Pebbles: Leveraging Sketches for Processing Voluminous,
High Velocity Data Streams

Thilina Buddhika, Sangmi Lee Pallickara, and Shrideep Pallickara, Members, IEEE

Abstract—\Voluminous, time-series data streams originating in continuous sensing environments pose data ingestion and processing
challenges. We present a holistic methodology centered around data sketching to address both challenges. We introduce an
order-preserving sketching algorithm that we have designed for space-efficient representation of multi-feature streams with native
support for stream processing related operations. Observational streams are preprocessed at the edges of the network generating
sketched streams to reduce data transfer costs and energy consumption. Ingested sketched streams are then processed using
sketch-aware extensions to existing stream processing APIs delivering improved performance. Our benchmarks with real-world
datasets show up to a ~8x reduction in data volumes transferred and a ~27 x improvement in throughput.

Index Terms—data sketches, stream processing systems, edge computing, internet-of-things

1 INTRODUCTION

By the year 2020, 30 billion networked devices are expected to
be in operation, serving a population of about 7.6 billion [1].
Most of these devices are equipped with one or more sensing
capabilities. A confluence of factors has contributed to dramatic
increases in the number of connected sensing devices. These
contributing factors include inter alia advances in miniatur-
ization, falling costs, networking enhancements, and sustained
improvements in the quality and capacity of battery technolo-
gies. These sensing devices are now deployed in continuous
sensing environments (CSEs) where phenomena of interest are
monitored at ever increasing precisions and frequencies. CSEs
arise in settings such as Internet-of-Things (IoT), Cyber Physical
Systems, and mission critical monitoring systems. Domains that
CSEs have been deployed include atmospheric and ecological
monitoring [2], traffic [3], environmental monitoring [4], health
care [5], [6], and industrial equipment monitoring [7] among
others. Majority of the data streams originating in such settings
contain a logical or an absolute temporal component [8].
Sensors and actuators form the lowest layer in a typical
CSE architecture [9]. Edge devices may have on-board sensors
whose measurements they report, which is the case with mobile
phones and smart wearables such as active trackers. Alterna-
tively, the edge devices may act as data mules [10] where the data
is pulled from the sensors periodically using limited-range,
custom transport protocols such as PSFQ [11] and ESRT [12]
used in sensor networks. The edge device consolidates read-
ings from multiple sensors into a single timestamped observation
capturing multiple aspects of a monitored entity at a given
point in time. Constructed streams can be processed at a central
location, at the edges of the network in proximity to stream
sources (edge processing), or using a hybrid of the previous two
approaches (federated processing). With centralized processing,
the data is transferred to a central location, also known as
the data sink or the middleware layer, for processing [10]. In
some IoT reference architectures, the observational streams
are transferred to private/public clouds through cloud gate-
ways [9], [13]. The transferred data can be either processed in
near-realtime as streams, or stored and subsequently processed
using batch processing systems. Edge and federated processing
leverages the limited capabilities at the edges of the network
to perform less resource intensive processing. In this study, we

*

focus on near-realtime processing of data streams.

1.1

The challenges involved with these architectures are two fold:

(@ data stream ingestion, and (2) data stream processing. These

challenges can be attributed to the vast volumes of data pro-

duced in CSE settings by a large number of devices alongside
the ability of each device to produce data at high rates. Data
stream ingestion is challenging due to:

o Power constraints - Most edge devices are battery powered or

have limited power profiles. Communication is the dominant

energy consuming task on these devices [14], [10], [15]; trans-
ferring voluminous data can become infeasible.

Limited bandwidth - Edge devices are connected to the remain-

der of the data ingestion pipeline via wide area networks

with limited bandwidth [16].

Data transfer costs - When the processing middleware is oper-

ating in public clouds, users are billed for the volume of data

transferred across data center network boundaries. This is in
addition to the bandwidth costs for the data transfer.

Challenges involved with data processing include:

e Processing costs - The amount of resources required for exe-
cuting stream processing middleware is proportional to the
volume of the data. Users are thus looking at ever increasing
processing demands.

o Reprocessing past data - Changes in business requirements,
discovery of bugs entail reprocessing past data using the
updated versions of the applications [17], [18]. This entails
storing data streams for extended periods of time.

With the ability to add limited processing and storage capa-

bilities to the edge devices, and decentralized data processing

initiatives such as cloudlets [19], distributed telco clouds [20],

and fog computing [21], several attempts have been made to

preprocess/process data at the edges and reduce data transfer

to the center [16], [22], [14], [23], [24], [25], [26], [27], [28],

[29], [30], [10], [31]. There is a rich body of work on improv-

ing stream processing at the center through efficient resource

management and scheduling of operators. These solutions only
partially address the data ingestion and processing challenges
and have the following drawbacks.

o Limited applicability - The applicability of federated stream
processing is constrained due to the limited processing power

Challenges

and storage capabilities of edge devices, and non-local data
dependencies.

o Poor support for multi-feature streams - Majority of the data
reduction techniques are designed for single-feature streams.
Applicability to multi-feature streams entails expensive
stream joins at the center.

o Focuses only on reducing the data transfer - Most data reduction
techniques focus only reducing the data transfer and recon-
struct the entire stream at the center [32], and do not address
the data processing challenges.

o Considering input streams as transient - Existing edge process-
ing technique are driven by the current user requirements
and consider data streams as transient (process and discard).
This precludes reprocessing past data to support newer ver-
sions of the stream processing applications.

1.2 Research Questions

We formulated the following research questions to guide this
study.

RQ-1: How can we develop a holistic methodology to address
both the ingestion and processing challenges pertaining to high
volume data streams originating in CSEs?

RQ-2: How can we support data volume reductions in both
single-feature and multi-feature streams?

RQ-3: How can we leverage the data reduction technique
employed at the edges to improve performance of the stream
processing applications?

RQ-4: How can we develop a data reduction technique that
can accommodate future application changes by seamlessly
integrating with existing data infrastructures?

1.3 Approach Summary

Our methodology is centered around the idea of sketched
streams. Our reference implementation is code named Pebbles.
An observational stream is partitioned into contiguous, non-
overlapping temporal windows called segments and observa-
tions within each of the segments are represented using a
sketch — a space efficient representation of the multi-feature
observations. Towards this end, as part of this study we present
a new sketching algorithm, referred to as Pebbles sketching algo-
rithm, designed especially for time-series data streams. Pebbles
sketching algorithm is different from other frequency-based
sketch algorithms such as Augmented Sketch [33], Count-
Min [34], and Misra-Gries [35], because it can preserve the
ordering between observations within a segment, which is crit-
ical for most stream processing use cases. Existing frequency-
based sketch algorithms offer point queries limited to cardi-
nality or occurrence frequencies [36]. In addition to the ability
to reconstruct the ordered stream segments from the sketch
and supporting frequency queries, Pebbles sketches natively
support certain stream processing related operations on stream
segments such as partitioning and transformations.

We leverage processing capabilities at the edges of the net-
work to preprocess streams to produce sketched streams. As we
demonstrate in our benchmarks, this process reduces the vol-
ume of the observational streams significantly while reducing
the energy footprint at the edge devices. In Pebbles sketching
algorithm, we compromise the resolution of individual feature
values, while preserving how the feature values vary over time
as well as with respect to other features through a process called
discretization. Our adaptive discretization algorithm guarantees
that the error introduced by discretization is always below
the preconfigured threshold despite concept drifts in the data

2

stream as well as anomalies. A Pebbles sketch maintains the dis-
cretized observations using a set of bitmaps. Due to gradually
evolving nature of most streams, consecutive observations map
to a single discretized observation resulting in sparse bitmaps
which are amenable for further compaction.

Once the sketched streams are ingested into the center, they
can be processed through the Pebbles sketch-aware stream pro-
cessing API to achieve high performance. The Pebbles stream
processing API is a drop-in extension to standard stream pro-
cessing APIs without requiring changes to the stream process-
ing infrastructure or any of the existing applications. Through
its lower memory and network footprint, sketched streams are
able to improve throughput, bandwidth utilization, context-
switching, and garbage collection overheads (Section 3.3).
Sketches can be converted back to its constituent observations
within a stream processing operator through a process called
materialization. Pebbles sketches support different materializa-
tion modes such as all, sample, and topK/bottomK; applications
can switch between processing modes dynamically based on
workload and system conditions. Further, we support in-sketch
operations where certain operations can be performed without
materializing the sketch, therefore yielding higher throughputs
and reduced memory utilization compared to their standard
implementations. While we focus on centralized processing
in this study, sketched streams are an effective construct for
stream processing at resource constrained edge devices due to
its compact network and memory footprints, efficient in-sketch
operations, and integration with existing stream processing
APIs.

1.4 Paper Contributions

o A new sketching algorithm designed from the ground up
for space-efficient, order-preserving representations of multi-
feature, time-series data streams with guaranteed accuracy

o A novel methodology based on data sketching to address
both ingestion and processing challenges pertaining to data
streams originating in CSE settings

» High-performance, sketch-aware stream processing API that
can be seamlessly integrated with existing data infrastruc-
tures, both centralized and federated, used by organizations

We validate the proposed methodology using three different
real-world streaming datasets from diverse domains such as
industrial monitoring, smart homes, and atmospheric moni-
toring. Our empirical benchmarks show a ~7.3x and ~8x
improvement in energy consumption and data transfer at the
edges respectively. Pebbles sketch-aware stream processing API
improves throughput up to ~27x compared to traditional
stream processing APIs while substantially improving band-
width utilization and reducing the execution and memory
management overhead.

Paper Organization: The remainder of the paper is organized as
follows. In Section 2, we outline the overall system architecture.
We discuss our methodology in Section 3, followed by the
system benchmarks in Section 4. Related work is discussed in
Section 5. We present conclusions and future work in Section 6.

2 SYSTEM ARCHITECTURE

In this section, we introduce the key components and their
interactions in our systems architecture, code named Pebbles.
This is depicted in Figure 1.

