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Spin-phonon interaction in yttrium iron garnet
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Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators.
Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying
this interaction in yttrium iron garnet (YIG), one of the most extensively investigated magnetic insulators,
remains challenging because of the large number of atoms in a unit cell. Here, we report temperature-dependent
and polarization-resolved Raman measurements in a YIG bulk crystal. We first classify the phonon modes based
on their symmetry. We then develop a modified mean-field theory and define a symmetry-adapted parameter
to quantify spin-phonon interaction in a phonon-mode specific way in YIG. Based on this improved mean-
field theory, we discover a positive correlation between the spin-phonon interaction strength and the phonon
frequency.
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I. INTRODUCTION

Magnetic insulators are of considerable interest in spin-
tronics due to their minimal spin damping [1–3]. This low
damping originates in part from the absence of low-energy
electronic excitations, leaving the spins to interact primarily
with other spins (magnons) and the lattice (phonons). Beyond
their role in spin-excitation damping, interactions between
the magnons and phonons play a crucial role in develop-
ing devices based on thermally driven spin transport [4–6],
spin pumping through hybrid spin-lattice excitations [7], and
magnon cavity quantum electrodynamics [8,9]. Of various
magnetic insulators explored for spintronic devices, yttrium
iron garnet (YIG): Y3Fe5O12 is the most widely investigated
due to its remarkably low spin damping and its high transition
temperature of 560 K [10,11]. While ab initio studies have
some progress at describing spin-wave phenomena [12,13],
extracting the spin-phonon interaction (SPI) of YIG remains
difficult due to its massive unit cell [160 atoms as in inset of
Fig. 1(a)].

The SPI in YIG has been investigated through differ-
ent types of experiments. Brillouin light scattering and spin
Seebeck transport measurements of YIG have examined the
interactions of magnons and phonons through quasiparti-
cle hybridization [14–17]. Other studies have touched upon
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the SPI by measuring the magnon-phonon energy relaxation
length and time [4,18–20]. However, no study provides a
direct and quantitative measurement of the strength of the
SPI in YIG in a phonon-mode specific way. Without knowing
the SPI strength, it is difficult to develop accurate models of
spin relaxation in YIG or compare YIG to other magnetic
insulators for device development.

Here we report Raman spectroscopy studies of optical
phonons in a YIG bulk crystal. By analyzing their symme-
try properties and temperature-dependent phonon frequency
shift, we investigate if SPI changes systematically for each
phonon mode. We determine that the complex unit cell pre-
cludes a direct correlation between symmetry or frequency
of a phonon mode with the conventional λ model of the
SPI strength [21–23]. By developing a mean-field model
and defining a parameter to describe SPI strength, we ob-
serve a correlation between this mean-field SPI parameter and
phonon frequency. These results provide crucial information
and advance the understanding of how magnons and phonons
interact in YIG.

II. EXPERIMENT

YIG (Y3Fe5O12) is an insulating ferrimagnet (FiM) with
Curie temperature TC = 570 K [24,25]. YIG crystals exhibit
symmetries described by cubic space group Ia3̄d (No. 230)
and point group Oh at the � point [26–28]. Inversion sym-
metry present in Oh implies that the phonon modes show
mutually exclusive infrared and Raman activity. The possible
Raman irreducible representations in Oh are either T2g, Eg,
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FIG. 1. (a) Raman spectra taken with ês‖êi (colinear) and ês⊥êi (crossed) polarization configurations at 8.8 K. Solid lines connect
data points for clarity. Inset shows the YIG crystal structure viewed along the [111] direction. (b), (c) Angle-dependent intensities of the
representative A1g, Eg, and T2g modes. The spectra were obtained by keeping incident polarization fixed. Panels (b) and (c) refer to colinear
and crossed polarization configurations, respectively. The fit curves follow theoretical predictions from crystal lattice symmetry.

or A1g. The crystal structure is composed of Y atoms oc-
cupying the 24c Wyckoff sites, Fe ions in the 16a and 24d
positions, and O atoms in the 96h sites. The conventional unit
cell has 8 formula units, with 24 Y ions, 40 Fe ions, and 96 O
ions for a total of 160 atoms.

