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Motivated by the recent experimental realization of twisted double bilayer graphene (TDBG) samples, we
study, both analytically and numerically, the effects of circularly polarized light propagating in free space
and confined in a waveguide on the band structure and topological properties of these systems. These two
complementary Floquet protocols allow us to selectively tune different parameters of the system by varying
the intensity and light frequency. For the drive protocol in free space, in the high-frequency regime, we find that
in TDBG with AB/BA stacking, we can selectively close the zone-center quasienergy gaps around one valley
while increasing the gaps near the opposite valley by tuning the parameters of the drive. In TDBG with AB/AB
stacking, a similar effect can be obtained upon the application of a perpendicular static electric field. Furthermore,
we study the topological properties of the driven system in different settings, provide accurate effective Floquet
Hamiltonians, and show that relatively strong drives can generate flat bands. On the other hand, longitudinal
light confined in a waveguide couples to the components of the interlayer hopping that are perpendicular to
the TDBG sheet, allowing for selective engineering of the bandwidth of Floquet zone-center quasienergy bands
without breaking the symmetries of the static system.

DOI: 10.1103/PhysRevResearch.2.033494

I. INTRODUCTION

Moiré superlattices have emerged as platforms to at-
tain strongly correlated phases of matter by controlling the
stacking configuration between the layers [1–3]. In twisted
bilayer graphene (TBG) samples, examples include super-
conducting, Mott-insulating [4–8], and ferromagnetic states
[9,10]. In twisted transition-metal dichalcogenide heterostruc-
tures (TMDs), evidence for moiré excitons has been reported
[11–13]. More recently, twisted double bilayer graphene
(TDBG) has emerged as a multi-flat-band system, exhibiting
spin-polarized and correlated phases [14–20].

The plethora of strongly correlated phases available in
moiré superlattices naturally invites the development of con-
trollable mechanisms that would allow one to tune in and out
of these phases. In equilibrium, hydrostatic pressure has been
used to increase the tunneling strength and tune the magic
angle in TBG [21–26]. On the other hand, out-of-equilibrium
approaches, such as Floquet engineering [27–58], provide a
more flexible and controllable route. Recently, the use of
lasers at various frequencies has been proposed to engineer the
Floquet band structure of graphene-based moiré superlattices.
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In the high-frequency regime, it has been shown that topolog-
ical transitions can be induced in large twist angle TBG [59]
and topological flat bands with nonzero Chern numbers can
be induced in the ultraviolet regime [60]. In the near-infrared
range, several flat bands can be generated [61]. In the low-
frequency regime, Floquet drives can generate a large variety
of broken-symmetry phases as revealed by effective Floquet
Hamiltonians [62]. Finally, light confined to a waveguide pro-
vides a way to selectively increase or decrease the magic angle
by driving in the low- or high-frequency regime [63].

Floquet engineering has also been proposed for the gen-
eration of valley polarized currents in graphene, TMDs, and
van der Waals heterostructures [64–69] with applications in
valleytronics [70,71]. An interesting effect with topological
origin is the valley Hall effect [72–75], which has been ex-
perimentally observed in monolayer TMDs illuminated with
circularly polarized light [76] and graphene hexagonal boron
nitride heterostructures [77]. Also, in TMDs, exciton level
selective tuning using intense circularly polarized light has
been demonstrated [78] and the valley Bloch-Siegert shift has
been observed [79]. Furthermore, in bilayer graphene in the
presence of a perpendicular electric field, valley topological
transport has been reported [80,81]. New flexible and control-
lable platforms for the manipulation of the valley degree of
freedom are highly desirable for information processing.

In this work we consider TDBG in the AB/AB and AB/BA
configurations irradiated by circularly polarized light in free
space and confined to a waveguide. We show by deriving
effective Floquet Hamiltonians and by numerical calcula-
tions that light in free space can induce transitions from a
trivial or valley Chern insulator (depending on the stacking
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configuration) into a Chern insulator. Furthermore, in the pres-
ence of a transverse electric field, driven AB/AB TDBG allows
the quasienergy gaps at the K and K ′ valleys to be selectively
tuned by varying the direction of the static electric field and by
modulating the amplitude and frequency of the driving laser.
For AB/BA TDBG, we find that the quasienergy gaps can be
tuned selectively even without an applied electric field. The
flexibility of the quasienergy band structure near the Floquet
zone center can be used to generate valley polarized currents
in TDBG, independent of the stacking configuration. On the
other hand, using light confined to a waveguide allows us to
dynamically tune the component of the tunneling perpendicu-
lar to the plane without breaking the symmetries of the static
system.

The rest of the paper is organized as follows. In Sec. II we
describe static TDBG and the notation we adopt throughout

the paper. In Sec. III we consider TDBG driven by circularly
polarized light in free space. We consider both high- and
intermediate-frequency regimes and describe the effects on
the band structure and the topological aspects in each regime.
In Sec. IV we consider a drive protocol using longitudinal
vector potentials, allowed inside a waveguide, and discuss the
effects on the quasienergies. In Sec. V we comment on the
experimental drive parameters necessary to observe the effects
discussed previously. In Sec. VI we present a summary and
our conclusions.

