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conducted to probe the distribution of young stars and
dense molecular gas on comparable scales (e.g., Meidt

et al. 2013, 2020; Faesi et al. 2014, 2016, 2018; Leroy

et al. 2016, 2017; Schruba et al. 2017; Sun et al. 2018,

2020; Schinnerer et al. 2019; Querejeta et al. 2019; Lee
et al. 2021).

An example of a new generation of observational
probes into the star formation–feedback cycle is the spa-

tial decorrelation between peaks in the spatial distri-

bution of young massive stars traced via Hα emission

and peaks of molecular gas traced by its CO emission.

The distributions of Hα and CO can now be mapped
with sub-100 pc resolution in a sample of nearby galax-

ies (e.g., Kruijssen et al. 2019; Schinnerer et al. 2019;

Chevance et al. 2020a,b). This decorrelation can be

quantified by measuring the depletion time of molecu-

lar gas—defined as the ratio of molecular mass and star

formation rate within a patch, τdep,H2
= MH2

/Ṁ?—in
patches of different size and centered either on peaks of

CO or Hα emission.
As first shown by Schruba et al. (2010) for M33

galaxy, when patch sizes are smaller than kiloparsec,

the depletion time of gas in the patches centered on

Hα peaks is several times shorter than the global de-

pletion time in the galaxy because such patches pref-
erentially include the tracer of recent star formation.

Conversely, in the patches of the same size centered on
the CO peaks, τdep,H2

is several times longer than the

global value. As the patch size is increased, the differ-

ences diminish until the depletion times in both types

of centering converge to the global value for patch sizes

& 1 kpc. The characteristic shape of the divergence
of τdep,H2

in the patches centered on CO- and Hα peaks

with decreasing patch size is reminiscent of a tuning fork,

and the corresponding plot has been dubbed “the tun-

ing fork diagram” (Kruijssen et al. 2018; Chevance et al.

2020a), which we will also as a shorthand term in this

paper.

In general, star formation is expected to occur in

the cold, dense molecular gas (e.g., Kennicutt & Evans
2012). Therefore, the decorrelation between dense gas
and young stars is most likely a signature of rapidly op-

erating feedback processes in and around star-forming

regions. Indeed, the existence of isolated Hα peaks al-

ready presumes a feedback process that ionizes the gas

on a short timescale. The overall dependence of deple-

tion time on scale, however, likely bears an imprint of all
the collective feedback processes that operate in the re-
gion, including the effects of spatial correlations of star
formation sites.

An early attempt to model such decorrelation of

molecular gas and young stars on small scales in the con-

text of scatter of the molecular depletion time as a func-
tion of scale was done by Feldmann et al. (2012), who

showed that such measurements can be used as a probe

of stochasticity of star formation in individual regions.

More recently, Fujimoto et al. (2019) used simulations

of an isolated Milky Way-sized galaxy and compared the

estimates of τdep,H2
in the Hα and CO-centered peaks

as a function of scale to the measurements in NGC300

(Kruijssen et al. 2019). Although their simulations in-

cluded most of the processes thought to be critical for

star formation and feedback modeling, these authors

found that in their simulation almost all young stellar

emission was associated with molecular CO emission at

all scales down to ≈ 50 pc. They attributed this failure
to match strong observed trend to inadequate modeling

of pre-supernova feedback, in particular to insufficient

realism of effects of photoionization feedback.

This conclusion is consistent with the interpretation of

the observed decorrelation of CO and Hα emitting gas in
nine nearby galaxies by Chevance et al. (2020a,b), who

concluded that their observations indicate that molecu-
lar gas is dissociated and/or dispersed on average within
3 Myrs after a peak in young stars becomes visible at the

optical wavelength (i.e., roughly ∼ 5–6 Myrs since the

onset of local star formation). Observational measure-

ments of the spatial decorrelation as a function of patch

size can thus be used as a probe or early stellar feed-

back and as a test of its modeling in galaxy formation
simulations.

Conversely, simulations that reproduce the scale de-

pendence of depletion times can also provide insights for
interpretation of observations. For example, the short
evolution timescales of star-forming regions derived by

Kruijssen et al. (2019) and Chevance et al. (2020a,b)

agree quantitatively with the predictions of hydrody-
namic simulations of galaxies, where these timescales

can be measured directly by following the evolution of

ISM gas parcels between different states (Semenov et al.

2017, 2019) or tracking giant molecular clouds (e.g.,

Grisdale et al. 2019; Benincasa et al. 2020b). The simu-

lations, however, show that these timescales are not the
same for all star-forming regions but exhibit a broad
distribution. Such simulations then can be used to elu-
cidate the connection between the details of these dis-

tributions and the scale dependence of depletion times.

With these motivations in mind, we explore the scale
dependence of depletion times in galaxy simulations

with a successful implementation of star formation and
feedback model that we recently used to understand the
origin of long depletion times in galaxies (Semenov et al.

2017, 2018) and approximate linearity of the molecular

Kennicutt–Schmidt relation (Semenov et al. 2019). Se-
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menov et al. (2018) showed (see their Figure 11) that
simulations of a Milky Way-sized galaxy can reproduce

the scale dependence of τdep,H2
at scales L & 75 pc

measured by Schruba et al. (2010). Here we present

a detailed analysis of this dependence in a suite of sim-
ulations of a galaxy with structural properties closely

matching those of NGC300, enabling a direct compar-
ison with the observed scale dependence of τdep,H2

in

this galaxy (Kruijssen et al. 2019). We vary assump-

tions and parameters of the star formation and feedback

modeling, in particular, we explicitly test the effects of

self-consistent modeling of radiative transfer and pho-

toionization of the natal star-forming region by young
massive stars.

