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Motivated by the recent experimental realization of twisted double bilayer graphene (TDBG) samples, we
study, both analytically and numerically, the effects of circularly polarized light propagating in free space
and confined in a waveguide on the band structure and topological properties of these systems. These two
complementary Floquet protocols allow us to selectively tune different parameters of the system by varying
the intensity and light frequency. For the drive protocol in free space, in the high-frequency regime, we find that
in TDBG with AB/BA stacking, we can selectively close the zone-center quasienergy gaps around one valley
while increasing the gaps near the opposite valley by tuning the parameters of the drive. In TDBG with AB/AB
stacking, a similar effect can be obtained upon the application of a perpendicular static electric field. Furthermore,
we study the topological properties of the driven system in different settings, provide accurate effective Floquet
Hamiltonians, and show that relatively strong drives can generate flat bands. On the other hand, longitudinal
light confined in a waveguide couples to the components of the interlayer hopping that are perpendicular to
the TDBG sheet, allowing for selective engineering of the bandwidth of Floquet zone-center quasienergy bands

without breaking the symmetries of the static system.

DOLI: 10.1103/PhysRevResearch.2.033494

I. INTRODUCTION

Moiré superlattices have emerged as platforms to at-
tain strongly correlated phases of matter by controlling the
stacking configuration between the layers [1-3]. In twisted
bilayer graphene (TBG) samples, examples include super-
conducting, Mott-insulating [4-8], and ferromagnetic states
[9,10]. In twisted transition-metal dichalcogenide heterostruc-
tures (TMDs), evidence for moiré excitons has been reported
[11-13]. More recently, twisted double bilayer graphene
(TDBG) has emerged as a multi-flat-band system, exhibiting
spin-polarized and correlated phases [14-20].

The plethora of strongly correlated phases available in
moiré superlattices naturally invites the development of con-
trollable mechanisms that would allow one to tune in and out
of these phases. In equilibrium, hydrostatic pressure has been
used to increase the tunneling strength and tune the magic
angle in TBG [21-26]. On the other hand, out-of-equilibrium
approaches, such as Floquet engineering [27-58], provide a
more flexible and controllable route. Recently, the use of
lasers at various frequencies has been proposed to engineer the
Floquet band structure of graphene-based moiré superlattices.
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In the high-frequency regime, it has been shown that topolog-
ical transitions can be induced in large twist angle TBG [59]
and topological flat bands with nonzero Chern numbers can
be induced in the ultraviolet regime [60]. In the near-infrared
range, several flat bands can be generated [61]. In the low-
frequency regime, Floquet drives can generate a large variety
of broken-symmetry phases as revealed by effective Floquet
Hamiltonians [62]. Finally, light confined to a waveguide pro-
vides a way to selectively increase or decrease the magic angle
by driving in the low- or high-frequency regime [63].

Floquet engineering has also been proposed for the gen-
eration of valley polarized currents in graphene, TMDs, and
van der Waals heterostructures [64—69] with applications in
valleytronics [70,71]. An interesting effect with topological
origin is the valley Hall effect [72—75], which has been ex-
perimentally observed in monolayer TMDs illuminated with
circularly polarized light [76] and graphene hexagonal boron
nitride heterostructures [77]. Also, in TMDs, exciton level
selective tuning using intense circularly polarized light has
been demonstrated [78] and the valley Bloch-Siegert shift has
been observed [79]. Furthermore, in bilayer graphene in the
presence of a perpendicular electric field, valley topological
transport has been reported [80,81]. New flexible and control-
lable platforms for the manipulation of the valley degree of
freedom are highly desirable for information processing.

In this work we consider TDBG in the AB/AB and AB/BA
configurations irradiated by circularly polarized light in free
space and confined to a waveguide. We show by deriving
effective Floquet Hamiltonians and by numerical calcula-
tions that light in free space can induce transitions from a
trivial or valley Chern insulator (depending on the stacking
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configuration) into a Chern insulator. Furthermore, in the pres-
ence of a transverse electric field, driven AB/AB TDBG allows
the quasienergy gaps at the K and K’ valleys to be selectively
tuned by varying the direction of the static electric field and by
modulating the amplitude and frequency of the driving laser.
For AB/BA TDBG, we find that the quasienergy gaps can be
tuned selectively even without an applied electric field. The
flexibility of the quasienergy band structure near the Floquet
zone center can be used to generate valley polarized currents
in TDBG, independent of the stacking configuration. On the
other hand, using light confined to a waveguide allows us to
dynamically tune the component of the tunneling perpendicu-
lar to the plane without breaking the symmetries of the static
system.

The rest of the paper is organized as follows. In Sec. II we
describe static TDBG and the notation we adopt throughout

J

the paper. In Sec. III we consider TDBG driven by circularly
polarized light in free space. We consider both high- and
intermediate-frequency regimes and describe the effects on
the band structure and the topological aspects in each regime.
In Sec. IV we consider a drive protocol using longitudinal
vector potentials, allowed inside a waveguide, and discuss the
effects on the quasienergies. In Sec. V we comment on the
experimental drive parameters necessary to observe the effects
discussed previously. In Sec. VI we present a summary and
our conclusions.