II. STATIC SYSTEM

In the continuum limit, the static Hamiltonian for TDBG
near the K point with AB/AB (s = s′ = 1) [AB/BA (s = −s′ =
1)] stacking patterns is given by [15–17]

Hss′ (k, x) = τu ⊗ hs(−θ/2, k − κ−) + τd ⊗ hs′ (θ/2, k − κ+) + τ+ ⊗ λ− ⊗ T (x) + τ− ⊗ λ+ ⊗ T †(x), (1)

where τu = (1 + τ3)/2, τd = (1 − τ3)/2, τ± = (τ1 ± iτ2)/2, and τi and λi are Pauli matrices in the top/bottom bilayer and layer
space, respectively. Here σk are Pauli matrices or identity operators in pseudospin space. The bilayer graphene Hamiltonian is
given by [82]

hs(θ, k) =

⎛
⎜⎜⎜⎝

�1 + δ−
s γ0 f (Rθk) ts(k)

γ0 f ∗(Rθk) �1 + δ+
s

�2 + δ+
s γ0 f (Rθk)

t†
s (k) γ0 f ∗(Rθk) �2 + δ−

s

⎞
⎟⎟⎟⎠, (2)

with the tunneling matrix

t+(k) =
(−γ4 f (Rθk) −γ3 f ∗(Rθk)

γ1 −γ4 f (Rθk)

)
(3)

and t−(k) = t†
+(k). Each diagonal block in Eq. (2) corresponds

to the top and bottom layers of each bilayer unit, f (k) = kx −
iky describes the intralayer hopping between nearest-neighbor
sites, and γ0 = vF /a0 in natural units (h̄ = c = e = 1). Here
�i corresponds to a potential on graphene layer i, which will
describe the effect of an applied electric field perpendicular
to the sample surface. Finally, δ±

s = δ(1 ± s)/2 is a stacking-
and layer-dependent gap [82].

The off-diagonal blocks ts(k) describe the tunneling pro-
cesses within each bilayer unit [82], including contributions
from vertical tunneling γ1 and next-nearest-neighbor tun-
neling γ3 and γ4; γ3 leads to trigonal warping and γ4 to
particle-hole symmetry breaking. The tunneling sector also
depends on the bilayer stacking configuration s.

The interlayer hopping matrix

T (x) =
1∑

i=−1

e−iQi·xTi, (4)

with

Ti = w012 + w1

[
cos

(
2π i

3

)
σ1 + sin

(
2π i

3

)
σ2

]
,

describes tunneling between the two graphene bilayers, where
Q0 = (0, 0) and Q±1 = kθ (±√

3/2, 3/2) are the reciprocal

lattice vectors. We neglect direct tunneling contributions be-
tween layers that are not adjacent to one another, as indicated
by the structure τ+ ⊗ λ− ⊗ T (x). The parameter w1 in the
tunneling term models relaxation effects, since the AB and
BA configurations within each bilayer units are energetically
preferred over the AA configuration [83,84]. Throughout this
work, we set the parameters γ0 = vF /a0 = 2.36 eV, a0 =
2.46 Å, w0 = 100 meV, w1 = 120 meV, γ3 = 283 meV, γ4 =
138 meV, and δ = 15 meV unless otherwise explicitly stated.
In Fig. 1(a), we show a sketch of the system we consider,
and in panel (b) the Moiré Brillouin zone (MBZ) and band
structure for twisted double bilayer graphene near the K point
for θ = 1.05◦.

The Hamiltonian near the K ′ valley can be obtained by
applying a time-reversal operation T to the Hamiltonian at
the K valley [85]. Before studying the time-dependent case
it is worthwhile to summarize various symmetry properties
of static TDBG. In addition to time-reversal symmetry T ,
AB/AB TDBG possesses C3z rotational symmetry and mirror
symmetry Mx : y, ky → −y,−ky in the absence of an ap-
plied static electric field. The AB/BA TDBG possesses C3z,
mirror symmetry My : x, kx → −x,−kx (which switches the
valleys), and MyT [16,17,20].

In addition, TDBG displays topological properties cap-
tured by the Chern number, which is defined by C =∑

n∈occ Cn, with the band Chern number

Cn = 1

2π

∫
MBZ

Fn(k)dk, (5)
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FIG. 1. (a) Sketch of double bilayer graphene irradiated by circu-
larly polarized light. The black arrows indicate the various tunneling
processes within each bilayer. The dashed black line represents the
twist. (b) Moiré Brillouin zone (MBZ) and band structure for twisted
double bilayer graphene near the K point neglecting γ3/4. The param-
eters are w0 = 100 meV, w1 = 120 meV, and θ = 1.05◦.

where Fn(k) = [∇ × An(k)]z is the Berry curvature,
An(k) = −i〈un(k)|∂k|un(k)〉 the Berry connection, and
|un(k)〉 the eigenstates of Hss′ (k, x) defined on a plane-wave
basis. Time-reversal symmetry implies that the Chern
numbers for each valley are opposite to each other for a
given band n, CK

n = −CK ′
n . In the absence of a potential

difference �i = 0, the My symmetry of AB/AB TDBG
implies CK/K ′

n = 0 for each band n [17], since it does not
interchange the valleys. For example, by explicit evaluation
of Eq. (5) near K , we find that AB/AB TDBG with γ3/4 = 0
has trivial Chern numbers CK

a = CK
b = CK

c = 0 at gaps δEi,
where i = a, b, c labels the gaps as shown in Fig. 2. On the
other hand, AB/BA TDBG has nontrivial Chern numbers
CK

a = −1, CK
b = 2, and CK

c = 1 even for �i = 0. At the K ′

FIG. 2. The AB/BA TDBG band structure for θ = 1.4◦, � = 0,
and γ3/4 = 0 along a high-symmetry path in the MBZ. The black
solid (red dashed) lines correspond to the spectrum near the K (K ′)
point. The Chern numbers in the gaps labeled a, b, and c are indicated
for the K point. Time-reversal symmetry imposes CK ′ = −CK . The
energy scale is E0 = 100 meV.

point, we find CK ′
a = 1, CK ′

b = −2, and CK ′
c = −1, as required

by time-reversal symmetry, placing AB/BA TDBG in a Hall
valley insulating phase.

In the next section we will study the effect of circularly
polarized light on TDBG.

