performance is
significantly improved on tasks that include tracking, matching, search-
ing, and ambushing objects of interest. Interaction logs have also been
explored for evaluation and understanding analyst behaviors [20,45].
In all, understanding how users apprehend information and how they
deploy interactions in 3D is necessary for designing better immersive
analytics systems.

2.3 Assessing Cognitive Load in Immersive Systems

Cognitive load refers to the working memory resources used in a task.
These working memory demands stem from the amount of information
that one has to hold in working memory (intrinsic cognitive load), the
format or complexity of the instructed actions (extraneous cognitive
load), and the work one puts into processing and representing that
information for the long-term (germane cognitive load) [8]. Cognitive
load has been examined in the context of information gathering and
reasoning in complex virtual environments [41].

Cognitive load has also been examined in the context of examin-
ing the potential cognitive cost or benefit of using augmented reality
displays [6]. There is evidence that immersive technologies can be
employed to reduce extraneous cognitive load to make it easier to com-
prehend instructions, thus optimizing the germane load. In a study
comparing three different augmented reality display technologies (spa-
tial augmented reality, the optical see-through Microsoft HoloLens, and
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the video see-through Samsung Gear VR), spatial augmented reality
increased performance and reduced cognitive load [6].

In this work, we examine whether different task features and user
behaviors alleviate cognitive load and thus support sensemaking. We
operationalize cognitive load in two different ways. First, we experi-
mentally manipulate cognitive load by using trials with different num-
bers of items (i.e., manipulating intrinsic cognitive load). Second, we
measure how cognitive load fluctuates in a given trial: we take the
users’ neural activity from fNIRS to indicate their cognitive demands
over the course of the trial. In the next section, we explain in more
detail how fNIRS can signal cognitive effort in a task.

2.4 fNIRS Data as Indices of Cognitive Load
As a non-invasive method of measuring brain activity, fNIRS has been
used to study cognitive load in a variety of applications, such as real-
time monitoring of mental workload of airline pilots [10] and the
performance of participants during video-game like tasks [24]. Aydöre
et al. [2] found that fNIRS from the prefrontal cortex (PFC) were highly
dependent on cognitive load, with functional connectivity increasing
with increasing cognitive load. Similarly, De et al. [17] found system-
atic relationships between fNIRS and cognitive load in symbol-meaning
associative learning tasks: using an interval type-2 fuzzy classifier, the
participants’ fNIRS features could be reduced and classified to three
levels of cognitive loads.

Because fNIR data are highly corrupted by measurement noise and
physiology-based systemic interference [42], several statistical analysis
methods have been used to extract neuronal activity-related signals
from fNIRS [36, 42], including motion artifact correction, short source-
detector separation correction, principal component analysis (PCA),
independent component analysis (ICA), false discovery rate (FDR),
serially-correlated errors, and inference techniques. More recently,
machine learning methods have been applied to fNIRS analysis [26].
To resolve the noise issue, researchers often combine the analysis of
fNIRS with video recordings and additional measurements [21, 37].

In this work, to explore the relationship between the users’ inter-
actions (obtained from Hololens) and their fluctuating cognitive load
demands (captured through fNIRS) in immersive systems, we examine
the distribution of signals from the two sources in spaces constructed
through dimensionality reduction (PCA).

3 USER STUDY OF DATA CLUSTERING IN AR
3.1 Study Design
The main task of our study was a visual correlation task, where partic-
ipants group, match, or cluster images based on visual features. The
interactions we focused on were derived from the users’ body move-
ment and the spatial organization of their actions: how they moved
images and how they oriented their attention in the displays.

To evaluate the cognitive impacts of different layouts, we manipu-
lated two factors of interest across 8 trials. The first factor is layout
type, plane (2D) vs. cylinder (3D), shown in Figure 2. The two types of
layouts are commonly used as the information interfaces for immersive
systems, as they are not affected by occlusion issues [4, 31]. Images
were all placed at the center of each regular grid and filled the space of
each cell while preserving the original image size ratios.

The second factor is cognitive load – half the trials of each type
of layout (planar and cylindrical) involved low cognitive load and the
other half high cognitive load. Each layout style was further divided
into small and large grid size based on number columns. Displays with
fewer columns (5 in planar or 12 in cylindrical layouts) were always
used in low cognitive load trials (with 5 images), whereas displays with
more columns (7 in planar or 16 in cylindrical layouts) were always
used in high load trials (with 10 images). The sizes and numbers of
grid cells were determined based on a pilot study to ensure that images
would be large enough to observe without requiring body movement
toward them.

3.2 Immersive Visualization System for Study
We developed an immersive analytics system for visualizing and in-
teracting with image clusters through physical interactions (the user’s

sparse (low cognition load) dense (high cognition load)

Fig. 2. Our study uses four types of layouts for arranging images: sparse
planar layout, dense planar layout, sparse cylindrical layout, and dense
cylindrical layout.

interface). We used Microsoft HoloLens, which supports 3D aug-
mented rendering and interaction with hand gestures. Figure 1 shows
a user performing the study. Images were laid out surrounding the
user, who was defined as the center location. Each spatial location was
associated with no more than one image at a time (i.e., images did not
overlap). Users could move around the space and rotate their view to
any direction in the 3D space.

Layouts. We generated a 2D planar structure to simulate an envi-
ronment of large display that permits 2D visualization and interaction
(see Figure 2). The images were placed 1-meter away in front of the
user on the grid structure. Similarly, we generated a 3D cylindrical
structure by forming a circle with a radius of 1 meter, using the initial
user position as the center. Images were displayed at the center of each
cell, retaining their 2D shapes without distortion to ensure that they
were visually identical in both layouts.

Multi-modal Interaction. We developed a set of multimodal inter-
actions that support participants to perform tasks by combining voice,
gaze, and hand gestures. Participants used voice commands to advance
through the trials of the study: they started the session by saying “Start
Trial” and advanced by saying “Next Trial”, until the study was finished.
Another interaction was to move images around the grid, simulating the
regular “drag and drop” function. This was achieved by selecting an
image with hand gesture “air tap”, moving the image with the “air tap
down” gesture, and placing the image by releasing the gesture. Upon
completing the “drag and drop” gesture, a snap function positioned
the image automatically at the center of the closest cell in the grid. To
implement this we calculated the euclidean distance of the image with
every cell in the grid and positioned the image to the center of the cell
with the minimum distance. The images were also oriented toward
the center automatically. The users’ gaze icon changed from a colored
sphere to a hollow sphere when they could interact with an image. The
system was robust at recognizing the users’ commands, and all the
participants were given unlimited time to practice the interaction.

3.3 Materials
The images used in the user study were selected from around 1000
heat-maps of different species (plants and animals) in Great Smokey
Mountain National Park. These heat-maps represent recorded obser-
vations of habitat distribution of the different species as 2D data dis-
tribution (see examples in Figure 3). All these images were similar, in
that they concerned the same terrain, but had no shapes or patterns that
may appear in real photographs. Thus, this rich set of images permitted
us to pre-select manually images with different levels of similarity that
could be clustered in several groups.

Each image was only used in one trial, thus minimizing effects of
learning, memory, or interference from images from previous trials.
The initial layout of each trial was predetermined, with its allocated
set of images positioned on the same locations and the remaining cells
being blank. Low cognitive load trials had only two or three clusters,
with clear differences. In contrast, high cognitive load trials contained
three to five clusters with more diverse images and with the differences
among clusters being less clear.

system interface examples

Fig. 3. Our visualization interface has several components for analyzing a set of data collected in the study: (a) parameter panel, (b) PCA distribution
of fNIRS sequences for overview and exploration of unique behaviors, (c) spatial visualization of user interaction from HoloLens, (d) patterns selected
from (c) for search, (e) time selection by users, (f) time bar with a quick view of image interactions where each color represents an image (the same
with colors in (c)), (g) our automatic evaluation of user results, and (h) fNIRS sequences. The right images are example data used in the study.

3.4 Participants

Participants (N = 14) were male (9) and female (5) college students
between the ages of 20 - 28 years (the average age was 23).

3.5 Procedure and Tasks

The user study started with a practice trial, which used the same immer-
sive visualization system but with a different set of images. Participants
familiarized themselves with the system, practicing all the voice and
gesture interactions, until they were ready to begin the user study.

They then proceeded to complete the 8 trials of the user study. The
order of the trials was randomized for each participant; this was done
to minimize practice effects, since participants might become more
familiar with the image types and develop problem-solving strategies
over time. As noted, different images were used across trials.

For both practice and experimental trials, participants were asked to
cluster the images based on their visual similarity. Participants were
told that their answers would be graded based on the accuracy and that
they are expected to cluster the images as accurately as possible. They
were not provided information about the number of clusters or possible
clustering results. They were simply instructed to form any clusters
they thought were appropriate while explaining their decisions out loud,
so that their answers could be recorded on video.