Raman measurements were taken with a 532-nm laser
incident on a bulk YIG single crystal with [001] oriented
along the surface normal. The sample measured approx-
imately 5 mm × 3 mm × 1 mm and was grown using the
traveling-solvent floating-zone method in an infrared-heated
image furnace [29]. The scattered light was collected in a
backscattering geometry and directed to a diffraction grating-
based spectrometer. The observed optical phonon modes in
the Raman spectra agree with previous measurements of
YIG [30,31]. Low-temperature measurements from 8.8 to
313.65 K were performed in a closed-loop cryostat, and high-
temperature measurements from 313.65 to 631.95 K were
performed with a ceramic heater. Between each temperature,
the sample was allowed to equilibrate for 15 min or longer.
The laser spot sizes and powers were 0.8 μm and 4 mW,
and 1.3 μm and 6 mW, for the high and low-temperature
measurement sets, respectively. A saturating magnetic field
was applied in the sample plane for all measurements. Due
to constraints of the experiment systems, low-temperature
measurements used a 300-mT saturating field, and the high-
temperature measurements used a 50-mT saturating field. As
both fields were above the saturating field, typically ∼10 s
of mT, this difference did not noticeably affect the magnetic
ordering of YIG or the Raman spectra [32,33].

Raman spectra were collected with a fixed polarization (êi )
and normal incidence on the sample. Figure 1(a) shows the
spectra collect for the scattered light polarization (ês) parallel
and perpendicular to êi, at low temperature (8.8 K). Phonon
modes of different symmetries scatter light with different
polarizations. Figures 1(b) and 1(c) show the intensity of the
Raman signal from the scattered light as it passed through a
linear polarizer, with the polarization axis rotated in steps of
20 ° from −28 ° to 152 °, with 0 ° corresponding to aligned
parallel with the [110] crystal axis. Based on the results,
the phonons are categorized with their respective irreducible
representations: T2g, Eg, or A1g.

The temperature dependence of the phonon frequencies
was determined by fitting with a Lorentzian function and
extracting the central frequencies. We plot the measured Ra-
man spectra for one T2g mode at three different representative
temperatures; 8.8, 313.65, and 632 K in Figs. 2(a)–2(c),
respectively. At low temperatures (e.g., 8.8 K), the low
thermal population of the phonons reduces the Raman in-
tensity. In contrast, the phonon modes exhibit a broader
linewidth at high temperatures due to increased phonon-
phonon and phonon-magnon scattering, which lowers the
peak intensity. Consequently, the temperature-dependent fre-
quency was only measurable for a subset of the observed
phonons. The temperature dependence of the peak frequen-
cies for the two modes is shown in Figs. 2(d) and 2(e).
The temperature dependence of peak frequencies of all the
measurable phonon modes can be found in Supplemental
Material [34].

L020401-2



SPIN-PHONON INTERACTION IN YTTRIUM IRON … PHYSICAL REVIEW B 104, L020401 (2021)

FIG. 2. (a)–(c) Example spectra for different temperatures, nor-
malized to the peak intensity at 314 K. Solid lines are Lorentzian fits
with a linear offset to account for the background. Vertical dashed
lines indicate the peak positions. (d), (e) Temperature dependence
of ω276 and ω591 phonon frequencies, which have symmetries T2g

and Eg, respectively. The solid curves correspond to the anhar-
monic phonon-phonon scattering fit, which is based on fitting to data
only above the temperature Tc. The deviation from the anharmonic
curve (black arrow) reflects the corresponding spin-phonon coupling
strength, λ, given in Eq. (2).