III. DRIVEN SYSTEM IN FREE SPACE

In this section we consider the effect of circularly polarized
light in free space at normal incidence to the TDBG surface.
The time-dependent Hamiltonian near the K point is given by
Hss′ (t ) ≡ Hss′ (k(t ), x),

Hss′ (k(t ), x) = τu ⊗ hs( − θ/2, k(t ) − κ−)

+ τd ⊗ hs′ (θ/2, k(t ) − κ+)

+ τ+ ⊗ λ− ⊗ T (x) + τ− ⊗ λ+ ⊗ T †(x),
(6)

and kx(t ) = kx − A cos(�t ) and ky(t ) = ky − A sin(�t ). Here
we used a minimal coupling procedure that is valid for not-
too-strong couplings to the electromagnetic field [86]. The
vector potential enters in the same way near both the K and
K ′ points. The interbilayer tunneling sector has, in principle,
contributions parallel to the surface that could couple to the
normally incident circularly polarized light. However, the or-
bital overlap decays exponentially away from sites that sit on
top of each other in a twisted sample [1]. The time-dependent
Hamiltonian (6) satisfies Hss′ (t + 2π/�) = Hss′ (t ). There-
fore, we employ Floquet theory to write the wave functions
as |ψ (t )〉 = eiεt |φ(t )〉, where |φ(t + 2π/�)〉 = |φ(t )〉 are the
steady states and ε is the quasienergies which satisfy the
Floquet Schrödinger equation

[Hss′ (t ) − i∂t ]|φ(t )〉 = ε|φ(t )〉. (7)

In the extended-space picture [28,37,87], |φ(t )〉 =∑
n ein�t |φn〉. An expansion of the operator [Hss′ (t ) − i∂t ] in

modes ein�t leads to
∑

m(H (n−m)
ss′ + δn,m�m)|φm〉 = ε|φn〉,

where H (n)
ss′ = ∫ 2π

0 dτ/(2π )Hss′ (τ )e−iτn. In the next two
sections we consider the effects of the drives in the high- and
intermediate-frequency regimes, respectively.

A. High frequency

In the high-frequency regime, we employ the Van Vleck
expansion [28] to obtain an effective Floquet Hamiltonian
Hss′

VV = H (0)
ss′ + δHss′,VV, where H (0)

ss′ is the Hamiltonian aver-
aged over one drive period and

δHss′,VV = −(
�VV − �

(3)
VV

)
1 ⊗ 1 ⊗ σ3 − (

�
(4)
VV − �

(3)
VV

)
× (sτ u ⊗ λ3 ⊗ 1 + s′τ d ⊗ λ3 ⊗ 1), (8)

where �VV = ξ (vF A)2/�, �
(4)
VV = ξ (v4A)2/�, and �

(3)
VV =

ξ (v3A)2/2�, with ξ = 1 (ξ = −1) near the K (K ′) valley. The
simplicity of the high-frequency regime Van Vleck expansion
allows us to also retain the effects of γ3,4, which are harder
to capture using more sophisticated intermediate-frequency-
regime methods introduced in later sections.

The gap �VV is generated due to the effect that light has on
the hopping in each graphene layer, which is captured by the
component 1 ⊗ 1 ⊗ {σ · [k − A(t )]} in the time-dependent
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(a) (b)

(c) (d)

FIG. 3. The AB/AB TDBG quasienergies near (a) the K point
and (b) the K ′ point along a high-symmetry path in the MBZ for
θ = 1.4◦, �/W = 2, and a0A = 0.04. The gray curves correspond to
the equilibrium energies. Also shown is the quasienergy gap for κ±
as a function of the driving strength a0A for �/W = 2 (c) at the K
valley, where κ+ closes at a0A ≈ 0.05, and (d) at the K ′ valley, where
κ− closes at the same driving strength.

Hamiltonian. It breaks both time-reversal T and mirror sym-
metries (Mx for AB/AB and My for AB/BA) and is stacking
independent. The gaps �

(3,4)
VV are induced by the effect that

light has on interlayer hoppings that have components in the
plane. Specifically, these interlayer hoppings are within the
top and bottom bilayers and are captured by the terms {τ u ⊗
λ+ ⊗ ts[p − A(t )] + τ d ⊗ λ+ ⊗ ts′ [p − A(t )]} + H.c. in the
time-dependent Hamiltonian. Specifically, �

(4)
VV is induced by

hopping between equivalent lattice sites on opposite layers. It
constitutes a potential difference between the graphene layers
in each bilayer unit and breaks both time-reversal and mir-
ror symmetries in both stacking configurations. In contrast,
�

(3)
VV is caused by hoppings between inequivalent sublattices

on opposite layers. It has two components. The first one is
independent of the stacking configuration and acts as �VV.
The second component depends on the stacking configuration
(AB/AB or AB/BA) and acts as �

(4)
VV. Next we will review the

effect of these dynamically induced terms on the topological
properties of TDBG.

In equilibrium, AB/AB TDBG is a trivial insulator for �i =
0. The finite �VV induced by circularly polarized light leads
to a transition into a Chern insulator with Floquet topological
bands. For example, consider the case θ = 1.4◦, γ3/4 = 0, and
�/W = 2, with W = vF /a0. In Figs. 3(a) and 3(b) we show
the quasienergy spectrum near the Floquet zone center ε/� =
0 at the K and K ′ valleys, respectively. The effect of light at the
κ± near each valley is the opposite of each other. In Figs. 3(c)
and 3(d) we show the evolution of the quasienergy gap at κ± as
a function of the drive strength obtained numerically by diago-
nalizing the Hamiltonian in the Floquet extended space. When
the gap closes at κ+ for a0A ≈ 0.05 and then opens again,
the band Chern number changes from zero to CK

n=−1 = −2 for
the lower Floquet zone-center quasienergy band (labeled as
n = −1) and CK

n=1 = 2 for the higher quasienergy band. This
can be understood from the sum of the contributions of the
Berry curvature from the four Dirac cones composing TDBG

(a) (b)

FIG. 4. The AB/AB TDBG quasienergy gaps at κ± near the K
valley for θ = 1.4◦, �/W = 2, and (a) a0A = 0.03 and (b) a0A =
0.06 as a function of the tunneling between the bilayer units. We set
w0 = w1 in this case.