The paper is organized as follows. In Section 2 we de-

scribe our simulations and compare the bulk properties

and radial profiles of the model galaxy to the observed

properties of NGC300. We also describe the details

of how CO and SFR peaks are identified in our anal-

ysis and how molecular depletion time is measured in
patches of different scales. We present the results of our
fiducial model in Section 3.1 showing that it matches

the observed decorrelation as a function of scale quite

well and explore the sensitivity of the results to vari-

ations of feedback and star formation modeling in the

rest of Section 3. We discuss our results in Section 4

and summarize conclusions in Section 5.

2. SIMULATIONS

2.1. Simulation code overview

To simulate our NGC300-like galaxy we use the adap-

tive mesh refinement (AMR) N -body and gasdynam-
ics code ART (Kravtsov 1999; Kravtsov et al. 2002;

Rudd et al. 2008; Gnedin & Kravtsov 2011) with self-
consistent modeling of radiative transfer (RT; Gnedin

2014). The hydrodynamic fluxes in the ART code

are handled by a second-order Godunov-type method

(Colella & Glaz 1985) with a piece-wise linear recon-

struction of states at the cell interfaces (van Leer 1979)
and a monotonized central slope limiter based on Colella

(1985). The Poisson equation for the gravitational po-
tential of gas, stars, and dark matter is solved by using

a Fast Fourier Transform at the lowest grid level and

relaxation method on all higher refinement levels, with

the effective resolution for gravity corresponding to ∼2–

4 cells (see Kravtsov et al. 1997; Gnedin 2016; Mansfield
& Avestruz 2021). The AMR grid is adaptively refined

when the gas mass in a cell exceeds ∼ 2 500 M�, reach-
ing the maximal resolution of ∆ = 10 pc that matches

the resolution of observations used in our comparison

(∼ 20 pc; Kruijssen et al. 2019).

To model the relation between molecular gas and
young stars as realistically as possible, we include a num-

ber of key processes affecting the formation and destruc-

tion of molecular gas as well as a physically-motivated

model for star formation. The processes modeled in our

fiducial simulation are detailed below together with the

parameter variations that we explore.
Radiative transfer of UV field is modeled self-

consistently using the Optically Thin Variable Edding-

ton Tensor approximation (OTVET; Gnedin & Abel

2001; Gnedin 2014). The ionizing radiation field is sam-

pled at the ionization thresholds for H I, He I, and
He II and includes the contribution from both the local

sources and the Haardt & Madau (2012) cosmological
background at redshift z = 0. To model H2 photodisso-

ciation, we also model RT in the Lyman–Werner bands

as described in Ricotti et al. (2002). To test the effect

of the time-dependent and spatially inhomogeneous ra-

diation field, we also rerun our simulation without RT,

using a uniform UV background specified below.

Gas heating and cooling are treated using the method
of Gnedin & Hollon (2012) with the metallicity-

dependent part of the cooling and heating functions de-

pendent on the radiation field that can arbitrarily vary

in time and space. The cooling and heating rates in

this approximation are parameterized via 7 numbers:

the gas density, temperature, and metallicity as well as

the photoionization rates of H I, He I, and C VI and
the photodissociation rate of H2 in the Lyman–Werner

bands. In our fiducial simulation with RT, all these rates

are computed self-consistently from the local radiation

field.

In the resimulation without RT, we adopt the constant
UV background with the average photoionization rates

from the ISM of our RT simulation: (ΓHI, ΓHeI, ΓCVI,
ΓLW) = (2×10−17, 3×10−16, 9×10−18, 2×10−11) s−1.

To account for the shielding of dense gas from the back-

ground radiation, we use a prescription calibrated in RT

simulations of the ISM (the “L1a” model in Safranek-

Shrader et al. 2017). Interestingly, we find that de-

spite strong attenuation, the photoionization rates have
a strong effect on the NGC300 outskirts. Resimulation
of this galaxy with ΓHI, ΓHeI, and ΓCVI all set to 0 and

ΓLW = 2 × 10−11 s−1 leads to an excessive heating at

R > 3 kpc and substantially smaller star-forming and

molecular disk.
In addition, we find that heating by X-rays from

the cosmic background also has a strong effect on the
NGC300 outskirts. The tables of cooling and heat-
ing rates from Gnedin & Hollon (2012) are not wide

enough to properly capture gas cooling and heating in

this regime. By running additional Cloudy models we
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found that we can compensate for this deficiency by ig-
noring the absorption of X-rays from the cosmic back-

ground only (while treating all stellar radiation self-

consistently). We use this numerical hack in all RT

simulations presented in this paper.
Molecular chemistry is computed on the fly by us-

ing the “six-species model” described in the appendix

of Gnedin & Kravtsov (2011) that explicitly tracks the

evolution of H I, H II, He I, He II, He III, and H2 on the

AMR grid, coupled with the local radiation field. After

a series of experiments, we made two modifications to

the H2 modeling: we added a ceiling on the size of the
shielded regions (estimated using the Sobolev approxi-

mation) of 100 pc and reduced the clumping factor of

H2 from 10 to 3. The second change is motivated by

the higher resolution of our simulations: since they re-

solve a larger range of spatial scales than simulations of

Gnedin & Kravtsov (2011), the contribution to the clus-
tering of H2 gas from the unresolved scales is reduced

proportionately.
Self-consistently computed H2 densities are only avail-

able in the RT simulation, while the simulations with-

out RT requires a model for ρH2
and the assumption

about the incident radiation field. To this end, we use

the parameterization from Gnedin & Kravtsov (2011,
Equations 6–7):

ρH2
=

ρH
1 + exp (−4x− 3x3)

, (1)

x ≡ Λ3/7 log

(

Z
nH

Λn?

