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Bistability in Cylindrical
Developable Mechanisms
Through the Principle
of Reflection
We present a resource for designing bistable developable mechanisms (BDMs) that reach
their second stable positions while exterior or interior to a cylindrical surface. Analysis of
the necessary conditions to create extramobile and intramobile cylindrical BDMs is con-
ducted through a series of three tests. These tests contain elements of both existing and
new mechanism design tools, including a novel graphical method for identifying stable posi-
tions of linkages using a single dominant torsional spring, called the principle of reflection.
These tests are applied to all possible mechanism cases and configurations to identify why
certain configurations will always, sometimes, or never be a BDM. Two tables summarize
these results as a guide when designing extramobile and intramobile BDMs. The results are
compared and demonstrated with a numerical simulation of 30,000+ mechanisms, includ-
ing several example mechanisms that illustrate the concepts discussed in the work. Discus-
sion is then provided on the implication of these results. [DOI: 10.1115/1.4049655]
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1 Introduction
Developable mechanisms are devices that can conform to or be

embedded within a developable surface [1], such as a cone or cyl-
inder. This class of mechanisms shows promise for use in applica-
tions that demand devices be highly compact when stored but
capable of deploying and performing specific functions. Their ter-
minology [2], as well as investigatory work on their implementation
in cylindrical [3,4] and conical [5] surfaces, has been an area of
recent interest. Developable mechanisms that conform to cylinders
are of particular interest because of the prevalence of cylinders in
many applications.
One area of interest in the analysis of developable mechanisms is

their ability to move exterior to or interior to (extramobile and intra-
mobile motion) a developable surface [3]. By remaining entirely
outside or inside of a surface, the mechanism ensures that it does
not interfere with other subsystems that may be within or without
a specified region. This enables developable mechanisms to be
implemented in many applications without adjusting geometry to
accommodate for the motion path of the mechanism.
The potential impact of developable mechanisms could be

increased by combining their unique geometry with other types of
mechanisms that exhibit specialized behaviors. One such behavior
is bistability, the capacity of a mechanism to utilize strain energy
to reach multiple stable positions. The use of strain energy allows
for more economical use of input or actuation power [6]. For
example, an actuator can move a device from one stable state to
another and remain inactive otherwise, reducing energy consump-
tion, wear, and cost. Many methods of introducing and using
strain energy into mechanisms have been proposed, including the
use of architectured materials [7,8], orthogonal compliant mecha-
nisms [9], and micromechanisms [10]. Other methods for synthesiz-
ing these mechanisms have also been developed [11–15]. These

approaches and devices are all dependent upon the same basic prin-
ciples of energy storage and stable equilibrium.
Theorems have been developed to accurately predict the condi-

tions that must exist to make a planar mechanism bistable [16].
These theorems are based upon the Grashof-condition [17] and
initial geometry of a mechanism. Because cylindrical developable
mechanisms are a subset of planar mechanisms, these theorems
may be applied without additional consideration to create bistable
developable mechanisms (BDMs). Mechanisms created with this
approach, called regular BDMs or simply BDMs, are created
without consideration of their motion relative to the developable
surface on which they conform.
Of particular interest are BDMs whose second stable position

resides where all links are exterior or interior to a reference
surface and can be reached through only extramobile or intramobile
motion. The design of these mechanisms, referred to here as extra-
mobile and intramobile BDMs, must consider the geometry of the
developable surface to ensure their motion and stable positions
reside outside or inside the surface.
This work identifies the conditions necessary to design extramo-

bile and intramobile cylindrical BDMs. A series of tests are intro-
duced and implemented to develop a design reference that
identifies possible configurations of extramobile and intramobile
BDMs. A novel graphical method for identifying stable positions
of linkages using a single-dominant torsional spring, called the
Principle of Reflection, is introduced and implemented in these
tests. The test results are compared with a numerical simulation
of several thousand mechanisms to identify any incongruancies.
Several example mechanisms demonstrate the approach. Two
tables, located at the end of this work, summarize the test results
as a guide for creating extramobile and intramobile BDMs. Discus-
sion is then provided on the design reference.