near the K valley. At the K ′ valley, we find CK ′
n = CK

n , since
the restrictions from time-reversal symmetry are lifted. The
asymmetric behavior of the gaps at κ± arises because the hy-
bridization of the twisted bilayers breaks inversion symmetry
and there is no C2z rotational symmetry as in TDG, leading
to a generic gapped state in the absence of a drive. Upon
the application of the drive, the states at κ± evolve in time
in distinct manners resulting in the structure of �VV in the
effective Floquet Hamiltonian. In Fig. 4 we show the evolution
of the gap at κ± as a function of the tunneling amplitude
between the twisted bilayers for drive strengths a0A = 0.03
and 0.06 (below and above the light-induced transition for the
nominal values w0 = 100 meV and w1 = 120 meV). For fully
decoupled layers (w0 = w1 = 0), the gaps are symmetric.

After discussing the Chern number, we recall that while it
is a measurable quantity [88,89], it is not what determines the
number of edge states. Rather, in Floquet systems the bulk-
edge correspondence is determined by the winding number
W[Uε], defined at a quasienergy ε inside a gap [90], where

W[U ] = 1

8π2

∫
dt dk Tr

(
U−1∂tU

[
U−1∂kxU ,U−1∂kyU

])
(9)

and Uε is a modified time-evolution operator [90]. Here we
calculate W via the truncated Floquet Hamiltonian in the
extended space [90]. For the AB/AB TDBG case above, we
find WK

a = 0, WK
b = −2, WK

c = 0, and WK ′ = WK at the
three gaps considered around the quasienergy bands shown
in Figs. 3(a) and 3(b).

Now let us consider the AB/BA configuration for TDBG
with �i = 0. In contrast to AB/AB TDBG, AB/BA TDBG is a
valley Chern insulator at equilibrium. The energies and Chern
numbers inside the gaps are shown in Fig. 2. As for the case of
AB/AB TDBG, circularly polarized light leads to a transition
into a Chern insulating phase with finite Floquet band Chern
and winding numbers. However, in this configuration, the
behavior of the κ± gaps is different: At the K valley, both
κ± gaps close at drive amplitude a0A ≈ 0.058 for �/W = 2,
while the κ± gaps near the K ′ valley increase monotonically
with a0A (see Fig. 5). This selective gap engineering could
be employed to generate valley-polarized currents in AB/BA
TDBG; however, the calculation of valley-polarized current in
specific devices is beyond the scope of our work.

As for the topological properties, the Floquet band Chern
numbers switch after the transition: CK

n=−2 = −1, CK
n=−1 =

−1, CK
n=1 = 3, and CK

n=2 = −1. The winding numbers inside
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(a) (b)

(c) (d)

FIG. 5. The AB/BA TDBG quasienergies near (a) the K point
and (b) the K ′ point along a high-symmetry path in the MBZ. The
parameters are the same as in Fig. 3. The gray curves correspond to
the equilibrium energies. Also shown is the quasienergy gap for κ±
as a function of the driving strength a0A for �/W = 2 at (c) the K
point and (d) the K ′ point.

the gaps are WK
a = −1, WK

b = −2, and WK
c = 1, with a

change from gap to gap in correspondence with the Floquet
band Chern numbers.

Since the gaps do not close at the K ′ point in the range
of parameters we considered, the band Chern numbers re-
main the same as in the static case: CK ′

n=−2 = 1, CK ′
n=−1 = −3,

CK ′
n=1 = 1, and CK ′

n=2 = 1. For the winding numbers, we obtain
W K ′

a = 1, W K ′
b = −2, and W K ′

c = −1.

1. Applied static electric field

So far, we have restricted our analysis to �i = 0, which
corresponds to no potential difference between the layers
(apart from δ±

s ). Now we consider AB/AB TDBG in the
presence of an applied perpendicular static electric field,
which leads to a potential difference between the layers. In
experiments, dual-gated bilayer graphene devices have been
realized for optoelectronic applications using semitransparent
top gates [91,92].

Here we set �4 = −�1, �3 = −�2, �1 = 3U/2, and
�2 = U/2, with U the potential difference. In equilibrium,
the transverse electric field places AB/AB TDBG in a valley
Chern insulating regime. For U = 10 meV, we find in the
static case the band Chern numbers CK

−1 = −2 and CK
1 =

2 and corresponding total Chern numbers inside the gaps
CK

a = 0, CK
b = −2, and CK

c = 0. At the K ′ valley, we find
CK ′

n = −CK
n , as imposed by time-reversal symmetry. When

one drives the system, the gaps at the Floquet zone center
are renormalized. In Fig. 6(a) we plot the evolution of the
quasienergy gaps at the κ± points as a function of the drive
amplitude. Near the K valley, the quasienergy differences at
κ± increase monotonically with a0A. Since the gap remains
open for the driving parameters considered, the Chern and
winding numbers do not change. In contrast, at the K ′ point,
the quasienergy differences decrease starting from different
values in the vanishing drive strength limit, leading to a gap

(a) (b)

(c) (d)

FIG. 6. The AB/AB TDBG quasienergy gap near (a) the K valley
and (b) the K ′ valley at κ± for U = 10 meV. (c) and (d) Results for
U = −10 meV. The rest of the parameters are the same as in Fig. 3.

closing at κ+ for a0A ≈ 0.08, followed by a closing at κ−
for a0A ≈ 0.107. At the first quasienergy gap closing, the
winding number changes from WK ′

b = 2 to WK ′
b = 0 and after

the second gap closing to WK ′
b = −2. The gap behavior at the

K and K ′ valleys can be switched by changing the sign of the
applied electric field, as shown in Figs. 6(c) and 6(d).