The Pebbles edge module is deployed in proximity to the
source of the data stream. Edge modules are responsible for

loT Gateway [User Application }

Pebbles API |

Stream Processing API _

I
Stream Processing Engine ‘
I

T
T
m L
T

Controli i Data
Queue!; Queue
Control |1 [
Messages L Sketches - - ____
Wide Area Stream Processing Cluster
Network
Federated/Edge
Processing (Pebbles | | _.)))
- — - = Edge
(_Module J 77~ ’_')))
Sensors
Edge Device

Fig. 1: System Architecture of Pebbles. Pebbles edge module is
responsible for generating sketches and send them over to the
center via the IoT gateway. Pebbles center module extends the
API of the stream processing engines allowing users to write
applications on sketched data streams.

converting the observational streams into sketched streams.
Data from sensors can be fetched into the edge module us-
ing either push or pull ingestion modes. For instance, a data
collector node of a sensor network can be used to deploy
the edge module which contacts the individual sensors at
regular intervals and construct a multi-feature observation [10].
Cloudlets [19], fog computing devices [21], mobile phones, and
telco clouds at the edges [20] are other possible target devices
to run Pebbles edge modules. Alternatively, the methodology
of the edge module we explain in the following sections can be
integrated into various edge computing modules such as Ama-
zon’s Greengrass [37] and Apache Edgent [38]. The sketches
generated at the end of each segment is transferred to the
processing layer (e.g.,: IoT gateway) via MQTT [39] or TCP.
MQTT is a lightweight machine-to-machine (M2M) protocol
built on top of TCP/IP to be used devices with low power
profiles and unreliable networks.

The IoT gateway acts as the intermediary to provide space
and time decoupling between the edge modules and the data
processing middleware (in center). Edge modules can join and
leave the data ingestion pipeline without any changes in the
user applications running at the center. The stream processing
cluster can be subjected to horizontal scaling, node failures,
etc. without requiring any changes to data sink configurations
used by the edge modules. This design also facilitates aggre-
gating sub-streams from multiple, spatially distributed data
sources into a single data stream. Further, the IoT gateway
is used to establish a control channel from the center to the
edge modules. IoT gateways are a common component in
IoT deployments [40], [9] and usually implemented using a
message broker. In our implementation, we used an Apache
Kafka [41] to implement the IoT gateway. Using a message
broker supporting multiple consumers like Kafka enables other
data consuming applications within the organization (e.g.:
batch jobs) in addition to the stream processing jobs to consume
the data streams without having to maintain multiple copies
of data. In a real world deployment, it is possible to use the
existing message brokers in the data ingestion infrastructure to
implement the IoT gateway without any additional operational
cost.

3

Pebbles stream processing module extends the API of the
stream processing engine to handle sketched data streams. It
acts as a facade for the sketched data streams by internally
handling the materialization of sketches and in-sketch opera-
tions transparent to the user. Currently, Pebbles support Apache
Storm [42] and Neptune [43] stream processing engines. Data
ingestion operators in stream processing applications (e.g..:
Spouts in Apache Storm) subscribe to the topics in the IoT
gateway corresponding to the input data streams. Optionally,
user applications can send control messages using the Pebbles
API to the edge modules contributing to a particular data
stream enabling server-initiated steering. Our design does not
preclude the use of Pebbles stream processing module at the
edges of the network.

3 METHODOLOGY

We present our methodology based on sketched streams for
processing voluminous, high-velocity data streams generated
at the edges of the network. We leverage the power of edge
devices to preprocess data to effectively reduce the volume and
the cloud to provide scalable streaming analytics over the data
streams. We also list the research questions addressed by each
subsection.

3.1 Preprocessing at the Edges (RQ-1, RQ-2)

The Pebbles edge module is responsible for converting a
multi-feature observational stream into a stream of sketches.
An observational stream is partitioned into non-overlapping
windows, called segments, based on a preconfigured window
length. Segments are similar to tumbling windows as defined
in stream processing literature [17]. Observations within a
segment is represented using a sketch instance. Figure 2 depicts
the key components of the Pebbles edge module.

Once a multi-feature observation is made available to the
Pebbles edge module, it is transformed into a feature-bin com-
bination (FBC). The resulting feature-bin combination is then
included in the sketch corresponding to the current time seg-
ment by the Sketch Manager. The sketch Manager tracks the
progress of the stream and splits it at the correct boundaries
generating new segments. Once a new segment is instantiated,
the sketch and the metadata corresponding to the previous
segment is serialized and passed to the Transport Handler. The
transport Handler is responsible for handling communications

t, <fl, f2, ., fn>
Pebbles Edge Module

Aggregator ——— Ingestion API T fbe
Y . . Sketch
?—» Discretizer ———» Manager
|
Discretizer ¥ CompLef:e% Sketches
A/D Updating v
Conversion | Submodule Transport
*f ’f ii f1 f2|\ [fn Handler

S1 S2 sSn

Samplers. |[] .. Bin
A 2 T onfigurations

0"

Sensors

Control Messages
from Center

‘ Bin Config. Evaluator

Fig. 2: Components of the Pebbles edge module. Multi-feature
observations are discretized and sketched prior to sending to
the center. Bin configurations are dynamically updated as the
stream evolves or upon the request from the user applications.

with the center via the IoT gateway via the configured transport
protocol. Next, we will discuss the discretization and sketching
phases in detail.

3.1.1 Discretization and Generating FBCs

Discretization is the process of discretizing continuous, individ-
ual feature values by mapping them to corresponding bins. To
aid this process, the Pebbles edge module maintains a bin con-
figuration for each feature in an observational stream — a set of
points which partitions the range of the possible values of the
feature into a given number of bins. During discretization, each
feature value in an observation is mapped to the appropriate
bin in its bin configuration. The identifiers of the corresponding
bins are concatenated together to construct the feature-bin
combination corresponding to the observation. For instance,
let’s consider a simple stream with two features with the bin
configurations: {[100.0, 120.9), [120.9, 150.1), [150.1, 200)} and
{[-0.1, -0.02), [-0.02, 0.05), [0.05, 1.1), [1.1, 1.9)}. Suppose the
observation at time ¢’ is (¢, (129.1, 0.09)). The first feature value
129.1 is mapped to the second bin, hence replaced by identifier
2. Similarly the second feature value is mapped to the third
bin (with the identifier 3) resulting in a feature-bin combination
of (2, 3). It should be noted that our methodology is equally
applicable for single-feature streams as well in which case a
FBC will contain a single bin identifier.

Discretization exploits the gradually evolving nature of
feature streams to achieve compression similar to existing edge
data reduction schemes [10], [27], [26]. Multiple subsequent
feature values are likely to be resolved into the same bin, which
eventually results in a few feature-bin combinations represent-
ing all the observations within a segment. We leverage this
behavior within our sketching algorithm to effectively reduce
the volumes of the data streams.

Estimating bin configurations: We leverage Online Kernel
Density Estimation (0KDE) [44], [45] to autonomously generate
bin configurations — both the number of bins and the range
of values encapsulated by individual bins. For each feature, the
probability density function is estimated using online kernel
density estimation with respect to a sample of observed values.
The numerical range of feature values is then partitioned into
a given number of bins such that each bin having an equal
area under the curve. This results in a bin configuration with
each bin having an equal probability of landing the next ob-
servation. An example probability density function and the
associated bin configuration is depicted in the first sub-figure of
Figure 3. Discretization is a non-reversible operation, therefore
reconstructing the feature-value vectors from the feature-bin
combinations incurs an estimation error, called the discretization
error. In our reference implementation the middle value of a
bin is considered the estimated value for the bin introducing
a maximum error of half the bin width. Using an oKDE based
binning configuration ensures that the high-density bins (bins
with high probability) cause a lower discretization error. The
number of bins in a bin configuration is the minimum number
of bins that satisfy the desired discretization error threshold
with respect to an online updated sample of observed values.
The discretization error of a sample can be quantified using
various metrics such as descriptive statistics and statistical
distance. A key requirement is the ability to calculate this metric
in near real time on resource-constrained edge devices. For
instance, in our benchmarks we used normalized root means
square error (NRMSE) to measure the discretization error and
set the threshold to 2.5% for each feature.

Enforcing an upper-bound on discretization error: We extend

4

the basic discretization algorithm outlined in Section 3.1.1 to
ensure that the discretization error for each feature does not
exceed the preconfigured threshold. The basic discretization
algorithm is susceptible to higher discretization errors in fol-
lowing scenarios.

o Anomalies - Anomalies usually fall into low-density bins
(with low probability) therefore increasing the discretiza-
tion error.

 Concept drift - As a stream evolves, the probability den-
sity function estimated by the oKDE may not adequately
represent the current state of the stream. This may result in
more observations being discretized into low-density bins.

Our improved discretization algorithm, adaptive discretization,
provides a guaranteed upper bound on the discretization error
by only discretizing an observed value if the discretization error
is less than the threshold. Otherwise, the algorithm sends the
observed value as is resulting in a discretization error of 0.0%.
In the latter case, as an optimization we also inject a new
bin into the bin configuration with the observed value as the
middle value of the bin — we use the bin identifier of the
newly introduced bin to construct the feature-bin combination.
This optimization increases the likelihood of subsequent ob-
servations getting discretized using the newly introduced bin
in the case of a concept drift. Discretized regions correspond-
ing to a probability density function and the associated bin
configuration is illustrated in Figure 3. Another advantage of
our adaptive discretization is the ability to preserve anomalies.
Adaptive discretization prevents high-error discretization of
anomalous feature values which is useful for anomaly detection
use-cases; this is illustrated in Figure 4.

The adaptive discretization algorithm is outlined in Algo-
rithm 1. The time complexity of discretizing an observation
is O(mlogk) where m is the number of features and k is the
average number of bins in a bin configuration. The average
number of bins is usually in the order of hundreds based on
our empirical observations.

