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Motivated by the recent experimental realization of twisted transition metal dichalcogenide bilayers, we study
a simplified model driven by different forms of monochromatic light. As a concrete and representative example
we use parameters that correspond to a twisted MoTe2 homobilayer. First, we consider irradiation with circularly
polarized light in free space and demonstrate that the corresponding Floquet Hamiltonian takes the same form as
the static Hamiltonian, only with a constant overall shift in quasienergy. This is in stark contrast to twisted bilayer
graphene, where new terms are typically generated under an analogous drive. Longitudinal light, on the other
hand, which can be generated from the transverse magnetic mode in a waveguide, has a much more dramatic
effect—it renormalizes the tunneling strength between the layers, which effectively permits the tuning of the
twist angle in situ. We find that, by varying the frequency and amplitude of the drive, one can induce a topological
transition that cannot be obtained with the traditional form of the Floquet drive in free space. Furthermore,
we find that strong drives can have a profound effect on the layer pseudospin texture of the twisted system,
which coincides with multiple simultaneous band gap closings in the infinite-frequency limit. Surprisingly, these
band-gap closings are not associated with topological transitions. For high but finite drive frequencies near
0.7 eV, the infinite-frequency band crossings become band gap minima of the order of 10−6 eV or smaller.
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I. INTRODUCTION

After the discovery of superconductivity in twisted bilayer
graphene [1] there has been a tremendous interest in moiré
materials [1–40]. Particularly notable are those derived from
graphene such as twisted bilayers [2–32] and stretched and
strained graphene bilayers [41,42]. Much of this interest is de-
rived from the possibility to engineer moiré patterns that lead
to a rich twist angle-dependent band structure. Furthermore
one finds flat bands at specific magic angles [3]. Flat bands
imply small to vanishing kinetic energy, which renders the
electron-electron interactions a dominant energy scale. There-
fore, flat band systems can host strongly correlated phases of
matter and bilayers of various twist angles offer an opportu-
nity to tune the band flatness.

An interesting class of materials closely related to
graphene is transition metal dichalcogenides (TMDs). TMDs
are a family of materials with chemical formula MX2, where
M is a transition metal (e.g., W or Mo) and X any of the
three chalcogens S, Se, or Te [43,44]. They have recently
attracted attention because of their interesting electronic and
optical properties [44]. Some of this interest is owed to
their two-dimensional nature and some to their direct band
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gap with associated frequency in the optical range. TMDs
lend themselves to the design of electronic components such
as transistors [44,45]. Furthermore they display interesting
optical effects such as an extraordinary large value of the re-
fractive index in the visible frequency range [46]. Due to their
dimensionality and lattice structure, the study of moiré super-
lattices has been extended to TMDs. Theoretical work [34–38]
has proposed interesting effects in different twisted TMDs
bilayers (tTMDs) including flatbands appearing for a range of
angles [37] and angle dependent topological transitions [34].
Experimentally, evidence for moiré excitons has been reported
in tTMD heterobilayers [47–49].

A second line of research with recent rapid development is
periodically driven quantum systems or Floquet systems, e.g.,
a system irradiated by monochromatic laser light. Such stud-
ies have been motivated by the prediction of phases of matter
and transitions that cannot be achieved at equilibrium [50–54],
as well as the possibility to engineer rich topological struc-
tures [55–71]. This line of research is also motivated by
the possibility of studying these periodically driven sys-
tems by effective time-independent Floquet Hamiltonians,
which greatly simplify their treatment. Several theoretical
approaches have been developed and include perturbative
methods and their applications [72–87] and nonperturbative
methods [74,87–93]. Inevitably, Floquet studies have ap-
peared for graphene [65,66,71,89,94–100]. In graphene one
may apply circularly polarized light to open a gap and break
time-reversal symmetry. Similarly, there have been studies
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FIG. 1. Top and side view of a twisted TMD double layer. The
black atoms correspond to the top layer Mo atoms, the gray atoms to
the bottom layer. The dark yellow atoms correspond to top layer Te
atoms and the yellow ones to the bottom layer.

on TMDs under the influence of light [101–103]; circularly
polarized light can lift the valley degeneracy [102].

More recently there has been interest in the effects of
light on moiré materials. For instance, there have been
multiple studies of twisted bilayer graphene subjected to cir-
cularly polarized light [104–108] and transverse magnetic
mode (longitudinal component) light, like the transverse mag-
netic mode from a waveguide [109]. Twisted double bilayer
graphene [110] has been studied under the influence of both
forms of light. A recent review of these topics can be found in
Ref. [87]. However, for tTMDs these types of monochromatic
drives have not been investigated yet. This is the topic of this
work.

The remainder of the paper is organized as follows. In
Sec. II we give a brief summary of relevant results regarding
the undriven tTMD and its effective Hamiltonian. In Sec. III
we discuss the limitation the undriven model faces when
subjected to periodic drive and how the model has to be regu-
larized to accurately capture the influence of a periodic drive.
In Sec. IV we discuss how light of different polarizations
(including longitudinal) couples in the effective model and
provides a brief discussion of the numerical implementation
of the time-dependent Hamiltonians. The effects of light on
band topology, pseudospin texture, and band structure we
observe in driven systems and their effective time-independent
description are discussed in Sec. V. Lastly we summarize our
results in Sec. VI.