2. Trigonal warping and particle-hole symmetry-breaking terms

The structure of the Van Vleck Hamiltonian (8) shows
that trigonal warping (the γ3 term in the bilayer graphene
tunneling sector) induces a small correction to the gap �VV,
since �

(3)
VV/�VV ≈ 0.014, independently of the frequency and

amplitude of the drive. However, the effect in the static ener-
gies is not negligible.

Combined particle-hole asymmetry (γ4) and trigonal warp-
ing effects induce a stacking-dependent gap. For AB/AB
stacking s = s′ = 1, the gap has the structure (�(4)

VV −
�

(3)
VV)1 ⊗ λ3 ⊗ 1, which constitutes a potential difference be-

tween the graphene composing each bilayer, with |(�(4)
VV −

�
(3)
VV)/�VV| ≈ 0.01. For AB/BA stacking s = −s′ = 1, the

gap has the form (�(4)
VV − �

(3)
VV)τ3 ⊗ λ3 ⊗ 1. In general, these

terms can renormalize the topological transition points. For
example, in Fig. 7 we plot the quasienergy gap at the κ± points
as a function of the driving strength a0A for two frequencies

(a) (b)

FIG. 7. The AB/AB TDBG quasienergy gap near the K valley at
κ± γ3,4 = 0 (dashed curves) and γ3,4 
= 0 (solid lines) as a function
of the driving strength for (a) �/W = 2 and (b) �/W = 1.25.
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in the high-frequency regime. Therefore, although the static
energies can be significantly modified by γ3,4 
= 0, Floquet
drives can be used to manipulate the gap structure.

In this section we restricted the discussion to high-
frequency and weak drives. In the next section we will derive
an effective Floquet Hamiltonian valid for intermediate fre-
quencies and intermediate drive strengths. We will show in
particular that in this regime we can generate Floquet flat
bands, which are impaired by trigonal warping and particle-
hole symmetry-breaking effects.

B. Intermediate frequency

In the intermediate-frequency and intermediate-drive-
strength regime, we obtain an effective Hamiltonian by
performing a modified rotating frame transformation [62] and
taking an average over one period (see the Appendix for
details). In this work we define the intermediate-frequency
regime as � > W + Wf , where Wf corresponds to the band-
width of the bands at the center of the spectrum we are
interested in studying. Within this frequency regime, we can
describe the system accurately down to frequencies lower than
a high-frequency expansion, as we will discuss in this section.
For our analytical results, we neglect the effect of next-to-
nearest-neighbor hopping within each bilayer unit (γ3 = γ4 =
0), but we will discuss them numerically. Then the effective
Floquet Hamiltonian is given by

Hss′
F = R†(H̄ss′ + δHF )R, (10)

where R is a twist-angle-dependent unitary transformation
(see the Appendix for the explicit expression) and δHF =
�F 1 ⊗ 1 ⊗ σ3, with �F = AJ1(2

√
2A/�)/

√
2, where Jn(z)

corresponds to the nth Bessel function of the first kind. As in
the high-frequency regime, δHF is independent of the AB/AB
or AB/BA stacking configuration. Here H̄ss′ is given by

H̄ss′ (k, x) = τu ⊗ h̃s(−θ/2, k − κ−)

+ τd ⊗ h̃s′ (θ/2, k − κ+)

+ τ+ ⊗ λ− ⊗ T̃ (x) + τ− ⊗ λ+⊗̃T †(x), (11)

where

h̃s(θ, k) =

⎛
⎜⎜⎜⎜⎝

�1 + δ̃−
s γ̃0 f (Rθk) t̃s

γ̃0 f ∗(Rθk) �1 + δ̃+
s

�2 + δ̃+
s γ̃0 f (Rθk)

t̃†
s γ̃0 f ∗(Rθk) �2 + δ̃−

s

⎞
⎟⎟⎟⎟⎠,

(12)

with γ̃0 = J0(2A/�)γ0 = J0(2A/�)vF /a0, which is inter-
preted as a reduction of the Fermi velocity. The layer-
and stacking-dependent gap δ̃±

s = δJ0(2
√

2A/�)(1 ± s)/2
is suppressed and the tunneling is now given by t̃s =
γ1J0(2A/�)(σ1 − isσ2)/2. None of these effects are captured
in a leading-order Van Vleck expansion and it is challenging
to capture the functional form simply by computing higher-
order terms. The position-dependent interlayer coupling for

FIG. 8. Relative error of the quasienergy gap at the κ+ point in
the MBZ for δ = 0 meV as a function of (a) the driving strength for
�/W = 2 and (b) the frequency for a0A = 0.3. In the whole range
considered, the rotating frame effective Hamiltonian provides a more
accurate approximation to the exact gap.

the two center graphene layers renormalizes to

T̃ (x) =
1∑

n=−1

e−iQn·x(T̃n − iωθσ3),

T̃n = ω̃012 + ω̃1

[
cos

(
2πn

3

)
σ1 + sin

(
2πn

3

)
σ2

]
, (13)

where

ω̃1 = J0(2A/�)ω1,

ω̃0 = ω0 + sin2(θ/2)

[
J0

(
2
√

2A

�

)
− 1

]
ω0 (14)

are renormalized interlayer couplings and a new angle-
dependent coupling

ωθ = 1

2
sin(θ )

[
J0

(
2
√

2A

�

)
− 1

]
ω0 (15)

has been introduced that is absent from the equilibrium case.
As can be deduced from Fig. 8, this effective Hamiltonian

is accurate up to frequency and driving strength regimes where
the Van Vleck approximation breaks down. In particular, for
a driving frequency �/W = 2 one can describe gaps with
errors below 10% up to driving strengths a0A ≈ 1, in con-
trast to the Van Vleck approximation, which only manages
to do so until a0A ≈ 0.45. Therefore, the implementation
of an improved transformation in a rotating frame can en-
hance the range of validity of effective Floquet Hamiltonians
when it comes to driving strengths. A similar observation
can be made if one keeps the driving strength fixed (in
our case a0A = 0.3) and varies the frequency. The rotating
frame Hamiltonian here describes gaps with an error of less
than 10% for frequencies as low as �/(2W ) = 0.45, while
the Van Vleck expansion has the same level of accuracy
only up to �/(2W ) = 0.75. Therefore, the approach allows
one to reach into an intermediate-strength and intermediate-
frequency regime, while the Van Vleck expansion is restricted
to large frequencies and weak coupling. This type of effective
Hamiltonian could make it easier to simultaneously describe
the effects of circularly polarized light for a wide range of
driving protocols and computationally challenging additional
effects such as disorder.