3.6 Apparatus

Our study used Microsoft HoloLens and fNIR devices simultaneously.
As shown in Figure 1, participants first wore the fNIR headband on
their foreheads and then the HoloLens on top of it. The fNIR headband
was connected to the fNIR device with a cable about 2 meters long,
restricting the movement area of participants, which motivated our
selection of large images for easy observation. Still, participants could
turn to either side or to the back freely. The camera was set in front of
the participants. All data were captured at fixed rates: 30 frames per
second (fps) for HoloLens and video, and 2 fps for fNIRS.

3.7 Predictions

Based on theories of distributed and embodied cognition, we predicted
that users would produce more interactions on the high (vs. low)

cognitive load trials, as a way to offload cognitive demands to the en-
vironment. We also predicted that increased user interactions would
benefit task accuracy, especially on the high cognitive load trials. Our
predictions about the effect of layout type and the effect of time (begin-
ning, middle, or end of the trial) were exploratory. Finally, we expected
fNIRS to indicate cognitive load (i.e., differ across the high and low
load conditions), and expected that fNIRS would exhibit systematic re-
lationships with user interactions. However, the specific nature of these
relationship was exploratory. These relationships would be explored
with the visualization system we developed, described next.

4 VISUAL ANALYTICS OF THE SENSEMAKING PROCESS

4.1 Design Goals of Visualization system

To further analyze and examine the rich combined data from users’
interactions and neural signals, we developed a specialized visualiza-
tion system (the researcher’s interface). As shown in Figure 3, our
visualization system is composed of several panels for examining dif-
ferent aspects of the collected data. This system has the following key
features:

• F1. Enable interactive exploration of various patterns of spatial
sensemaking behaviors from a group of users performing a visual
analysis task (e.g., see panel d in Figure 3).

• F2. Explore the relationship between the users’ interactions,
their fNIRS sequences, and task performance over the course of
sensemaking (e.g., in a given trial; see panels f, g, h in Figure 3).

• F3. Identify important cognitive activities from all the data se-
quences, by combining HoloLens behavior data with neural sig-
nals from fNIRS (see panels b, c, and d in Figure 3).

• F4. Compare the interactions of different users and identify be-
haviors that were effective in terms of performance (see Figure 5).

4.2 Visualization of Interaction Sequences

We first describe the key components of our visualization system for
studying individual users’ datasets and then describe how the data of
multiple users can be compared and explored in the section 4.3.
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the video see-through Samsung Gear VR), spatial augmented reality
increased performance and reduced cognitive load [6].

In this work, we examine whether different task features and user
behaviors alleviate cognitive load and thus support sensemaking. We
operationalize cognitive load in two different ways. First, we experi-
mentally manipulate cognitive load by using trials with different num-
bers of items (i.e., manipulating intrinsic cognitive load). Second, we
measure how cognitive load fluctuates in a given trial: we take the
users’ neural activity from fNIRS to indicate their cognitive demands
over the course of the trial. In the next section, we explain in more
detail how fNIRS can signal cognitive effort in a task.

2.4 fNIRS Data as Indices of Cognitive Load
As a non-invasive method of measuring brain activity, fNIRS has been
used to study cognitive load in a variety of applications, such as real-
time monitoring of mental workload of airline pilots [10] and the
performance of participants during video-game like tasks [24]. Aydöre
et al. [2] found that fNIRS from the prefrontal cortex (PFC) were highly
dependent on cognitive load, with functional connectivity increasing
with increasing cognitive load. Similarly, De et al. [17] found system-
atic relationships between fNIRS and cognitive load in symbol-meaning
associative learning tasks: using an interval type-2 fuzzy classifier, the
participants’ fNIRS features could be reduced and classified to three
levels of cognitive loads.

Because fNIR data are highly corrupted by measurement noise and
physiology-based systemic interference [42], several statistical analysis
methods have been used to extract neuronal activity-related signals
from fNIRS [36, 42], including motion artifact correction, short source-
detector separation correction, principal component analysis (PCA),
independent component analysis (ICA), false discovery rate (FDR),
serially-correlated errors, and inference techniques. More recently,
machine learning methods have been applied to fNIRS analysis [26].
To resolve the noise issue, researchers often combine the analysis of
fNIRS with video recordings and additional measurements [21, 37].

In this work, to explore the relationship between the users’ inter-
actions (obtained from Hololens) and their fluctuating cognitive load
demands (captured through fNIRS) in immersive systems, we examine
the distribution of signals from the two sources in spaces constructed
through dimensionality reduction (PCA).

3 USER STUDY OF DATA CLUSTERING IN AR
3.1 Study Design
The main task of our study was a visual correlation task, where partic-
ipants group, match, or cluster images based on visual features. The
interactions we focused on were derived from the users’ body move-
ment and the spatial organization of their actions: how they moved
images and how they oriented their attention in the displays.

To evaluate the cognitive impacts of different layouts, we manipu-
lated two factors of interest across 8 trials. The first factor is layout
type, plane (2D) vs. cylinder (3D), shown in Figure 2. The two types of
layouts are commonly used as the information interfaces for immersive
systems, as they are not affected by occlusion issues [4, 31]. Images
were all placed at the center of each regular grid and filled the space of
each cell while preserving the original image size ratios.

The second factor is cognitive load – half the trials of each type
of layout (planar and cylindrical) involved low cognitive load and the
other half high cognitive load. Each layout style was further divided
into small and large grid size based on number columns. Displays with
fewer columns (5 in planar or 12 in cylindrical layouts) were always
used in low cognitive load trials (with 5 images), whereas displays with
more columns (7 in planar or 16 in cylindrical layouts) were always
used in high load trials (with 10 images). The sizes and numbers of
grid cells were determined based on a pilot study to ensure that images
would be large enough to observe without requiring body movement
toward them.

3.2 Immersive Visualization System for Study
We developed an immersive analytics system for visualizing and in-
teracting with image clusters through physical interactions (the user’s

sparse (low cognition load) dense (high cognition load)

Fig. 2. Our study uses four types of layouts for arranging images: sparse
planar layout, dense planar layout, sparse cylindrical layout, and dense
cylindrical layout.

interface). We used Microsoft HoloLens, which supports 3D aug-
mented rendering and interaction with hand gestures. Figure 1 shows
a user performing the study. Images were laid out surrounding the
user, who was defined as the center location. Each spatial location was
associated with no more than one image at a time (i.e., images did not
overlap). Users could move around the space and rotate their view to
any direction in the 3D space.

Layouts. We generated a 2D planar structure to simulate an envi-
ronment of large display that permits 2D visualization and interaction
(see Figure 2). The images were placed 1-meter away in front of the
user on the grid structure. Similarly, we generated a 3D cylindrical
structure by forming a circle with a radius of 1 meter, using the initial
user position as the center. Images were displayed at the center of each
cell, retaining their 2D shapes without distortion to ensure that they
were visually identical in both layouts.

Multi-modal Interaction. We developed a set of multimodal inter-
actions that support participants to perform tasks by combining voice,
gaze, and hand gestures. Participants used voice commands to advance
through the trials of the study: they started the session by saying “Start
Trial” and advanced by saying “Next Trial”, until the study was finished.
Another interaction was to move images around the grid, simulating the
regular “drag and drop” function. This was achieved by selecting an
image with hand gesture “air tap”, moving the image with the “air tap
down” gesture, and placing the image by releasing the gesture. Upon
completing the “drag and drop” gesture, a snap function positioned
the image automatically at the center of the closest cell in the grid. To
implement this we calculated the euclidean distance of the image with
every cell in the grid and positioned the image to the center of the cell
with the minimum distance. The images were also oriented toward
the center automatically. The users’ gaze icon changed from a colored
sphere to a hollow sphere when they could interact with an image. The
system was robust at recognizing the users’ commands, and all the
participants were given unlimited time to practice the interaction.

3.3 Materials
The images used in the user study were selected from around 1000
heat-maps of different species (plants and animals) in Great Smokey
Mountain National Park. These heat-maps represent recorded obser-
vations of habitat distribution of the different species as 2D data dis-
tribution (see examples in Figure 3). All these images were similar, in
that they concerned the same terrain, but had no shapes or patterns that
may appear in real photographs. Thus, this rich set of images permitted
us to pre-select manually images with different levels of similarity that
could be clustered in several groups.

Each image was only used in one trial, thus minimizing effects of
learning, memory, or interference from images from previous trials.
The initial layout of each trial was predetermined, with its allocated
set of images positioned on the same locations and the remaining cells
being blank. Low cognitive load trials had only two or three clusters,
with clear differences. In contrast, high cognitive load trials contained
three to five clusters with more diverse images and with the differences
among clusters being less clear.

system interface examples

Fig. 3. Our visualization interface has several components for analyzing a set of data collected in the study: (a) parameter panel, (b) PCA distribution
of fNIRS sequences for overview and exploration of unique behaviors, (c) spatial visualization of user interaction from HoloLens, (d) patterns selected
from (c) for search, (e) time selection by users, (f) time bar with a quick view of image interactions where each color represents an image (the same
with colors in (c)), (g) our automatic evaluation of user results, and (h) fNIRS sequences. The right images are example data used in the study.