Algorithm 1 Adaptive discretization algorithm

v; : Value of feature i at a given time

be; : Bin configuration for feature i

fmin, fmae : Min and Max values for feature i
th; : Discretization error threshold for feature i

function ADAPTIVE_DISCRETIZE(v;, b¢i, fmin, fmaz, thi)
b < highest_bin_lower_than_value(bc;, v;)
brt+1 < next_bin(bc;, by)
midpoint < by + (bg+1 — bx)/2
nrmse < RMSE(midpoint,v;)/(fmaz —
if nrmse < th; then return by
else
if v; < midpoint then
b':bk+2*(vi7bk)

else
bl = bk+1 — 2% (bk+1 — ’Ui)
end if
add_new_bin(bc;, b') return b’
end if

end function

Pebbles dynamically updates the bin configurations over
time to mitigate concept drifts. Otherwise, the size of a bin
configuration can increase due to injected bins causing issues
such as insufficient memory to hold bin configurations at edge
devices, higher discretization costs, and higher network foot-

prints after serializing sketches (higher bin counts require more
bits to represent a bin identifier when constructing feature-
bin combinations). These updates are performed independently
per feature in a particular stream. We evaluate the existing
bin configuration without the injected bins against an online
updated sample for each feature. If the overall discretization
error for the sample is higher than the threshold, the system
triggers a bin configuration update in the background. In order
to capture concept drift, the sample should be representative of
the recently observed values of a particular feature. Reservoir
sampling [46] is a single-pass unbiased sampling algorithm
designed for inputs with unknown sizes (such as streams)
and ensures that every element has the same probability of
getting selected — sampled elements are uniformly distributed
throughput the stream. Weighted reservoir sampling extends
this behavior through a weight function to assign different
selection probabilities for the sample.

We support two weighted reservoir sampling algorithms
with temporal bias functions that assign more weight to re-
cent items in the stream: Aggarwal’s reservoir sampling al-
gorithm [47] and Uniform Variable Input Rate Biased Sam-
pling [48]. While both algorithms are capable of maintaining
samples that are well representative of the recent items in a
stream, Uniform Variable Input Rate Biased Sampling is able
to deal with variable observation rates of streams. Updating
samples, evaluating current bin configuration, and updating
bin configurations are performed in the background in parallel
to the data ingestion for each feature separately. This allows
the discretization process to autonomously be in sync with the
evolution of individual features.

Figure 5 depicts a microbenchmark that demonstrates the
effectiveness of different sampling algorithms on evaluating the
effectiveness of a bin configuration. We recorded two metrics:
(@ actual error - discretization error of the stream data over
a sliding window of length 2 seconds (with 1 second sliding
period) was used for the evaluation (2) observed error - dis-
cretization error of the sample at a given time. If the observed

0.040
0.035
0.030
0.025

0.020

Probability

0.015

0.010

0.005

o
=)
=3
S

(Discretization Error]

B e e
ONBMOOWONDO®

NRMSE (%)

220 240 260 280 300 320
Surface Temperature (K)

[— Bin Boundary _ +——s Error Threshold Discretized Region (-] Non-discretized Region |

Fig. 3: Probability density function (PDF) and the associated
bin configuration for surface temperature feature in the NOAA
North American Mesoscale forecast dataset at the beginning of
the stream. Our discretization scheme enforces an upper-bound
on the discretization error by selectively discretizing feature
values that result in a lower discretization error. The PDF is
updated in the background and the bins are recalculated as the
stream evolves.

1800

T
Hee=ee3X Observed Value
1600 r @-----@ Basic Discretization ?{ 1
v v Adaptive Discretization ?‘X 15

1400

1200 1

1000

©
o
S

Sensor Reading (Watt)
[=))
o
o

400

i { i
o M At o et g fo¥afoo] iofofe]ioa) foafefete]
0.00 0.01 0.02 0.03 0.04 0.05 0.06
Time Offset (Millisecond)

Fig. 4: Adaptive discretization provides a guaranteed upper-
bound for the discretization error while representing anomalies
with a lower error compared to the basic discretization algo-
rithm. This figure demonstrates how the adaptive discretization
algorithm is able to capture a short-term peak in the load of one
of the smart plugs in the smart home dataset.

discretization error exceeds the preconfigured threshold (2.5%
in this benchmark), an update to the bin configuration is trig-
gered. As can be observed in Figure 5, observed errors for both
weighted reservoir sampling techniques following the actual
error closely; therefore, triggering bin configuration updates
at appropriate intervals compared to the traditional reservoir
sampling.

We also support serverside-steering for the discretization
process. Stream processing applications can trigger a bin config-
uration update through control messages as shown in Figure 2.
Either they can adjust the discretization error threshold or

Feature Value Evolution

v 10? . T .
° 10l 1
Z 100F i
<
=] 10'1 r 1
£ 2
: 10~k E
2 103 | | L
500 1000 1500 2000
Reservoir Sampling
w 10 l —P 5
e 2 TR P ST IR R P RT R S TP ERT E
£ 10k 3
10-3 | | |
0 500 1000 1500 2000
Aggarwal's Reservoir Sampling
— — —
1 H
w107 F:
2 102
£ 10-
] S L IR R
"] 500 1000 1500 2000
Uniform Variable Input Rate Biased Sampling
To T] ') T]
w 107
%]
Z 102
£ 10
107

- I
1000 1500

Time Elapsed (s}

: ¥
0 500 2000

—— Actual Error - NRMSE
Observed Error - NRMSE ==

Bin Config. Update
Error Thresheld - NRMSE

Fig. 5: Effectiveness of weighted reservoir sampling when as-
sessing bin configurations. Weighted reservoir algorithms can
effectively capture the concept drift when compared to the
reservoir sampling algorithm.

directly override the bin configuration of a particular feature
with a custom bin configuration. Additional fine tuning of
the discretization process such as adjusting the frequency of
periodic bin configuration evaluation and enabling/disabling
online updates to the bin configuration are supported. The
resulting end-to-end dynamism of the data ingestion pipeline
facilitates accommodating changes at the stream processing
system such as addition and removal of new data processing
jobs.

The bin configuration used for discretization should be
available at the stream processing layer in order to estimate
the individual feature values from the bin identifiers in the
FBCs. We piggyback on the actual messages (with serialized
sketches) to the send the bin configuration updates instead of
sending them over a separate stream. Otherwise a stream join
is required at the center between the data stream and the bin
configuration update stream to determine the corresponding
bin configuration update required to resolve the FBCs. A higher
QoS is used for guaranteed delivery of the messages containing
the bin configuration updates. For each stream, a monotonically
increasing version number is assigned to a set of bin configu-
ration updates performed within a time segment. Every sketch
carries the version number of the bin configuration used for
discretization when it was updated. This version number helps
with dealing with out-of-order arrivals of messages, which are
common especially when messages are transferred over public
networks [49]. In case of an out-of-order arrivals, messages will
temporarily reside in a memory buffer until the message with
appropriate bin configuration update arrives. Most modern
stream processing engines are equipped with built-in buffers
to deal with such short-term, out-of-order arrivals.

3.1.2 Pebbles Sketching Algorithm (RQ-2)

The Pebbles sketching algorithm is an order preserving sketching
algorithm for multi-feature streams designed from the ground
up. It addresses a common limitation of current frequency
based sketching algorithms: the inability to preserve the order-
ing between observations. Maintaining the ordering between
observations is critical for most stream processing use cases.
For instance, maintaining temporal windows and tracking state
changes over time require the ordering between observations.

Let’s assume a data stream (already discretized into fea-
ture bin combinations) with observations produced at every
p time units, i.e., with a frequency of 1/p. The m observations
produced within the time segment [tn, tn4mp) In stream S is
denoted as;

S[tﬂ,ytn,+nzp) = {(tTH fbcn)7 (tn+177 fbcn+p)7 B
(tn+(m71)pa fbcn+(m71)p)}

where fbc; : n < i < n+mp is a feature bin combination occur-
ring at time 4. By encoding the timestamp ¢; of an observation

StartTS ‘ EndTS Frequency T
Bin Config. Bin Config. Updates Metadata
Version (Optional) ¢
FBC1 T
e K LY g LR Y Payload
FBC3 [0]0]--
Fec4 [o]0]---[0]0]1] l

Fig. 6: The structure of a Pebbles sketch instance. Metadata
encapsulates information needed for materialization. Bitmaps
in the payload are dynamically compressed.

6

as a temporal offset o; from the starting timestamp of the time
segment ¢, as a multiple of p, the same set of observations can
be represented as;

S[tmtn+mp) =1n, {Oi,fi ‘ 0; = (ti — tn)/p; 0 < 7 < m)}

A Pebbles sketch maintains an inverted index of unique
feature-bin combinations observed within a time segment as
a set of (key, value) pairs where the set of keys corresponds
to the set of unique feature-bin combinations. The value
is the list of temporal offsets relative to the segment start
timestamp (as calculated above) in ascending order where
the given feature-bin combination occurred. For instance, let’s
consider a time segment [10,20) with an observation period of
2, therefore generating 5 observations — (10, fbcl), (12,
fbcl), (14, fbc2), (16, fbcl), (18, fbcl). The cor-
responding sketch instance will store (fbc1, {0,1,3,4}) and
(fbc2, {2}).

Pebbles sketching algorithm is a linear sketching algorithm
where a linear transform over the input stream segments are
applied to generate a sketch instance. In a linear sketch, an
update on the sketch has the same impact irrespective of the
previous updates [34]. The sketch of two adjacent segments can
be calculated by merging sketches for the individual segments.

Maintaining an inverted index of temporal offsets can still
incur a significant space overhead. We exploit the gradually
evolving nature of most observational streams to gain further
space reductions. Due to this gradually evolving nature, we
posit that the consecutive observations are likely to transformed
into a single feature bin combination once discretized. This
results in stretches of consecutive temporal offsets within the
inverted indexes making them amenable to compression using
techniques such as compressed bitmaps and inverted lists.