2 Background
To understand the concepts and approaches used in this paper, we

provide a brief review of relevant topics. This includes a discussion
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on developable mechanisms, extramobile and intramobile motion,
bistability in planar mechanisms, and a geometric proof that is
used frequently in this work.

2.1 Developable Mechanisms. Developable mechanisms are
defined as mechanisms that are contained within or can conform
to a developable surface (called a reference surface) when
modeled with zero-thickness [2]. There are three major subsets of
developable mechanism, which are correlated with the types of sur-
faces to which they conform. Planar, spherical, and spatial mecha-
nisms can be designed to conform to cylindrical, conical, and
tangent-developed surfaces, respectively. This is accomplished by
aligning mechanism joints along the ruling lines of these develop-
able surfaces. Mobility of these mechanisms is therefore only pos-
sible when a mechanism conforms to a developable surface,
excluding other geometries such as dome-like or saddle-like
surfaces.
Developable mechanisms that conform to cylinders are a subset

of general planar mechanisms because the ruling lines of cylindrical
surfaces are all parallel [2]. Therefore, cylindrical developable
mechanisms are subject to the same rules that govern the behavior
of traditional planar mechanisms. For example, the determination of
Grashof criteria based on the distance between pins on a link [17] is
still directly applicable to developable mechanisms. In a
zero-thickness model, developable mechanisms have curved links.
Because the kinematics of the links depend on the distance
between pin joints, the rigid link may take on any shape, as in
Fig. 1. For clarity, in this work, we will refer to the straight lines
as ri and the curved links as links.
Greenwood et al. showed how to determine if a mechanism is

capable of extramobile or intramobile behavior based on its

straight-linkage representations at the conformed positions [3].
Six classes of four-bar mechanisms that achieve this behavior
were identified. Three of these classes (1A, 2A, and 3A) are
symmetric equivalents of the other three (1B, 2B, and 3B). As
such, this paper will only look at Class A mechanisms (shown in
Fig. 1).

2.2 Conditions for Intramobile and Extramobile Motion.
Intramobile (or extramobile) motion is the range of motion where
a mechanism is interior (or exterior) to the reference surface. In pre-
vious work [18], we demonstrated that predicting intramobile and
extramobile motion only requires analysis of grounded links; float-
ing links do not affect the limits of extramobile or intramobile
motion. Assurance of extramobile and intramobile motion can
then be simplified into two conditions:

Condition 1: No grounded link may rotate from the conformed
position far enough to again intersect the reference surface.

Condition 2: No grounded link may rotate interior to (exterior to)
the reference surface for extramobile (intramobile) motion.

These conditions are comprehensive to all cylindrical develop-
able mechanisms that are subject to the following assumptions.
All links are modeled with zero thickness, have the same curvature
as the reference surface, and have an arc length ≤ πR. All grounded
links only extend in one direction past their grounded pivot, while
the coupler must not extend beyond either of the moving pivots.
Condition 1 can be visually illustrated and is shown in Figs. 2(a)

and 2(b). The maximum possible rotations of any grounded link i
for intramobile or extramobile motion are constrained by δimax

and are expressed mathematically as

δi ex,max = π for (0 < Si ≤ πR) (1)

δi in,max = π −
Si
R

for (0 < Si ≤ πR) (2)

where Si is the arc length of link i and R is the radius of the cylin-
drical reference surface. Condition 2 is violated when a grounded
link moves exterior/interior to the surface, then reverses directions,
returns to the initial position, and continues interior/exterior to the
surface, as shown in Fig. 2(c). Conditions 1 and 2 will therefore
serve as a means to determine if second stable positions are
reached prior to a mechanism reaching its limit of intramobile or
extramobile motion.

2.3 Bistability. Bistability in a mechanism exists when there
are two separate stable equilibrium configurations within the
range of motion of the mechanism, such as is seen in light switches,
cabinet doors, and toothpaste lids. Bistability in four-bar mecha-
nisms can be achieved by placing one or more torsional springs at
the pin joints, each with a stiffness Ki. These torsional springs
allow the mechanism to reach a variety of stable configurations,
depending on the relative stiffnesses of each spring. The angle ψ
indicates the angular deviation of any two links from their initial

(a)

(b)

(c)

Fig. 1 Examples of the three classes of extramobile and intra-
mobile mechanisms. While developable mechanisms are
created using curved links (left), straight lines can be used to
better visualize their positions (right): (a) Class 1A, (b) Class
2A, and (c) Class 3A.