II. STATIC SYSTEM

In the continuum limit, the static Hamiltonian for TDBG
near the K point with AB/AB (s = s' = 1) [AB/BA (s = —s' =
1)] stacking patterns is given by [15-17]

Hy(k,x) =1, @ hy(—0/2,k —k_ )+ 1, @hy(0/2,k — k) + 1T @A QTx)+1- AT @ TT(x), (1)

where 7, = (1 + 13)/2, 7y = (1 — 13)/2, 7+ = (11 £ iT2)/2, and 7; and A; are Pauli matrices in the top/bottom bilayer and layer
space, respectively. Here o} are Pauli matrices or identity operators in pseudospin space. The bilayer graphene Hamiltonian is

given by [82]

A 467 vof (Rok) 15(k)
“(Rok) A+ 8]
70, K) = Yol (Rok) 1+, ] ’ )
Ay + 87 yof(Rok)
] (k) Wf*Rok) Ay 4687
(
with the tunneling matrix lattice vectors. We neglect direct tunneling contributions be-
Rk Rk tween layers that are not adjacent to one another, as indicated
1o (k) = —vaf (Rek)  —y3f*(Rok) 3) by the structure T+ ® A~ ® T (x). The parameter w; in the
VI —yaf (Rok) tunneling term models relaxation effects, since the AB and

andr_(k) = tl (k). Each diagonal block in Eq. (2) corresponds
to the top and bottom layers of each bilayer unit, (k) = k, —
ik, describes the intralayer hopping between nearest-neighbor
sites, and Yy = vg/ap in natural units (i = ¢ = e = 1). Here
A; corresponds to a potential on graphene layer i, which will
describe the effect of an applied electric field perpendicular
to the sample surface. Finally, §* = §(1 & 5)/2 is a stacking-
and layer-dependent gap [82].

The off-diagonal blocks #;(k) describe the tunneling pro-
cesses within each bilayer unit [82], including contributions
from vertical tunneling y; and next-nearest-neighbor tun-
neling y3 and y4; y3 leads to trigonal warping and ys to
particle-hole symmetry breaking. The tunneling sector also
depends on the bilayer stacking configuration s.

The interlayer hopping matrix

1
T(x)=Y e '@, “4)

i=—1

with

2mi . [ 2mi
T; = wol, + wy| cos =3 o1 + sin = o |,

describes tunneling between the two graphene bilayers, where
0, = (0,0) and Q., = ky(£+/3/2,3/2) are the reciprocal

BA configurations within each bilayer units are energetically
preferred over the AA configuration [83,84]. Throughout this
work, we set the parameters yy = vp/ap = 2.36 eV, ap =
2.46 A, wo = 100 meV, w; = 120 meV, y3 = 283 meV, yy, =
138 meV, and § = 15 meV unless otherwise explicitly stated.
In Fig. 1(a), we show a sketch of the system we consider,
and in panel (b) the Moiré Brillouin zone (MBZ) and band
structure for twisted double bilayer graphene near the K point
for 6 = 1.05°.

The Hamiltonian near the K’ valley can be obtained by
applying a time-reversal operation 7 to the Hamiltonian at
the K valley [85]. Before studying the time-dependent case
it is worthwhile to summarize various symmetry properties
of static TDBG. In addition to time-reversal symmetry 7,
AB/AB TDBG possesses Cs, rotational symmetry and mirror
symmetry M, :y, k, — —y, —k, in the absence of an ap-
plied static electric field. The AB/BA TDBG possesses Cj;,
mirror symmetry M, : x, ky — —x, —k, (which switches the
valleys), and M, 7 [16,17,20].

In addition, TDBG displays topological properties cap-
tured by the Chern number, which is defined by C =
> neoce Cn» With the band Chern number

1
Co=—

F,(k)dk, )
27 Jmez
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FIG. 1. (a) Sketch of double bilayer graphene irradiated by circu-
larly polarized light. The black arrows indicate the various tunneling
processes within each bilayer. The dashed black line represents the
twist. (b) Moiré Brillouin zone (MBZ) and band structure for twisted
double bilayer graphene near the K point neglecting y3,4. The param-
eters are wy = 100 meV, w; = 120 meV, and 0 = 1.05°.

where F,(k) =[V x A,(k)], is the Berry -curvature,
A, (k) = —i(u,(K)|0|u,(K)) the Berry connection, and
lu,(k)) the eigenstates of H,y(k,x) defined on a plane-wave
basis. Time-reversal symmetry implies that the Chern
numbers for each valley are opposite to each other for a
given band n, CX = —CK'. In the absence of a potential
difference A; =0, the M, symmetry of AB/AB TDBG
implies CX/K" = 0 for each band n [17], since it does not
interchange the valleys. For example, by explicit evaluation
of Eq. (5) near K, we find that AB/AB TDBG with y3,4 =0
has trivial Chern numbers CX = C¥ = CX =0 at gaps SE;,
where i = a, b, ¢ labels the gaps as shown in Fig. 2. On the
other hand, AB/BA TDBG has nontrivial Chern numbers
CK=—1,CK =2, and CX =1 even for A; = 0. At the K’

1 —
|/ N
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i / \ /o~
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B ;\\/\// \\
Y Ky VK- Y v

FIG. 2. The AB/BA TDBG band structure for § = 1.4°, A =0,
and y3,4 = 0 along a high-symmetry path in the MBZ. The black
solid (red dashed) lines correspond to the spectrum near the K (K')
point. The Chern numbers in the gaps labeled a, b, and ¢ are indicated
for the K point. Time-reversal symmetry imposes CX' = —CX. The
energy scale is Ey = 100 meV.

point, we find CX' = 1, CK' = —2, and CX" = —1, as required
by time-reversal symmetry, placing AB/BA TDBG in a Hall
valley insulating phase.