)

, (2)

where ρH = 0.76ρ and nH = ρH/mp are the volume

and number density of all hydrogen (assuming 0.24 mass

fraction of helium and all heavier elements), Z is gas

metallicity, and n? and Λ are tunable parameters that
encode the dependence on the radiation field and ISM

structure. These parameters can be calibrated using RT

simulations, as was done in Gnedin & Kravtsov (2011)

and Gnedin & Draine (2014). However, we find that nei-
ther of these calibrations can reproduce the results of our

RT simulation of NGC300, indicating that the spatial
resolution, the star formation and feedback model, and
overall structure of the ISM in this galaxy are substan-

tially different from the simulations of dense z = 3–4

gas-rich disk used in prior calibrations. Therefore, we

recalibrate these parameters specifically for our simu-

lated galaxy and use the values of n? = 60 cm−3 and

Λ = 0.5 that reproduce the radial profile of H2 surface
density inside R < 3 kpc—the region where we perform

our analysis—with deviations of < 20% from the full H2

chemistry results.

SN and mechanical pre-SN feedback. In addition to ra-
diative feedback, young stars in our simulations also in-

ject thermal energy and radial momentum following our

fiducial model from Semenov et al. (2017, 2018, 2019).

The amount of energy and radial momentum injected

per SN are computed using the fits to simulations of

SN remnants evolution in a non-uniform ISM by Mar-
tizzi et al. (2015). In our fiducial model, we additionally

boost the radial momentum by a factor of 5 to account

for the effects of SN clustering (e.g., Gentry et al. 2017,

2018) and CR pressure (Diesing & Caprioli 2018), both

of which can increase the injected momentum by a factor
of a few. To test the effect of the total feedback momen-

tum budget, we also explore the case without such a
boost. The total number of SNe for a given star particle
is computed using the Chabrier (2003) IMF.

Young stars can also affect the ISM via stellar winds,

pressuring H II regions, and dust-reprocessed radiation

pressure before the first SN explosions—the processes
often referred to collectively as “early feedback.” As

the momentum injection rate due to early feedback pro-
cesses is approximately the same as that of the SNe (e.g.,
Agertz et al. 2013), we approximate the effects of early

feedback by starting momentum injection from the mo-

ment when the stellar particle is formed, without any

delay before the first SN explosion, and continue the in-

jection for 40 Myr. To test the relative roles of early

feedback and SNe, we also resimulated our galaxy with
two additional feedback models: (i) without any pre-SN
feedback, by introducing the delay before momentum

injection of 3 Myr, and (ii) without SNe, by injecting

momentum at the same fiducial rate but only during

the first 3 Myr. Note that because of the difference in

the injection duration, the total feedback budget in (ii)
is reduced by a factor of 3/40.

Subgrid turbulence model. Another important feature

of our simulations is the explicit dynamic modeling of

unresolved turbulence. Our implementation is based on

the “shear-improved” model of Schmidt et al. (2014)
and detailed in Semenov et al. (2016). In this model,

the unresolved turbulent energy, eturb, is sourced by the
fluctuating part of the resolved velocity field and decays

on the timescale close to the turbulence turnover time

on the scale of the cell size. Advection and the PdV

work done by turbulence are treated using the entropy-

conserving scheme described in Appendix A of Semenov

et al. (2020). Unresolved turbulence provides a nonther-

mal pressure support and, most importantly, directly
couples with the star formation prescription as described
below.

Star formation prescription. We use the common pa-

rameterization for the local SFR via the star formation
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efficiency per freefall time, tff =
√

3π/32Gρ:

ρ̇? = εff
ρ

tff
. (3)

In our fiducial simulation, we do not adopt any star for-
mation threshold, and instead allow εff to vary continu-

ously with the local value of the (subgrid) virial param-

eter following the fit to MHD simulations of turbulent

star-forming regions by Padoan et al. (2012):

εff = 0.9 exp (−
√

αvir/0.53), (4)

with the choice of the pre-factor explained in Semenov

et al. (2016). The virial parameter for each simulation
cell with size ∆ is defined as for a uniform sphere with

radius R = ∆/2 (Bertoldi & McKee 1992):

αvir ≡
5σ2

totR

3GM
≈ 13.5

(σtot/3 km s−1)2

(n/100 cm−3)(∆/10 pc)2
, (5)

where σtot =
√

σ2
t + c2s accounts for both the unresolved

turbulent velocity dispersion, σt =
√

2eturb/ρ and ther-
mal support, and the values on the right-hand-side re-

flect the typical conditions in star-forming regions in our

NGC300 simulations.

To explore the effect of the star formation prescription

on the correlation between young stars and dense gas,

we also rerun our RT simulation with a star formation

threshold of αvir,sf = 10 and assuming different constant
values of εff = 1%, 3.3%, and 10% in gas with αvir <

αvir,sf . We also explored the effect of the star formation

threshold choice by using a threshold in gas density of

nsf = 100 cm−3 instead of the threshold in αvir. This

density threshold results in a similar mass fraction of

star-forming gas to the simulation with the αvir,sf = 10
threshold.

Overall, we will present 9 simulations with variations
of star formation and feedback physics that are summa-

rized in Table 1.

2.2. NGC300 model galaxy

To generate the initial conditions for our NGC300

simulations we use the GalactICS code (Deg et al.

2019). Our simulated galaxy consists of the dark matter

halo (modeled with collisionless particles), and exponen-
tial stellar and gaseous disks, with the structural param-

eters of all three components taken fromWestmeier et al.
(2011, W11). The halo has a Navarro–Frenk–White pro-

file with the total mass inside the sphere enclosing an

average density of 200ρcr of M200c ≈ 8.3× 1010 M� and

the concentration of c200c ≈ 15.4 (“NFW (fixed)” model

from Table 3 in W11). The stellar disk has an exponen-

tial profile with a scale radius and height of 1.39 and

0.28 kpc, respectively, and a total mass of 109 M�.