(a) (b) (c)

Fig. 2 Condition 1 provides δimax, the maximum (a) interior or
(b) exterior rotation for any grounded link. Subfigure (c) shows
Condition 2, where the link has returned to the surface. (a) Con-
dition 1, (b) Condition 1, and (c) Condition 2.
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relative angle and is given by [19]

ψ1 = θ2 − θ2o

ψ2 = θ2 − θ2o − (θ3 − θ3o)

ψ3 = θ4 − θ4o − (θ3 − θ3o)

ψ4 = θ4 − θ4o

(3)

where θi and θio are the initial and rotated orientations of link i,
respectively, relative to horizontal.
As a mechanism moves, the magnitude of ψ will increase. If a

single torsional spring is located at pin joint i, this deflection will
cause an increase of strain energy as given by

Vi =
1
2
Kiψ

2
i (4)

To reach a stable position using a single spring of stiffness Ki, the
angle ψi must equal 0. This can be extended to mechanisms with
multiple torsional springs so long as there is one dominant spring
Ki (a spring with much greater stiffness than any other in the
mechanism).
Jensen and Howell proposed three fundamental theorems that

predict how compliant design affects bistable behavior in planar
four-bar mechanisms [16]. These theorems are as follows:
THEOREM 1. A compliant mechanism whose pseudo-rigid-body

model behaves like a Grashof four-link mechanism with a torsional
spring placed at one joint will be bistable if and only if the torsional
spring is located opposite the shortest link and the spring’s unde-
flected state does not correspond to a mechanism position in
which the shortest link and the other link opposite the spring are
collinear.
THEOREM 2. A compliant mechanism whose pseudo-rigid-body

model behaves like a non-Grashof four-link mechanism with a tor-
sional spring at any one joint will be bistable if and only if the
spring’s undeflected state does not correspond to a mechanism
position in which the two links opposite the spring are collinear.
THEOREM 3. A compliant mechanism whose pseudo-rigid-body

model behaves like a change-point four-link mechanism with a tor-
sional spring placed at any one joint will be bistable if and only if
the spring’s undeflected state does not correspond to a mechanism
position in which the two links opposite the spring are collinear.
These theorems accurately predict the placement of torsional

springs on four-bar mechanisms to obtain bistability. They may
therefore be applied to help identify possible configurations of
developable mechanisms that lead to bistable positions outside
and inside a cylinder.

2.4 Motion Limits. The motion of a mechanism is often
limited by its geometry. Specifically, the extreme values for the
θ2 and θ4 occur at toggle positions, or when two links prohibit
further motion of another link. If these limits exist for a given mech-
anism, the extreme values of θ2 occur when r3 and r4 align and the
extreme values for θ4 occur when r2 and r3 align.
The extreme angle values can affect the intramobile and extramo-

bile motion of developable mechanisms. These values are given by
Ref. [18] for triple-rockers, double-rockers, and crank-rockers.
These equations are also included below because they are fre-
quently used in the analysis.
For triple-rockers (RRR4), the limits are as follows:

θ2min,RRR4 = arccos
r21 + r22 − r4 − r3( )2

2r1r2

( )
(5)

θ2max,RRR4 = 2π − arccos
r21 + r22 − r4 − r3( )2

2r1r2

( )
(6)

θ4min,RRR4 = π − arccos
r21 + r24 − r2 + r3( )2

2r1r4

( )
(7)

θ4max,RRR4 = π + arccos
r21 + r24 − r2 + r3( )2

2r1r4

( )
(8)

For double-rockers (GRCR), the limits are as follows:

θ2min,GRCR = θ2min,RRR4 (9)

θ2max,GRCR = arccos
r21 + r22 − r3 + r4( )2

2r1r2

( )
(10)

θ4min,GRCR = θ4min,RRR4 (11)