II. THE UNDRIVEN MODEL

The starting point of our discussion for a twisted TMD
homobilayer, as shown in Fig. 1 for MoTe2, is the low-energy

effective Hamiltonian introduced in Ref. [34]

H↑(r)[ f ] =
(

f (k − κ+) + �1(r) �T (r)

�
†
T (r) f (k − κ−) + �−1(r)

)
,

(1)
where f (k) = −k2/(2m∗) is the approximate low-energy va-
lence band dispersion of a single layer TMD near the K point.
We will later introduce an alternate approximation for this
term since a bounded Hamiltonian is more appropriate in a
driven setting because it improves convergence properties.
Alternatively, one could introduce a cutoff energy.

The Hamiltonian Eq. (1) is defined in the basis � =
(�b, �t ), where �b (�t ) corresponds to the bottom (top) layer
creation operator with spin up. The two layers are mutually
rotated with respect to each other by an angle θ , which will be
assumed to be small, i.e., θ � 10◦. A bilayer with larger twist
angles becomes quasiperiodic and therefore will not be con-
sidered here. To have momenta in both layers measured with
respect to a common coordinate system one needs to introduce
the mutual shifts κ± = 2πθ (−1/

√
3,±1/3)/a0, where a0 is

the intralayer lattice constant.
Geometrically, the rotational mismatch between the layers

leads to a moiré pattern that is captured by the following
effective interlayer tunneling term

�T (r) = w(1 + e−iθG2·(ẑ×r) + e−iθG3·(ẑ×r) ), (2)

where Gn = 4π/(
√

3a0)Rz((n − 1)π/3)ŷ and Rz is a rotation
matrix around the z axis. Here, w determines the strength
of the interlayer coupling. Furthermore, we have an effective
position-dependent layer bias that is given as

�l = 2V
3∑

j=1

cos(θG2 j+1(ẑ × r) + lψ ), (3)

where V sets the strength of the position-dependent in-
plane bias and the index l = ±1. These position dependent
terms in the Hamiltonian correspond to the moiré poten-
tial and endow the twisted TMD with a larger unit cell
than a single layer TMD. The characteristic length scale
is aM = a0/θ and has an associated smaller moiré Bril-
louin zone (mBZ) as seen in Fig. 3. Throughout this
work and for concreteness, we fix the physical parame-
ters to ones that correspond to MoTe2. That is we con-
sider the model as in Ref. [34], i.e., (V,w, ψ, m∗, a0) =
(8 meV,−8.5 meV,−89.6◦, 0.62me, 3.47 Å), where m∗ is
an effective mass, ψ is a phase term, and a0 is the intralayer
distance between sites.

We will now review some of the interesting equilibrium
properties of Hamiltonian that were discussed in Ref. [34]. It
is useful to define a layer-space pseudospin magnetic field as

�(r) =
(

Re(�†
T (r)), Im(�†

T (r)),
�1(r) − �−1(r)

2

)T

. (4)

As shown in Fig. 2, for this system, �(r) exhibits a layer space
skyrmion pseudospin texture, which winds once around the
moiré unit cell [34,111].

In Fig. 3(a) we plot the band structure for a twist angle of
1.2◦. The top three bands exhibit a narrow bandwidth. Fur-
thermore, the different bands have nontrivial Chern numbers
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FIG. 2. Plot of �(r) = (�x, �y,�z ), where �x,y correspond to
the red arrows and the density plot corresponds to �z.

(as indicated in the right of the figure)

Cn = 1

2π i

∫
mBZ

(∇ × 〈un(k)|∂k|un(k)〉)zdk, (5)

where |un〉 is the nth eigenvector of the Bloch Hamiltonian.
As the twist angle is increased, the gap between bands n = 2
and n = 3 decreases (counting from the “top”) until the gap
closes at θ ≈ 1.8◦, as shown in Fig. 3(c). This gap closing is
accompanied by a change in the band Chern numbers from
(−1, 0) to (1,−2) [Fig. 3(d)].

It is interesting that such a topological transition may be
achieved merely by changing the angle. However, in order
to study the physics across the transition, one would have to
prepare a new sample for each angle and match the angle very
closely. It would be advantageous to be able to tune a similar
transition in situ. We will study the effect of different forms of
light and will find that it is indeed possible to use longitudinal
light to induce the same transition.

III. REGULARIZATION OF THE UNDRIVEN
HAMILTONIAN

After reviewing the equilibrium properties, we will inves-
tigate the properties of the system under the influence of
different light sources. We first determine what frequency
regimes are most likely to have an accurate description us-
ing effective Floquet Hamiltonians. First one should note
that in order to be consistent with the low-energy effective
Hamiltonian in Eq. (1) we need to make sure that driving
frequencies fulfill 	 < 1.1 eV so as to avoid interband absorp-
tion to remote higher energy bands that are not captured with
this Hamiltonian (see Fig. 4). We also neglect lower energy
valence bands because near the K point they are spectrally
isolated (the gap to additional valence bands is of the order
of ∼2 eV [114]). This consideration does not apply to the the
spin-orbit split partner of the top valence band, which is close
in energy (�SOC ≈ 220 meV [34]). Our neglect of this band is,
however, justified by the absence of optical coupling between

FIG. 3. The figure shows how a variation of twist angle can
induce a band gap closing and reopening and how Chern numbers
of the bands change as a result. In (a), the plot shows the energy
spectrum for a twist angle 1.2◦ along a high symmetry path in the
Brillouin zone; in (b) we show the band gap between the second
band E2 and third band E3 and find that it closes at an angle of
approximately 1.8◦; in (d) we show the energy spectrum along a high
symmetry path for a twist angle of 2◦. Panel (c) shows the moiré
BZ. It should be noted that the gaps between bands four and five are
small of the order of ∼0.1 meV and therefore are difficult to see in
the figures.

the spin-orbit split partners at the top of the valence band. In
Appendix 1 we provide some additional details. Precisely, this
means that for frequencies close to 1.1 eV we assume that
the effects of light are dominated by single photon processes.
Other bands that were neglected, such as ones coming from
different orbitals, will also be ignored under the same assump-
tion.