The gaseous disk is initialized with an exponential pro-

file with a scale radius of 3.44 kpc and a total mass
of 2.2 × 109 M�. Our total gas mass is ∼ 10% higher

than in W11 because we adjusted it to match the expo-
nential part of the ΣHI profile at R = 5–10 kpc shown

in Figure 10 of W11. The observed profile flattens at

R < 5 kpc, which can be due in part to the formation of

optically thick and molecular CNM. On the other hand,
a somewhat steeper gas profile adopted in our simula-
tions can be a reason for the mild excess of the atomic

and molecular gas and SFR surface densities in the cen-

tral part of our NGC300 analog (see Figures 2 and 3

below). The metallicity of the gaseous disk is initialized

using the radial gradient from Bresolin et al. (2009):
Z(R) = (0.76 Z�)× 10−0.077R, with R in kpc.

After we start our simulation, the galaxy undergoes

the initial relaxation stage. To mitigate the effect of

this initial transient on our results, we gradually turn

on different feedback processes and let the galaxy set-

tle down, so that by t ≈ 600 Myr all the physics in our

fiducial simulation is on and the galaxy is in a quasi-

equilibrium state. We then continue our fiducial simu-

lation until 1000 Myr with outputs every 10 Myr, which

we use to measure the snapshot-to-snapshot variation

of our results. The rest of the runs from Table 1 are

started from the output of our fiducial simulation at
t ≈ 600 Myr and run until 800 Myr. The changes in the

star formation and feedback model lead to another brief
relaxation stage that settles down within ∼ 50 Myr, and

therefore for our analysis, we only use the snapshots at

t = 650–800 Myr from these runs.

Figures 1–3 overview the properties of the NGC300

analog from our fiducial simulation. Figure 1 shows a

face-on view of the midplane slices of gas density, tem-

perature, subgrid turbulent velocity, and the the radia-

tion field at 12 eV (in the middle of the Lyman–Werner

bands) computed by the RT solver and normalized to

Draine (1978) units. All these quantities exhibit orders

of magnitude variations, and the overall morphology of

the ISM is highly flocculent, reminiscent of the typical

structure of sub-L? galaxies, including NGC300.

Figure 2 shows that our galaxy remains structurally
close to NGC300 during the time interval when we carry

out our analysis: radial profiles of rotational velocity,

atomic gas and stellar surface densities, and metallicities

all follow the NGC300 profiles reasonably well. The ro-

tational velocities are slightly higher at R < 2 kpc due to

a mild accumulation of dark matter mass near the disk

center as a result of the initial relaxation. Although the

surface densities of total H I may also seem to exceed

the observed values, this difference is consistent with

the contribution of the optically thick cold H I that is
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served, which may be due to the elevated metallicity in
that region and correspondingly enhanced cooling. The

τdep,H2
profile is reasonably close to the observed near-

constant value of ∼ 1 Gyr, although it does exhibit a

slight negative trend with R due to a somewhat steeper
ΣH2

profile predicted in the simulation.

Overall, the differences between the model and ob-

served profiles are rather modest, indicating that the

global properties of our simulated galaxy are reasonably

close to those of NGC300 enabling a direct comparison

of the small-scale ISM structure.
To give a visual impression of how different feedback

and star formation models affect the global ISM struc-

ture, Figure 4 compares the midplane density slices of

galaxies from our simulation suite. The most dramatic

changes in the global gas structure are induced by vari-

ations of mechanical feedback (the second row of pan-

els). For example, turning off SN feedback results in

the ISM devoid of tenuous hot bubbles (dark blue re-

gions), with dense gas organized in prominent spiral
structures, not typical for such a sub-L? galaxy. Also

interestingly, the models without early mechanical feed-
back and with a reduced momentum budget of feed-

back, both result in qualitatively similar gas distribu-

tions. Dense regions in both simulations organize in

more coherent ∼kpc-scale structures compared to the

fiducial feedback model. This effect can be attributed to

the reduced efficiency of star-forming gas dispersal and

thus longer lifetimes of dense regions (see Section 4.2 for

further discussion).

Simulations with different star formation models, in

contrast, all produce qualitatively similar global ISM
structure. The structure of dense gas, however, is sig-

nificantly different (in particular, in the models with dif-
ferent εff), which leads to a strong effect on the corre-

lation of dense gas and young stars as we will show in

Section 3.3.

We checked that, despite the variations of the ISM
structure shown in Figure 4, the bulk structural proper-

ties and radial profiles of the galaxies from these simula-

tions remain reasonably close to NGC300 observations.

Therefore, we can investigate the effect of the star for-

mation and feedback models on the correlation between

dense gas and young stars without worrying about the

global effects of the galaxy structure.

2.3. Tuning fork diagram analysis

The key statistics that we explore in this paper is the

tuning fork diagram (Schruba et al. 2010; Kruijssen &
Longmore 2014; Kruijssen et al. 2018, 2019; Chevance

et al. 2020a). As described in the Introduction, this

diagram shows the relative bias of the depletion times

measured in apertures of variable size placed on peaks
of molecular gas or peaks in the distribution of young
stars. Thus, to reproduce this observational statistic,

the first step is to construct the maps of molecular gas

and young stars and account for observational resolution

and selection effects.