When using compressed bitmaps, each list of offsets within
the inverted index is represented using a bitmap. The number
of bits of the bitmap is equal to the number of observations
within a segment — the position of a bit within a bitmap
represents the temporal offset as a multiple of inter-observation
interval. If a certain feature bin combination occurs, the corre-
sponding bitmap is located within the inverted index and the
bit in the position equal to the temporal offset is set. Following
the example used before, the bitmap representation of the
Pebbles sktech instance will be (fbcl, {11011}) and (fbc2,
{00100}). Bitmap compression is a well studied research area
with several contributions such as WAH [50], EWAH [51],
CONCISE [52], and Roaring [53]. WAH, EWAH, and CONCISE
are variants of run-length encoding where series of identical
bits are compressed to the bit value and the count. Roaring
adapts a hybrid compression technique incorporating an un-
compressed integer list and uncompressed bitmap. Inverted
lists are an alternative to compressed bitmaps which usually
compresses the differences (a.k.a deltas) between the successive
integers [54] — e.g., Variable Byte [55], PforDelta [56], and
Simple9 [57]. In addition to being highly compressible, bitmaps
support efficient bit-wise operations that are useful for high-
performance data manipulations as discussed in Section 3.3.2.

Figure 6 illustrates the key building blocks of a Pebbles
sketch. The metadata includes the temporal bounds of the
segments and the frequency which are required for reconstruct-
ing the actual timestamps from the temporal offsets during
the materialization. Additionally, the start timestamp provides
ordering between messages within a stream. These metadata
fields are included in every sketch instance to accommodate
dynamic changes in sensing configurations such as frequency
and segment duration. Version number of the bin configuration

3500

T T T
Dynamic Bitmap Compression
Uncompressed Bitmaps

2500 1 Roaring Bitmap Compression i

3000 H vvvvvens

2000 R
1500 | B
1000 |

500

Cumulative Data Transfer (KB)

Time Elapsed (Min)

Fig. 7: Effectiveness of dynamic compression in the reference
implementation of the Pebbles sketch algorithm.

used for discretization, and any updates to the bin configu-
rations are required for approximating the observations back
from the FBCs.

For our reference implementation of Pebbles sketching al-
gorithm, we used a combination of uncompressed bitmaps and
Roaring bitmaps (paired with run-length encoding) to imple-
ment the inverted indexes. We chose Roaring bitmaps over
other bitmap compression techniques for:(1) space efficiency
- desirable at resource constrained edge devices, and (2) faster
decompression during materialization [54].

Our compression scheme is dynamic. None of the inverted
index compression techniques are effective with highly ran-
domized sequences of integers — in fact, they incur more
overhead than maintaining an uncompressed bitmap. We ini-
tialize a Pebbles sketch instance with uncompressed bitmaps
and maintain an online updated metric between the ratio of the
number of bits set and the highest offset for each bitmap. At the
end of the segment, if the ratio of these metrics is too high or
too low, it is an indication that the bitmap is mostly empty or
full. In such cases, we convert the uncompressed bitmap into a
roaring bitmap and further optimize it with run-length encod-
ing; otherwise we continue to use the uncompressed bitmap as
is. In Figure 7, we demonstrate the effectiveness of the dynamic
compression algorithm. We used the feature with the highest
variability in Smart Home dataset [58] in this microbenchmark.
Enabling roaring bitmaps by default is not effective due to the
randomness of the data. Dynamically enabling the compression
based on the occupancy heuristic can reduce the data transfer
by ~74% compared to using roaring-bitmaps and by ~12%
compared to using regular bitmaps alone.

The definition of Pebbles sketch algorithm does not pre-
clude different implementations optimized for the use case in
hand depending on the characteristics of the datasets and types
of operations performed at the center.

3.1.3 Trade-off Space Analysis

In order to achieve reductions in data volumes, we trade off
resolution of the individual feature values and latency. A sketch
is not transferred until the segment elapses — providing latency
characteristics similar to those in micro-batching systems [59]
where a stream is split along the temporal axis and trans-
ferred in bundled micro-batches. There is a trade-off between
the latency introduced by segmentation and the compaction
achieved by sketching segment duration in Pebbles is config-
urable and can be even dynamically controlled allowing users
to select an appropriate segment duration based on latency
requirements. Our methodology is applicable if the features
of a data stream can be represented as numerical values and
the applications can tolerate a controlled loss of precision of
individual feature values and the increased end-to-end latency
introduced due to segmentation.

3.2 Transferring Data to the Center (RQ-4)

Once a segment expires, a sketch is transferred to the IoT
gateway. Sketched streams reduces both the number of com-
munications initiated as well as the overall volume of the data
transferred. As we show in our benchmarks, the overhead of
the sketch generation is outweighed by the energy saving due
to reduced communication with the center. Also, this approach
ensures that the limited bandwidth available at the edge de-
vices are utilized more efficiently.

Sketched data streams are published over dedicated topics
assigned for each stream within the IoT gateway similar to
most regular data stream ingestion pipelines. Stream processing
applications subscribe to the topics corresponding to their input
streams. Given that the bin configuration updates are available
as part of the metadata, if a new stream processing application
is deployed it needs to consume the entire set of previous
messages containing bin configuration updates in order to be
able to construct an up to date bin configuration. This requires
storage as well as processing of the entire stream which is
expensive. There are two solutions to address this issue:

o Maintaining the history of bin configuration updates as
shared state across all applications — e.g.: using an in-
memory key-value store.

« Storing another copy of messages with bin configuration
updates on a separate topic. New applications will consume
the messages in this topic up to the offset where they want to
start consuming the data stream.

In our reference implementation, we opted for the second
option because it does not incur the operational overhead of
another system. Also the absence of a centralized metadata
system makes the integration of Pebbles into edge/federated
processing use cases easier. Bin configuration updates are
typically manageable when compared to the total number of
messages and can be subjected to merging if required — an
older update can be replaced by a newer update to the bin
configuration of a particular feature and bin updates to multiple
features can be merged into a single message.

Due to the smaller storage footprints for sketched streams,
they can be stored for extended periods of time in the IoT
gateway. This enables reprocessing of the streams in case of
any updates to the stream processing applications due to soft-
ware bugs uncovered later or changed business requirements.
Kappa architecture [18] is one architectural pattern to support
processing of past streams by storing them in message broker
infrastructures (similar to the IoT gateway), and processing
them with higher parallelism.

3.3 Stream Processing API (RQ-1, RQ-3, RQ-4)

A typical stream processing API allows stream processing
applications to be designed as directed acyclic graphs (DAG)
comprising of stream operators (vertices) connected via streams
(edges). An operator can be either an ingestion operator which
ingests the input streams from the external sources into the
DAG or stream processors which carries out part of the ap-
plication logic and may produce a stream of messages to the
downstream processors (derived streams). The Pebbles stream
processing API follows the same model, but considers a dif-
ferent unit of workload — sketch instances for processing and
communication between stream operators in the DAG.

Given that a Pebbles sketch instance is a compact represen-
tation of a set of observations from input streams or messages
produced as part of the stream processor logic; the Pebbles
stream processing API achieves the same benefits as batching
enabled stream processing. In batching enabled stream processing,

Input Sketch Output Sketch

In-sketch Operations

—4‘@
- M HOM

Materialization

Collect
User Logic (Optional) >
Materialized
Stream

OO0

Stream Computation

Thread Pool

Input Streams Output Streams

Fig. 8: Implementation of the Pebbles sketch processing API

a group of messages is considered as the unit of data for
transferring and processing in order to improve the through-
put by amortizing the communication and stream processor
execution costs [60]. Processor execution costs are improved
through amortizing the costs associated with loading the in-
struction cache, scheduling, and context switches over a group
of messages. Transferring larger payloads compared to smaller
payloads improves the efficiency of the network utilization
eventually leading to improved throughputs. Sketched streams
are more compact than batched streams packing more obser-
vations in a single sketch instance through controlled trade-
off of accuracy. This further improves processing throughput,
memory overhead, as well as per-message execution overhead
as we demonstrate in our systems benchmarks. Further, Pebbles
sketches can support in-sketch operations (as explained below)
where certain operations can be performed without expanding

a sketch into the set of constituent observations delivering high-

throughputs and reduced memory overhead.

The Pebbles stream processing implementation is designed
as an extension to the existing stream processing APIs. Cur-
rently we support Apache Storm [42] and Neptune [43]. It is de-
ployed as a drop-in library similar to any runtime dependency
without requiring any modifications to the stream processing
engine itself. This is advantageous because:

o The Pebbles stream processing applications can execute
alongside stream processing applications developed with
regular stream processing APIs

o This supports hybrid stream processing applications - Appli-
cations where a subset of the stream processors are imple-
mented using Pebbles API while the remainder are imple-
mented using the regular stream processing API

« It builds on the large body of existing work in the develop-
ment of feature-rich, robust stream processing engines

In this paper, we have used stream processing engines to
prototype the Pebbles stream processing API. But our proposed
methodology is applicable for micro-batching systems like
Spark Streaming [59] as well. We will discuss the key concepts
of the Pebbles stream processing API next.

3.3.1 Sketch Materialization

Materialization is the process of converting a sketch back to
the set of individual discretized observations. Pebbles provides
different materialization modes: (1) all: Generate all discretized
observations represented by a sketch instance, (2) sample:
Generate a sample of the discretized observations represented
by a sketch based on a user-defined sampling function, and

topK/bottomK: Generate the observations corresponding to
most/least frequent observations.

Materialization internally expands bitmaps of the under-
lying Pebbles sketch instance and creates an observation for
each set bit in the bitmaps. For materialization modes such as
topK/bottomK, only a subset of the bitmaps are expanded based
on their cardinality. The timestamps of the observations are

8

generated based on the starting timestamp of the sketch and
frequency (available as part of the metadata) combined with the
offset (derived from the bit position within the bitmaps). Hav-
ing support for multiple materialization modes at the API level
not only enables stream processors to use the appropriate mate-
rialization mode for their processing logic, but also allows dy-
namically adjusting their processing semantics during runtime
based on metrics related to operating conditions and workload.
More specifically, a stream processor can dynamically switch
between different materialization modes in runtime or adjust
the parameters of its current processing mode. For instance, if
a processor cannot keep up with the incoming stream, it can
temporarily switch from all mode to sample mode essentially
creating a load shedding setup or further reduce the sampling
rate if it was already using sample mode.