θ4max,GRCR = π − arccos
r21 + r24 − r2 − r3( )2

2r1r4

( )
(12)

For crank-rockers (GCRR), link 2 is fully revolute and thus θ2
has no extreme value. The limits for θ4 are as follows:

θ4min,GCRR = θ4min,RRR4 (13)

θ4max,GCRR = θ4max,GRCR (14)

2.5 Thale’s Theorem. Thale’s Theorem [20] states that a tri-
angle that is circumscribed by a circle and intersects the center of
the circle must have the angle opposite the longest side equal to
π/2. If the triangle does not contain the center of the circle, the
angle opposite to the largest side must be greater than π/2. It
follows that the other interior angles are less than π/2. If the triangle
contains the center of the circle, all interior angles are less than π/2
(see Fig. 3).

3 Principle of Reflection: Finding Stable Positions
of Bistable Linkages
Past work has developed analytical methods to identify the stable

positions of bistable mechanisms through analysis of strain energy
in deflected springs [21]. In general, analytical methods can provide
robust numerical solutions to complex problems, while graphical
methods can harness the designer’s intuition through visual repre-
sentation. This is especially true when mechanism design is con-
strained by the geometry of the device or its environment. The
geometry-based nature of developable mechanisms makes graphi-
cal methods a logical approach for their design, particularly when
the design utilizes CAD systems or geometry-based analysis
programs.
We now introduce the Principle of Reflection, a graphical method

for finding the stable positions of four-bar linkages with one dom-
inant torsional spring. This method will later be used to analyze
BDMs. Note that the dominant spring must be placed according
to the theorems in Sec. 2.3. The Principle of Reflection is discussed
in context of the dominant spring (K1, K2, K3, or K4, as shown in
Fig. 4).

(a) (b) (c)

Fig. 3 Thale’s theorem can be used to determine if an interior
angle of a triangle is >, <, or = π /2. This is based on the relative
location of the center of the triangle’s circumcircle. (a) A> π/2,
(b) [A= π/2], an (c) [A, B, C<π/2].
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We define the first stable position for K1 and K3 to be at the
initial position, when ∠P142 = γ42 and P24 = d42, as shown in
Fig. 4. Likewise, we define the first stable position for K2 and K4
at the initial position when ∠P314 = γ13 and P13 = d13. The
values of γ can be found through the laws of sines and cosines.
Since the arcsin function is a one-to-many relation, care must be
taken to identify which quadrant γ lies in to ensure arcsin returns
the correct value.

γ13 = arcsin
r4 sin π − θ4o( )������������������������������

r21 + r24 − 2r1r4 cos π − θ4o( )
√

( )
(15)

γ42 = arcsin
r2 sin θ2o( )��������������������������

r21 + r22 − 2r1r2 cos θ2o( )
√

( )
(16)

Below and throughout this paper, the first stable position (the
initial position) is noted by θo, and the second stable position is
noted by θb. Without loss of generality we will let θ1= 0.

K1 or K4. K1 has zero potential energy when θ2= θ2o (ψ1= 0),
so the second stable position is reached when r2 has returned to its
original position (assuming it has not undergone a full rotation).
Therefore, θ2b= θ2o. In the second stable position, r3 and r4 are
reflected across d42, as shown in Figs. 5(a) and 5(b).

Similarly, K4 has zero potential energy when θ4= θ4o (ψ4= 0). In
the second stable position, θ4b= θ4o where both r2 and r3 are
reflected across d13.

K2 or K3. For springs K2 or K3, the second stable position of
the mechanism (when ψ2= 0 or ψ3= 0) can be found using reflec-
tion of the opposite grounded link, as described below and shown
in Fig. 5.
Consider the four-bar linkage with torsional spring K2 in

Fig. 5(c). The second stable position occurs when spring K2
returns to an undeflected state, ψ2= 0 (note that the links will be
in different positions than the initial position). In both stable posi-
tions, P13 = d13. This forms two triangles, ΔP123 and ΔP134. It
follows that in the second stable position, triangle ΔP134 is
reflected across r1. Because triangleΔP123 also has side d, the posi-
tions of r2 and r3 are both located an angular displacement of 2γ13
about P1. Therefore, for a mechanism with torsional spring K2, the
second stable position occurs when r4 is reflected across r1 and
when r2 and r3 are rotated magnitude 2γ13 about P1.
A similar derivation can be done for K3. The result is that, for a

mechanism with torsional spring K3, the second stable position
occurs when r2 is reflected across r1 and r3 and r4 are located at
an angular displacement of magnitude 2γ42 about P4.