Before we study the effect of light, however, it is important
to devise a relevant model that makes it easy to treat using
high-frequency approximations in Floquet theory. Many of the
estimates for such discussions rely on operator norms. The
effective Hamiltonian in Eq. (1), however, is not well suited to
such estimates because one of its constituents f (k) = − k2

2m∗ is
unbounded. That the Hamiltonian is unbounded also leads to
convergence issues in our numerics [115] and therefore it is
best avoided by choosing a more well-suited effective model.
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To sidestep these issues we realize that we need to offer
a suitable replacement for f (k) that is bounded. The best
choice is of course to make use of an improved approximation

that captures some features on a more global scale. Such an
expression is given below (the details of its derivation are
given in Appendix 2)

f̃ (k − K) ≈ C0 +
5∑

n=1

Cn[2 cos(nXk ) cos(nYk ) + cos(2nXk )]

+ C6[2 cos(3Xk ) cos(Yk ) + cos(2Yk )] + C7[2 cos(6Xk ) cos(2Yk ) + cos(4Yk )]

+ 2C8[cos(8Xk ) cos(2Yk ) + cos(7Xk ) cos(3Yk ) + cos(Xk ) cos(5Yk )]

+ 2C9[cos(9Xk ) cos(Yk ) + cos(6Xk ) cos(4Yk ) + cos(3Xk ) cos(5Yk )]

+ 2C10[cos(7Xk ) cos(Yk ) + cos(5Xk ) cos(3Yk ) + cos(2Xk ) cos(4Yk )]

+ 2C11[cos(5Xk ) cos(Yk ) + cos(4Xk ) cos(2Yk ) + cos(Xk ) cos(3Yk )], (6)

where we introduced the shorthand notation Yk = (
√

3/2)aky, Xk = (1/2)akx and included a shift by K = (4π/3/a, 0) to end
up with a more convenient notation, where a = 3.472 Å is the lattice constant of the unit cell [112]. The coefficients in this
expression are given in units of eV as

C0 = −0.4137; C1 = −0.1046; C2 = 0.0322 C3 = −0.0221; C4 = −0.0080; C5 = −0.0012

C6 = 0.0916; C7 = 0.0060; C8 = −0.0047 C9 = 0.0080; C10 = −0.0055; C11 = 0.0046. (7)

To motivate this expression we recall that f (k) arises from
one particular band in single layer MoTe2 (see Appendix 2).
The expression f (k) = − k2

2m∗ is a crude approximation of this
band only valid near K, and f̃ (k) captures more features and
is better behaved in the sense that it is bounded, as shown in
Fig. 4, although we should still stress that it is most valid near
K because some behavior due to spin-orbit coupling away
from the K point was neglected. We refer to Appendix 2 for a
more detailed discussion on the derivation of these results. We
observe that the new approximation (blue) captures the band

Γ K M Γ

0

1

2

3

E
[e
V]

FIG. 4. Equilibrium band structure for MoTe2 along a high-
symmetry path in the BZ. Spin splitting effects are neglected [112]
especially since near the K point of interest the splitting is just a
constant energy shift [113]. Shown in dashed black is the active
low-energy band of MoTe2 that enters in the approximate description
of the effective Hamiltonian (1) via f (k). In gray we show inactive
bands that do not contribute to the description. In red we present the
quadratic approximation used in Eq. (1) and in blue the improved
approximation. While we only plot a representative high symmetry
path, the approximation is valid in the whole Brillouin zone.

of interest (dashed black) more accurately than the quadratic
approximation (red). Intralayer couplings between the blue
band and the gray bands are assumed negligible because of
the large energy gap. Since interlayer couplings are usually
even weaker we assume that we can neglect the upper gray
bands and other bands that are not displayed.

The Hamiltonian now is the same as Eq. (1), just with the
new f̃ instead of f , that is

H↑ =
(

f̃ (R−θ/2(k − κ+)) + �1 �T

�
†
T f̃ (Rθ/2(k − κ−)) + �−1

)
,

(8)
where all references to position dependence have been
dropped to simplify the notation. A rotation matrix for mo-
menta had to be introduced to measure momenta in both layers
in the same coordinate system, which was necessary because
f̃ (k) is not rotationally symmetric unlike f (k). One should
note that f̃ (k) has the dominant bandwidth of the problem
∼0.7 eV. We stress that our approximation means that only
intravalence band optical matrix elements are considered in
this theory. We also stress that more realistic simulations that
take other bands into account are needed but are beyond the
scope of this work. Therefore, we continue by conventional
estimates [73,74,89] with our model and find that driving
frequencies 	 > 0.7 eV can be considered to be in a high-
frequency limit from this theoretical point of view. We will
neglect the influence that light in this frequency regime poten-
tially has on phonons.