To construct the molecular gas map, we project the
volume density of H2, ρH2

, along the axis perpendicular

to the disk plane. As detailed in Section 2.1, in our

simulations with RT, ρH2
is self-consistently computed

in each cell using the six-species chemical network, while
for runs without RT, we calibrated a model similar to
Gnedin & Kravtsov (2011). To mimic the sensitivity of

CO observations of Kruijssen et al. (2019), we apply two

cuts to the resulting ΣH2
maps:

ΣH2
> ΣH2,min = 13 M� pc−2, (6)

σproj
turb < 1 km s−1

(

ΣH2

ΣH2,min

)

, (7)

where σproj
turb is the projected velocity dispersion in each

pixel, that includes the contribution of subgrid turbu-
lence (see Section 2.1) and resolved velocity dispersion

along the line of sight. The second cut approximates the

loss of sensitivity due to the increasing width of CO line

(e.g., Sun et al. 2018) and possible dependence of the

CO-to-H2 conversion factor on local turbulence. The

parameters in this cut were chosen to qualitatively re-

produce the CO map in NGC300 from Kruijssen et al.

(2019) by removing highly turbulent moderate-density

molecular regions and extended outskirts of gas peaks

that are not present in the observed map. As we show

in Appendix A, the opening of the tuning fork is quite

sensitive to the specific choice of the cuts (see Figure 14),

and we discuss this issue further in Section 4.

To construct a map of recent SFR, we select young
star particles with ages 2–5 Myr and compute Σ̇? in each

pixel as M?,2–5 Myr/∆tSFR/(pixel area), where ∆tSFR =
3 Myr. The lower age cut approximates the typical ob-

servational estimates for the duration of the embedded

star formation stage of ≈ 2–3 Myr (e.g., Lada & Lada

2003; Corbelli et al. 2017; Kim et al. 2020). The upper

age cut corresponds to the timescale over which young
stellar population is expected to be seen in Hα (Kenni-

cutt & Evans 2012; Haydon et al. 2020; Flores Velázquez

et al. 2021). The effect of these age cuts on the tuning

fork is shown in Appendix A.

To mimic the analysis of Kruijssen et al. (2019) we

smooth our ΣH2
and Σ̇? maps using a 2D Gaussian filter

with a width of 20 pc and use only the inner R < 3 kpc
for our analysis. We also tried excluding the central

1 kpc where some of the radial profiles deviate from
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tion of the differences in the distribution of dense gas
and recent SFR peaks used in the analysis.

Photodissociation of H2. The dashed black line in the

top panel of Figure 7 shows the results of our fiducial

RT simulation, that we reanalyzed using the same H2

model as in the runs without RT instead of the on-the-

fly molecular chemistry calculations (the latter is shown
with the solid black line). This H2 model is calibrated

to reproduce the radial profile of ΣH2
within R < 3 kpc

from the full RT simulation, by selecting an effective
average UV field instead of using the local value (see
Section 2). Thus, the difference between the solid and

dashed black lines shows the effect of H2 photodissocia-
tion by the spatially variable UV field.

The figure shows that self-consistent treatment of H2

formation and dissociation does have some effect. This

effect, however, is modest and is comparable to effects of

other feedback and star formation processes considered

below.

Spatially nonuniform gas heating. The solid blue line
shows the tuning fork diagram in the calculation without

RT modeling, assuming a constant background UV field

instead. Thus, the difference with the dashed black line

shows the effect of self-consistently computed UV field

on the local heating rate of the star-forming gas. As the

top right panel in Figure 8 shows, molecular gas peaks

become more prominent and correlate stronger with the
locations of young stars, resulting in a somewhat smaller
opening of the tuning fork. Here again the effect is mod-

est and comparable to the effects of other variations.

Early mechanical feedback. The green line in the bot-

tom panel shows the case where we turn off our approx-
imate model for early feedback and allow star-forming

regions to accumulate gas unimpeded during the first 3

Myr after the onset of star formation, before the first

SN explosion. Interestingly, this makes the overall ISM

structure less flocculent (see Figure 4), but the effect on

the tuning fork diagram opening is nevertheless small,
as can be seen from the comparison of the blue and

green lines. This is because, despite the differences in
the global ISM structure, the distribution of dense gas

and recent SFR peaks in these two runs is qualitatively
similar, with a stronger correlation between the peaks

in the run without early feedback (see the top right and

bottom left panels in Figure 8).
Type II SN feedback. Next, the dark red line in the

bottom panel of Figure 7 shows the simulation where
the SNe are turned off and young stars inject energy

and momentum only during the first 3 Myr after the

onset of star formation. The opening of the tuning fork

at small L is very close to that in the simulation with

SNe (blue line), while on & 100 pc scales the opening

is strongly reduced. The similarity of the tuning fork
at small L indicates that the correlation between gas

and young stars on these scales is set by efficient early

feedback. At the same time, SNe strongly affect the ISM

structure on & 100 pc scales as also clear from Figure 4

and bottom right panel of Figure 8.

Overall feedback strength. Finally, the pale red line
in Figure 7 shows the simulation where both pre-SN

and SN feedbacks operate but the overall momentum

injection rate of feedback is reduced by a factor of five.

Interestingly, this has a stronger effect on the tuning

fork opening than turning off pre-SN feedback and keep-

ing fiducial SN momentum (compare blue and pale red

lines). This result indicates that SNe can contribute to

the tuning fork opening at small L when early feedback

is weak and does not dominate the effect. Indeed, early

feedback is stronger in the “weak FB” case, while SNe

are stronger in the “no early FB” case, and the latter
run results in a wider tuning fork opening as clear from
the comparison of pale red and green lines in the figure.

All in all, Figure 7 shows that each of the factors

explored above gradually reduces the opening of the

tuning fork but their individual effects are modest and

are comparable with the snapshot-to-snapshot variation

(see Figure 5). Thus, the degree of the tuning fork open-

ing comparable to that measured in observations results

from a combined effect of multiple feedback aspects.