3.4 Participants

Participants (N = 14) were male (9) and female (5) college students
between the ages of 20 - 28 years (the average age was 23).

3.5 Procedure and Tasks

The user study started with a practice trial, which used the same immer-
sive visualization system but with a different set of images. Participants
familiarized themselves with the system, practicing all the voice and
gesture interactions, until they were ready to begin the user study.

They then proceeded to complete the 8 trials of the user study. The
order of the trials was randomized for each participant; this was done
to minimize practice effects, since participants might become more
familiar with the image types and develop problem-solving strategies
over time. As noted, different images were used across trials.

For both practice and experimental trials, participants were asked to
cluster the images based on their visual similarity. Participants were
told that their answers would be graded based on the accuracy and that
they are expected to cluster the images as accurately as possible. They
were not provided information about the number of clusters or possible
clustering results. They were simply instructed to form any clusters
they thought were appropriate while explaining their decisions out loud,
so that their answers could be recorded on video.

3.6 Apparatus

Our study used Microsoft HoloLens and fNIR devices simultaneously.
As shown in Figure 1, participants first wore the fNIR headband on
their foreheads and then the HoloLens on top of it. The fNIR headband
was connected to the fNIR device with a cable about 2 meters long,
restricting the movement area of participants, which motivated our
selection of large images for easy observation. Still, participants could
turn to either side or to the back freely. The camera was set in front of
the participants. All data were captured at fixed rates: 30 frames per
second (fps) for HoloLens and video, and 2 fps for fNIRS.

3.7 Predictions

Based on theories of distributed and embodied cognition, we predicted
that users would produce more interactions on the high (vs. low)

cognitive load trials, as a way to offload cognitive demands to the en-
vironment. We also predicted that increased user interactions would
benefit task accuracy, especially on the high cognitive load trials. Our
predictions about the effect of layout type and the effect of time (begin-
ning, middle, or end of the trial) were exploratory. Finally, we expected
fNIRS to indicate cognitive load (i.e., differ across the high and low
load conditions), and expected that fNIRS would exhibit systematic re-
lationships with user interactions. However, the specific nature of these
relationship was exploratory. These relationships would be explored
with the visualization system we developed, described next.

4 VISUAL ANALYTICS OF THE SENSEMAKING PROCESS

4.1 Design Goals of Visualization system

To further analyze and examine the rich combined data from users’
interactions and neural signals, we developed a specialized visualiza-
tion system (the researcher’s interface). As shown in Figure 3, our
visualization system is composed of several panels for examining dif-
ferent aspects of the collected data. This system has the following key
features:

• F1. Enable interactive exploration of various patterns of spatial
sensemaking behaviors from a group of users performing a visual
analysis task (e.g., see panel d in Figure 3).

• F2. Explore the relationship between the users’ interactions,
their fNIRS sequences, and task performance over the course of
sensemaking (e.g., in a given trial; see panels f, g, h in Figure 3).

• F3. Identify important cognitive activities from all the data se-
quences, by combining HoloLens behavior data with neural sig-
nals from fNIRS (see panels b, c, and d in Figure 3).

• F4. Compare the interactions of different users and identify be-
haviors that were effective in terms of performance (see Figure 5).

4.2 Visualization of Interaction Sequences

We first describe the key components of our visualization system for
studying individual users’ datasets and then describe how the data of
multiple users can be compared and explored in the section 4.3.
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4.2.1 Visualizing Spatial Behavior from HoloLens
UsingMicrosoft HoloLens, we recorded all movements and interactions
of the users. For any change in user position, orientation or head
movement, we recorded the image the user was gazing at, the position
of the image within the grid (in form of row and column number of the
cell within the grid), the normalized position of the user in the world
space, the forward vector of the user’s head capturing their orientation,
the up vector capturing changes in head movement, and the time of the
interaction since the start of the study.

We first extracted an event list from the HoloLens data by removing
continuous records with the same behaviors. This captured time dura-
tions where the user did not move. This step can significantly reduce
the size of the remaining HoloLens data, and simplify the process of
searching for similar interaction patterns. As shown in the Figure 5,
visualizations are composed of multiple lines that mark the user’s posi-
tion and view direction. During our study, users rarely walked around,
so the lines resemble a pie shape chart. The lengths of the lines are
adjusted to the durations of the record, with longer lines indicating the
directions at which the user spent more time.

Although the HoloLens data recorded 3D interactions, we designed
a 3D−> 2D mapping to visualize the 3D record data in a 2D layout,
without the need of 3D operations. Since all users performed the tasks
in the standing position within a small region, we simply ignored the
z value of the user’s location. This also facilitates the comparison
of the two layout types. The 3-level grids surrounding the user are
therefore flattened. Each level is projected to a circle, with the lowest
level (bottom row) closest to the center. This projection maintains the
angles between the user and all positions on the grid. The positions of
all images can be clearly shown in this fashion. The movements of an
image on the grid are also captured, indicating the user’s 3D interactions.
The same mapping was applied to both planar and cylindrical layouts.

The system can be used to visualize the movement of individual
images by hovering one’s mouse over the representation of the grid. Al-
ternatively, different time durations can be chosen to observe the user’s
interactions with all images in that period. The traces of individual
images can also be selected and highlighted, shown in Figure 5.

In addition to its interactive visualization functions, the system per-
mits automatically measuring several types of interactions that we have
found to be relevant based on interactive exploration of user records.
We automatically extracted several types of interactions for statistical
analysis. Our metrics for each trial of each user included: the number
of all images moved (consecutive moves defined by appeared less than
3 seconds are counted as one move), the duration of user gazing at any
image (measured in seconds), the total length of all images moved, and
the degrees of all body rotations. These measurements provide data for
quantitative analysis we have performed in the section 5.

4.2.2 Measuring Cognitive Activity from fNIRS
The sequences of fNIR data are taken to index the fluctuations in
cognitive load demands over the course of the trial, since they capture
of the activity levels at corresponding brain regions [24]. Because
fNIR data are often mixed with measurement noise from other factors,
such as the user’s movements, we applied the following preprocessing,
feature extraction and dimension reduction steps.

The data obtained from the fNIR apparatus, recording the user’s
brain activity during the task, are represented as a time sequence of
32 signals. We separated the data into oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) groups, each containing 16 fNIRS. The max
and min of HbO and HbR were taken from all trials of all the users to
ensure the features we measure were comparable among different users.
We further preprocessed the fNIRS with a noise removal step, applying
a digital filter of Savitzky-Golay with a pass band of (0.1-0.4 Hz) to
eliminate the undesirable signals in that band.

From the 16 fNIRS pairs, we computed a set of target features cap-
turing the central tendency, variability, and symmetry of the distribution
of the data, previously used to indicate cognitive load [17]. Each fNIRS
pair was measured with the following seven features (for a total of 16
× 7 = 112 features):

• F1: Mean values of oxyhemoglobin (HbO) concentration;

Fig. 4. System users can adjust the time range and search for durations
with similar behaviors, which are shown with the black background on
both evaluation curve and fNIRS.

• F2: Mean values of total hemoglobin (THb) concentration;
• F3: Mean values of oxygen demand (HbO-HbR) concentration;
• F4: Standard deviation of HbO concentration;
• F5: Standard deviation of THb concentration;
• F6: Skewness of HbO concentration;
• F7: Skewness of HbO-HbR concentration.

We then applied dimensionality reduction, through principle com-
ponent analysis (PCA), to produce an interactive visualization of data
distributions (see panel c in Figure 3). The system provides visu-
alizations of all users’ data or of individual users’ data, permitting
exploration of the changes of fNIRS across different time frames. In
the system, one can choose one or multiple time durations, such as all
planar (2D)/cylindrical (3D) trials or first half of all trials to explore
different clusters of activities. Figure 9 shows an example of trial one
from all users: one can use their mouse to hover over for detailed
information or select a node to update the time range indicators and
HoloLens views to further explore corresponding physical behaviors.

To explore the quantitative relationships between user interactions
and cognitive activities, the system can be used to divide the PCA
space into zones and measure those user interactions listed at the end
of section 4.2.1 for each zone.

4.2.3 Quantifying Task Performance
The users’ performance was automatically graded during the task. Com-
pared to manual grading at the end of the study, the advantage of au-
tomatic evaluation of performance is that it can be computed for the
entire duration of each user study, allowing us to explore the effects of
user interactions on the sensemaking process.

The evaluation of user performance was based on the image positions
on the grids and on image similarities. Since all the images in our study
share the same structure (the same terrain shape), we estimated the
image similarities with the pairwise pixel color differences. Specifically,
for each pair of images i, j in the trial, the image similarity s(i, j) was
computed by the accumulated absolute differences of pixel values
between two images. The distance d(i, j) is the euclidean distance
between two image center locations. The result of image layout is
evaluated as the summation ∑i, j s(i, j)×d(i, j) from all image pairs
at each time stamp. Figure 4 shows an example of the estimation
values – the white curve covering the entire duration of a user study. To
balance the quick changes of evaluations, we use the averages of local
values, rendered as the overlaying green curve, to identify the trends of
evaluations and search for similar durations.