We also stress that the estimates for the high frequency
regime window discussed here are specific to twisted MoTe2

and that the high frequency regime for other TMDs may be
different or may not even exist. However, the existence of a
similar regime for other TMDs seems likely. Particularly, if we
look at band structure plots shown in Ref. [112] for different
single layer TMDs (single layer energies are the dominant
energy scale and therefore serve well as first estimate), we
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find that each of the ones shown would likely permit a similar
high frequency regime.

IV. MATHEMATICAL ASPECTS OF
LIGHT-DRIVEN SYSTEM

In this section we will discuss how different forms of light
affect the Hamiltonian in Eq. (8). A periodic time-dependent
Hamiltonian H (t + T ) = H (t ) commutes with the generator
of time translations, ei(−iT ∂t ). Therefore, similar to Bloch’s
theorem the wave function factorizes in the form �(t ) =

e−iεt u(t ), where u(t ) is periodic in time and ε is a con-
stant called the quasienergy [73,90]. Inserting this ansatz in
the Schrödinger equation, one finds the Floquet-Schrödinger
equation,

εu(t ) = [H (t ) − i∂t ]u(t ), (9)

which now treats time on the same level as position—as an
operator. If we expand Eq. (9) in terms of plane waves einωt ,
we find that the equation can be put in the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

· · · H1 H0 − ω H−1 H−2 H−3 · · ·
· · · H2 H1 H0 H−1 H−2 · · ·
· · · H3 H2 H1 H0 + ω H−1 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

u−1

u0

u1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

u−1

u0

u1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where

Hn = 1

T

∫ T

0
dte−inωt H (t ) (11)

and

un = 1

T

∫ T

0
dte−inωt . (12)

This representation is exact and suitable for numerical im-
plementations upon truncation to finite |n| � nmax. Physical
considerations must be made to choose a reasonable nmax, and
convergence can be checked by changing this value and seeing
that the results around n = 0 are numerically unchanged. In
the next sections, we use this representation to obtain our
results.

A. Circularly polarized light

We first consider the twisted TMD when subjected to
circularly polarized light as shown in Fig. 5. Circularly
polarized light is described by a vector potential that has
components only in the plane and can be introduced very
simply via the usual minimal substitution k → k − A and
A = (Ax cos(	t ), Ay sin(	t )). Here we neglect the effect light
has on interlayer hopping elements because (i) interlayer
hopping is dominated by hopping processes that are almost
perfectly in the z direction (in the Peierls substitution this
means that for circularly polarized light Adl ≈ 0, where dl is
the displacement element between atoms in adjacent layers),
and (ii) interlayer hoppings are initially so small compared to
intralayer hoppings that corrections to them can be neglected
when compared to corrections due to the intralayer hoppings.

One may now want to compute the components Hn that are
needed for a numerical implementation. The result is given
below

Hcirc
n,↑ (r) = H̃ circ

n + �V (r)δ0n, (13)

where

�V (r) =
(

�1(r) �T (r)

�
†
T (r) �−1(r)

)
(14)

with �T (r) given by Eq. (2), �±1(r) given by Eq. (3), and

H̃ circ
n =

(
f̃n(R−θ/2(k − κ+)) 0

0 f̃n(Rθ/2(k − κ−))

)
, (15)

where the functions f̃n(k) can be found by first decomposing
f̃ into a sum of qk

n1,n2
= cos(n1Xk + n2Yk ). Afterwards one

may apply minimal coupling to the vector potential k →
k − A(t ) and finds that the time dependence in the resulting
Hamiltonian only enters through qk−A(t )

n1,n2
. One may therefore

compute the integrals q̃n
n1,n2

= 1
T

∫ T
0 dtqk−A(t )

n1,n2
e−inωt . The re-

sult of this analysis allows us to find f̃n. One merely has to

FIG. 5. Cartoon of a twisted TMD subjected to circularly polar-
ized light from a distant source in free space.
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FIG. 6. Cartoon of a twisted TMD double layer subjected to a
transverse magnetic modes from a waveguide.

replace every term qn1,n2 in f̃ by

q̃n
n1,n2

= eim(τ (n1,n2 )+ π
2 )Jm

(
Aa0

2

√
n2

1 + 3n2
2

)

× cos

(
Xkn1 + Ykn2 + π

(
m

2
+ 2n1

3

))

− cos

(
2πn1

3

)
δ0,m, (16)

where Jm is the mth Bessel function of the first kind. Addi-
tionally we have

τn1,n2 =
{

θ + π
2 ; n2 = 0

tan−1
( n1√

3n2

) + π
2 (1 − sgn(n2)); else.

(17)

We have now derived the mathematical formulation in the
extended space picture for circularly polarized light. Before
we discuss the physical consequences of the light, let us
first turn to the mathematical formulation for light from a
waveguide.

B. Light from a waveguide

Let us next consider the transverse magnetic mode, which
has an electric field component in the interlayer direction.
Light subjected to a waveguide may have such a mode as dis-
played in Fig. 6. In a finite region of space it may accurately
be approximated by the vector potential A = A cos(	t )ẑ,
which has only a longitudinal component [109,110]. This
form of light can be included in the Hamiltonian via the
replacement w → e−iAaL cos(	t )w because it only affects in-
terlayer couplings through a Peierls substitution. This up to
a gauge transformation is equivalent to an electric potential
between layers. More details can be found in Appendix 1.
We assumed that the thickness of the twisted TMD bilayer
aL ≈ 7.1 Å [116] is much smaller than the wavelength λ of
light aL � λ.