In the next section we will study the effect of circularly
polarized light on TDBG.

III. DRIVEN SYSTEM IN FREE SPACE

In this section we consider the effect of circularly polarized
light in free space at normal incidence to the TDBG surface.
The time-dependent Hamiltonian near the K point is given by
Hyy(t) = Hyy (k(2), X),

Hss’(k(t)v x) =Ty ® ha( - 9/2’ k(t) - K—)
+ 1 @hy(0/2,k(t) — ky)

+ 1T RA QT +1- AT @ TH(x),
(6)

and k() = k, — Acos(Q2t) and ky(¢) = k, — Asin(€2t). Here
we used a minimal coupling procedure that is valid for not-
too-strong couplings to the electromagnetic field [86]. The
vector potential enters in the same way near both the K and
K’ points. The interbilayer tunneling sector has, in principle,
contributions parallel to the surface that could couple to the
normally incident circularly polarized light. However, the or-
bital overlap decays exponentially away from sites that sit on
top of each other in a twisted sample [1]. The time-dependent
Hamiltonian (6) satisfies Hgy (¢t 4+ 27 /) = Hgy(¢). There-
fore, we employ Floquet theory to write the wave functions
as [ (1)) = e“'|p(1)), where |p(r + 27 /Q)) = |$(1)) are the
steady states and e is the quasienergies which satisfy the
Floquet Schrodinger equation

[Hys (1) = i8,]|p (1)) = €|p(1)). @)

In the extended-space picture [28,37,87], |@(t)) =
Zn " |p,). An expansion of the operator [H,y () — id;] in
modes ¥ leads to Y, (HU ™™ + 8,,,2m)|¢n) = €|dn),

where Hs(s'f) = 02” dt/Qm)H (t)e™™. In the next two
sections we consider the effects of the drives in the high- and
intermediate-frequency regimes, respectively.

A. High frequency

In the high-frequency regime, we employ the Van Vleck
expansion [28] to obtain an effective Floquet Hamiltonian
HYy = HO + 8Hy vy, where H is the Hamiltonian aver-
aged over one drive period and

8Hss’,VV = —(AVV — Ag\)/)]]- RL® 03 — (Ag\)/ - Ag\)/)
X (T" @M QL+ 517 Q1 1), (8)

where Ayy = £(vpA)?/Q, ALY = E(14A)2/Q, and AY) =
£(13A4)?/2Q, with € = 1 (¢ = —1) near the K (K’) valley. The
simplicity of the high-frequency regime Van Vleck expansion
allows us to also retain the effects of y3 4, which are harder
to capture using more sophisticated intermediate-frequency-
regime methods introduced in later sections.

The gap Avy is generated due to the effect that light has on
the hopping in each graphene layer, which is captured by the
component 1 ® 1 ® {o - [k —A(¢)]} in the time-dependent
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FIG. 3. The AB/AB TDBG quasienergies near (a) the K point
and (b) the K’ point along a high-symmetry path in the MBZ for
0 =1.4°, Q/W =2, and apA = 0.04. The gray curves correspond to
the equilibrium energies. Also shown is the quasienergy gap for x.
as a function of the driving strength apA for Q/W = 2 (c) at the K
valley, where i closes at apA =~ 0.05, and (d) at the K’ valley, where
k_ closes at the same driving strength.

Hamiltonian. It breaks both time-reversal 7 and mirror sym-
metries (M, for AB/AB and M, for AB/BA) and is stacking

independent. The gaps A{f\’f) are induced by the effect that
light has on interlayer hoppings that have components in the
plane. Specifically, these interlayer hoppings are within the
top and bottom bilayers and are captured by the terms {t" ®
M etulp—ADI+ ¢ @AT ®ty[p—A@)]} +H.c. in the
time-dependent Hamiltonian. Specifically, A{f\), is induced by
hopping between equivalent lattice sites on opposite layers. It
constitutes a potential difference between the graphene layers
in each bilayer unit and breaks both time-reversal and mir-
ror symmetries in both stacking configurations. In contrast,
A@, is caused by hoppings between inequivalent sublattices
on opposite layers. It has two components. The first one is
independent of the stacking configuration and acts as Avyy.
The second component depends on the stacking configuration
(AB/AB or AB/BA) and acts as Ag‘\),. Next we will review the
effect of these dynamically induced terms on the topological
properties of TDBG.

In equilibrium, AB/AB TDBG is a trivial insulator for A; =
0. The finite Ayy induced by circularly polarized light leads
to a transition into a Chern insulator with Floquet topological
bands. For example, consider the case 8 = 1.4°, y3,4 = 0, and
Q/W =2, with W = vg/ag. In Figs. 3(a) and 3(b) we show
the quasienergy spectrum near the Floquet zone center € /2 =
0 at the K and K’ valleys, respectively. The effect of light at the
k+ near each valley is the opposite of each other. In Figs. 3(c)
and 3(d) we show the evolution of the quasienergy gap at « 1. as
a function of the drive strength obtained numerically by diago-
nalizing the Hamiltonian in the Floquet extended space. When
the gap closes at «, for apA ~ 0.05 and then opens again,
the band Chern number changes from zero to CX__| = —2 for
the lower Floquet zone-center quasienergy band (labeled as
n = —1)and CX_| =2 for the higher quasienergy band. This
can be understood from the sum of the contributions of the
Berry curvature from the four Dirac cones composing TDBG

de(k) (meV)