4.3 Interactive Exploration of Users’ Behaviors
4.3.1 Interactive Exploration Functions
We developed interaction functions to perform interactive exploration
for each type of data in the panels of HoloLens, fNIRS, and the PCA.
Each panel allows overview of the entire time duration, for any selected
subset of time ranges, subset of the data points (users or trials), or
subset of channels (e.g., specific fNIRS features).

To enable joint analysis among the HoloLens, fNIRS, and evaluated
performance records, we developed interactive functions for exploring
similar durations based on selected data features (see Figure 4). Each
visualization panel permits interaction functions for time windows of
interest. Additionally, movement patterns of interest associated with a
single image can be isolated, by clicking on the node for that image in
the HoloLens panel.

Moreover, the system can be used to search for all other time dura-
tions with patterns with similar trends. The data features can be selected
from any of the three panels and recorded on the search panel on the
right of the interface (see Figure 3, panel d). For fNIRS or graded
performance, we divide the time window to a number of small sections
and search for other time windows with the same value distributions,
such as the average value for each section. For HoloLens patterns, we
use the relative positions/directions as the search criteria. We allow a
threshold value to be adjusted for enlarging the range of similar patterns.
As Figure 4 shows, the returned similar durations are highlighted on the
timeline with a black background on the evaluation and fNIRS panels.

5 ANALYSIS OF INTERACTIONS IN IMMERSIVE ANALYTICS,
TASK CONSTRAINTS, TASK PERFORMANCE, AND FNIRS

To address our research questions, we first assessed the effect of layout
type and cognitive load of the users’ interactions in Hololens (Q1).
We focused on the following behaviors: the number of times users
moved images in each trial, the total distance images were moved, the
number of times users switched their looking location in a trial, and the
users’ looking durations. We also assessed the length of the trial. Then,
we explored how users’ interactions changed over the course of the
trial (Q2). Next, we examined the relationship between interactions in
Hololens and their automatically evaluated performance (Q3). Finally,
we explored the relationship between the users’ neural signatures and
their interactions (Q4) through qualitative and quantitative analyses
within the visualization system.

5.1 Statistical models
To examine these questions, we built linear mixed effects models, fitted
using the lme4 package [5] in R [43]. Models included fixed effects
for cognitive load (low vs. high), layout type (planar vs. cylindrical),
and their interaction, and random effects for users. Trial order was
included as a covariate in each model. All models started with the
maximal random effect structure included intercepts for users, as well
as random slopes for cognitive load, layout type, their interaction,
and trial order, to account for between-participant variation for these
effects [3]. For models with additional fixed effects (gaze location;
performance range), we specify their structure below. If a model failed
to converge, we simplified it by removing terms from the random effect
structure in a theoretical motivated manner starting with the higher
order term (the interaction of cognitive load and layout) and the fixed
effects of least theoretical interest (e.g., trial order). The p-values
were obtained from the lmerTest package [28] using the Satterthwaite’s
method. Captured variance of overall models is reported as Conditional
R2 variance explained by fixed and random factors together, computed
using the MuMIn R statistical package [25]. The full output of the
models is provided in tables in the accompanying supplement.

5.2 Effects of Cognitive Load and Layout on Interactions
We first assessed the effects of the cognitive load of the trial and the
layout type on three types of interactions in models for: the number
of times images were moved in each trial, the total distance all images
moved in a given trial, and the users’ looking durations. We had pre-
dicted higher levels of user interactions on high (vs. low) cognitive load
trials, while our predictions about the effect of layout were exploratory
given mixed results in the literature. As illustrated in Figure 6 (top
two panels; see also Table 1 in the supplement), users moved images
significantly more frequently and over a greater total distance in the
high cognitive load condition (with 10 images) than the low load condi-
tion (with 5 images). Layout type did not affect the number of image
moves. As shown in the top right panel, users moved images over a
greater distance numerically in cylindrical layouts than planar layouts,

but this difference was not statistically significant (p = .06). The effect
of layout did not depend on cognitive load, for neither the number of
image moves nor the total distance moved; that interaction was not
significant in either model. Trial order was not a significant predictor
of behavior either.

With respect to looking durations, we examined the amount of time
that users looked at images vs. looked at other locations (not images).
Looking location (image vs. non-image) and its interactions with
cognitive load and layout type were entered as fixed effects in the
model. Looking location, cognitive load, and their interaction were
significant predictors of gaze durations, as shown in the bottom left
panel Figure 6 (see also Table 2 in the supplement). Not surprisingly,
users spent more time looking at images than non-images. Moreover,
looking durations were longer in the high cognitive load condition than
the low cognitive load condition. The effect of cognitive load depended
on looking location: for low load trials looking durations at images and
non-image areas were more comparable, but for high load trials users
spent more than 1.5 times longer gazing at images than non-images.
There was also a significant interaction between looking location and
layout type: users spent a comparable amount of time looking non-
images in the two layout types, but they spent more time looking at
images in planar layouts compared to cylindrical layouts.

Finally, we considered trial completion times. As illustrated in
Figure 6 (bottom right panel) completion times showed a significant
effect of cognitive load (see Table 1 in the supplement). High load
trials took about 1.5 times longer to complete than low load trials (M
= 187.76 sec vs. M = 125.11 sec). Layout type did not influence
completion times and neither did its interaction with cognitive load.
Users tended to get faster at completing trials over the course of the
study, but the effect of trial order was not significant (p = .05).

5.3 Changes in Interactions Over the Course of the Trial
Next, we examined how the users’ interactions changed over the course
of the trial. This was an exploratory analysis. We divided each trial in
three equal segments and included trial segment as a fixed effect in the
linear mixed effects models, along with its interactions with cognitive
load and layout type. As shown in Figure 7, different user interactions
exhibited distinct patterns over time.

First, with respect to moving images (number of moves and distance
images were moved), there was high activity for the beginning and
middle segments of the trial and lower activity at the end of the trial
(top two panels of Figure 7). Indeed, the difference between the first
and second segments was not statistically significant for the number of
moves and distance moved, but the difference between the second and
third segments was (see Table 3 in supplement).

Second, looking durations (bottom left panel) exhibited an increase
in the middle segment relative to the first and final segments. The differ-
ence between the first and second segments was statistically significant.

Finally, switches in looking orientation were most frequent in the
first segment and dropped drastically after that (bottom right panel).
This is captured by the fact that the difference between the first and
second segments was statistically significant in the model, but that
between the second and third segments was not.

5.4 Task Performance in Relation to User Interactions
Finally, we assessed the users’ task performance as the trial unfolded
relative to different types of interactions. We had hypothesized that
increased user interactions would be associated with better performance,
especially on high cognitive load trials. We considered 5 sequential
ranges of the graded performance value for the task (0-.20, .20-.40, .40-
.60, .60-.80, and .80-1), which reflected task accuracy. We identified
the number of image moves, the distance that images were moved,
looking durations, and the number of switches in looking orientation in
each range. As shown in Figure 8, a consistent pattern was observed
across all of these types of interactions. In line with our predictions,
users were more accurate (i.e., fell into a higher grade range) when
they moved images more frequently and over greater distances, when
they looked at the display longer, and when they switched their gaze
location more often.
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4.2.1 Visualizing Spatial Behavior from HoloLens
UsingMicrosoft HoloLens, we recorded all movements and interactions
of the users. For any change in user position, orientation or head
movement, we recorded the image the user was gazing at, the position
of the image within the grid (in form of row and column number of the
cell within the grid), the normalized position of the user in the world
space, the forward vector of the user’s head capturing their orientation,
the up vector capturing changes in head movement, and the time of the
interaction since the start of the study.

We first extracted an event list from the HoloLens data by removing
continuous records with the same behaviors. This captured time dura-
tions where the user did not move. This step can significantly reduce
the size of the remaining HoloLens data, and simplify the process of
searching for similar interaction patterns. As shown in the Figure 5,
visualizations are composed of multiple lines that mark the user’s posi-
tion and view direction. During our study, users rarely walked around,
so the lines resemble a pie shape chart. The lengths of the lines are
adjusted to the durations of the record, with longer lines indicating the
directions at which the user spent more time.

Although the HoloLens data recorded 3D interactions, we designed
a 3D−> 2D mapping to visualize the 3D record data in a 2D layout,
without the need of 3D operations. Since all users performed the tasks
in the standing position within a small region, we simply ignored the
z value of the user’s location. This also facilitates the comparison
of the two layout types. The 3-level grids surrounding the user are
therefore flattened. Each level is projected to a circle, with the lowest
level (bottom row) closest to the center. This projection maintains the
angles between the user and all positions on the grid. The positions of
all images can be clearly shown in this fashion. The movements of an
image on the grid are also captured, indicating the user’s 3D interactions.
The same mapping was applied to both planar and cylindrical layouts.

The system can be used to visualize the movement of individual
images by hovering one’s mouse over the representation of the grid. Al-
ternatively, different time durations can be chosen to observe the user’s
interactions with all images in that period. The traces of individual
images can also be selected and highlighted, shown in Figure 5.