Finally, in Figs. 9(a) and 9(b) we plot the quasienergy
spectrum around the Floquet zone center and along a high-
symmetry path in the MBZ for drive frequency �/W = 1.05
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(a) (b)

(c) (d)

FIG. 9. (a) The AB/AB TDBG quasienergies near the K valley
along a high-symmetry path in the MBZ for θ = 1.4◦, �i = 0,
�/W = 1.05, and a0A = 0.3. The gray curves correspond the equi-
librium energies. (b) Case θ = 1.05◦ for the same drive parameters
as in (a). Also shown is the bandwidth of the Floquet bands nearest
(|n| = 1) and next to nearest (|n| = 2) the Floquet zone center for
(c) θ = 1.4◦ and (d) θ = 1.05◦ as a function of the drive strength.

and drive strength a0A = 0.3. We included the effects of trig-
onal warping and particle-hole asymmetry. In this case, the
drive induces a large gap between the central quasienergy
bands and modifies the bandwidth of these and the adjacent
bands. To quantify the degree to which the quasienergy bands
are flattened, in Figs. 9(c) and 9(d) we show the bandwidth of
the Floquet bands nearest (|n| = 1) and next to nearest (|n| =
2) the Floquet zone center as a function of a0A. The laser
properties can be tuned such that the quasienergy bandwidth
reaches a minimum. Therefore, stronger drives can generate
Floquet flat bands, even in the presence of trigonal warping
and particle-hole asymmetry, which in equilibrium tend to
endow the bands with significant dispersion [17].

To conclude this section, we discuss the heating in the
intermediate-frequency regime when interactions are present.
In the high-frequency regime, the laser drive is not in reso-
nance with transitions and the heating can take exponentially
long times to set in [33,93]. When the drive frequency is in
resonance, one needs to take into account relaxation processes
to fully describe the system, such as coupling with phonons
which can act as a reservoir [94–96]. Interestingly, a recent
study on dissipative Floquet systems has shown that for res-
onant and strong-enough drives, Floquet states can develop if
the decoherence time is shorter than the period of the drive
[97]. Extensions of this work to consider such dissipative
effects are beyond the scope of the present work.

In the next section we will consider an alternative Floquet
drive protocol, which directly modifies the interlayer cou-
pling, in contrast with the Floquet protocol considered in this
section.

IV. DRIVEN SYSTEM IN A WAVEGUIDE

In this section we consider a complementary Floquet pro-
tocol based on the use of light confined inside a waveguide.
The boundary conditions imposed by the metallic surfaces

of the waveguide allow a nonzero longitudinal component in
the vector potential, which can couple to the component of
the tunneling perpendicular to the TDBG plane. In the high-
frequency regime, this protocol allows one to directly decrease
the tunneling amplitude without breaking symmetries.

As in free space, the effect of the drive in a waveg-
uide enters through a Peierls substitution to the hopping
term in a real-space tight-binding Hamiltonian. In particu-
lar, the hopping term between two sites R and R′ acquires
the position-dependent phase c†

RcR′ → exp(−i
∫ R′

R dlA)c†
RcR′ ,

where cR′ and c†
R are the annihilation and creation operators.

Assuming that the tight binding is defined in the x-y plane
and the longitudinal vector potential A(r, t ) ≈ A(t )êz is inci-
dent in the z direction and constant, c†

RcR′ → e−ilzAc†
RcR′ , with

lz ≡ (R′ − R)z.
For TDBG, the time-dependent Hamiltonian in the contin-

uum limit is given by

Hss′ (k, x, t ) = τu ⊗ hs(−θ/2, k − κ−, t )

+ τd ⊗ hs′ (θ/2, k − κ+, t )

+ τ+ ⊗ λ− ⊗ T (x, t ) + τ− ⊗ λ+ ⊗ T †(x, t ),
(16)

where

hs(θ, k, t )=

⎛
⎜⎜⎜⎝

�1 + δ−
s γ0 f (Rθk) ts(k, t )

γ0 f ∗(Rθk) �1 + δ+
s

�2 + δ+
s γ0 f (Rθk)

t†
s (k, t ) γ0 f ∗(Rθk) �2 + δ−

s

⎞
⎟⎟⎟⎠,

(17)

t+(k, t ) =
(−γ4 f (Rθk) −γ3 f ∗(Rθk)

γ1 −γ4 f (Rθk)

)
e−iaABA(t ). (18)

The tunneling sector also depends on the bilayer stacking con-
figuration s. Finally, the interlayer hopping matrix acquires a
time dependence according to

T (x, t ) =
1∑

i=−1

e−iQi·xTi(t ), (19)

Ti = e−iaAAA(t )w012 + e−iaABA(t )w1

×
[

cos

(
2π i

3

)
σ1 + sin

(
2π i

3

)
σ2

]
. (20)

The above Hamiltonian is obtained by performing the substi-
tutions

τu,d ⊗ λ± ⊗ σi → τu,d ⊗ λ± ⊗ σie
∓iaABA(t ), (21a)

τ± ⊗ λ∓ × 1 → τ± ⊗ λ∓ × 1e∓iaAAA(t ), (21b)

τ± ⊗ λ∓ × σ1,2 → τ± ⊗ λ∓ × 1e∓iaABA(t ), (21c)

as one can confirm when mapping the corresponding tight-
binding hopping processes onto an effective single-particle
Hamiltonian. Here aAA,AB describes the interlayer distance in
AA and AB stacked bilayer graphene. The functional form of
T (x, t ) implies that the coupling τ± ⊗ λ∓ × σ1,2 is dominant
in AB regions and τ± ⊗ λ∓ × 1 is dominant in AA regions.
We have used this to get the approximate form in Eqs. (21b)
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Waveguide

FIG. 10. Sketch of double bilayer graphene irradiated by cir-
cularly polarized light in a waveguide. The boundary condition
imposed by the metallic walls allows for transverse modes in the
electric field.

and (21c). This approximation is a simplification over the
general position dependence of T (x) → T (x)e−ia(x,y)A, where
the distance between layers would vary smoothly in space.