- K

100 120 0 20 40 60 80 100 120

wy (meV)

0 20 40 60 80

wo (meV)

FIG. 4. The AB/AB TDBG quasienergy gaps at k. near the K
valley for 6 = 1.4°, Q/W =2, and (a) apA = 0.03 and (b) apA =
0.06 as a function of the tunneling between the bilayer units. We set
wo = w in this case.

near the K valley. At the K’ valley, we find CX' = CK, since
the restrictions from time-reversal symmetry are lifted. The
asymmetric behavior of the gaps at x4 arises because the hy-
bridization of the twisted bilayers breaks inversion symmetry
and there is no C,, rotational symmetry as in TDG, leading
to a generic gapped state in the absence of a drive. Upon
the application of the drive, the states at x4 evolve in time
in distinct manners resulting in the structure of Ayy in the
effective Floquet Hamiltonian. In Fig. 4 we show the evolution
of the gap at x5 as a function of the tunneling amplitude
between the twisted bilayers for drive strengths apA = 0.03
and 0.06 (below and above the light-induced transition for the
nominal values wy = 100 meV and w; = 120 meV). For fully
decoupled layers (wy = w; = 0), the gaps are symmetric.
After discussing the Chern number, we recall that while it
is a measurable quantity [88,89], it is not what determines the
number of edge states. Rather, in Floquet systems the bulk-
edge correspondence is determined by the winding number
WIU,], defined at a quasienergy ¢ inside a gap [90], where

WIU] =# / dtdk Tr(U~ " dU[U™ o U U™ B U]) (9)
and U, is a modified time-evolution operator [90]. Here we
calculate W via the truncated Floquet Hamiltonian in the
extended space [90]. For the AB/AB TDBG case above, we
find WK =0, WK = -2, WK =0, and WK = WK at the
three gaps considered around the quasienergy bands shown
in Figs. 3(a) and 3(b).

Now let us consider the AB/BA configuration for TDBG
with A; = 0. In contrast to AB/AB TDBG, AB/BA TDBG is a
valley Chern insulator at equilibrium. The energies and Chern
numbers inside the gaps are shown in Fig. 2. As for the case of
AB/AB TDBG, circularly polarized light leads to a transition
into a Chern insulating phase with finite Floquet band Chern
and winding numbers. However, in this configuration, the
behavior of the 1 gaps is different: At the K valley, both
k+ gaps close at drive amplitude apA = 0.058 for Q/W = 2,
while the k1 gaps near the K’ valley increase monotonically
with apA (see Fig. 5). This selective gap engineering could
be employed to generate valley-polarized currents in AB/BA
TDBG; however, the calculation of valley-polarized current in
specific devices is beyond the scope of our work.

As for the topological properties, the Floquet band Chern

numbers switch after the transition: CX_, = -1, CK_| =
—1,CK, =3, and CX, = —1. The winding numbers inside
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FIG. 5. The AB/BA TDBG quasienergies near (a) the K point
and (b) the K’ point along a high-symmetry path in the MBZ. The
parameters are the same as in Fig. 3. The gray curves correspond to
the equilibrium energies. Also shown is the quasienergy gap for x1
as a function of the driving strength apA for Q/W = 2 at (c) the K
point and (d) the K’ point.

the gaps are WX = —1, W& = -2, and WK =1, with a
change from gap to gap in correspondence with the Floquet
band Chern numbers.

Since the gaps do not close at the K’ point in the range
of parameters we considered, the band Chern numbers re-
main the same as in the static case: CX._, =1,CK | = -3,
CK | =1,and CK, = 1. For the winding numbers, we obtain
WK =1,WK = -2, and WK = —1.

1. Applied static electric field

So far, we have restricted our analysis to A; = 0, which
corresponds to no potential difference between the layers
(apart from 8F). Now we consider AB/AB TDBG in the
presence of an applied perpendicular static electric field,
which leads to a potential difference between the layers. In
experiments, dual-gated bilayer graphene devices have been
realized for optoelectronic applications using semitransparent
top gates [91,92].

Here we set Ay = —Ay, Az =—A,;, Ay =3U/2, and
A, = U/2, with U the potential difference. In equilibrium,
the transverse electric field places AB/AB TDBG in a valley
Chern insulating regime. For U = 10 meV, we find in the
static case the band Chern numbers CX, = —2 and CK =
2 and corresponding total Chern numbers inside the gaps
CK¥ =0, Cf =-2, and CX =0. At the K’ valley, we find
CK' = —CK, as imposed by time-reversal symmetry. When
one drives the system, the gaps at the Floquet zone center
are renormalized. In Fig. 6(a) we plot the evolution of the
quasienergy gaps at the x4 points as a function of the drive
amplitude. Near the K valley, the quasienergy differences at
k+ increase monotonically with apA. Since the gap remains
open for the driving parameters considered, the Chern and
winding numbers do not change. In contrast, at the K’ point,
the quasienergy differences decrease starting from different
values in the vanishing drive strength limit, leading to a gap

0
0 0.025 0.05 0.075 0.1 0.125 0.15
apA apA

0
0 0.025 0.05 0075 0.1 0.125 0.15

0 0
0 0.025 0.05 0075 0.1 0.125 0.15 0 0.0250.05 0075 0.1 0.125 0.15

apA apA

FIG. 6. The AB/AB TDBG quasienergy gap near (a) the K valley
and (b) the K’ valley at k4. for U = 10 meV. (c) and (d) Results for
U = —10 meV. The rest of the parameters are the same as in Fig. 3.

closing at « for apA = 0.08, followed by a closing at x_
for apA ~ 0.107. At the first quasienergy gap closing, the
winding number changes from Wf/ =2to Wf = (0 and after
the second gap closing to Wf' = —2. The gap behavior at the
K and K’ valleys can be switched by changing the sign of the
applied electric field, as shown in Figs. 6(c) and 6(d).