In addition to its interactive visualization functions, the system per-
mits automatically measuring several types of interactions that we have
found to be relevant based on interactive exploration of user records.
We automatically extracted several types of interactions for statistical
analysis. Our metrics for each trial of each user included: the number
of all images moved (consecutive moves defined by appeared less than
3 seconds are counted as one move), the duration of user gazing at any
image (measured in seconds), the total length of all images moved, and
the degrees of all body rotations. These measurements provide data for
quantitative analysis we have performed in the section 5.

4.2.2 Measuring Cognitive Activity from fNIRS
The sequences of fNIR data are taken to index the fluctuations in
cognitive load demands over the course of the trial, since they capture
of the activity levels at corresponding brain regions [24]. Because
fNIR data are often mixed with measurement noise from other factors,
such as the user’s movements, we applied the following preprocessing,
feature extraction and dimension reduction steps.

The data obtained from the fNIR apparatus, recording the user’s
brain activity during the task, are represented as a time sequence of
32 signals. We separated the data into oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) groups, each containing 16 fNIRS. The max
and min of HbO and HbR were taken from all trials of all the users to
ensure the features we measure were comparable among different users.
We further preprocessed the fNIRS with a noise removal step, applying
a digital filter of Savitzky-Golay with a pass band of (0.1-0.4 Hz) to
eliminate the undesirable signals in that band.

From the 16 fNIRS pairs, we computed a set of target features cap-
turing the central tendency, variability, and symmetry of the distribution
of the data, previously used to indicate cognitive load [17]. Each fNIRS
pair was measured with the following seven features (for a total of 16
× 7 = 112 features):

• F1: Mean values of oxyhemoglobin (HbO) concentration;

Fig. 4. System users can adjust the time range and search for durations
with similar behaviors, which are shown with the black background on
both evaluation curve and fNIRS.

• F2: Mean values of total hemoglobin (THb) concentration;
• F3: Mean values of oxygen demand (HbO-HbR) concentration;
• F4: Standard deviation of HbO concentration;
• F5: Standard deviation of THb concentration;
• F6: Skewness of HbO concentration;
• F7: Skewness of HbO-HbR concentration.

We then applied dimensionality reduction, through principle com-
ponent analysis (PCA), to produce an interactive visualization of data
distributions (see panel c in Figure 3). The system provides visu-
alizations of all users’ data or of individual users’ data, permitting
exploration of the changes of fNIRS across different time frames. In
the system, one can choose one or multiple time durations, such as all
planar (2D)/cylindrical (3D) trials or first half of all trials to explore
different clusters of activities. Figure 9 shows an example of trial one
from all users: one can use their mouse to hover over for detailed
information or select a node to update the time range indicators and
HoloLens views to further explore corresponding physical behaviors.

To explore the quantitative relationships between user interactions
and cognitive activities, the system can be used to divide the PCA
space into zones and measure those user interactions listed at the end
of section 4.2.1 for each zone.

4.2.3 Quantifying Task Performance
The users’ performance was automatically graded during the task. Com-
pared to manual grading at the end of the study, the advantage of au-
tomatic evaluation of performance is that it can be computed for the
entire duration of each user study, allowing us to explore the effects of
user interactions on the sensemaking process.

The evaluation of user performance was based on the image positions
on the grids and on image similarities. Since all the images in our study
share the same structure (the same terrain shape), we estimated the
image similarities with the pairwise pixel color differences. Specifically,
for each pair of images i, j in the trial, the image similarity s(i, j) was
computed by the accumulated absolute differences of pixel values
between two images. The distance d(i, j) is the euclidean distance
between two image center locations. The result of image layout is
evaluated as the summation ∑i, j s(i, j)×d(i, j) from all image pairs
at each time stamp. Figure 4 shows an example of the estimation
values – the white curve covering the entire duration of a user study. To
balance the quick changes of evaluations, we use the averages of local
values, rendered as the overlaying green curve, to identify the trends of
evaluations and search for similar durations.

4.3 Interactive Exploration of Users’ Behaviors
4.3.1 Interactive Exploration Functions
We developed interaction functions to perform interactive exploration
for each type of data in the panels of HoloLens, fNIRS, and the PCA.
Each panel allows overview of the entire time duration, for any selected
subset of time ranges, subset of the data points (users or trials), or
subset of channels (e.g., specific fNIRS features).

To enable joint analysis among the HoloLens, fNIRS, and evaluated
performance records, we developed interactive functions for exploring
similar durations based on selected data features (see Figure 4). Each
visualization panel permits interaction functions for time windows of
interest. Additionally, movement patterns of interest associated with a
single image can be isolated, by clicking on the node for that image in
the HoloLens panel.

Moreover, the system can be used to search for all other time dura-
tions with patterns with similar trends. The data features can be selected
from any of the three panels and recorded on the search panel on the
right of the interface (see Figure 3, panel d). For fNIRS or graded
performance, we divide the time window to a number of small sections
and search for other time windows with the same value distributions,
such as the average value for each section. For HoloLens patterns, we
use the relative positions/directions as the search criteria. We allow a
threshold value to be adjusted for enlarging the range of similar patterns.
As Figure 4 shows, the returned similar durations are highlighted on the
timeline with a black background on the evaluation and fNIRS panels.

5 ANALYSIS OF INTERACTIONS IN IMMERSIVE ANALYTICS,
TASK CONSTRAINTS, TASK PERFORMANCE, AND FNIRS

To address our research questions, we first assessed the effect of layout
type and cognitive load of the users’ interactions in Hololens (Q1).
We focused on the following behaviors: the number of times users
moved images in each trial, the total distance images were moved, the
number of times users switched their looking location in a trial, and the
users’ looking durations. We also assessed the length of the trial. Then,
we explored how users’ interactions changed over the course of the
trial (Q2). Next, we examined the relationship between interactions in
Hololens and their automatically evaluated performance (Q3). Finally,
we explored the relationship between the users’ neural signatures and
their interactions (Q4) through qualitative and quantitative analyses
within the visualization system.

5.1 Statistical models
To examine these questions, we built linear mixed effects models, fitted
using the lme4 package [5] in R [43]. Models included fixed effects
for cognitive load (low vs. high), layout type (planar vs. cylindrical),
and their interaction, and random effects for users. Trial order was
included as a covariate in each model. All models started with the
maximal random effect structure included intercepts for users, as well
as random slopes for cognitive load, layout type, their interaction,
and trial order, to account for between-participant variation for these
effects [3]. For models with additional fixed effects (gaze location;
performance range), we specify their structure below. If a model failed
to converge, we simplified it by removing terms from the random effect
structure in a theoretical motivated manner starting with the higher
order term (the interaction of cognitive load and layout) and the fixed
effects of least theoretical interest (e.g., trial order). The p-values
were obtained from the lmerTest package [28] using the Satterthwaite’s
method. Captured variance of overall models is reported as Conditional
R2 variance explained by fixed and random factors together, computed
using the MuMIn R statistical package [25]. The full output of the
models is provided in tables in the accompanying supplement.

5.2 Effects of Cognitive Load and Layout on Interactions
We first assessed the effects of the cognitive load of the trial and the
layout type on three types of interactions in models for: the number
of times images were moved in each trial, the total distance all images
moved in a given trial, and the users’ looking durations. We had pre-
dicted higher levels of user interactions on high (vs. low) cognitive load
trials, while our predictions about the effect of layout were exploratory
given mixed results in the literature. As illustrated in Figure 6 (top
two panels; see also Table 1 in the supplement), users moved images
significantly more frequently and over a greater total distance in the
high cognitive load condition (with 10 images) than the low load condi-
tion (with 5 images). Layout type did not affect the number of image
moves. As shown in the top right panel, users moved images over a
greater distance numerically in cylindrical layouts than planar layouts,

but this difference was not statistically significant (p = .06). The effect
of layout did not depend on cognitive load, for neither the number of
image moves nor the total distance moved; that interaction was not
significant in either model. Trial order was not a significant predictor
of behavior either.

With respect to looking durations, we examined the amount of time
that users looked at images vs. looked at other locations (not images).
Looking location (image vs. non-image) and its interactions with
cognitive load and layout type were entered as fixed effects in the
model. Looking location, cognitive load, and their interaction were
significant predictors of gaze durations, as shown in the bottom left
panel Figure 6 (see also Table 2 in the supplement). Not surprisingly,
users spent more time looking at images than non-images. Moreover,
looking durations were longer in the high cognitive load condition than
the low cognitive load condition. The effect of cognitive load depended
on looking location: for low load trials looking durations at images and
non-image areas were more comparable, but for high load trials users
spent more than 1.5 times longer gazing at images than non-images.
There was also a significant interaction between looking location and
layout type: users spent a comparable amount of time looking non-
images in the two layout types, but they spent more time looking at
images in planar layouts compared to cylindrical layouts.