III. RESULTS

In the absence of spin order above the transition temper-
ature (i.e., 559 K for YIG), the temperature dependence of
the optical phonon frequency ωp is determined by anharmonic
effects, i.e., phonon-phonon scattering. Well below the melt-
ing points, three-phonon scattering dictates the temperature
dependence of ωp as follows:

ωp(T ) = ωp(0) − A

(
1 + 2

exp[x] − 1

)
, (1)

where ωp(0) is the zero-temperature phonon frequency, A is
a coefficient related to the three-phonon scattering strength,
and x = h̄ωp(0)/2kBT with Planck’s constant h̄, Boltzmann’s

FIG. 3. The measured phonon frequencies are subtracted from
the temperature-dependent frequency found with the anharmonic fit
[see Figs. 2(b) and 2(c)] to determine �ωsp. Solid lines show fits
to the mean-field model which yield the spin-phonon interaction
strength δsp, given in Eq. (7).

constant kB, and temperature T [21–23]. We fit the peak fre-
quency above 559 K using Eq. (1) to determine ωp(T ) for each
phonon mode. Examples of these fits are shown in Figs. 2(d)
and 2(e).

In the magnetically ordered state, the influence of spin
order on the phonon frequency can be treated as a small
deviation, �ωsp, such that the optical phonon frequency is
given as

ω′
p = ωp(T ) + �ωsp, (2)

where ω′
p is the measured phonon frequency. Then, �ωsp can

be found by taking the difference of the measured frequency
and anharmonic temperature-dependent phonon frequency,
i.e., ω′

p − ωp(T ), as shown in Fig. 3 for selected phonon
modes.

Many previous studies of the SPI express the frequency de-
viation as �ωsp = λ〈Si · S j〉, where λ is a single term captur-
ing the SPI strength and 〈Si · S j〉 represents nearest-neighbor
spin-correlation function [35–39]. The spin-correlation func-
tion can be approximated as 〈Si · S j〉 ≈ S2

z BJ (T ), where BJ

is the Brillouin function, which has a maximum value of 1
at T/Tc = 0 [36]. Thus to find λ without the spin-related,
temperature-dependent contribution to the frequency, �ωsp

should be evaluated at T = 0. Table I reports frequency
deviation measured at 8.8 K, �ω0

sp = ω′
p − ωp(8.8 K), the
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TABLE I. Symmetry, spin-phonon frequency deviation, and λ coupling strength of the measured phonon modes in YIG.

Phonon frequency (cm–1) Symmetry Spin-phonon frequency deviation �ω0
sp (cm–1) Coupling strength λ (cm–1)

174 T2g 8.4 ± 0.9 1.3 ± 0.1
194 T2g 5.1 ± 0.8 0.8 ± 0.1
239 T2g 11.4 ± 1.0 1.8 ± 0.2
276 Eg 3.5 ± 0.6 0.6 ± 0.1
346 Eg 12 ± 2 1.9 ± 0.4
378 T2g −2.3 ± 4.2 −0.4 ± 0.7
447 T2g 8 ± 4 1.3 ± 0.6
508 Eg 8 ± 2 1.3 ± 0.3
591 T2g 10 ± 3 1.6 ± 0.5
739 A1g 11 ± 5 1.8 ± 0.8

lowest temperature reached in our experiments. The high Tc

of YIG and slow decrease of BJ (T ) results in BJ (8.8 K) ≈ 1.
Then, 〈Si · S j〉 ≈ S2

z and using Sz = 5
2 for the magnetic iron

atoms in YIG, λ is found from �ω0
sp, also reported in Ta-

ble I. Examining the results shown in Table I, there is no
clear trend for �ω0

sp and λ with either the frequency or
symmetry of the mode. These results highlight the deficiency
of the λ model that has been applied successfully for other
materials with a simple unit cell such as FeF2 and ZnCr2O
[35–39].

IV. DISCUSSION

The simple λ model, which treats all phonon modes
equally, is insufficient for describing the SPI in YIG. This
is not surprising as the large unit cell leads to complicated
phonon dispersions. However, a more detailed first-principles
approach like density-functional theory for determining the
SPI is exceedingly difficult, again due to the large unit
cell of YIG, as well as the especially high precision re-
quired in the computations to accurately describe the lattice
vibrations and their coupling to magnetic order. Thus, to
describe spin-phonon interaction in YIG, we develop a mod-
ified mean-field model that captures the mode dependence of
the SPI.