The output of the materialization operation is made avail-
able either as an Iterator or a Java Stream [61]. Support for
Java streams presents a functional style API to process the
sketched streams with the added advantages of lazy evaluation
and parallel execution.

Ordering of observations: The resulting set of discretized
observations from a materialization operation is not ordered
based on the timestamps by default. If required, users may
opt for sorting the observations chronologically based on the
observation timestamps.

Parallel execution: A Pebbles sketch instance can be material-
ized using multiple threads in parallel where each bitmap or
contiguous block of a bitmap is expanded in parallel. Similar
to sorting, parallel materialization should be explicitly enabled.
Users can request a parallelStrean if they use Java Streams
or enable parallelization and provide a parallelization factor if
they access observations through an Iterator.

3.3.2 In-Sketch Operations

In-sketch operations are a class of operations that can be di-
rectly performed on a Pebbles sketch instance without requiring
a priori materialization. These operations directly work on the
feature-bin combinations (keys) or bitmaps (values) of a Pebbles
sketch instance. Following is a list of in-sketch operations
supported by Pebbles sketches.

1. Key transformations - Apply transformations on FBCs such as
projections, enrichments, and cleaning.

2. Filtering - Remove a subset of the FBCs based on a user-
defined filtering criteria.

3. Key based partitioning - Horizontally partition a sketch based
on a user-defined grouping criteria on FBCs.

4. Temporal partitioning - Vertically partition a sketch along the
temporal axis such that a partition holds observations corre-
sponding to a contiguous period of time.

5. Round-robin partitioning - Assign observations into partitions
in a round-robin fashion.

[] Partition 1 [] Partition 2 [Partition 3
[Feci I [rFect (M| [Fscr (ML
FBC2 [T TTTT]| |FeC2 (T TM| |FBC2 [T [
Fecs CICITTT| |Fecs [T CTMM| |Fecs [[
FeCs HINNINNN| |recs [TTTHM| |rBcs [

Key-based Partitioning Temporal Partitioning Round-robin Partitioning

Fig. 9: Partitioning Schemes using in-sketch operations.

Figure 9 depicts various sketch partitioning schemes imple-
mented as in-sketch operations. Given that these operations do
not need to materialize the sketches in advance, they enable
high-throughput processing as demonstrated in Section 4.4.2.
Furthermore, they incur a less memory and garbage collection
overhead by eliminating the instantiation of large number of
short-lived objects. Stream processing on resource constrained
devices also benefit from in-sketch operations due to these
characteristics. Some in-sketch operations such as temporal
partitioning benefit from the fast bit-wise operations supported
by modern bitmap implementations. For instance, temporal
partitioning is implemented by performing a bit-wise AND
operation on the bit masks generated for each partition.

3.3.3 Collect Operation

Collect operation, part of the Pebbles’ Java Stream integration,
constructs a sketch back from a stream of events. A stream
processor can materialize a sketch as a Java stream, run the
user-defined processing logic, and pack the derived event as a
sketch using the collect operator ready to be transmitted to the
next stage. The applicability of this operator depends on the
ability to represent an event as a (key, temporal offset from the
base timestamp) tuple. Using sketches to transfer events within
the DAG improves the overall performance of the stream
processing application, especially with respect to throughput
and bandwidth utilization as discussed earlier.

3.3.4 Pebbles Stream Processing Topology

Pebbles stream processing applications are directed, acyclic
graphs of stream ingesters and stream processors connected
via streams similar to any stream processing application. One
key differences is in the Pebbles ingester, which consumes data
from the IoT gateway and injects them into the remainder of
the processing DAG. This ingester is responsible for resolving
the feature-bin identifiers — each bin identifier is replaced by
the bin boundaries based on the appropriate bin configuration.
Because the bin identifier resolution is implemented as an in-
sketch key-transformation operation, it does not add a signifi-
cant latency or processing overhead. Once the bin identifiers are
resolved, each Pebbles sketch instance becomes self-contained.
If the past data need to be consumed, the ingester can be
configured to consume data from the topic storing the bin
configuration updates up to the required bin configuration
version, and switch back to the sketched stream.

The remainder of the processing DAG can be implemented
by combining the Pebbles stream API and the regular stream
processing API. By maintaining the sketched streams as far
as possible in the processing DAG using in-sketch and collect
operations, the overall throughput of the stream processing
graph can be improved substantially. The ability to use both
APIs simultaneously within a single application facilitates a
seamless interoperation between Pebbles and existing stream
processing code. For instance, once a sketch is materialized, it
can be processed as the equivalent regular data stream using
the regular stream processing APL

4 EVALUATION

We profiled the efficacy of our approach with respect to both
data volume reduction at the edge devices and improved
processing at the center using real world datasets.

4.1 Experimental Setup and Datasets

Edge devices: We used the Raspberry Pi 3 model B (1.2 Gz
Quad Core Processor, 1 GB RAM) running Arch Linux and
Oracle JDK 1.8.0_121 as the edge devices. Power measurements
at the edge were carried out using Ubiquiti mFi mPower
Mini smart plugs. MQTT was used as the messaging protocol
between the edge devices and the center.

Stream Processing Cluster: We used HP DL60 servers (Intel
Xeon E5-2620 2.40GHz processors, 16 GB RAM) running Fedora
28 and Oracle JDK 1.8.0_121. We used Apache Storm v1.2.2 for
benchmarks involving Storm.

Datasets: We used three real world datasets in our benchmarks
encompassing multiple domains: smart homes, industrial mon-
itoring, and meteorological forecasting covering a wide range
of frequencies, durations, and stream evolution patterns.

1) Smart homes dataset [58] includes readings from smart
plugs deployed in set of households in Germany. Sensors
attached to each smart plug periodically report current load
and cumulative work since the last reset of the sensor.
Each plug produces 1000 observations/s. We preprocessed
the dataset to organize data based on households (entities)
such that each observation contains the current load on 12
different plugs (12 features).

2) Gas sensor array under dynamic gas mixtures dataset [7],
created by the BioCircuits Institute at UCSD, includes time
series data from 16 chemical sensors exposed to gas mixtures
at varying concentration levels. For our benchmark, we used
a subset of the dataset corresponding to Ethylene and CO
gas mixture containing 18 features. The frequency of the
dataset is 100 observations/s.

3) NOAA North American Mesoscale forecast dataset [2]
contains periodic recordings of meteorological features by
weather stations deployed across north America. We con-
sidered 10 features including temperature, humidity, and
precipitation for year 2014. We used an imputed version of
the dataset with a frequency of 1 observations/s.

Given that streaming workloads are unbounded in real
world settings, we performed our benchmarks based on the
duration of our datasets. Each stream was ingested using the
original frequency associated with each dataset; smart homes,
gas sensor array, and NOAA datasets required ~43 mins, 6
hours, and 24 hours respectively for complete ingestion.

4.2 Efficacy of Pebbles at the Edge (RQ-1, RQ-2)
4.2.1 Applicability to Single-feature Streams

Even though, Pebbles is designed for multi-feature streams,
it is still applicable in single-feature stream settings. In this
benchmark, we evaluate the efficacy of Pebbles at the edge
when used with single-feature streams based on two metrics:
amount of data transferred and energy consumption at the
edge. We compare Pebbles with two other schemes specifically
designed for single-feature streams in CSE settings.

AdaM: AdaM [27] is an adaptive monitoring framework de-
signed for IoT devices with the goal of dynamically adjusting
the sampling intensity based on the evolution of the data
stream. During the stable phases of the stream, the sampling
rate is lowered to reduce the data transfer and energy consump-
tion at the edge devices. The sampling period is adjusted based
on a probabilistic metric calculated based on the deviation
between the actual and estimated standard deviation (future
observations are estimated using a probabilistic exponential
moving average model).

T

Without Preprocessing

5555 Pebbles 3
AdaM

[0 LEC Compression

Data transferred (MB)

Energy Consumed (J)

Smart home data
for a single household
(Frequency: 1000 Hz)

Gas sensor array
under dynamic gas mixtures
(Frequency: 100 Hz)

N. American Mesoscale forecast
data from a single station
(Frequency: 1 Hz)
Fig. 10: Effectiveness of Pebbles sketch algorithm in comparison
to Lossless Entropy Compression (LEC) and Adaptive Monitor-
ing Framework (AdaM) in single-feature stream settings.

LEC: Lossless Entropy Encoding [10] (LEC) is a lookup table
based lightweight compression algorithm proposed for wireless
sensor networks. A set of observations are modeled as a series
of differences by taking the difference between each observa-
tion and its predecessor. LEC operates on the assumption that
consecutive readings do not deviate much from each other,
hence their differences are smaller. Each difference is then
encoded using a bit string which is a concatenation between the
number of bits required to represent the difference (looked up
from a dictionary of Huffman codes) and the actual difference.
Huffman codes ensure that frequent values are represented
using shorter bit sequences.

For this benchmark, data from an individual entity was con-
sidered for each of the datasets to simulate a stream originating
at an edge device. We have chosen the feature with highest
variability in each of the datasets. AdaM was configured to pro-
vide the approximately the same accuracy as Pebbles (NRMSE
= 2.5%). For LEC, consecutive observations were batched and
compressed; the batching interval was set equal to the segment
length used by Pebbles. The energy consumption encompasses
the preprocessing and data transfer over MQTT.

Figure 10 summarizes the results of this benchmark. Peb-
bles demonstrated significant improvements in data transfer
(by ~5 - 91.3x) and energy consumption (by ~5.4 - 20.6x)
across all three datasets. In general, Pebbles’ performance was
comparable to the other two schemes. It should be noted that
Pebbles is applicable for both multi-feature and single-feature
data streams whereas the other schemes are limited to single-
feature streams. We expect to see similar improvements as the
cumulative ingested data volumes grow with both multiple
edge devices and time.