Finally, we considered trial completion times. As illustrated in
Figure 6 (bottom right panel) completion times showed a significant
effect of cognitive load (see Table 1 in the supplement). High load
trials took about 1.5 times longer to complete than low load trials (M
= 187.76 sec vs. M = 125.11 sec). Layout type did not influence
completion times and neither did its interaction with cognitive load.
Users tended to get faster at completing trials over the course of the
study, but the effect of trial order was not significant (p = .05).

5.3 Changes in Interactions Over the Course of the Trial
Next, we examined how the users’ interactions changed over the course
of the trial. This was an exploratory analysis. We divided each trial in
three equal segments and included trial segment as a fixed effect in the
linear mixed effects models, along with its interactions with cognitive
load and layout type. As shown in Figure 7, different user interactions
exhibited distinct patterns over time.

First, with respect to moving images (number of moves and distance
images were moved), there was high activity for the beginning and
middle segments of the trial and lower activity at the end of the trial
(top two panels of Figure 7). Indeed, the difference between the first
and second segments was not statistically significant for the number of
moves and distance moved, but the difference between the second and
third segments was (see Table 3 in supplement).

Second, looking durations (bottom left panel) exhibited an increase
in the middle segment relative to the first and final segments. The differ-
ence between the first and second segments was statistically significant.

Finally, switches in looking orientation were most frequent in the
first segment and dropped drastically after that (bottom right panel).
This is captured by the fact that the difference between the first and
second segments was statistically significant in the model, but that
between the second and third segments was not.

5.4 Task Performance in Relation to User Interactions
Finally, we assessed the users’ task performance as the trial unfolded
relative to different types of interactions. We had hypothesized that
increased user interactions would be associated with better performance,
especially on high cognitive load trials. We considered 5 sequential
ranges of the graded performance value for the task (0-.20, .20-.40, .40-
.60, .60-.80, and .80-1), which reflected task accuracy. We identified
the number of image moves, the distance that images were moved,
looking durations, and the number of switches in looking orientation in
each range. As shown in Figure 8, a consistent pattern was observed
across all of these types of interactions. In line with our predictions,
users were more accurate (i.e., fell into a higher grade range) when
they moved images more frequently and over greater distances, when
they looked at the display longer, and when they switched their gaze
location more often.
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Fig. 5. Different sensemaking process shown with our spatial visualization. Each row shows the interactions from two users across different
time-course of the same trial. Based on their sequences of physical interactions, we can observe clear but distinct sensemaking strategies: the
first user moved images around and gradually formed 2 clusters, while the second user settled down to 3 clusters quickly and used the image
represented by dark red to confirm the results. Both results are valid (two clusters from the second user is combined by the first user).

Fig. 6. Violin plots representing the distributions of the number of image
moves (top left), total distance of all images moved (top right), gaze
durations at images and non-images (bottom left), and trial completion
times in a given trial (bottom right), according to the cognitive load
(Low vs. High) and layout (planar/2D vs. cylindrical/3D) conditions.
Boxplots represent the median and quartiles (Q1, Q3); dots indicate
observations with values greater than Q3 plus 1.5 times the interquartile
range. Cognitive load influenced these measures, but layout type did not.

However, as indicated by the divergence between the blue and or-
ange lines, this increase was modulated by cognitive load. For high
cognitive load trials, the more users engaged in these interactions, the
more accurate they were for the first 4 ranges of performance values
(0-.80). Interestingly, users experienced an unexpected dip in these in-
teractions for topmost range of performance (.80-1). In contrast, for low
cognitive load trials, users engaged in these interactions relatively in-
frequently in the first four ranges of graded performance values (0-.80),
but drastically more frequently at the topmost range of performance.
The linear mixed effects models confirmed these observations.

As indicated by the levels of user interactions in Figure 8, some
differences between high vs. low load trials at different performance
ranges depended on cognitive load. The difference between moderately
high (.60-.80) vs. low (0 - .20) performance differed significantly across
cognitive load conditions as indicated by the significant interaction of

Fig. 7. Looking durations (bottom left) and gaze switches (bottom right)
exhibit different patterns across the three segments of the trial than the
number image moves (top left) and the total distance images were moved
(top right). Error bars represent standard errors of the mean.

this contrast for all user interactions (see Table 4 in supplement). The
statistical interaction between cognitive load and performance range
was also significant for the contrast between mid-level (.40-.60) vs.
low (0 - .20) accuracy for image moves, looking durations, and gaze
switches. Overall, the interaction of performance range and cognitive
load was a significant predictor of these interactions, as it significantly
improved model fit for image moves (χ2 (11) = 34.68, p < .001), for
distance moved (χ2 (7) = 37.41, p < .001), looking durations (χ2 (6) =
51.88, p < .001), and gaze switches (χ2 (6) = 79.23, p < .001).

5.5 Relationship of Users’ Behavioral and Neural Se-
quences

We used the visualization system to examine the relationship between
the users’ behaviors and fNIRS in different ways: first, by extracting
and analyzing fNIRS from the system; second, through qualitative
interactive analysis of spatial user interactions from the Hololens, and
third through interactive and visual analysis of user variance from both
aspects of fNIRS and spatial interactions.

Statistical Analyses of fNIRS. We examined linear mixed effects

Fig. 8. Number of image moves (top left), total distance moved (top
right), looking duration (middle left), number of switches in gaze position
(middle right), sums of HbO values (bottom left), and HbR values (bottom
right) from fNIRS across the 5 graded performance ranges and cognitive
load conditions. Accuracy improves with increased user interactions and
this effect is modulated by cognitive load. Error bars represent standard
errors of the mean.

models of the same structure as in section 5.1, with the sums of oxy-
hemoglobin (HbO) and deoxy-hemoglobin (HbR), normalized by user,
as dependent measures. These cerebral hemodynamics measures ex-
hibited the same patterns as the users’ interactions at different ranges
of task accuracy, as shown in Figure 8. For high load trials, HbO and
HbR levels increased as accuracy increased, but dipped at the topmost
level of performance. For low load trials, HbO and HbR levels rose
suddenly at the topmost level of accuracy. That HbO and HbR levels
exhibited the same pattern, when considering their aggregated sums
in each trial, is consistent with evidence of their coupling [30]. We
also examined whether HbO and HbR levels changes over the course
of the trial; however, no differences were found across the three trial
segments. (See Tables 5 and 6 in supplement for the full models.)

Interactive Analysis of Hololens Sequences. We used the visual-
ization system to explore the relationship between user interactions
and the other sources data (task performance and fNIRS). As a starting
point, we used the spatial visualization from Hololens to identify users
with distinct interaction styles for the same trial. Figure 5 illustrates
a contrasting pair of users: the first user (top panels) started the trial
by turning around to look at at all images, then moved images, and
finished by focusing on two image clusters. The second user (bottom
panels) spent most of the time comparing several images and ended
with three image clusters. Although both users clustered the images
with high accuracy in the end, one exhibited a divide-and-conquer strat-
egy, whereby they actively moved items to constrain their search space
whereas the other did not.

Exploration of Joint Data Using PCA. We also explored visual-
izations of the statistical distribution of fNIRS (as shown in Figure 9),
since evaluating visually the raw data sequences on their own (as in
Figure 4) can be difficult. Through dimensionality reduction, the PCA
panel of the system presents an overview of the changes of one or multi-

ple user and allows the evaluation of the distribution of nodes. Figure 9
displays all users, with each node representing one user during a time
duration. Darker nodes represent earlier durations of the same user so
that changes over time can be examined. If we treat the center region
with dense nodes as the “common” stages of cognition, the nodes on
the outside are more likely to represent “unique” behaviors. In addition,
we treat users whose majority of the nodes overlaps with one another as
“similar” and users whose majority of the nodes are on the outside as
“different” (e.g., see the purple colors on the top and the red colors on
the left bottom of the space). This exploration of the data suggests that
the cognitive states of the same user can vary through the trial without
an obvious pattern, but the distribution of cognitive states can reveal
systematic patterns among a group of users.

Additionally, we used the system to examine the relationship be-
tween neural activity and user interactions by exploring the interac-
tion types associated with nodes at different parts of the PCA space.
Although the correlations were not always clear, we did find some
consistent distributions: as shown in Figure 9, the nodes on the top
of the PCA space are often linked with simpler interactions including
looking at a small number of images within a small field of view, while
the nodes on the bottom correspond to a variety of relatively complex
interactions. The left bottom space is associated with interactions of
body movements represented by long black lines, and the right bottom
is associated with interactions of direct image selection and movement.

5.6 Summary and Discussion of Results
This study explored the sensemaking process in mixed reality with a
visual correlation task, which is a common immersive visualization
problem that has been used to study a variety of data, such as net-
work [14, 29], geospatial [34, 51] and 3D neuron [44] data.

Our key findings were that the cognitive load of the trials influenced
the users’ interactions with the system, these interactions changed over
the course of the trial, and were associated with task accuracy and
neural activity in systematic ways. Consistent with our predictions, we
found that compared to low load trials, on high load trials users moved
images more frequently, over a greater distance, and spent more time
gazing at images than non-images.