Apart from stellar feedback, many other factors have

a comparable or even stronger effect on the tuning fork

opening. For example, the assumptions about the em-

bedded stage of star formation, the timescale over which

young stars produce Hα emission, the selection effects of
molecular gas observations, all strongly affect the tuning

fork opening as detailed in Appendix A.

3.3. Variation of the star formation prescription

Another major factor that can affect the tuning fork

in galaxy simulations is the star formation prescription,

e.g., the choice of the local star formation efficiency per

freefall time (εff , see Equation 3) and the criteria used
to select star-forming gas. Many recent galaxy simu-

lations showed that when stellar feedback is efficient,
global SFR and depletion time can become insensitive
to the choice of local εff (e.g., Dobbs et al. 2011; Agertz

et al. 2013; Hopkins et al. 2013, 2017; Orr et al. 2018),

which can be explained by the efficient dispersal of star-

forming regions by feedback (Semenov et al. 2017, 2018).

The possible dependence of the tuning fork on star for-
mation parameters is therefore particularly interesting
as it can help to constrain these parameters in such a
self-regulated regime.
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L? galaxy, the choice of the star formation threshold
can lead to a qualitatively different correlation between

molecular gas and SFR even on ∼kiloparsec scale.

Finally, as the simulation with the density-based star

formation threshold does not require modeling of sub-
grib turbulence, we also tested the effect of turbulence

on the tuning fork by switching it off in this simulation.
We find, however, that this run produces the global SFR
and the tuning fork diagram very close to the results of

the run with the subgrid turbulence modeling, indicat-

ing that the dynamical effect of unresolved turbulent

pressure is small.

4. DISCUSSION

4.1. Sensitivity of the tuning fork diagram to the star

formation–feedback cycle

In the previous section we presented a systematic ex-

ploration of the variation of the molecular depletion time

on the choice of patch centers and scale—the tuning

fork diagram—and its dependence on various aspects of

galaxy modeling. The results show that the diagram

is indeed a sensitive probe of the feedback modeling in
simulations, as was argued by Fujimoto et al. (2019).

Indeed, Jeffreson et al. (2020) demonstrated that their

simulations, in which feedback is likely more efficient

than in simulations of Fujimoto et al. (2019), produce

a wider opening of the tuning fork diagram. The lat-

ter study, however, did not present a detailed compari-

son with observations or investigation of the factors that
shape the form and opening of the diagram in their sim-
ulations.

We confirm that the opening of the tuning fork dia-

gram is quite sensitive to the strength of stellar feedback
assumed in the simulations and is sensitive to the inclu-

sion and duration of the “early feedback” stage. At the

same time, we show that the inclusion of self-consistent

modeling of radiative transfer and of H2 abundance in

simulations also contribute significantly to the widening

of the tuning fork opening on < 100 pc scales.

Moreover, we show that the tuning fork diagram is

sensitive to the assumptions about the star formation

efficiency per freefall time, εff , in star-forming regions.

For example, Figure 11 shows that the simulations with
different assumptions about εff result in significantly dif-

ferent tuning fork diagram openings, even though they
all reproduce the global star formation rate measured in
NGC300.

All of the above processes are part of the overall star

formation–feedback cycle and so, to a certain degree, it
is not surprising that they all affect depletion times in
local patches of the ISM. Indeed, as we showed in our

previous papers, the total gas and molecular depletion

times explicitly depend on the feedback strength and εff
(Semenov et al. 2017, 2018, 2019).
For example, in the framework presented in these pa-

pers, the depletion time in a given patch of the ISM ex-
plicitly depends on the strength of stellar feedback (i.e.,
the amount of energy and momentum injected per unit

of stellar mass formed), when the efficiency of star for-

mation is sufficiently large to allow for efficient feedback

(e.g., εff & 1% for L? galaxies). The depletion time in

such regime is proportional to the strength of feedback

quantified by the “mass-loading factor,” ξ—the propor-

tionality constant between the rate of star-forming cloud

dispersal and its local SFR (Semenov et al. 2017, 2018).

This dependence can explain the dependence of global

depletion time on feedback strength demonstrated in a

number of simulation studies (see also Hopkins et al.
2017; Orr et al. 2018; Semenov et al. 2018) and the in-

crease of τdep,H2
(decrease of SFR for a given gas mass)

with increasing feedback strength shown in Figure 6.

However, this by itself does not explain the differential

effect of the feedback strength on τdep,H2
in gas-peak-

and SFR-peak-centered patches and its increase with
decreasing scale (i.e., the opening of the tuning fork di-

agram). The latter is likely due to the increasing scatter
of τdep,H2

with decreasing patch size within which it is

measured.

As shown by Feldmann et al. (2011), such stochas-

ticity is at least partly due to the fact that molecular

gas measurements are instantaneous, while estimates of
SFR are necessarily averaged over a certain timescale.

This allows the H2 abundance to decrease locally due to
effects of stellar feedback during the time period within

which local SFR is averaged. Consequently, the appar-

ent τdep,H2
decreases as regions evolve from pre-star for-

mation and early star formation stages to the late stage,

when stars have already largely dispersed gas in their na-

tal clouds (Feldmann & Gnedin 2011; Kruijssen & Long-

more 2014; Lee et al. 2016; Kruijssen et al. 2018). It is
reasonable to assume that the gas-peak-centered patches

largely reflect pre- and early star formation stages of

dense molecular gas, while patches centered on Hα peaks

correspond to late stages of star formation. This then

manifests in the opening of the tuning fork diagram with

decreasing scale. In the context of the framework of

Semenov et al. (2017), the increasing stochasticity of

τdep,H2
with decreasing scale is due to averaging over

different populations of ISM parcels in systematically

different stages of their evolution in patches with differ-

ent properties.
Likewise, the origin of the differences in the molecular

gas and SFR maps at different εff that can be seen in
Figure 12 can be understood using the model of rapid
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gas cycling between star-forming and non-star-forming
states in the evolution of an ISM parcel (Semenov et al.