Specifically, we consider a transverse magnetic mode
of light at the exit of a waveguide as shown in Fig. 10,
which for a finite region in space can have the form A ≈
A cos(�t )êz [63]. In the high-frequency regime, we obtain
an effect Floquet Hamiltonian using a Van Vleck expansion
to first order Heff ≈ H0 + ∑

m 
=0[H−m, Hm]/(2m�), where

Hm = 1/T
∫ T

0 H (t )e−im�t . The corrections of order 1/� van-
ish if derivatives ∂iT (x, t ) are neglected. This is justified
because all derivatives in Hm and m 
= 0 appear with a pref-
actor γ3,4 that is small and the terms [H−m, Hm]/(2m�) are
already suppressed by 1/�. In the small-angle regime, where
T (x, t ) varies slowly in real space, this approximation be-
comes even better because then the corrections that would
arise have an additional small factor θ . Therefore, the leading
correction is given by the averaged Hamiltonian H0, which
shares the same structure of the static Hamiltonian with renor-
malized parameters

(w1, γ1,3,4) → (w1, γ1,3,4)J0(aABA),

w0 → w0J0(aAAA),
(22)

where J0 is the zeroth Bessel function of the first kind. There-
fore, in the high-frequency regime, the interlayer couplings
are suppressed by this type of electromagnetic field. This can
lead to a renormalization of the bandwidth. In Fig. 11 we
plot the quasienergies near the Floquet zone center along a

FIG. 11. Quasienergies along a high-symmetry path in the MBZ
for AB/AB TDBG driven with light confined in a waveguide for
aABA ≈ 0.136. The gray lines correspond to the static energies. The
index n labels the bands closest to the Floquet zone center.

(a) (b)

(c) (d)

FIG. 12. Bandwidth of the four Floquet bands closest to the
Floquet zone center as a function of the twist angle for (a) and
(b) the case γ3,4 = 0 and (c) and (d) the case γ3 = 283 meV and γ4 =
138 meV. The drive parameters are �/W = 2 and aABA ≈ 0.136. The
gray lines correspond to the static case.

high-symmetry path in the MBZ. The waveguide drive renor-
malized the bands, without breaking the symmetries of the
static system. The renormalization of the bandwidth depends
on the twist angle. In Fig. 12 we show the bandwidth of the
four bands closest to the Floquet zone center as a function of
the twist angle between the layers considering the effect of
trigonal warping and particle-hole symmetry-breaking terms.
These results suggest that dynamical bandwidth tuning could
be achieved in TDBG samples without breaking the symme-
tries of the static system.

V. EXPERIMENTAL PARAMETER ESTIMATES

The laser drive parameters required to obtain the effects
discussed here are accessible in experimental settings. The
quasienergy gap closings for TDBG without applied static
electric field were obtained for driving strengths (e/h̄)a0A =
ea0E/(h̄�) � 0.06. For the high frequency considered in the
UV regime, h̄� = 2W ≈ 5350 meV, a peak electric field E ≈
9.5 MV/cm leads to the required driving strength. A combi-
nation of a stronger electric field and lower driving frequency
also could be considered. For example, to obtain Floquet flat
bands, as shown in Fig. 9, we use h̄� = 1.05W ≈ 2809 meV
and driving strength (e/h̄)a0A = ea0E/(h̄�) ≈ 0.3, which
can be obtained with a peak electric field E ≈ 25 MV/cm. In
graphene, laser pulses with peak electric fields of 30 MV/cm
with near-IR frequencies have been employed to generate
light-field-driven currents [98].

VI. CONCLUSION

We have studied twisted double bilayer graphene driven
by circularly polarized light in free space and confined to a
waveguide. For light propagating in free space, we demon-
strated that TDBG in the AB/AB configuration with an applied
static electric field perpendicular to the layers, the drive
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permits valley-selective quasienergy gap engineering. The pe-
riodic drive also leads to a topological transition into a Chern
insulating state due to the broken time-reversal symmetry.
For TDBG in the AB/BA configuration, the driving protocol
can lead to valley-selective engineering even in the absence
of an applied electric field. Finally, we showed that stronger
drives can generate Floquet flat bands. On the other hand, light
confined to a waveguide allows us to dynamically tune the
bandwidth of the Floquet zone-center bands without breaking
the symmetries of the static system. Therefore, employing
two complementary Floquet protocols, we showed that light-
driven TDBG is a flexible system that could be used as a
platform to generate valley-polarized currents.