4.2.2 Applicability to Multi-feature Streams

In this benchmark, we compared the effectiveness of Pebbles
at the edge with multi-feature streams. Similar to Section 4.2.1,
we have used data from a single entity but considered multiple
features instead of a single feature. We compared Pebbles with
binary compression using the following metrics: amount of
data transfer and energy consumption. LZ4 [62] was chosen as
the binary compression algorithm because of its ability to offer
a good balance between the compression ratio and speed and
configurable compression levels. LZ4 was evaluated under two
settings: high compression (provides highest possible compres-
sion in the expense of compression speed and energy) and fast
compression (provides faster and energy efficient compression

10

by compromising the compression ratio). Observations occur-
ring during a time interval equal to the length of a time segment
were batched together for compression.

As listed in Figure 11, Pebbles was able achieve significant
improvements in data transfer (by ~1.5 - 8.1x) and energy
consumption (by ~3 - 7.3x). Pebbles was able demonstrated a
comparable performance with respect to data transfer and en-
ergy consumption compared to both configurations of LZ4. LZ4
fast compression demonstrated the lowest energy consumption
compared to other schemes. Pebbles not only improves the
bandwidth utilization and energy consumption at the edges but
also enables efficient processing at the center using its sketch-
aware Stream Processing API. A disadvantage of binary com-
pression is that the data needs to be decompressed at the stream
operators contributing to additional processing overheads.

4.2.3 Evaluating the Discretization Error

We quantified the discretization error observed by individual
features within each dataset as summarized using a histogram
in Figure 12. The upper-bound on the discretization error is set
to 2.5%. Pebbles discretization algorithm was able to maintain
the discretization error well below the given threshold.

4.3 Trade-off Analysis: Discretization Error, Data Transfer,
and Energy Consumption

We analyzed how the amount of data transfer and energy
consumed at the edges change with different discretization
error thresholds. We used the smart home dataset (all 12
features), and each experiment was launched with the same
base bin configuration. As depicted in Figure 13, with the dis-
cretization error threshold increasing (after an error threshold
of 5% NRMSE), fewer new bins are introduced by the adaptive
discretization algorithm. This causes the gains from sketched
streams generated at higher error thresholds to plateau result-
ing in slower growth in energy reduction and data transfer vol-
umes. Furthermore, the high correlation between the amount
of data transferred and the energy consumption also validates
that communication is the dominant energy consumption factor
at edge devices as verified by previous research [14], [10], [15].

4.4 Pebbles Stream Processing APl (RQ-1, RQ-3)
4.4.1 Improving Performance at the Center

Figure 14 depicts the performance improvements delivered by
Pebbles stream processing APIs of Neptune [43] and Apache

,i
5}

T
Without Preprocessing
55554 Pebbles

LZ4 - Fast Compression
[0 LZ4 - High Compression

,_.
5}

.

Data transferred (MB)
=
(=]

,i
15}
=

=
o
=

=
o
W

102 b

Energy Consumed (J)

28
Smart home data
for a single household
(Frequency: 1000 Hz)

2004

Gas sensor array

under dynamic gas mixtures
(Frequency: 100 Hz)

kel
N. American Mesoscale forecast
data from a single station
(Frequency: 1 Hz)

10*

Fig. 11: Effectiveness of Pebbles at the edge w.r.t amount of data
transferred and energy consumption in multi-feature stream
settings compared to binary compression using LZ4 algorithm.

©

T — T T
:/Gas sensor array data
61 : (18 Features)

T T
Smart home data
(12 Features)

No. of Features
N

No. of Features
s

N

2

0 | L . I
0.00 0.01 0.02 0.03 0.04 0.05 0.06
Discretization Error (NRMSE)

0 I I . I
0.00 0.01 0.02 0.03 0.04 0.05 0.06
Discretization Error (NRMSE)

8

T T T
: | NAM forecast data
6l : (10 features)

41

No. of Features

2k

0 L L : L L L
0.00 0.01 0.02 0.03 0.04 0.05 0.06
Discretization Error (NRMSE)

Fig. 12: Histogram depicting the discretization error observed
for individual features measured as NRMSE. Pebbles is able to
maintain the discretization error below a threshold of 2.5%.

Storm [42] compared to the regular stream processing APIs.
We evaluated regular stream processing APIs under two con-
figurations: one-message-at-a-time and batched streaming. We
used a data processing DAG with two vertices: an ingester
and a processor. The processor is responsible for calculating the
moving average over a sliding window for each feature in the
smart plug dataset. Sketches are materialized (using the default
serial mode) with sorting enabled before processing.

Pebbles outperforms the native one-message-at-a-time pro-
cessing mode w.r.t. all metrics. For throughput, bandwidth uti-
lization, and voluntary context-switches, Pebbles outperforms
batched streams due to its compactness and the high transfer
rate. Ingester nodes are able to transfer more sketches per unit
time compared to the number of batches due to less serializa-
tion overhead. Pebbles” Neptune API can achieve ~27x and
~7x improvement in throughput compared to one-message-
at-a-time and batched streaming modes respectively. Both
Pebbles and batched streaming incur similar garbage collection
overhead which is significantly lower than the one-message-
at-a-time configuration. This is due to the significantly lower
short-lived objects being created at the transport layer when
multiple messages are transferred as a single unit. Finally,
we measured how well each scheme can tolerate transient
performance degradations that can occur due to varying work-
load and system conditions [63]. If a stream processor cannot
keep up with the workload, the engine’s backpressure scheme
throttles upstream computations in the DAG to avoid possible
buffer overflows at the stream processor. However, backpres-
sure schemes reduce the overall throughput of a stream pro-
cessing application and should therefore be deferred or avoided

30x 11.5x

& 251 {irox g

5 p=
£ 20x [sg
cw© 410.5x ¢ 5
k=5 S
Sa 1y g8
3% {10.0x 3%
g o 10x}| g5

= (9]

S ol — Ho5x &

S B—@ Reduction in Volume of Data Transfer

./ @—-@® Reduction in Energy Consumption
L L T T T T T gox
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Discretization Error - NRMSE (%)

Fig. 13: Trade-off analysis of discretization error, volume of data
transfer, and energy consumption at the edges.

11

if possible. Lower memory footprint of sketched streams used
in Pebbles helps the buffers to accommodate more unprocessed
messages; this postpones backpressure maneuver as shown in
the results. This may provide ample time for the processor to
resume its normal operations without triggering backpressure.
In our benchmark, Pebbles can hold ~18x more messages
compared to the other two processing modes (we do not see
a significant difference between one-message-at-a-time mode
and the batched stream because batched streaming does not
compact the unprocessed messages). Since Storm does not
expose any APIs or metrics to capture backpressure triggering,
we performed this benchmark only with Neptune.

4.4.2 Performance of In-sketch Operations

We profiled the performance of in-sketch operations as shown
in Figure 15. The throughput of different in-sketch operations
were compared against the performance of the same opera-
tions performed on regular streams. For comparison purposes,
we include the results corresponding to applying the regular
operations on the materialized sketches as well. To isolate
performance of the operations, the data was generated locally
within the stream processor. We did not enable the parallel
processing for sketch materialization and in-sketch operations.
Except for round-robin partitioning, the in-sketch operations
outperform regular streams significantly. Cloning of bit masks
for individual bitmaps was inefficient, therefore the in-sketch
implementation of round-robin partitioning did not perform
well. We plan to improve the performance on this operation in
future through efficient bit-shift operations.

5 RELATED WORK

Federated stream processing: Federated stream process-
ing [16], [22], [14], [23] has been proposed as an alternative
approach to the centralized stream processing in the presence
of geo-distributed data sources. A subset of the operators of the
stream processing graph are deployed at the edge devices close
to the stream sources in order to locally process as many data.
This approach is useful for providing low latency responses,
location-aware services, and to reduce data transmissions to
the center. In SpanEdge [16], a set of operators, called local
operators, are deployed at the data centers closer to the edges
and the remainder of the operators (called global operators)
deployed at the center based on a classification provided by
the user. Global operators running on data centers process
derived partial data streams originating at the local operators
such as aggregations. Renart et al. [22] proposes an edge based
stream processing model to provide location-aware services
where stream producers and consumers are connected via
a content based subscription model. While federated stream
processing fits well for certain use cases, it presents a few
challenges including: (1) limited processing capabilities at the
edge devices that are inadequate to execute certain operators,
(@ dependencies on non-local data sources, and () an inability
to reprocess past data. To circumvent these challenges, raw data
streams (straight from the sources) or sometimes the derived
data streams must be transferred to the cloud where our
proposed approach based on sketched streams can be useful.
It is also possible to incorporate the sketched streams within
the federated stream processing solutions to efficiently transfer
data from edge operators to operators in data centers.

Data processing at the edge: Apache Edgent [38], Amazon
Greengrass [37], and Cisco Kinetic Edge and Fog Processing
Module [64] are few examples of commercial and open source
alternatives available for processing data at the edges of the

12

Garbage Collector Work Completed

Throughput Bandwidth Usage Context Switches overhead uUntil Backpressure
3.0 10° 60 ——— : , 10° ——T— 10! f—r———— 1.8 % 10° —————
_ 7 16w 10° [mE
2.5 10° | B W 50 - . =
@ - T Lax10t 8
= = / / Il
2.0 10° | . D 40r . 5 10% . % 103 4§ L2x10°f .
" o a £ S .
2 T @ > / 2 10x10° .
S Lo 10t b N 2 30 4 @ g o .
2 S £ g B0x10° 8
£ E 2 / = / g &
1.0 10° 1 g g 20} R Z 103 3 8 102 { § ooxwf g
o - @ "
. c S s L0x10° B
5.0 10° E = 10 . g /)
5 2.0 10° - 4
o =z . 0 R © 102 Ked e 101 risiel L 0 (92028, .
One-Message-at-a-Time Batched Streaming [0 Pebbles (Sketched Streaming)
(a) With Neptune stream processing engine.
Garbage Collector
§ Throughput Bandwidth Usage 4 Context Switches Overhead
2.5x 10° T T T T 60 T T T T T . 10 T T T T T 250 T T T
R o
- @
2.0% 109 | 4 gsor = 200 1
zZ . = - /
L . @
1.5 % 10° | 1 & S E 150 —
& 3 0 o
5 2 30 2 10° 1 E
v . =] =
= 1L0x10° 1 = E=1 5 100 .
g 20 z 2
: :] % 50
5.0x 10 510 % ﬂ
Q
0 A i 0 | i v 102 | i I 0 b

FZ77771 One-Message-at-a-Time

Batched Streaming

[Pebbles (Sketched Streaming)

(b) With Apache Storm stream processing engine.