The relevant quantities Hn for an extended space numerical
implementation are found very conveniently as

Hcirc
n,↑ (r) = H̃δn,0 + �̃V,n(r), (18)

where (with position dependence dropped to simplify the
notation)

H̃ =
(

f̃ (R−θ/2(k − κ+)) + �1 0

0 f̃ (Rθ/2(k − κ−)) + �−1

)
(19)

and

�̃V,n(r) =
(

0 �T,n(r)

�
†
T,n(r) 0

)
, (20)

where

�T,n(r) = inJn(aLA)�T (r). (21)

Here Jn is the nth Bessel function of the first kind.

V. PHYSICAL ASPECTS OF LIGHT-DRIVEN TWISTED
TMD BILAYERS

Now that we have collected all the necessary parts for a
numerical implementation of the light-matter coupling, we
discuss the impact that different forms of light have on the
tTMD.

A. Effect of circularly polarized light

We consider the high-frequency regime and use a van
Vleck expansion to first order,

HvV ≈ H0 +
∑

n

[H−n, Hn]

2n	
. (22)

We recognize immediately from Eq. (15) that [H−n, Hn] = 0
for n �= 0. Therefore, the first order corrections, those that go
as 	−1, vanish. For the zeroth order contribution we will focus
on the low-energy results that for small angles correspond to
small momentum displacements from the K point (not quasi-
momenta) and we consider relatively weak drives A. Thus, we
are allowed to do a Taylor expansion around small momenta
and A.

The result one finds is quite lucid. It is only a constant
quasienergy shift − A2

2m∗ . This is also confirmed numerically:
For small angles, low energies, and in the high-frequency
regime the only relevant change appears to be this shift. This is
in stark contrast to twisted bilayer graphene where circularly
polarized light has a profound effect on the spectrum. For
graphene the lowest order effect is the opening of a gap; for
the twisted TMD there already is a significant gap and there-
fore the effect is small. The results presented for far are only
valid in the extreme high-frequency regime. As the frequency
decreases and the Floquet zones overlap, other effects can be
expected. Instead of pursuing this route, we consider different
forms of light, namely longitudinal light, which can have a
profound effect on the system at leading order.

B. Effect of light from a waveguide

We will consider only the high-frequency regime for sim-
plicity and make use of a van Vleck expansion to first order.
Similar to circularly polarized light, the first order contribu-
tion vanishes because [H−n, Hn] = 0 for n �= 0 as one can see
from Eq. (18). The effect of the zeroth order contribution is
just a renormalization of the interlayer coupling strengths.
If we look at this in terms of a skyrmion pseudospin lattice
derived from �(r), then we find that the texture essentially
remains the same, aside from the length of vectors in the x-y
plane are shortened by a factor of J0(aLA), the z direction
remains unchanged. Such textures are a notable indicator of
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possible topological properties, which must be tested by eval-
uating candidate topological invariants.

1. Effect on band topology and spectrum

In the regime of interest, the effective Floquet Hamiltonian
to zeroth order in the van Vleck expansion is given by (first
order corrections vanish)

H↑ =
(

f̃ (R−θ/2(k − κ+)) + �1 J0(aLA)�T

J0(aLA)�†
T f̃ (Rθ/2(k − κ−)) + �−1

)
,

(23)
where the position dependence of �i was dropped for a
shorter notation. It is important to stress that this Hamiltonian
is exact in the infinite-frequency regime. From the structure of
the effective Hamiltonian, we find that light from a waveguide
decreases the strength of the interlayer coupling, leading to
an effective change in the twist angle. Particularly, by tuning
the properties of the laser, we can induce quasienergy band
closings and a subsequent band opening when one is close to
but above to the critical angle θ∗ ≈ 1.85◦, as shown in Fig. 7.
This leads to a change in the band Chern numbers. In Fig. 8
we plot the Floquet Berry curvature for aMA = 0.1 [(a)–(c)]
and aMA = 0.5 [(b)–(d)].

In a time-independent system the bulk-edge correspon-
dence tells us that Chern numbers can be used to compute
the number of edge states between two adjacent materials.
However, in a periodically driven system this bulk-edge cor-
respondence is not determined by the Chern number but by
the winding number W[Uε]. Unlike the Chern number that
is associated with a band, the winding number is associated
with a gap at quasienergy ε. The winding number for a two-
dimensional periodically driven system is given as

W[U ] = 1

8π2

∫
dtdk Tr

(
U−1∂tU

[
U−1∂kxU ,U−1∂kyU

])
,

(24)
and Uε is a modified time evolution operator [70]. Similar
to Chern numbers we also find that the winding number
that is associated with the gap between the second and third
quasienergy band changes. This indicates a change in number
of edge states in a sample with open boundary conditions
(corresponding to a finite material with physical boundaries).

2. Effect on the pseudospin texture

In addition to the band topology we also find that light has
an impact on the pseudospin texture. Specifically, we find that
the terms

�x,y → J0(AaL )�x,y (25)

are renormalized. This of course at first does not impact the
structure seen in Fig. 2 since only their magnitude changes
unless J0 changes sign. In the latter case the arrows in the x-y
plane change direction. This is shown in Fig. 9. Notice that
the green arrows in Fig. 9 point in the opposite direction com-
pared to the red arrows in Fig. 2. In our case this directional
change occurs at AaL = j0,1 ≈ 2.405, where jn,1 is the first
zero of the nth Bessel function of the first kind.