4 Methods
The Theorems of Bistability, Principle of Reflection, and Condi-

tions for Intramobile and Extramobile Motion provide us with the
necessary tools to identify intramobile and extramobile BDMs.
We will use these together to form three tests that filter which mech-
anism geometries always, sometimes, or never create an extramo-
bile or intramobile BDM. If a mechanism fails a test, it cannot be
an intramobile (or extramobile) BDM and will be noted by 7j,
where the subscript refers to the failed test. For convenience,
these tests are generally performed sequentially. Mechanisms
must pass all three tests to be an extramobile or intramobile BDM.
The first stable position is defined as the conformed and initial

position of the mechanism, where all the links are conformed to
the cylindrical reference surface. At this point, all joints are coinci-
dent with the reference surface. Without loss of generality, we will
let θ1= 0.

4.1 Test 1: Theorems of Bistability. For a developable mech-
anism to be a BDM, it must adhere to the three theorems of bistabil-
ity for general planar four-bar linkages identified by Jensen and
Howell [16] (see Sec. 2.3). Mechanisms that fail Test 1 (noted by
✗1) are no longer candidates for being extramobile or intramobile
BDMs.

4.2 Test 2: Principle of Reflection. As cylindrical develop-
able mechanisms are a subset of general planar mechanisms, the
Principle of Reflection discussed in Sec. 3 may be used to identify
the second stable position of a developable mechanism. (This prin-
ciple assumes that the mechanism passes Test 1.) If either link 2 or 4
is exterior/interior to the surface in the second stable position, the
mechanism fails Test 2 for intramobile/extramobile motion (noted
by ✗2).
For K1, only the second stable position of link 4 needs to be

checked (link 2 has returned to the conformed position). Similarly,
for K4, only the second stable position of link 2 needs to be checked
(link 4 has returned to the conformed position). If the second stable
position of either link lies at a reflection across d toward the center
of the circle, it cannot be an extramobile BDM. Likewise, a reflec-
tion away from the center of the circle prevents it from being an
intramobile BDM.

4.3 Test 3: Motion Between Stable Positions. Test 3 is used
to identify if the motion between the initial position and the second

(a) (b)

(c) (d )

Fig. 5 (a, c) Stable states (solid and dashed) for a mechanism
with one dominant torsional spring. (b, d) Principle of Reflection
used to find the second stable position. (a) With spring K1 (b),
reflecting r3, r4 across d, (c) with spring K2, and (d) reflecting r4
across r1.

Fig. 4 The four possible torsional spring locations for a four-bar
mechanism. Nomenclature for the Principle of Reflection is also
shown.
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stable position ever violates Condition 1. If it does, it fails Test 3
(noted by ✗3). This test assumes that a mechanism has already
passed Tests 1 and 2 (the spring will provide bistability and its
second stable position does not intersect the reference surface).
With this assumption, there are two cases. First, if neither grounded
link (links 2 and 4) changes direction between the stable states, the
second stable position will be reached without either link violating
Condition 1, and therefore, Tests 1 and 2 are sufficient.
In the second case, if a grounded link does change direction

between the stable states, it is possible that the link may have
crossed the reference surface prior to the mechanism reaching the
second stable position (again, assuming the second stable position
is valid, Test 2 was passed). The maximum displacement of that
link must then be checked to see if that link violated Condition 1
en route to the second stable position. Links 2 and 4 will not
change direction unless they reach an extreme value of θ2 or θ4.
These extreme values were discussed and provided in Sec. 2.4.