Layout type had less of an impact on users’ interactions. Users ex-
hibited comparable repertoires of interactions in planar and cylindrical
layouts, suggesting that the sensemaking process is similar across the
two formats of immersive visualization. They moved images equally
frequently for both layouts and gazed at the displays a comparable
amount of time. Users spent more time looking at images in planar
layouts than cylindrical layouts, but this could be because 2D layouts,
due to their smaller size, afforded more opportunities to obtain samples
of the users gazing at images. While previous results on the effects
of layout type on task performance [16,29, 34] are mixed, our results
showed that these two layouts are comparably effective as informa-
tion interfaces in immersive systems when user interactions are not
restricted. The two types of layouts were selected based on the current
design of immersive systems, both without 3D overlapping, extend-
ing the pervasive use of 2D over 3D in information visualization [47].
We expect that these two layouts will continue to be popular interface
designs in mixed reality, while we are also intrigued to explore 3D
immersive visualization in the future.

Our exploratory analysis of the time-course of the users’ interac-
tions revealed that they changed over time. Interactions with artifacts
involved consistent patterns: at the beginning and middle of the trial,
users moved more images and over longer distances, but less so at the
final segment of the trial. This suggests that they engaged actively in
forming image clusters during the first 2/3rds of the task. These patterns
in image interactions can contextualize the users’ gaze switches, which
showed a reduction over time. It is possible that as users placed images
in more stable clusters over time, they switched their gaze locations
less frequently. In terms of looking durations, users looked at images
longer in the middle of the trial, which could indicate more deliberation
and image comparison at that stage. Brain hemodynamics measures
from fNIRS (HbO and HbR), did not change significantly over time
when summed over long temporal scales (1/3 of the trial), which is
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Fig. 5. Different sensemaking process shown with our spatial visualization. Each row shows the interactions from two users across different
time-course of the same trial. Based on their sequences of physical interactions, we can observe clear but distinct sensemaking strategies: the
first user moved images around and gradually formed 2 clusters, while the second user settled down to 3 clusters quickly and used the image
represented by dark red to confirm the results. Both results are valid (two clusters from the second user is combined by the first user).

Fig. 6. Violin plots representing the distributions of the number of image
moves (top left), total distance of all images moved (top right), gaze
durations at images and non-images (bottom left), and trial completion
times in a given trial (bottom right), according to the cognitive load
(Low vs. High) and layout (planar/2D vs. cylindrical/3D) conditions.
Boxplots represent the median and quartiles (Q1, Q3); dots indicate
observations with values greater than Q3 plus 1.5 times the interquartile
range. Cognitive load influenced these measures, but layout type did not.

However, as indicated by the divergence between the blue and or-
ange lines, this increase was modulated by cognitive load. For high
cognitive load trials, the more users engaged in these interactions, the
more accurate they were for the first 4 ranges of performance values
(0-.80). Interestingly, users experienced an unexpected dip in these in-
teractions for topmost range of performance (.80-1). In contrast, for low
cognitive load trials, users engaged in these interactions relatively in-
frequently in the first four ranges of graded performance values (0-.80),
but drastically more frequently at the topmost range of performance.
The linear mixed effects models confirmed these observations.

As indicated by the levels of user interactions in Figure 8, some
differences between high vs. low load trials at different performance
ranges depended on cognitive load. The difference between moderately
high (.60-.80) vs. low (0 - .20) performance differed significantly across
cognitive load conditions as indicated by the significant interaction of

Fig. 7. Looking durations (bottom left) and gaze switches (bottom right)
exhibit different patterns across the three segments of the trial than the
number image moves (top left) and the total distance images were moved
(top right). Error bars represent standard errors of the mean.

this contrast for all user interactions (see Table 4 in supplement). The
statistical interaction between cognitive load and performance range
was also significant for the contrast between mid-level (.40-.60) vs.
low (0 - .20) accuracy for image moves, looking durations, and gaze
switches. Overall, the interaction of performance range and cognitive
load was a significant predictor of these interactions, as it significantly
improved model fit for image moves (χ2 (11) = 34.68, p < .001), for
distance moved (χ2 (7) = 37.41, p < .001), looking durations (χ2 (6) =
51.88, p < .001), and gaze switches (χ2 (6) = 79.23, p < .001).

5.5 Relationship of Users’ Behavioral and Neural Se-
quences

We used the visualization system to examine the relationship between
the users’ behaviors and fNIRS in different ways: first, by extracting
and analyzing fNIRS from the system; second, through qualitative
interactive analysis of spatial user interactions from the Hololens, and
third through interactive and visual analysis of user variance from both
aspects of fNIRS and spatial interactions.

Statistical Analyses of fNIRS. We examined linear mixed effects

Fig. 8. Number of image moves (top left), total distance moved (top
right), looking duration (middle left), number of switches in gaze position
(middle right), sums of HbO values (bottom left), and HbR values (bottom
right) from fNIRS across the 5 graded performance ranges and cognitive
load conditions. Accuracy improves with increased user interactions and
this effect is modulated by cognitive load. Error bars represent standard
errors of the mean.

models of the same structure as in section 5.1, with the sums of oxy-
hemoglobin (HbO) and deoxy-hemoglobin (HbR), normalized by user,
as dependent measures. These cerebral hemodynamics measures ex-
hibited the same patterns as the users’ interactions at different ranges
of task accuracy, as shown in Figure 8. For high load trials, HbO and
HbR levels increased as accuracy increased, but dipped at the topmost
level of performance. For low load trials, HbO and HbR levels rose
suddenly at the topmost level of accuracy. That HbO and HbR levels
exhibited the same pattern, when considering their aggregated sums
in each trial, is consistent with evidence of their coupling [30]. We
also examined whether HbO and HbR levels changes over the course
of the trial; however, no differences were found across the three trial
segments. (See Tables 5 and 6 in supplement for the full models.)

Interactive Analysis of Hololens Sequences. We used the visual-
ization system to explore the relationship between user interactions
and the other sources data (task performance and fNIRS). As a starting
point, we used the spatial visualization from Hololens to identify users
with distinct interaction styles for the same trial. Figure 5 illustrates
a contrasting pair of users: the first user (top panels) started the trial
by turning around to look at at all images, then moved images, and
finished by focusing on two image clusters. The second user (bottom
panels) spent most of the time comparing several images and ended
with three image clusters. Although both users clustered the images
with high accuracy in the end, one exhibited a divide-and-conquer strat-
egy, whereby they actively moved items to constrain their search space
whereas the other did not.

Exploration of Joint Data Using PCA. We also explored visual-
izations of the statistical distribution of fNIRS (as shown in Figure 9),
since evaluating visually the raw data sequences on their own (as in
Figure 4) can be difficult. Through dimensionality reduction, the PCA
panel of the system presents an overview of the changes of one or multi-

ple user and allows the evaluation of the distribution of nodes. Figure 9
displays all users, with each node representing one user during a time
duration. Darker nodes represent earlier durations of the same user so
that changes over time can be examined. If we treat the center region
with dense nodes as the “common” stages of cognition, the nodes on
the outside are more likely to represent “unique” behaviors. In addition,
we treat users whose majority of the nodes overlaps with one another as
“similar” and users whose majority of the nodes are on the outside as
“different” (e.g., see the purple colors on the top and the red colors on
the left bottom of the space). This exploration of the data suggests that
the cognitive states of the same user can vary through the trial without
an obvious pattern, but the distribution of cognitive states can reveal
systematic patterns among a group of users.

Additionally, we used the system to examine the relationship be-
tween neural activity and user interactions by exploring the interac-
tion types associated with nodes at different parts of the PCA space.
Although the correlations were not always clear, we did find some
consistent distributions: as shown in Figure 9, the nodes on the top
of the PCA space are often linked with simpler interactions including
looking at a small number of images within a small field of view, while
the nodes on the bottom correspond to a variety of relatively complex
interactions. The left bottom space is associated with interactions of
body movements represented by long black lines, and the right bottom
is associated with interactions of direct image selection and movement.

5.6 Summary and Discussion of Results
This study explored the sensemaking process in mixed reality with a
visual correlation task, which is a common immersive visualization
problem that has been used to study a variety of data, such as net-
work [14, 29], geospatial [34, 51] and 3D neuron [44] data.

Our key findings were that the cognitive load of the trials influenced
the users’ interactions with the system, these interactions changed over
the course of the trial, and were associated with task accuracy and
neural activity in systematic ways. Consistent with our predictions, we
found that compared to low load trials, on high load trials users moved
images more frequently, over a greater distance, and spent more time
gazing at images than non-images.

Layout type had less of an impact on users’ interactions. Users ex-
hibited comparable repertoires of interactions in planar and cylindrical
layouts, suggesting that the sensemaking process is similar across the
two formats of immersive visualization. They moved images equally
frequently for both layouts and gazed at the displays a comparable
amount of time. Users spent more time looking at images in planar
layouts than cylindrical layouts, but this could be because 2D layouts,
due to their smaller size, afforded more opportunities to obtain samples
of the users gazing at images. While previous results on the effects
of layout type on task performance [16,29, 34] are mixed, our results
showed that these two layouts are comparably effective as informa-
tion interfaces in immersive systems when user interactions are not
restricted. The two types of layouts were selected based on the current
design of immersive systems, both without 3D overlapping, extend-
ing the pervasive use of 2D over 3D in information visualization [47].
We expect that these two layouts will continue to be popular interface
designs in mixed reality, while we are also intrigued to explore 3D
immersive visualization in the future.