Interestingly, this observation is not an artifact of the ap-
proximation, which is expected to work for AaL < 1. We
have found the same result by exact numerical calculations.
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FIG. 7. The figure shows that one can use light from a waveguide
to close a gap between the second and third band (measured from the
“top”) of the spectrum at a twist angle of 1.96◦. In (a) we show the
system subjected to waveguide light of frequency 0.7 eV and driving
strength AaL = 0.1, in (b) we show that the gap between band two
and three at the γ point eventually closes and reopens as a function of
driving strength AaL . (c) shows the bands when subjected to driving
strengths AaL = 0.5 with the gap reopened. The physical realizability
of this value for AaL is discussed at the end of Sec. V B 2. We
included blue insets with the Chern numbers C and winding numbers
W . The computations were made by including three Floquet copies
and are converged.

It should also be noted that this value for AaL, while large, is
just within experimental reach: for 	 = 0.7 eV and an electric
field strength E = 25 MV/cm, we find that AaL ≈ 2.5.

Now one can imagine that if something drastic happens in
real space like in our case a sudden change in the pseudospin
texture, there may also be something drastic associated with it
in momentum space such as changes in the quasienergy band
structure. Indeed, we find that in the infinite-frequency limit
of Hamiltonian (23) multiple band gaps close at this point
and reopen afterwards. For the finite but large frequency limit
seen in Fig. 10 we find that this corresponds to band gaps
that almost close with gaps as small as 10−6 eV for a driving
frequency of 	 = 0.7 eV.

In Fig. 11 we show the Floquet Berry curvature F for
the top four quasienergy bands in the first Floquet zone for
θ = 2◦ and AaL = 0.9 j0,1. Interestingly, even in the infinite-
frequency regime the band gap closings are not associated
with a change in Chern and winding numbers so there is
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FIG. 8. Floquet Berry curvature for the four top Floquet
quasienergies in the first Floquet zone before [(a)–(c)] and after the
gap closing [(b)–(d)] for the same band. The corresponding band
Chern numbers are (a) C2 = 1 (aMA = 0.1), (b) C2 = −1 (aMA =
0.5), (c) C3 = −2 (aMA = 0.1), and (d) C3 = 0 (aMA = 0.5). Here
θ = 1.95◦ and the driving frequency 	 = 0.7 eV.

no topological transition. The kinks in the plot at around
AaL ≈ 0.4, AaL ≈ 1.96, and AaL ≈ 2.95 are associated with
a band gap closing between band two and three near angle
θ∗. The other two kinks at AaL ≈ 1.96 and AaL ≈ 2.95 are
associated with a band gap that closes between the fourth and
fifth band.

VI. CONCLUSIONS

In conclusion, we have investigated the effect of circu-
larly and longitudinally polarized light on twisted transition
metal dichalcogenides (tTMD) and found that the effect of

FIG. 9. Plot of �(r) for negative J0(AaL ), where J0(AaL )�x,y

correspond to the green arrows and the density plot corresponds to
�z.

FIG. 10. The figure illustrates that for strong drives at an angle
of θ = 2◦ gaps for many bands the gap at the γ point closes and
reopens. In (a) we show a plot of the quasienergy band structure
along a high symmetry path for AaL = 0.9 j0,1, in subfigure (c) for
AaL = 1.1 j0,1. In subfigure (b) we plot several band gaps at the γ

point as a function of AaL . The results were computed numerically
using three Floquet copies and a driving frequency 	 = 0.7 eV.

FIG. 11. Floquet Berry curvature for the four top Floquet
quasienergies in the first Floquet zone. The corresponding band
Chern numbers are (a) C1 = 1, (b) C2 = −1, (c) C3 = 0, and (d) C4 =
2. The parameters are θ = 2◦, AaL = 0.9 j0,1, and driving frequency
	 = 0.7 eV.
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circularly polarized light in the high-frequency regime leads
to a trivial shift in quasienergy spectrum, in stark contrast to
the result for twisted bilayer graphene. However, longitudinal
light emanating from a waveguide can directly renormalize
the interlayer tunneling amplitude and lead to topological
transitions. We have also computed the Floquet Berry cur-
vature for these systems to better understand the connection
to the winding number W changes indicating the topolog-
ical transitions. In addition, interlayer pseudospin skyrmion
texture manipulation in experimentally accessible regimes is
possible. Experimental signatures of the light-induced topo-
logical transition could be detected in optical conductivity
measurements [100].

Similar effects could be expected in systems with similarly
weak interlayer tunneling. Our results show dramatically that
tTMDs bring new physics to the table in the nonequilibrium
regime beyond that of twisted bilayer graphene. An exciting
frontier to consider in future work is the role of phonons (that
may be selectively excited by light) on the electronic and
magnetic properties of tTMDS. We hope this work will help
motivate further nonequilibrium studies of tTMDs to further
explore the rich scope of possible behavior in this material
class.
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APPENDIX: ORIGIN OF MODEL AND IMPROVEMENTS

1. Origin of the model and couplings to circularly and
longitudinally polarized light

Because we are dealing with an effective model it is worth-
while to understand its origin. This will help to see how the
light couples and frequency regime for which the description
is valid.