2. Trigonal warping and particle-hole symmetry-breaking terms

The structure of the Van Vleck Hamiltonian (8) shows
that trigonal warping (the y3 term in the bilayer graphene
tunneling sector) induces a small correction to the gap Avyy,
since Ai,\), /Avyv = 0.014, independently of the frequency and
amplitude of the drive. However, the effect in the static ener-
gies is not negligible.

Combined particle-hole asymmetry (y4) and trigonal warp-
ing effects induce a stacking-dependent gap. For AB/AB
stacking s =s" =1, the gap has the structure (A(V\), —
Ag’\),)]l ® A3 ® 1, which constitutes a potential difference be-
tween the graphene composing each bilayer, with |(A$‘\), —
A))/Ayy| 2 0.01. For AB/BA stacking s = —s' = 1, the
gap has the form (A&f\), - Ag\),)u ® A3 ® 1. In general, these
terms can renormalize the topological transition points. For
example, in Fig. 7 we plot the quasienergy gap at the k. points
as a function of the driving strength apA for two frequencies

(b)

de(k) (meV)

0 -
0.00 0.02 004 006 008 0.10 0.12

agA apgA

FIG. 7. The AB/AB TDBG quasienergy gap near the K valley at
k+ Y34 = 0 (dashed curves) and y3 4 # O (solid lines) as a function
of the driving strength for (a) 2/W = 2 and (b) 2/W = 1.25.
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in the high-frequency regime. Therefore, although the static
energies can be significantly modified by y3 4 # 0, Floquet
drives can be used to manipulate the gap structure.

In this section we restricted the discussion to high-
frequency and weak drives. In the next section we will derive
an effective Floquet Hamiltonian valid for intermediate fre-
quencies and intermediate drive strengths. We will show in
particular that in this regime we can generate Floquet flat
bands, which are impaired by trigonal warping and particle-
hole symmetry-breaking effects.

B. Intermediate frequency

In the intermediate-frequency and intermediate-drive-
strength regime, we obtain an effective Hamiltonian by
performing a modified rotating frame transformation [62] and
taking an average over one period (see the Appendix for
details). In this work we define the intermediate-frequency
regime as > W + W;, where W, corresponds to the band-
width of the bands at the center of the spectrum we are
interested in studying. Within this frequency regime, we can
describe the system accurately down to frequencies lower than
a high-frequency expansion, as we will discuss in this section.
For our analytical results, we neglect the effect of next-to-
nearest-neighbor hopping within each bilayer unit (y3 = ys =
0), but we will discuss them numerically. Then the effective
Floquet Hamiltonian is given by

HY = RY(H,y + SHp)R, (10)

where R is a twist-angle-dependent unitary transformation
(see the Appendix for the explicit expression) and 6Hp =
Arl ® 1 Q o3, with Ap = AJ1(2v/2A4/Q)//2, where J,(z)
corresponds to the nth Bessel function of the first kind. As in
the high-frequency regime, § Hp is independent of the AB/AB
or AB/BA stacking configuration. Here H,y is given by

I:st’(ks x) =Ty ® ITZX(—G/Q,, k— K—)
+ 1 ®@hy(0)2,k — k)
+1T A @TH) +1 @ATRT (), (11)

where

A1 +68; T0f(Rok) 7,

. Jof*(Rok) A+ 38+
FO.k) = P0f*(Rok) Ay + 6

As+ 87 Pof (Rek)
Pof*(Rok) Ay + 357
(12)

Fal

s

with 9 = Jo(RA/RQ)yy = Jo(2A/Q)vE /ap, which is inter-
preted as a reduction of the Fermi velocity. The layer-
and stacking-dependent gap Sf = 8Jo(2v2A/Q)(1 £ 5)/2
is suppressed and the tunneling is now given by 7, =
Y1Jo(2A/2)(0) — iso,)/2. None of these effects are captured
in a leading-order Van Vleck expansion and it is challenging
to capture the functional form simply by computing higher-
order terms. The position-dependent interlayer coupling for

,\
®
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FIG. 8. Relative error of the quasienergy gap at the x; point in
the MBZ for § = 0 meV as a function of (a) the driving strength for
Q/W =2 and (b) the frequency for apA = 0.3. In the whole range
considered, the rotating frame effective Hamiltonian provides a more
accurate approximation to the exact gap.

the two center graphene layers renormalizes to

1
Tx)= ) e0™(T, —iwyo3),

n=—1

- . B 2mn . (2mn
T, = @wol, + @1 | cos T o] + sin T oy |, (13)

where

w1 = Jo(2A/Q)wy,

@y = wy + sinz(e/z)[JO(%> — 1}90 (14)

are renormalized interlayer couplings and a new angle-
dependent coupling

wy = %Sln(@)[fo(zé_M) — 1:|a)0 (15)

has been introduced that is absent from the equilibrium case.