Our exploratory analysis of the time-course of the users’ interac-
tions revealed that they changed over time. Interactions with artifacts
involved consistent patterns: at the beginning and middle of the trial,
users moved more images and over longer distances, but less so at the
final segment of the trial. This suggests that they engaged actively in
forming image clusters during the first 2/3rds of the task. These patterns
in image interactions can contextualize the users’ gaze switches, which
showed a reduction over time. It is possible that as users placed images
in more stable clusters over time, they switched their gaze locations
less frequently. In terms of looking durations, users looked at images
longer in the middle of the trial, which could indicate more deliberation
and image comparison at that stage. Brain hemodynamics measures
from fNIRS (HbO and HbR), did not change significantly over time
when summed over long temporal scales (1/3 of the trial), which is
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Fig. 9. The PCA panel assists us to explore different stages of cognition from the brain signals. While the PCA distribution is solely generated from
fNIRS, this example shows that they correspond to the spatial interaction of users. The example nodes show that the top to bottom of the PCA space
corresponds to low to high frequency of interactions, and the left to right corresponds to more body movements to more direct interactions on images.

not surprising. Altogether, these diverse patterns over time present
a coherent picture about how users recruited different interactions to
support their sensemaking in a visual correlation task.

With respect to task performance, consistent with our predictions,
users’ were more accurate when they engaged in more interactions,
particularly for the high cognitive load trials. On those trials, both
image moving behavior and looking behavior were associated with
more accurate performance, except when the users were most accurate.
For that most accurate performance, there was a dip in these interactions.
In contrast, on low cognitive load trials, user interactions were relatively
infrequent and not systematically associated with task accuracy, except
for the top range of performance where they increased. Hemodynamic
activity from fNIRS (HbO, HbR) showed a similar pattern, suggesting
that the users’ neural activity was coupled with their interactions.

The dip in user interactions and brain activity at the top range of
performance on high load trials could be because users may have started
moving the images to form clusters from the get-go, such that by then,
during moments of high accuracy, they had settled on the position of the
images: they did not need to move or look at these images more in those
moments. Similarly the spike in activity at the top range of performance
in low load trials could be because, initially, this smaller set of images
was apprehended with less image movement and less looking around.
As users finalized their decision about how form clusters, they moved
images and looked around more, also exhibiting higher levels of brain
activity and high accuracy. These findings have implications for theory
because they suggest, under different task constraints, that the coupling
between body movement, cognitive activity, and task state may change
or may involve different time lags.

Additionally, we gained further insight into the relationship between
patterns of neural activity and user interactions by using the visual-
ization system to compare a PCA space analysis of fNIRS with the
accompanying Hololens interactions. This permitted us to detect sense-
making strategies that are “common” vs. “unique” across users.

Consistent with theories of embodied and distributed cognition [12,
23, 27], we find that people perform actions that alter the world to
offload their cognitive demands and support sensemaking. In immer-
sive visualization, when cognitive demands are high, users increase the
movement of images and of their own body. These interactions exhibit
consistent patterns with the users’ neural activity and task performance.
Our findings show great potential for creating personal models of inter-

action patterns to predict user behaviors, performance, and sensemaking
process during tasks. Our approach can inform the design of immersive
interfaces by identifying the layouts, task constraints, and temporal
phases of a sensemaking task that are more likely to involve complex
interactions or unique behaviors.

6 CONCLUSION AND FUTURE WORK

This work has explored the sensemaking process in immersive visualiza-
tion. Our visualization system illuminated the users’ strategies during
sensemaking by permitting us to explore different user interactions
and concurrent neural activity, both through quantitative analysis and
interactive visual analysis. Specifically, using our system, we were able
to extract and analyze data about the incidence of user interactions and
levels of cerebral hemodynamic measures in each trial and to evaluate
statistically the effects of layout, cognitive load, task performance, and
task epoch. Our findings that user interactions increase on demanding
trials and are associated with better performance, regardless of layout
type, have implications for other visualization tasks that share common
cognitive underpinnings, such as evaluating data similarity. By visually
exploring, in the system, the statistical distribution of fNIRS subjected
to dimensionality reduction (PCA), we were able identify common and
unique patterns of interactions associated with different states of cog-
nitive load. Our system–both the user’s interface and the researcher’s
visualization interface–can be adapted to support and investigate a vari-
ety of complex decision-making and problem-solving tasks relevant to
many real-world uses, including applications in teaching and learning.
Beyond informing the design and evaluation of immersive systems,
our system can be used to systematically examine sensemaking un-
der different layouts, task constraints, task phases, user groups, and
thus contribute to theoretical advances in embodied and distributed
cognition.

In the future, we plan to extend the system to examine other sense-
making tasks and other complex cognitive processes. We are also
interested developing machine learning models of user interaction to
support personalized interfaces.
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Fig. 9. The PCA panel assists us to explore different stages of cognition from the brain signals. While the PCA distribution is solely generated from
fNIRS, this example shows that they correspond to the spatial interaction of users. The example nodes show that the top to bottom of the PCA space
corresponds to low to high frequency of interactions, and the left to right corresponds to more body movements to more direct interactions on images.

not surprising. Altogether, these diverse patterns over time present
a coherent picture about how users recruited different interactions to
support their sensemaking in a visual correlation task.

With respect to task performance, consistent with our predictions,
users’ were more accurate when they engaged in more interactions,
particularly for the high cognitive load trials. On those trials, both
image moving behavior and looking behavior were associated with
more accurate performance, except when the users were most accurate.
For that most accurate performance, there was a dip in these interactions.
In contrast, on low cognitive load trials, user interactions were relatively
infrequent and not systematically associated with task accuracy, except
for the top range of performance where they increased. Hemodynamic
activity from fNIRS (HbO, HbR) showed a similar pattern, suggesting
that the users’ neural activity was coupled with their interactions.

The dip in user interactions and brain activity at the top range of
performance on high load trials could be because users may have started
moving the images to form clusters from the get-go, such that by then,
during moments of high accuracy, they had settled on the position of the
images: they did not need to move or look at these images more in those
moments. Similarly the spike in activity at the top range of performance
in low load trials could be because, initially, this smaller set of images
was apprehended with less image movement and less looking around.
As users finalized their decision about how form clusters, they moved
images and looked around more, also exhibiting higher levels of brain
activity and high accuracy. These findings have implications for theory
because they suggest, under different task constraints, that the coupling
between body movement, cognitive activity, and task state may change
or may involve different time lags.

Additionally, we gained further insight into the relationship between
patterns of neural activity and user interactions by using the visual-
ization system to compare a PCA space analysis of fNIRS with the
accompanying Hololens interactions. This permitted us to detect sense-
making strategies that are “common” vs. “unique” across users.

Consistent with theories of embodied and distributed cognition [12,
23, 27], we find that people perform actions that alter the world to
offload their cognitive demands and support sensemaking. In immer-
sive visualization, when cognitive demands are high, users increase the
movement of images and of their own body. These interactions exhibit
consistent patterns with the users’ neural activity and task performance.
Our findings show great potential for creating personal models of inter-

action patterns to predict user behaviors, performance, and sensemaking
process during tasks. Our approach can inform the design of immersive
interfaces by identifying the layouts, task constraints, and temporal
phases of a sensemaking task that are more likely to involve complex
interactions or unique behaviors.

6 CONCLUSION AND FUTURE WORK

This work has explored the sensemaking process in immersive visualiza-
tion. Our visualization system illuminated the users’ strategies during
sensemaking by permitting us to explore different user interactions
and concurrent neural activity, both through quantitative analysis and
interactive visual analysis. Specifically, using our system, we were able
to extract and analyze data about the incidence of user interactions and
levels of cerebral hemodynamic measures in each trial and to evaluate
statistically the effects of layout, cognitive load, task performance, and
task epoch. Our findings that user interactions increase on demanding
trials and are associated with better performance, regardless of layout
type, have implications for other visualization tasks that share common
cognitive underpinnings, such as evaluating data similarity. By visually
exploring, in the system, the statistical distribution of fNIRS subjected
to dimensionality reduction (PCA), we were able identify common and
unique patterns of interactions associated with different states of cog-
nitive load. Our system–both the user’s interface and the researcher’s
visualization interface–can be adapted to support and investigate a vari-
ety of complex decision-making and problem-solving tasks relevant to
many real-world uses, including applications in teaching and learning.
Beyond informing the design and evaluation of immersive systems,
our system can be used to systematically examine sensemaking un-
der different layouts, task constraints, task phases, user groups, and
thus contribute to theoretical advances in embodied and distributed
cognition.

In the future, we plan to extend the system to examine other sense-
making tasks and other complex cognitive processes. We are also
interested developing machine learning models of user interaction to
support personalized interfaces.
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