Let us first consider a single layer of a TMD. For this case
the Hamiltonian can be approximated [112,113] as

h(1)
k = a0t (kxσx − ikyσy) ⊗ 1s

2 + �̃1

2

(
σz + 1p

2

) ⊗ 1s
2

+ �̃−1

2

(
1p

2 − σz
) ⊗ 1s

2 − λ
σz − 1p

2

2
⊗ τz. (A1)

This model can be derived from a nearest neighbor tight-
binding model of a triangular lattice that involves the d-orbital
combinations dz2 and 1/

√
2(dx2−y2 + idxy) of Mo. These or-

bitals dominate the band structure for energies close to the
Fermi energy and near the K points [112]. Other types of hop-
ping such as indirect hopping processes, e.g., via Te atoms or
between other orbitals are neglected. In keeping less orbitals
we also lose some bands. We will assume that the bands we
dropped do not couple to bands we kept despite some of them
being close in energy, i.e., we will assume that the Hamilto-
nian is block diagonal and the bands we keep are in a block

separate from the rest of the Hamiltonian. The parameter λ

appears due to onsite spin-orbit couplings [112,113]. Cou-
plings between different K points are neglected and the switch
between inequivalent K → K′ can be achieved by kx → −kx

and λ → −λ [112,113].
One should note that τi are the Pauli matrices and 1s

2 the
identity matrix that are acting in spin space. The σi and 1p

2
are the corresponding Pauli matrices and the identity that are
acting in a pseudospin space spanned by pseudospin states dz2

and 1/
√

2(dx2−y2 + idxy) [112].
If there is no interaction between layers an additional layer

can be added by just having two copies of the Hamiltonian

h(2)
k = h(1)

k ⊗ 1l
2, (A2)

where 1l
2 is the identity matrix acting in layer space. Con-

sistent with the intra-atomic approximation for spin orbit
couplings we assume that the coupling between layers does
not mix spins. Therefore following [117] we find that inter-
layer couplings can be treated in the form

Hinter = T (d0) ⊗ 1s
2 ⊗ γx + iγy

2
+ T †(d0) ⊗ 1s

2 ⊗ γx − iγy

2
,

(A3)

where γi are Pauli matrices in layer space and d0 is a dis-
placement between layers. However, the interaction between
the layers also modifies �̃i → �̃i(d0) because each layer of
MoTe2 is not planar with Te atoms protruding—the atoms get
different energy contributions from adjacent layers.

We stress that this form can be derived from a tight-binding
model and that the couplings in T (d0) are proportional to
interlayer hoppings in a tight-binding model. The twisted case
can be described by replacing d0 → θ ẑ × r [34] and shifting
the momenta of the momentum operator of the upper layer by
κ− and the one of the lower layer by κ+ to account for the shift
of K points due to the rotation.

Since we now fully understand how this model is related to
a tight-binding description it is now easy to see how light of
different types that is described by a vector potential A can be

incorporated via a Peierls substitution tRR′ → e−i
∫ R′

R AdrtRR′ .
Let us first consider the case A = (Ax, Ay, 0)—like in ellipti-
cally polarized light. The approach results in the replacement
ki → ki − Ai. This is sufficient if we assume that interlayer
hopping is dominated by processes where two atomic sites
that interact are almost on top of each other because we
then have negligible displacements in the x-y direction. In
this case

∫ R′

R Adr is small for the interlayer couplings in
T (r) and the effect can be neglected. Next we consider the
case A = (0, 0, Az ), found in light coming from a waveg-
uide [109]. For simplicity we will assume that the distance
between the two layers is approximately a constant aL. Then
we find that the Peierls substitution results in a replacement
T (r) → e−iAaL T (r).

Now let us relate this model to the one in equation (1). We
first see that the Hamiltonian is diagonal in spin space and it
is therefore valid without making a further approximation to
only consider one spin species since there are no couplings.
Even in the driven case for effective Hamiltonians this is valid
because commutators that appear in an effective Hamiltonian
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do not break a block-diagonal structure (e.g., in the Magnus
expansion Heff ≈ 1

T

∫ T
0 H (t ) + i

2T

∫
dt

∫
dt1[H (t1), H (t )]).

Therefore we will focus on spin ↑. We see that the Hamil-
tonian has the same form as in the Appendix of Ref. [34] but
with the following values

�̃1 = �g + �1; �̃−1 = �−1, (A4)

where �g is a large gap of ∼1 eV and �i is given in Eq. (3).
Furthermore we have

T (d0) =
(

w2 w3

w3 w

)
+

(
w2 w3e−i2π/3

w3ei2π/3 w

)
e−iG2·d0

+
(

w2 w3ei2π/3

w3e−i2π/3 w

)
e−iG3·d0 . (A5)

As mentioned in Ref. [34] quantities roughly have orders
w2,3 ∼ 10 meV � �g and for values of ki close to the K point
a0tki � �g. Therefore �g is the dominant energy scale and
the low-energy manifold is spanned by the 1/

√
2(dx2−y2 +

idxy) orbitals of each layer. We can make use of any choice
of downfolding procedure such as the Löwdin partitioning
method [118], Schrieffer-Wolf transformation [119–121], or
Brillouin-Wigner degenerate perturbation theory [122]. In any
case one finds the Hamiltonian with the form of Eq. (1) to
second order in t and to first order in w.

From here we can directly answer the two original ques-
tions. First, light in free space described by A = (Ax, Ay, 0)
couples via the momenta ki → ki − Ai and waveguide-type
light A = (0, 0, Az ) couples via w → e−iAaL . This now is clear
because of the connections to the underlying tight-binding
model. Second, one should consider light of frequencies 	 �
�g to avoid couplings to higher energy states.