Fig. 14: Sketched streams improves the performance at the center compared to traditional processing one-message-at-a-time and
batched streaming as shown with two stream processing engines: Neptune and Apache Storm.

network. These modules provide a programming model and an
execution runtime for lightweight stream computations along
with support for two-way communications with their counter-
parts running in the cloud. The connectivity with the cloud en-
ables offloading processing, transferring derived data, and de-
vice management. These edge modules are often a component
in a larger IoT echo system offered by the vendor and expected
to reduce the data transfer to cloud and enable low latency pro-
cessing. Apache Edgent and Amazon’s Greengrass provide a
functional programming style API to connect with data sources
and manipulate the data streams. Despite several functional
similarities with edge operators in federated stream processing
systems, these edge modules are general purpose components
that can be used to implement diverse use cases such as ETL
pipelines. We posit that the our proposed methodology around
sketched streams complements these edge modules - Sketched
streams generated using Pebbles sketch algorithm can be used
to further improve the data transfer costs between these edge
modules and the center when applicable.

In-sketch Operation
Regular Operation on Materialized Sketch

EZZ777] Regular Operation

107 T T T

w I

o

w

o

w

E

o 10%F J

S

g I

£ ; ; !

o ; .

- |

=

E 101 L s L ! i

Filtering Transformations Value Based Round Robin Temporal

Partitioning Partitioning Partitioning
Operation

Fig. 15: Performance comparison in-sketch operations.

Data reduction at the edges: These techniques leverage sea-
sonal patterns, predictable trends in data, and minor varia-
tions between adjacent observations. Edge mining [24], [25],
[26] algorithms are designed to locally estimate a contextual
state out of the streams and transmit only the changes to the
aforementioned state to the receiver. For instance, the time-
discounted histogram encoding algorithm [26] maintains a
histogram representing the proportion of time spent on a set
of states (e.g. walking and sitting for a stream produced by a
gyroscope attached to a human) by locally processing a time
series data stream. Selective forwarding techniques [27], [28],
[65] attempt to reduce a stream into a fewer messages while
ensuring the reconstructability of the stream at the destination
with a certain accuracy. Traub et al.[65] proposes a read-
fusion scheme where read requests from multiple applications
are fused together into a single sensor read (through user-
defined sampling functions) which is then shared between the
applications at the center. These approaches are designed for
single-feature streams whereas Pebbles sketching algorithm can
natively handle multi-feature streams. Deligiannakis et al. [66]
propose data reduction technique that works with multi-feature
streams. At each sensor, consecutive readings are batched for
each feature. Each batch is then transformed with respect to a
base signal using the correlation of the feature values with the
base signal. Batches are partitioned until a matching section of
the base signal is found with a high correlation. At the des-
tination, the streams are reconstructed based on the regression
parameters and the base signal. These approaches focus only on
the reducing the data transfer overhead and whereas Pebbles
provides a holistic approach that encompasses data transfer
and processing. Compression is another class of data reduction
techniques that attempts to reduce the network footprint of the
data streams by exploiting the low entropy of the data. Most
lossless compression algorithms developed to run on energy
constrained devices are dictionary based due to their lower

power profiles [29], [30], [10]. LTC [31] is a lossy temporal
compression algorithm which exploits the linear trends in data.
Unlike Pebbles, these algorithms often focus on single-feature
streams and do not improve processing at the center.

Data Sketching: Frequency based sketches are a family of
streaming algorithms designed to summarize the observed
frequency distribution of a dataset [36]. They usually provide
constant time update and query performance and require only a
single pass over the dataset. Frequency based sketches are com-
pact by design and trade off accuracy by providing guaranteed
error bounds on estimated frequencies. Augmented Sketch [33],
Count-Min [34], Misra-Gries algorithm [35], and Counting-
Quotient filters [67] are a few examples of frequency based
sketches. Augmented Sketch improves the existing frequency-
based sketching algorithms by reducing the estimation error of
the most frequent items using an adaptive pre-filtering scheme,
especially in data streams with skewed distributions. Most
frequent items are retained by a filter, which supports faster
lookups through vector instructions, while remaining items are
sketched using regular frequency based sketching algorithms.
Counter based approaches [68], [69] are also used to summarize
data streams where they are designed to capture the top-K
elements in a stream. But these sketching algorithms cannot
maintain ordering between events, and do not support general
purpose processing — their applicability for ingestion in most
stream processing use cases are limited.

6 CONCLUSIONS AND FUTURE WORK

In this study, we presented a methodology and a reference im-
plementation based on data sketching for data stream ingestion
and processing in continuous sensing environments.

RQ-1: Sketched streams effectively reduce the data volumes at
the edges of the network, resulting in lower data transfer costs
and energy consumption. Our sketch-aware stream processing
API significantly improve the performance of the stream pro-
cessing applications while reducing resource footprints.

RQ-2: Pebbles sketches produce space-efficient representations
of both single-feature and multi-feature streams through con-
trolled trading off of the resolution of individual feature values.
Uniquely, our algorithm can preserve the ordering between
observations, handle anomalies effectively, and provide accu-
racy guarantees. Furthermore, Pebbles supports a richer set of
operations useful in stream processing computations compared
to existing frequency-based sketching algorithms.

RQ-3: Using sketches as the unit of data transfer/processing
significantly improves throughput, bandwidth utilization, and
tolerance to short-term performance hotspots, while reducing
execution overhead (garbage collection, context switches). In-
sketch operations provide memory-efficient, high throughput
stream processing operations.

RQ-4: Space-efficient representation of streams allows storage
of past data for extended periods of time. This enables repro-
cessing of past data to support new and updated applications.
Pebbles is a drop-in extension to existing stream processing
APIs enabling; (1) Pebbles applications to coexist with the reg-
ular stream processing applications, and (2) developing hybrid
stream processing applications that leverage both APIs.

As part of future work, we will explore using proactive
bin configuration generation schemes, deep integration with
micro-batching systems such as Spark Streams [59], and fur-
ther explore the applicability of Sketched streams in edge and
federated stream processing usecases.

13

Acknowledgments: This research was supported by the Na-
tional Science Foundation [OAC-1931363, ACI-1553685], the
National Institute of Food and Agriculture [COL0O-FACT-2019],
and a Cochran Family Professorship.

REFERENCES

[1] T. Stack. (2018) Internet of things (iot) data continues to
explode exponentially. who is using that data and how?
[Online]. Available: https:/ /blogs.cisco.com/datacenter/internet-
of-things-iot-data-continues- to-explode-exponentially-who-is-
using-that-data-and-how

[2] National Oceanic and Atmospheric Administration. (2018) The
North American Mesoscale Forecast System. [Online]. Available:
http:/ /www.emc.ncep.noaa.gov/index.php?branch=NAM

[3] Massachusetts Department of Transportation. (2017) MassDOT
developers’ data sources. [Online]. Available: https:/ /www.mass.
gov/massdot-developers-data-sources

[4] US Environmental Protection Agency. (2017) Air Data: Air Quality
Data Collected at Outdoor Monitors Across the US. [Online].
Available: https:/ /www.epa.gov/outdoor-air-quality-data

[5] M. Saeed et al., “Multiparameter intelligent monitoring in inten-
sive care ii (mimic-ii): a public-access intensive care unit database,”
Critical care medicine, vol. 39, no. 5, p. 952, 2011.

[6] S.R.Islam et al., “The internet of things for health care: a compre-
hensive survey,” IEEE Access, vol. 3, pp. 678-708, 2015.

[7] J. Fonollosa et al., “Reservoir computing compensates slow re-
sponse of chemosensor arrays exposed to fast varying gas con-
centrations in continuous monitoring,” Sensors and Actuators B:
Chemical, vol. 215, pp. 618-629, 2015.

[8] C.-W. Tsai ef al., “Data mining for internet of things: A survey,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 77-97,
2014.

[9] . Gubbi et al., “Internet of things (iot): A vision, architectural el-
ements, and future directions,” Future generation computer systems,
vol. 29, no. 7, pp. 1645-1660, 2013.

[10] F. Marcelloni et al., “An efficient lossless compression algorithm for
tiny nodes of monitoring wireless sensor networks,” The Computer
Journal, vol. 52, no. 8, pp. 969-987, 2009.

[11] C.-Y. Wan et al., “Pump-slowly, fetch-quickly (psfq): a reliable
transport protocol for sensor networks,” IEEE Journal on selected
areas in Communications, vol. 23, no. 4, pp. 862-872, 2005.

[12] Y. Sankarasubramaniam et al., “Esrt: event-to-sink reliable trans-
port in wireless sensor networks,” in Proceedings of the 4th ACM
international symposium on Mobile ad hoc networking & computing.
ACM, 2003, pp. 177-188.

[13] S. Kamburugamuve et al., “A framework for real time processing
of sensor data in the cloud,” Journal of Sensors, vol. 2015, 2015.

[14] P. Michalék et al., “Path2iot: A holistic, distributed stream process-
ing system,” in 2017 International Conference on Cloud Computing
Technology and Science (CloudCom). 1EEE, 2017, pp. 25-32.

[15] P. Edara et al., “Asynchronous in-network prediction: Efficient
aggregation in sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, no. 4, p. 25, 2008.