2017). When feedback is efficient and quickly disperses

star-forming regions, the lifetimes of such regions scale

inversely with εff . Indeed, the lifetime of a given star-
forming region is set by the total fraction of gas that

needs to be converted into stars so that these stars can
disperse the rest of the region, εtot ∼ 1/ξ. At higher εff ,

a given star-forming region reaches εtot sooner and there-

fore the lifetime of the region decreases. The instanta-

neous fraction of star-forming gas in regions of any scale

thus decreases, and the number of molecular gas peaks
above a given sensitivity threshold becomes smaller (see

also the bottom panel of Figure 2 in Semenov et al.

2018). On the other hand, the number of SFR peaks

depends only on the formation rate of star-forming re-

gions and the value of εtot, which do not strongly depend

on εff . The effect of varying εff on the SFR peaks dis-
tribution is thus small. The difference in the population

of gas and SFR peaks is responsible for the decorrela-
tion of gas and SF peaks manifested in the opening of
the tuning fork diagram with decreasing scale. The dif-
ference in their dependence on εff discussed above thus

provides a qualitative explanation for the trends of the
tuning fork diagram with varying εff .
Interestingly, we find that the star formation model

with εff varying with local virial parameter of gas, as
suggested by numerical simulations of star formation
in molecular clouds (e.g., Padoan et al. 2012; Feder-

rath 2015; Kim et al. 2020), provides the best match

to the observed tuning fork in NGC300 among different

models. This provides an additional motivation for such

models in addition to strong theoretical motivation from

molecular cloud simulations.
Next, the dependence of τdep,H2

on the averaging

timescale in the SFR estimate also indicates that this

timescale should be carefully considered and matched

when comparing model results and observations of the

tuning fork diagram. We also show that the opening of

the tuning fork diagram depends on the specific choices

in modeling sensitivity limits to the molecular gas detec-
tion (see Appendix A and Figure 14 specifically). Thus,

to make consistent comparisons, this sensitivity should

also be modeled carefully.

Finally, the tuning fork can generally be expected to

depend on the average profile and characteristic size of

the gas and SFR peaks on small scales, L . 100 pc,
and carry information about peak clustering and large-

scale structures, like spiral arms. The average profiles on

small scales can generally depend both on the selection

criteria and sensitivity of observations, but also on phys-

ical processes affecting the distribution of gas around the

peaks (e.g., ISM turbulence, feedback, etc.). For exam-

ple, the distribution of Hα around the peaks can depend

on specifics of dispersal of molecular gas in star-forming

regions and anisotropy of the Hα escape from these re-

gions. Increased leakage of Hα from star-forming regions

will reduce the contrast of SFR peaks thereby affecting
the lower branch of the diagram, and will increase the

cross-correlation of gas peaks with Hα thereby affect-

ing the upper branch and reducing the opening of the

tuning fork.

Overall, our results indicate that although a compar-

ison of the model and observed tuning fork diagram in-

deed provides a sensitive test of galaxy formation mod-

els, the result depends on many different aspects of the
model, not just feedback or the timescale for dispersal of
star-forming regions. This means that a failure to match
observations may not necessarily be due to any individ-

ual part of the model. At the same time, successful

match can possibly come from a different combination

of the modeled processes and thus may not uniquely

identify the correct implementation of star formation,
feedback, and ISM processes. This implies that a cer-
tain degree of degeneracy may exist and thus compar-
isons with complementary observational statistics may

be useful.

4.2. Tuning fork diagram and distribution of lifetimes

of star-forming regions

The lifetimes of star-forming regions estimated from

observational measurements of the tuning fork diagram

in galaxies are typically a few Myrs (Chevance et al.

2020a), which is also the case for NGC300 (Kruijssen

et al. 2019). This was interpreted as an indication
that early feedback processes dominate in dispersing gas

in star-forming regions and stopping star formation lo-

cally. Results of numerical experiments presented in

Section 3.2 show that although early feedback indeed

dominates at averaging scales < 100 pc, SN feedback
does affect the opening of the tuning fork diagram at

scales & 100 pc.
To clarify the relation with the lifetime of star-forming

regions, we explored distribution of star-forming gas life-

times in runs with variations of feedback models dis-

cussed above using gas tracer particles and the analysis

developed in Semenov et al. (2017, 2018, 2019). Specif-
ically, we populate our simulations with tracer parti-

cles that passively follow gas density in a Lagrangian

manner (Genel et al. 2012) and track their evolution for

∼ 300 Myr. For each passage of a tracer particle through
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lar gas depletion time in apertures centered on gas or
SFR peaks—the tuning fork diagram (Schruba et al.

2010; Kruijssen & Longmore 2014; Kruijssen et al. 2018,

2019; Chevance et al. 2020a). The bulk structural prop-

erties of our simulated galaxy are set to closely match
those of NGC300 (see Section 2.2 and Figures 2 and 3),

enabling a direct comparison with the recent observa-
tional measurements of the tuning fork diagram in that
galaxy (Kruijssen et al. 2019).

In our simulation suite, we explored the effects of self-

consistent modeling of the UV field and its effect on

molecular gas, effects of early mechanical feedback and

type II SNe, as well as different assumptions about local

star formation efficiency, εff , in models both with vari-

able εff without any threshold for star-forming gas (mo-

tivated by simulations of turbulent star-forming regions)

and with constant εff and star-forming gas defined with

a threshold in local virial parameter or density. The full
list of the explored models is provided in Table 1 and

visually summarized in Figure 4.
Our main results and conclusions can be summarized

as follows.