2. Better single layer dispersion

As we saw in the previous Appendix the bands of a single
layer TMD enter directly into the Hamiltonian via a downfold-
ing procedure applied to bands that are valid near the K point.
Now one may ask the question if we can do better than that
in the sense that the bands are reproduced more accurately.
One way of doing so is to start from the tight-binding Hamil-
tonian with third nearest neighbor hopping that is provided in
Ref. [112].

HTNN(k) =

⎛
⎜⎝

V0 V1 V2

V ∗
1 V11 V12

V ∗
2 V ∗

12 V22

⎞
⎟⎠ (A6)

This Hamiltonian is written in the basis of d orbitals
{dz2 , dxy, dx2−y2}. The different contributions to the Hamilto-
nian are given as

V0 = ε1 + 2t0(2 cos Xk cosYk + cos 2Xk ) + 2r0(2 cos 3Xk cosYk + cos 2Yk ) + 2u0(2 cos 2Xk cos 2Yk + cos 4Xk ) (A7)

V1 = − 2
√

3t2 sin Xk sin Yk + 2(r1 + r2) sin 3Xk sin Yk − 2
√

3u2 sin 2Xk sin 2Yk + i[2t1 sin Xk (2 cos Xk + cosYk )

+ 2(r1 − r2) sin 3Xk cosYk + 2u1 sin 2Xk (2 cos 2Xk + cos 2Yk )] (A8)

V2 = 2t2(cos 2Xk − cos Xk cosYk ) − 2√
3

(r1 + r2)(cos 3Xk cosYk − cos 2Yk ) + 2u2(cos 4Xk − cos 2Xk cos 2Yk )

+ i

[
2
√

3t1 cos Xk sin Yk + 2√
3

sin Yk (r1 − r2)(cos 3Xk + 2 cosYk ) + 2
√

3u1 cos 2Xk sin 2Yk

]
(A9)

V11 = ε2 + (t11 + 3t22) cos Xk cosYk + 2t11 cos 2Xk + 4r11 cos 3Xk cosYk + 2(r11 +
√

3r12) cos 2Yk + (u11

+ 3u22) cos 2Xk cos 2Yk + 2u11 cos 4Xk, (A10)

V12 =
√

3(t22 − t11) sin Xk sin Yk + 4r12 sin 3Xk sin Yk +
√

3(u22 − u11) sin 2Xk sin 2Yk + i[4t12 sin Xk (cos Xk − cosYk )

+ 4u12 sin 2Xk (cos 2Xk − cos 2Yk )] (A11)

with the shorthand

Xk = 1

2
kxa; Yk =

√
3

2
kya (A12)

and couplings in units of eV are given as

ε1 = 0.588; ε2 = 1.303; t0 = −0.226 t1 = −0.234; t2 = 0.036; t11 = 0.400

t12 = 0.098; t22 = 0.017; r0 = 0.003 r1 = −0.025; r2 = −0.169; r11 = 0.082

r12 = 0.051; u0 = 0.057; u1 = 0.103 u2 = 0.187; u11 = −0.045; u12 = −0.141

u22 = 0.087. (A13)

The lowest energy band of this Hamiltonian is what the band that the moiré bands described in (1) are based on.
The most obvious thing to do would be to blindly diagonalize the Hamiltonian and keep the expression for the lowest energy

band. This expression, however, is cumbersome because it involves the solution of a cubic equation. The nested square roots that
appear in the solution would make further progress in computations difficult and is not very economical. The way we can do
better is to recognize that the lattice is hexagonal and that therefore the Brillouin zone and bands have sixfold rotational symmetry
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under k → R(nπ/3) · k and mirror symmetries (kx, ky) → (−kx, ky ) and (kx, ky) → (kx,−ky). We may now start with a Fourier
series

E (k) =
∑
n,m

(cnm cos[(n1v1 + n2v2) · k] + snm sin[(n1v1 + n2v2) · k]), (A14)

where v1 = (a, 0) and v2 = a/2(1,
√

3) are lattice vectors. After imposing the symmetries and truncating such that n, m =
−5, . . . 5 we find the ansatz

E (k) = C0 +
5∑

n=1

Cn[2 cos(nXk ) cos(nYk ) + cos(2nXk )] + C6[2 cos(3Xk ) cos(Yk ) + cos(2Yk )]

+ C7[2 cos(6Xk ) cos(2Yk ) + cos(4Yk )] + 2C8[cos(8Xk ) cos(2Yk ) + cos(7Xk ) cos(3Yk )

+ cos(Xk ) cos(5Yk )] + 2C9[cos(9Xk ) cos(Yk ) + cos(6Xk ) cos(4Yk )

+ cos(3Xk ) cos(5Yk )] + 2C10[cos(7Xk ) cos(Yk ) + cos(5Xk ) cos(3Yk ) + cos(2Xk ) cos(4Yk )]

+ 2C11[cos(5Xk ) cos(Yk ) + cos(4Xk ) cos(2Yk ) + cos(Xk ) cos(3Yk )]. (A15)

Now one can fit this ansatz to the lowest energy band of HTNN. However, one still has to be careful to include a few constraints
to ensure that the low-energy part of the spectrum is captured as accurately as possible. That is we require that

d2E (k)

dkidk j

∣∣∣∣
k=K

= − 1

m∗ (A16)

and that the value at the K points correctly reproduces the result from HTNN.
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