As can be deduced from Fig. 8, this effective Hamiltonian
is accurate up to frequency and driving strength regimes where
the Van Vleck approximation breaks down. In particular, for
a driving frequency Q2/W =2 one can describe gaps with
errors below 10% up to driving strengths apA ~ 1, in con-
trast to the Van Vleck approximation, which only manages
to do so until apA = 0.45. Therefore, the implementation
of an improved transformation in a rotating frame can en-
hance the range of validity of effective Floquet Hamiltonians
when it comes to driving strengths. A similar observation
can be made if one keeps the driving strength fixed (in
our case apA = 0.3) and varies the frequency. The rotating
frame Hamiltonian here describes gaps with an error of less
than 10% for frequencies as low as Q/(2W) = 0.45, while
the Van Vleck expansion has the same level of accuracy
only up to 2/(2W) = 0.75. Therefore, the approach allows
one to reach into an intermediate-strength and intermediate-
frequency regime, while the Van Vleck expansion is restricted
to large frequencies and weak coupling. This type of effective
Hamiltonian could make it easier to simultaneously describe
the effects of circularly polarized light for a wide range of
driving protocols and computationally challenging additional
effects such as disorder.

Finally, in Figs. 9(a) and 9(b) we plot the quasienergy
spectrum around the Floquet zone center and along a high-
symmetry path in the MBZ for drive frequency Q2/W = 1.05
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FIG. 9. (a) The AB/AB TDBG quasienergies near the K valley
along a high-symmetry path in the MBZ for 6 = 1.4°, A; =0,
Q/W = 1.05, and apA = 0.3. The gray curves correspond the equi-
librium energies. (b) Case 6 = 1.05° for the same drive parameters
as in (a). Also shown is the bandwidth of the Floquet bands nearest
(Jn] = 1) and next to nearest (|n| = 2) the Floquet zone center for
()8 = 1.4° and (d) & = 1.05° as a function of the drive strength.

and drive strength apA = 0.3. We included the effects of trig-
onal warping and particle-hole asymmetry. In this case, the
drive induces a large gap between the central quasienergy
bands and modifies the bandwidth of these and the adjacent
bands. To quantify the degree to which the quasienergy bands
are flattened, in Figs. 9(c) and 9(d) we show the bandwidth of
the Floquet bands nearest (|n| = 1) and next to nearest (|n| =
2) the Floquet zone center as a function of apA. The laser
properties can be tuned such that the quasienergy bandwidth
reaches a minimum. Therefore, stronger drives can generate
Floquet flat bands, even in the presence of trigonal warping
and particle-hole asymmetry, which in equilibrium tend to
endow the bands with significant dispersion [17].

To conclude this section, we discuss the heating in the
intermediate-frequency regime when interactions are present.
In the high-frequency regime, the laser drive is not in reso-
nance with transitions and the heating can take exponentially
long times to set in [33,93]. When the drive frequency is in
resonance, one needs to take into account relaxation processes
to fully describe the system, such as coupling with phonons
which can act as a reservoir [94-96]. Interestingly, a recent
study on dissipative Floquet systems has shown that for res-
onant and strong-enough drives, Floquet states can develop if
the decoherence time is shorter than the period of the drive
[97]. Extensions of this work to consider such dissipative
effects are beyond the scope of the present work.

In the next section we will consider an alternative Floquet
drive protocol, which directly modifies the interlayer cou-
pling, in contrast with the Floquet protocol considered in this
section.

IV. DRIVEN SYSTEM IN A WAVEGUIDE

In this section we consider a complementary Floquet pro-
tocol based on the use of light confined inside a waveguide.
The boundary conditions imposed by the metallic surfaces

of the waveguide allow a nonzero longitudinal component in
the vector potential, which can couple to the component of
the tunneling perpendicular to the TDBG plane. In the high-
frequency regime, this protocol allows one to directly decrease
the tunneling amplitude without breaking symmetries.

As in free space, the effect of the drive in a waveg-
uide enters through a Peierls substitution to the hopping
term in a real-space tight-binding Hamiltonian. In particu-
lar, the hopping term between two sites R and R’ acquires

the position-dependent phase c;cR/ — exp(—i f,f dlA)c;cR/,
where cp and c; are the annihilation and creation operators.
Assuming that the tight binding is defined in the x-y plane
and the longitudinal vector potential A(r, t) &~ A(t)é, is inci-
dent in the z direction and constant, cpcg — e‘”ﬁAc;cRr, with
I,=({R —R),.

For TDBG, the time-dependent Hamiltonian in the contin-
uum limit is given by
Hy(k,x,t) =1, Qh(—60/2,k —Kk_,1)

+ T @hy(0/2,k —Kky,t)

+P AT RTx, 1) +1- AT T (x, 1),

(16)
where
A +67 vof(Rek) | ts(k, 1)
| Rek) Ar+8F
ho(®. k0= B8 ni R [
tik, 1) VS Rok) Ay + 67
17
—vaf(Rgk) —st*(Rok)) —iasA(t)
k1) = wA®) (18
t1(k,t) ( ” o f(Rok) e (18)

The tunneling sector also depends on the bilayer stacking con-
figuration s. Finally, the interlayer hopping matrix acquires a
time dependence according to

1
TG,)= ) e 2 T0),

i=—1

Ti — e*iaAAA(t)wO]l2 + e*iaABA(t)u)1

X |:cos (?)ol + sin (?)@]. (20)

The above Hamiltonian is obtained by performing the substi-
tutions

19)

Tud @ M ® 07 — T,0 @ A ® 0T (21a)
E@AT x 1 - 1T @ AT x 1eTamd®), (21b)
@ AT x 015 = 5 @ AT x LeFiand®) (21c)

as one can confirm when mapping the corresponding tight-
binding hopping processes onto an effective single-particle
Hamiltonian. Here a4 4p describes the interlayer distance in
AA and AB stacked bilayer graphene. The functional form of
T (x,t) implies that the coupling t* ® AT x o, is dominant
in AB regions and ¥ ® AT x 1 is dominant in AA regions.
We have used this to get the approximate form in Egs. (21b)
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.

