
 

Harnessing Peptide Binding to Capture and Reclaim Phosphate 

ABSTRACT:

1. Introduction 



 

2. Results and Discussion 

2.1 Design of the Peptide Amphiphile Prototype Material  

     



 

2.2 Analysis of Self-Assembled Micelle Properties 

   



 

2.3 Analysis of Fundamental Phosphate-Binding Properties  
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2.4 Simulation Results Elucidate Binding Properties 

2.4.1 Phosphate-binding to Unimer PA 



 

 

2.4.2 Phosphate-binding to Peptide Amphiphile Micelle 



 

𝑃𝑀𝐹(𝑟) = 𝑘𝑇𝑙𝑛(𝑃(𝑟)) 𝑘 𝑇

𝑃(𝑟)



 

2.5 Selectivity Over Nitrate and Nitrite 
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2.6 Cycles of Capture and Release 

 

3. Conclusion 
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