1. The fiducial RT simulation reproduces the ob-

served opening of the tuning fork in NGC300,

indicating that the adopted star formation and

feedback model is reasonably realistic (Figure 5).
To our knowledge, this is the first time when this

statistic was quantitatively reproduced in a galaxy

formation simulation.

2. The success of the model is not due to any spe-

cific aspect of feedback; photodissociation of H2,

gas heating by the nonuniform UV field, and early

mechanical feedback, all contribute significantly

to the tuning fork opening at < 100 pc scales

(see Figure 7). All these processes contribute to

the “early feedback” phase and dominate over SN
feedback on these scales.

3. Nevertheless, we find that SN feedback does have

a significant effect in shaping the tuning fork di-
agram on & 100 pc scales, especially its lower
branch (see the bottom panel of Figure 7).

4. We also find that the tuning fork diagram is quite

sensitive to the value of star formation efficiency

per freefall time, εff , with its opening increasing
for larger εff values (Figure 11). This sensitivity

is analogous to the effect of εff on the tuning fork
in an L? galaxy (see Figure 11 in Semenov et al.

2018), and it can be used as a complimentary con-

straint on εff in the regime where global SFR and

depletion times are insensitive to the εff value as
is the case for NGC300 (see Figure 10).

5. By comparing results of the runs with locally vari-

able εff and with a fixed εff value, we find that the

tuning fork diagram is sensitive to star-forming re-

gions with the largest εff . Indeed, the tuning fork
diagram from the simulation with variable εff can

be reproduced using a constant εff = 3.3% value,
even though only ≈ 20% of star-forming regions in

the variable εff run have εff ≥ 3.3% (see Figure 9).

6. We explicitly show that the degree of opening of

the tuning fork diagram on < 100 pc scales is di-

rectly related to the distribution of lifetimes of
star-forming regions. The opening decreases when

abundance of long-lived regions to short-lived re-

gions is larger and vice versa (compare Figures 7
and 13).

7. The overall distribution of the star-forming gas

lifetimes has a peak at tsf ≈ 1 Myr and can be ap-

proximated by an exponential PDF with the char-
acteristic timescale of ∼ 1–2 Myrs at tsf > 2 Myr.

These short typical values and wide distribution of
tsf are qualitatively consistent with the timescales

measured in simulations of an L? galaxy (Semenov

et al. 2017, 2019), which showed that short tsf val-

ues play a key role in setting long gas depletion

times in galaxies and making star formation glob-

ally inefficient.

Our results indicate that the observed wide opening

of the tuning fork diagram results from a combined ef-

fect of different aspects of star formation and feedback

processes. Effects of each individual aspect are modest,

comparable to the snapshot-to-snapshot variation of the

tuning fork shown in Figure 5. Apart from star forma-
tion and feedback, multiple other parts of the model

can have a comparable or even stronger effect. For ex-

ample, the selection effects and sensitivity of molecular

gas observations and the timescales probed by SFR in-

dicators strongly affect the tuning fork opening (see Ap-

pendix A), and therefore, they should be carefully con-

sidered for a consistent comparison with observations.

Overall, these results imply that the tuning fork dia-

gram provides a stringent test not only of the feedback

strength alone, but of all aspects of the star formation–

feedback cycle and of the details of forward-modeling ob-

servational analyses. This motivates both explorations

of other statistical probes of star formation, feedback,

and ISM properties on sub-kiloparsec scales and improv-

ing fidelity of simulations and realism of modeling of

observational effects and analysis details.
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APPENDIX

A. EFFECT OF MOLECULAR GAS AND SFR

SELECTION

In this Appendix, we illustrate the dependence of the
tuning fork diagram on the adopted ΣH2

sensitivity lim-

its and the ages of star particles used to generate the Σ̇?

maps.

Figure 14 shows the sensitivity of the tuning fork to

the selection cuts applied to the simulated ΣH2
map

(Equations (6) and (7)). Explored variations are de-

tailed in the figure caption. As the selection cuts be-
come less stringent and include more H2 in the ΣH2

map,

both branches of the tuning fork shift downwards and

the tuning fork opening changes only mildly.

Figure 15 shows the effect of the stellar particle ages

used to select stellar populations visible in Hα. The top

panel shows the dependence on the lower age cut that

approximates the duration of the embedded stage of star

formation, when Hα emission is absorbed by the natal

star-forming region. Observational estimates typically

suggest that this phase can last for a few Myr. As ex-

pected, the tuning fork opening widens as this timescale

increases because older stars are expected to be less cor-

related with dense gas. Interestingly, however, the open-
ing of the tuning fork remains rather wide even when

we set this timescale to 0 and use all young stars in our
analysis.

The bottom panel shows the effect of the upper age

cut on the tuning fork. This cut corresponds to the typ-
ical timescale over which H II regions around O and B
stars from a single-age population are expected to emit

Hα. As this age cut is increased, the Σ̇? map includes
more and more older stars that correlate with dense gas

weaker. As a result, the effect on the tuning fork is

analogous to the effect of increasing σproj
turb cut in the

ΣH2
map in Figure 14 that results in a larger fraction of

diffuse and turbulent molecular gas that correlates with

young stars weaker. The direction of the effect is oppo-
site to Figure 14 because Σ̇? enters in the denominator

of τdep,H2
.

The results shown in Figures 14 and 15 demonstrate

that the differences resulting from varying the assump-

tions about the sensitivity limits or the duration of em-

bedded and Hα-bright stages of star formation are com-

parable to the effects of different assumptions about star

formation and feedback processes. This implies that the

sensitivity cuts and star formation timescales should be

considered carefully when model results are compared
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