FIG. 10. Sketch of double bilayer graphene irradiated by cir-
cularly polarized light in a waveguide. The boundary condition
imposed by the metallic walls allows for transverse modes in the
electric field.

and (21c). This approximation is a simplification over the
general position dependence of T(x) — T (x)e Y4 where
the distance between layers would vary smoothly in space.
Specifically, we consider a transverse magnetic mode
of light at the exit of a waveguide as shown in Fig. 10,
which for a finite region in space can have the form A ~
Acos(2t)e, [63]. In the high-frequency regime, we obtain
an effect Floquet Hamiltonian using a Van Vleck expansion
to first order Her ~ Ho+ ), 2olH-m, Hy;,1/(2mS2), where

H,=1/T fOT H(t)e ™ The corrections of order 1/ van-
ish if derivatives 0;T (x,t) are neglected. This is justified
because all derivatives in H,, and m # 0 appear with a pref-
actor ys 4 that is small and the terms [H_,,, H,]/(2m<2) are
already suppressed by 1/€2. In the small-angle regime, where
T (x,t) varies slowly in real space, this approximation be-
comes even better because then the corrections that would
arise have an additional small factor 6. Therefore, the leading
correction is given by the averaged Hamiltonian H,, which
shares the same structure of the static Hamiltonian with renor-
malized parameters

(w1, ¥1,3,4) = (w1, v1,3,4)Jo(assA),

(22)

wo — woJo(assd),
where Jj is the zeroth Bessel function of the first kind. There-
fore, in the high-frequency regime, the interlayer couplings
are suppressed by this type of electromagnetic field. This can
lead to a renormalization of the bandwidth. In Fig. 11 we
plot the quasienergies near the Floquet zone center along a

100 F N\ N/

50 1

0t

€ (meV)

—50+

—100t

FIG. 11. Quasienergies along a high-symmetry path in the MBZ
for AB/AB TDBG driven with light confined in a waveguide for
aspA ~ 0.136. The gray lines correspond to the static energies. The
index n labels the bands closest to the Floquet zone center.
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FIG. 12. Bandwidth of the four Floquet bands closest to the
Floquet zone center as a function of the twist angle for (a) and
(b) the case y3 4 = 0 and (c) and (d) the case 3 = 283 meV and y4 =
138 meV. The drive parameters are 2/W = 2 and a,pA ~ 0.136. The
gray lines correspond to the static case.

high-symmetry path in the MBZ. The waveguide drive renor-
malized the bands, without breaking the symmetries of the
static system. The renormalization of the bandwidth depends
on the twist angle. In Fig. 12 we show the bandwidth of the
four bands closest to the Floquet zone center as a function of
the twist angle between the layers considering the effect of
trigonal warping and particle-hole symmetry-breaking terms.
These results suggest that dynamical bandwidth tuning could
be achieved in TDBG samples without breaking the symme-
tries of the static system.

V. EXPERIMENTAL PARAMETER ESTIMATES

The laser drive parameters required to obtain the effects
discussed here are accessible in experimental settings. The
quasienergy gap closings for TDBG without applied static
electric field were obtained for driving strengths (e//i)apA =
eaoE /(n2) < 0.06. For the high frequency considered in the
UV regime, 12 = 2W ~ 5350 meV, a peak electric field E ~
9.5 MV/cm leads to the required driving strength. A combi-
nation of a stronger electric field and lower driving frequency
also could be considered. For example, to obtain Floquet flat
bands, as shown in Fig. 9, we use 722 = 1.05W ~ 2809 meV
and driving strength (e/h)agA = eapE /(h2) ~ 0.3, which
can be obtained with a peak electric field £ ~ 25 MV /cm. In
graphene, laser pulses with peak electric fields of 30 MV /cm
with near-IR frequencies have been employed to generate
light-field-driven currents [98].

VI. CONCLUSION

We have studied twisted double bilayer graphene driven
by circularly polarized light in free space and confined to a
waveguide. For light propagating in free space, we demon-
strated that TDBG in the AB/AB configuration with an applied
static electric field perpendicular to the layers, the drive
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permits valley-selective quasienergy gap engineering. The pe-
riodic drive also leads to a topological transition into a Chern
insulating state due to the broken time-reversal symmetry.
For TDBG in the AB/BA configuration, the driving protocol
can lead to valley-selective engineering even in the absence
of an applied electric field. Finally, we showed that stronger
drives can generate Floquet flat bands. On the other hand, light
confined to a waveguide allows us to dynamically tune the
bandwidth of the Floquet zone-center bands without breaking
the symmetries of the static system. Therefore, employing
two complementary Floquet protocols, we showed that light-
driven TDBG is a flexible system that could be used as a
platform to generate valley-polarized currents.