[16] H.P. Sajjad et al., “Spanedge: Towards unifying stream processing
over central and near-the-edge data centers,” in Edge Computing,
IEEE/ACM Symposium on, 2016, pp. 168-178.

[17] M. Kleppmann, Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. ”O’Reilly”, 2017.

[18] J. Kreps. (2014-07-02) Questioning the lambda architecture.
[Online]. Available: https:/ /www.oreilly.com/ideas/questioning-
the-lambda-architecture

[19] M. Satyanarayanan ef al., “The case for vm-based cloudlets in
mobile computing,” IEEE pervasive Computing, no. 4, pp. 14-23,
2009.

[20] B. Theeten et al., “Chive: Bandwidth optimized continuous query-
ing in distributed clouds,” IEEE Transactions on cloud computing,
vol. 3, no. 2, pp. 219-232, 2015.

[21] F. Bonomi et al., “Fog computing and its role in the internet of
things,” in Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. ACM, 2012, pp. 13-16.

[22] E. G. Renart et al., “Data-driven stream processing at the edge,”
in Fog and Edge Computing (ICFEC), 2017 IEEE 1st International
Conference on. 1EEE, 2017, pp. 31-40.

[23] S. Esteves ef al., “Empowering stream processing through edge
clouds,” SIGMOD Rec., vol. 46, no. 3, pp. 23-28, Oct. 2017.

[24] D. Goldsmith et al., “The spanish inquisition protocolmodel based
transmission reduction for wireless sensor networks,” in SEN-
SORS, 2010 IEEE. 1EEE, 2010, pp. 2043-2048.

[25] J. Brusey et al., “Postural activity monitoring for increasing safety
in bomb disposal missions,” Measurement Science and Technology,
vol. 20, no. 7, p. 075204, 2009.

[26] E.I. Gaura et al., “Bare necessitiesknowledge-driven wsn design,”
in SENSORS, 2011 IEEE. 1IEEE, 2011, pp. 66-70.

[27] D. Trihinas et al., “Adam: An adaptive monitoring framework for
sampling and filtering on iot devices,” in Big Data. IEEE, 2015,
pp. 717-726.

[28] W. Sherchan et al., “Using on-the-move mining for mobile crowd-
sensing,” in Mobile Data Management (MDM), 2012 IEEE 13th
International Conference on. 1EEE, 2012, pp. 115-124.

[29] C. M. Sadler et al., “Data compression algorithms for energy-
constrained devices in delay tolerant networks,” in Proceedings of
the 4th international conference on Embedded networked sensor systems.
ACM, 2006, pp. 265-278.

[30] M. Oberhumer. minilzo: mini version of the Ilzo
time data compression library. [Online]. Available:
/ /www.oberhumer.com/opensource/1zo/

[31] T. Schoellhammer et al., “Lightweight temporal compression of
microclimate datasets,” 2004.

[32] A. Papageorgiou et al., “Reconstructability-aware filtering and
forwarding of time series data in internet-of-things architectures,”
in International Congress on Big Data. IEEE, 2015, pp. 576-583.

[33] P. Roy et al., “Augmented sketch: Faster and more accurate stream
processing,” in Proceedings of the 2016 International Conference on
Management of Data, 2016, pp. 1449-1463.

[34] G.Cormode et al., “An improved data stream summary: the count-
min sketch and its applications,” Journal of Algorithms, vol. 55,
no. 1, pp. 58-75, 2005.

[35] J. Misra et al., “Finding repeated elements,” Science of computer
programming, vol. 2, no. 2, pp. 143-152, 1982.

[36] G. Cormode, “Sketch techniques for approximate query process-
ing,” Foundations and Trends in Databases. NOW publishers, 2011.

[37] (2019) Aws iot greengrass: Bring local compute, messaging, data
caching, sync, and ml inference capabilities to edge devices.
[Online]. Available: https://aws.amazon.com/greengrass/

[38] (2016) Apache edgent: A community for accelerating analytics at
the edge. [Online]. Available: http://edgent.apache.org/

[39] D. Locke, “Mq telemetry transport (mqtt) v3.1 protocol specifica-
tion,” IBM developerWorks Technical Library, 2010.

[40] G. C. Fox et al., “Architecture and measured characteristics of a
cloud based internet of things,” in 2012 international conference on
Collaboration Technologies and Systems (CTS). IEEE, 2012, pp. 6-12.

[41] Apache kafka: A distributed streaming platform. [Online].
Available: https:/ /kafka.apache.org/

[42] Apache storm. [Online]. Available: http:/ /storm.apache.org/

[43] T. Buddhika et al., “Neptune: Real time stream processing for
internet of things and sensing environments,” in Intl. Parallel and
Distributed Processing Symposium. 1EEE, 2016, pp. 1143-1152.

[44] E. Parzen, “On estimation of a probability density function and
mode,” The annals of mathematical statistics, vol. 33, no. 3, pp. 1065—
1076, 1962.

[45] M. Rosenblatt et al., “Remarks on some nonparametric estimates
of a density function,” The Annals of Mathematical Statistics, vol. 27,
no. 3, pp. 832-837, 1956.

[46]].S. Vitter, “Random sampling with a reservoir,” ACM Transactions
on Mathematical Software (TOMS), vol. 11, no. 1, pp. 37-57, 1985.

[47] C. C. Aggarwal, “On biased reservoir sampling in the presence of
stream evolution,” in Proceedings of the 32nd international conference
on Very large data bases. VLDB Endowment, 2006, pp. 607-618.

[48] J. Arfa. (2016) Virbs and sampling events from streams.
[Online]. Available: http://tech.magnetic.com/2016/04/virbs-
sampling-events-from-streams.html

[49] T. Akidau et al., “Millwheel: fault-tolerant stream processing at
internet scale,” Proceedings of the VLDB Endowment, vol. 6, no. 11,
pp- 1033-1044, 2013.

[50] K. Wu, “Notes on design and implementation of compressed bit
vectors,” 2001.

[51] D. Lemire et al., “Sorting improves word-aligned bitmap indexes,”
Data & Knowledge Engineering, vol. 69, no. 1, pp. 3-28, 2010.

[52] A. Colantonio et al., “Concise: Compressed'n’composable integer
set,” arXiv:1004.0403, 2010.

real-
http:

14

[53] S. Chambi et al., “Better bitmap performance with roaring
bitmaps,” Software: practice and experience, vol. 46, no. 5, pp. 709—
719, 2016.

[54] J. Wang et al., “An experimental study of bitmap compression
vs. inverted list compression,” in Proceedings of the 2017 ACM
SIGMOD. ACM, 2017, pp. 993-1008.

[55] D. Cutting et al., “Optimization for dynamic inverted index
maintenance,” in Proceedings of the 13th annual international ACM
SIGIR conference on Research and development in information retrieval.
ACM, 1989, pp. 405-411.

[56] M. Zukowski et al., “Super-scalar ram-cpu cache compression,” in
Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International
Conference on. IEEE, 2006, pp. 59-59.

[57] V.N. Anh et al., “Inverted index compression using word-aligned
binary codes,” Information Retrieval, vol. 8, no. 1, pp. 151-166, 2005.

[58] DEBS. (2014) ACM DEBS 2014 Grand Challenge: Smart homes.
[Online]. Available: http://debs.org/debs-2014-smart-homes/

[59] M. Zaharia et al., “Discretized streams: An efficient and fault-
tolerant model for stream processing on large clusters.” HotCloud,
vol. 12, pp. 10-10, 2012.

[60] M. Hirzel et al., “A catalog of stream processing optimizations,”
ACM Computing Surveys, vol. 46, no. 4, p. 46, 2014.

[61] J. C. Process. (2012) Jsr 335: Lambda expressions for the
javatm programming language. [Online]. Available: https:
//jcp.org/en/jsr/detail?id=335

[62] Y. Collet et al. (2013) Lz4: Extremely fast compression algorithm.
[Online]. Available: https:/ /1z4.github.io/1z4/

[63] J. Dean et al., “The tail at scale,” Communications of the ACM, vol. 56,
no. 2, pp. 74-80, 2013.

[64] (2019) Cisco kinetic edge & fog processing module. [Online].
Available: https:/ /www.cisco.com/c/dam/en/us/solutions/
collateral /internet-of-things/kinetic-datasheet-efm.pdf

[65] J. Traub et al., “Optimized on-demand data streaming from sensor
nodes,” in Proceedings of the 2017 Symposium on Cloud Computing.
ACM, 2017, pp. 586-597.

[66] A. Deligiannakis et al., “Compressing historical information in
sensor networks,” in Proceedings of the 2004 ACM SIGMOD, ser.
SIGMOD '04. ACM, 2004, pp. 527-538.

[67] P.Pandey ef al., “A general-purpose counting filter: Making every
bit count,” in SIGMOD. ACM, 2017, pp. 775-787.

[68] G. Cormode et al., “Finding frequent items in data streams,” Proc.
of the VLDB Endowment, vol. 1, no. 2, pp. 1530-1541, 2008.

[69] A. Metwally et al., “Efficient computation of frequent and top-k
elements in data streams,” in International conference on database
theory. Springer, 2005, pp. 398-412.

Thilina Buddhika received his Ph.D. from
the Computer Science department at Colorado
State University. His research interests are in
the area of real time, high throughput stream
processing specifically targeted to environments
such as Internet of Things (loT) and health care
applications. Email: thilinab@cs.colostate.edu

Sangmi Lee Pallickara is an Associate Profes-
sor in the Department of Computer Science and
a Cochran Family Professor at Colorado State
University. She received her Masters and Ph.D.
degrees in Computer Science from Syracuse
University and Florida State University, respec-
tively. Her research interests are in the area of
large-scale scientific data management. She is
a recipient of the NSF CAREER award. Email:
sangmi@cs.colostate.edu

Shrideep Pallickara is a Professor in the De-
partment of Computer Science at Colorado
State University. His research interests are
in the area of large-scale distributed sys-
tems. He received his Masters and Ph.D. de-
grees from Syracus University. He is a re-
cipient of an NSF CAREER award. Email:
shrideep@cs.colostate.edu