We begin with the Ginzburg-Landau (GL) potential de-
scribing the magnetic order,

F = A

2
m2 + B

2
m4 (3)

where m ≡ M/M0 is the ferrimagnetic order parameter de-
fined as the magnetization (M ) divided by its zero temperature
value (M0). The GL parameters A and B have units of energy
and A = −a(Tc − T ), where Tc is the magnetic transition tem-
perature. The temperature dependence of the order parameter
agrees well with the temperature dependence of the magnetic
moment of YIG reported in the literature (Supplemental Ma-
terial [34]).

This GL potential only includes magnetic order, and thus
needs to be expanded to include phonon contribution to the
GL potential. By including only the harmonic terms, the GL
potential takes the form

F = A

2
m2 + B

2
m4 + 1

2
μωu2 + 1

2
δspm2u2, (4)

where μ is the phonon-mode reduced mass, ω is the phonon
frequency, u is the atomic displacement, and δsp is the SPI
strength [40,41]. Note that for phonons with irreducible rep-
resentation Ag and T2g, the symmetry allows a cubic term
proportional to m2u, which is weak in YIG; see Supplemental
Material [34,42],

Equilibrium values m∗ and u∗ are found from the condi-
tions

∂F

∂m
= 0,

∂F

∂u
= 0 (5)

and the spin-dependent phonon frequency (�) is determined
by

μ�2 = ∂2F

∂u2

∣∣∣∣m = m∗
u = u∗

= μω2 + δspm2
∗. (6)

Now, using the equilibrium value of m∗ = √
a(Tc − T )/B,

� is approximately given by

�(T ) ≈ ω + δsp

2μω

(
1 − T

Tc

)
(7)

to first order in δsp. (Note: δsp is defined for angular
frequencies). Compared to the λ model, we see that the
frequency deviation is determined by the frequency and
reduced mass of the phonon mode, as well as the SPI
strength. We use this improved mean-field theory to extract
the SPI strength. Figure 3 shows �ωsp across the temperature
range, with fits using Eq. (7) to extract the δsp, shown in
Fig. 4.

To further understand the SPI found from the modified
mean-field model, we examine the atomic displacements of
each phonon mode. Using group theory projection opera-
tors, we can derive a basis of eigenmodes that brings the
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FIG. 4. Absolute value of the spin-phonon interaction strength
evaluated with the mean-field model for the phonon modes in YIG.
The measured δsp for the ω378 mode is negative (purple square), while
the rest of the measured δsp are positive.

dynamical matrix to a block-diagonal form [43]. The
739-cm–1 mode only involves the O atoms’ displacements due
to its Ag symmetry (see Supplemental Material [34]). Because
it only involves O atoms, this mode has the smallest reduced
mass μ compared with T2g and Eg modes. We find that this
phonon mode has the largest δsp. This finding is consistent
with the interpretation that the vibrations of the light O atoms
are most affected by the magnetic ordering of the heavy Fe
atoms. The symmetries of other phonon modes, T2g and Eg,
allow motions of all three ion types (Y, Fe, O) in principle.
First-principles calculations of the Raman phonon frequen-
cies and symmetries allow us to assign μ to each Raman
phonon. We find that, as expected, lower-frequency phonons
have larger μ (see Supplemental Material [34]). Using these
values of μ to calculate the SPI, we find that higher-frequency
phonons have larger SPI as shown in Fig. 4. This trend
suggests that the atoms with stronger bonds (consequently
higher phonon frequency) are more affected by magnetic
ordering.

V. CONCLUSION

In summary, we investigate SPI associated with op-
tical phonon modes of a YIG bulk crystal. By taking
polarization-resolved Raman spectra, we analyze their sym-
metry. Temperature-dependent Raman spectra taken over a
broad temperature range of 8.8–635 K allow us to evaluate
SPI quantitatively and specific to a particular phonon mode.
By developing an improved mean-field model and applying
a refined analysis, we discover that the SPI increases with
phonon frequency. The Ag mode involving vibrations of only
O atoms has the strongest SPI. These results provide both
direct and mode-specific interaction strengths, thus providing
valuable information for advancing theories of magnetic insu-
lators and for exploring spintronic devices such as those based
on spin-caloritronic effects.
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