Note added. Recently, related theoretical work was pre-
sented by Lu et al. in [99].
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APPENDIX: EFFECTIVE FLOQUET HAMILTONIAN IN
THE INTERMEDIATE-FREQUENCY REGIME

For simplicity of discussion we will neglect the effects
of trigonal warping for this Appendix. That is, the model
Hamiltonian we consider is

hj:s + A[ ty 0 0
oo tf hyo+ Ay T(r) 0
05 = 0 TT(r) o, + A 1 ’
0 0 tf hy o+ Ag
(A1)

where hﬁs = vp[R(—d0/2)(k — k4)]oy, + 6(1 — lso3) is the
Hamiltonian for graphene and the index d = = labels the two
graphene bilayers and [ = =+ (with 4 for ¢ and — for b) labels
the layers of each double layer. Furthermore, we distinguish
between AB and BA stacking for the double layers via a
term s that is s = & for AB/BA stacking. Therefore, §/s03 is
a stacking- and layer-dependent gap and ¢ is the interlayer
hopping matrix for the top and bottom double layers with
t; =t/2(oy — iso,). The term

1
T(r)= Y e o"T,

i=—1

(A2)

with

, 2nn . 2nn
T, = w1, +w]| cos T o1 + sin T oy |,

describes the hopping between the two bilayers and captures
the spatial dependence due to the mutual rotation. It depends
on two coupling strengths w and @’ that capture the effect
that AB/BA and AA-type regions of the center twisted bi-
layer can have different lattice constants. Since the hopping

is dominated by hopping between adjacent layers, we ne-
glect higher-order interlayer tunnelings. Finally, A; describe
a layer-dependent bias.

We introduce circularly polarized light by means
of minimal substitution p— p+A/vr with A=
A(cos(R2t), sin(£2)). The Hamiltonian then becomes
periodically time dependent H(¢t) = H(t + T') with period T
and can be split as H(t) = Hy + V (¢), where

v (@) 0 0 0
+
0 0 0 v (@t)

with vE(1) = R(F0)A0yy.

The time dependence makes a full treatment of the prob-
lem cumbersome, especially if one wants to build on the
model and introduce additional complications such as disor-
der. Luckily, the time dependence can be reduced. This can
either be done via a perturbative expansion or nonperturba-
tively by going to a rotating frame. A useful rotating frame
of such a sort is implemented by a unitary transformation
U (¢) that fulfills U (T ) = 1 because at stroboscopic times one
may forget about the unitary transformation since it is unity.
Naively, one may choose such a unitary transform that has the
form U(t) = exp[—i f dt V(t)]. While this is useful and leads
to good results, it is not the ideal choice for the problem at
hand. This is because it can introduce mathematical artifacts
such as an unphysical breaking of rotational symmetry like
in the case of graphene [43,62]. For our case we therefore
employ a better choice that was introduced in [62] and split
the time-dependent part of the Hamiltonian as

o7 0 0 0
0 ¢ o 0
Vi) =A t 1 , (A4
1(1) cos(wt) 0 0 ot 09 2 (A4)
0 0 0 o
oll? 8/2 0 0
. 0 o 0 0
V(i) =A t 2 ,
H(1) sin(wt) 0 0 02—9/2 0

0 0 0 o,

where the rotated Pauli matrices oig/ * given by crie/ *=

/493,114 were introduced as a convenient shorthand.
The unitary transformation we use now is given as

U(t) = exp ( - i/dtVl(t)> exp ( - i/dth(t)). (A5)

This choice is useful because it preserves rotational invari-
ance of the dispersion relation after a time average over one
period if the interlayer couplings are neglected as seen in
[62] and leads to an improvement over more conventional
high-frequency expansions.

If we apply this unitary transformation to the Schrodinger
equation i0;% = [Hy + V (¢)]¥ and take an average over one
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period, we arrive at the effective Hamiltonian

b0y 2 0 0
i hf 47, T(r 0
Hp,=R'| ) potta T 3
’ 0 T(r)  h+A3 f
0 0 il hy A+ A
(A6)
where R is a unitary transformation given as
Ry O 0 0
10 Ry O 0
R= 0 0 R- O0) (A7)
0 0 0 R_

with
i -
Ry =exp < - EG;Q/ZA)

which includes a rotation around the y axis in pseudospin
space with angle A = %A. In this rotated space we find that
the Hamiltonian for a single graphene layer is modified as

B, = vr[R(—d 0/2)k10yy + 8(1 — IsJo(v/2A)03) — Aoy,
(A8)

where we find that the layer- and stacking-dependent gap

lso3 — lsJO(\/EA) has been suppressed by Jo(\/EA), where

J; are Bessel functions of the first kind. The Fermi velocity

is lowered to vy — p = Jy(A)vr and a new stacking- and
~ 2424

layer-independent gap A = AJ‘(T‘Zz) has been introduced. For

the interlayer couplings in the two double layers we find
ty = 1/2(0| — isoy), with merely the strength renormalized to
t — i =tJy(A). The position-dependent interlayer coupling
for the two center graphene layers changes to

1
T(r) =Y e @"{T; + wj ,[sin(@/2)L, — icos(8/2)o3]},

i=—1

with

. , . 2mn . (27n
T, = wl, + @] cos =N o1 + sin =N o |, (A9

where the coupling w — & = Jy(A)w has been renor-
malized and a new angle-dependent coupling w n=

sin(6/ 2)[]0(\/24) — 1]’ has been introduced.
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