Note added. Recently, related theoretical work was pre-
sented by Lu et al. in [99].
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APPENDIX: EFFECTIVE FLOQUET HAMILTONIAN IN
THE INTERMEDIATE-FREQUENCY REGIME

For simplicity of discussion we will neglect the effects
of trigonal warping for this Appendix. That is, the model
Hamiltonian we consider is

H0,s =

⎛
⎜⎜⎝

h+
t,s + �1 ts 0 0

t†
s h+

b,s + �2 T (r) 0
0 T †(r) h−

t,s + �3 ts
0 0 t†

s h−
b,s + �4

⎞
⎟⎟⎠,

(A1)

where hd
l,s = vF [R(−dθ/2)(k − κd )]σxy + δ(1 − lsσ3) is the

Hamiltonian for graphene and the index d = ± labels the two
graphene bilayers and l = ± (with + for t and − for b) labels
the layers of each double layer. Furthermore, we distinguish
between AB and BA stacking for the double layers via a
term s that is s = ± for AB/BA stacking. Therefore, δlsσ3 is
a stacking- and layer-dependent gap and t is the interlayer
hopping matrix for the top and bottom double layers with
ts = t/2(σ1 − isσ2). The term

T (r) =
1∑

i=−1

e−iQi·rTi, (A2)

with

Tn = ω′12 + ω

[
cos

(
2πn

3

)
σ1 + sin

(
2πn

3

)
σ2

]
,

describes the hopping between the two bilayers and captures
the spatial dependence due to the mutual rotation. It depends
on two coupling strengths ω and ω′ that capture the effect
that AB/BA and AA-type regions of the center twisted bi-
layer can have different lattice constants. Since the hopping

is dominated by hopping between adjacent layers, we ne-
glect higher-order interlayer tunnelings. Finally, �i describe
a layer-dependent bias.

We introduce circularly polarized light by means
of minimal substitution p → p + A/vF with A =
A( cos(�t ), sin(�)). The Hamiltonian then becomes
periodically time dependent H (t ) = H (t + T ) with period T
and can be split as H (t ) = H0 + V (t ), where

V (t ) =

⎛
⎜⎝

v+(t ) 0 0 0
0 v+(t ) 0 0
0 0 v−(t ) 0
0 0 0 v−(t )

⎞
⎟⎠, (A3)

with v±(t ) = R(∓θ )Aσxy.
The time dependence makes a full treatment of the prob-

lem cumbersome, especially if one wants to build on the
model and introduce additional complications such as disor-
der. Luckily, the time dependence can be reduced. This can
either be done via a perturbative expansion or nonperturba-
tively by going to a rotating frame. A useful rotating frame
of such a sort is implemented by a unitary transformation
U (t ) that fulfills U (T ) = 1 because at stroboscopic times one
may forget about the unitary transformation since it is unity.
Naively, one may choose such a unitary transform that has the
form U (t ) = exp[−i

∫
dt V (t )]. While this is useful and leads

to good results, it is not the ideal choice for the problem at
hand. This is because it can introduce mathematical artifacts
such as an unphysical breaking of rotational symmetry like
in the case of graphene [43,62]. For our case we therefore
employ a better choice that was introduced in [62] and split
the time-dependent part of the Hamiltonian as

V1(t ) = A cos(ωt )

⎛
⎜⎜⎝

σ
θ/2
1 0 0 0
0 σ

θ/2
1 0 0

0 0 σ
−θ/2
1 0

0 0 0 σ
−θ/2
1

⎞
⎟⎟⎠, (A4)

V2(t ) = A sin(ωt )

⎛
⎜⎜⎝

σ
θ/2
2 0 0 0
0 σ

θ/2
2 0 0

0 0 σ
−θ/2
2 0

0 0 0 σ
−θ/2
2

⎞
⎟⎟⎠,

where the rotated Pauli matrices σ
θ/2
i given by σ

θ/2
i =

ei/4θσ3σie−i/4θσ3 were introduced as a convenient shorthand.
The unitary transformation we use now is given as

U (t ) = exp

(
− i

∫
dtV1(t )

)
exp

(
− i

∫
dtV2(t )

)
. (A5)

This choice is useful because it preserves rotational invari-
ance of the dispersion relation after a time average over one
period if the interlayer couplings are neglected as seen in
[62] and leads to an improvement over more conventional
high-frequency expansions.

If we apply this unitary transformation to the Schrödinger
equation i∂tψ = [H0 + V (t )]ψ and take an average over one
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period, we arrive at the effective Hamiltonian

HF,s = R†

⎛
⎜⎜⎜⎝

h̃+
t,s+�1 t̃s 0 0

t̃†
s h̃+

b,s+�2 T̃ (r) 0

0 T̃ †(r) h̃−
t,s+�3 t̃s

0 0 t̃†
s h̃−

b,s+�4

⎞
⎟⎟⎟⎠R,

(A6)
where R is a unitary transformation given as

R =

⎛
⎜⎝

R+ 0 0 0
0 R+ 0 0
0 0 R− 0
0 0 0 R−

⎞
⎟⎠, (A7)

with

R± = exp

(
− i

2
σ

±θ/2
2 Ã

)
,

which includes a rotation around the y axis in pseudospin
space with angle Ã = 2A

�
. In this rotated space we find that

the Hamiltonian for a single graphene layer is modified as

h̃d
l,s = ṽF [R(−d θ/2)k]σxy + δ(1 − lsJ0(

√
2Ã)σ3) − �̃σ3,

(A8)

where we find that the layer- and stacking-dependent gap
lsσ3 → lsJ0(

√
2Ã) has been suppressed by J0(

√
2Ã), where

Ji are Bessel functions of the first kind. The Fermi velocity
is lowered to vF → ṽF = J0(Ã)vF and a new stacking- and

layer-independent gap �̃ = A
J1( 2

√
2A

�
)√

2
has been introduced. For

the interlayer couplings in the two double layers we find
ts = t̃/2(σ1 − isσ2), with merely the strength renormalized to
t → t̃ = tJ0(Ã). The position-dependent interlayer coupling
for the two center graphene layers changes to

T̃ (r) =
1∑

i=−1

e−iQi·r{T̃i + ω′′
θ/2[sin(θ/2)12 − i cos(θ/2)σ3]},

with

T̃n = ω′12 + ω̃

[
cos

(
2πn

3

)
σ1 + sin

(
2πn

3

)
σ2

]
, (A9)

where the coupling ω → ω̃ = J0(Ã)ω has been renor-
malized and a new angle-dependent coupling ω′′

θ/2 =
sin(θ/2)[J0(

√
2Ã) − 1]ω′ has been introduced.
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