4.3.1 Test 3 for Grashof Mechanisms and Extramobile
Motion. Using the equations in Sec. 2.4, we will show that a
grounded link for a Grashof mechanism (excluding change-points)
will either have no extremes in its motion (and therefore will not
change direction) or it will never rotate past δex,max= π. The three
possible types of Grashof mechanisms for Class A mechanisms
are double-rockers (GRCR), crank-rockers (GCRR), and double-
cranks (GCCC) [3].
GRCR: Both links 2 and 4 can reach extreme positions in their

motion. The equations for the extremes of link 2 (Equations 9 and
10) directly use the arccos function, which is bounded between 0
and π, so the motion of link 2 cannot rotate more than π. The equa-
tions for link 4 (Eqs. 11 and 12) use π minus the arccos function,
which still bounds the output to be between 0 and π so the
motion of link 4 also cannot rotate more than π.
GCRR: Link 2 is fully revolute and therefore will not change

direction between the first and second stable states. For link 4, the
extremes of θ4 are found by Eqs. (13) and (14), which are both π
minus the arccos function. As discussed above, the output is
bounded by 0 and π so the motion of link 4 also cannot rotate
more than π.
GCCC: Both links 2 and 4 are fully revolute and therefore will

not change direction between the first and second stable states.
Therefore, grounded links of Grashof mechanisms either do not

change direction or will never rotate past δex,max= π. This means

that if a Grashof mechanism passes Test 1 and 2 for extramobile
motion, it cannot fail Test 3 for extramobile motion. However, a
Grashof mechanism that passed Tests 1 and 2 intramobile motion
may fail Test 3 for intramobile motion because δin,max depends on
the arc length of the link.

5 Analysis
The three tests are now applied to determine the geometries that

always (noted by ✓), sometimes (noted by ✓*), or never (noted by
✗) create an extramobile or intramobile BDM. A final summary is
provided at the end of the paper in Table 1 and supplemented by
a summary of ✓* cases in Table 2.
Each subsection analyzes one of the three Class A cylindrical

developable mechanisms that are capable of extramobile and intra-
mobile motion. Typically, the torsional springs will be discussed in
order K1, K4, K2, and K3 since the bistable positions of K1 and K4
are found in a similar manner (as are K2 and K3). The analysis will
further be broken down by Grashof criteria and link configuration,
with a general notation given as “mechanism type, associated
springs” (e.g., GCCC K1,K4). The relative lengths of links are
also referred to throughout the work using s, l, p, and q, where s
is the shortest link, l is the longest link, and p and q are the remain-
ing links.

5.1 Class 1A. By definition, conformed Class 1A mechanisms
(Fig. 1(a)) are always in an open configuration and the loop formed
by the mechanism may not contain the center of the circle [3]. This
constrains link 4 to be the longest link l as it subtends all other links
and may not cross the center of the circle. It follows that for Class
1A mechanisms,

π/2 ≤ θ2o ≤ π

π/2 ≤ θ4o ≤ π
(17)

5.1.1 Test 2 for All Class 1A BDMs. For conciseness, this
section details Test 2 for all Class 1A BDMs. As such, it assumes
that Test 1 has been passed. The second stable position for each
of these cases are found by the Principle of Reflection. Figure 6
shows Class 1A mechanisms that use one dominant spring to
obtain bistability.

Table 1 Possible locations of torsional springs to create bistable extramobile and intramobile cylindrical Class A developable
mechanisms

Extramobile Intramobile

Type K1 K2 K3 K4 K1 K2 K3 K4

Class 1A Grashof GCCC ✗1 ✓ ✓ ✗1 ✗1 ✗2 ✗2 ✗1
GCRR ✗1 ✗1 ✓ ✗2 ✗1 ✗1 ✗2 ✓*
GRCR ✓ ✗1 ✗1 ✗2 ✗2 ✗1 ✗1 ✓*

Non-Grashof RRR4 ✓* ✓* ✓ ✗2 ✗2 ✗2 ✗2 ✓*
Change-Point CPCCC ✗3 ✓ ✓ ✗2 ✗2 ✗2 ✗2 ✗3

CPCRR ✗3 ✗3 ✓ ✗2 ✗2 ✗2 ✗2 ✓*
CPRCR ✓ ✓ ✓* ✗2 ✗2 ✗2 ✗2 ✓*

Class 2A Grashof GCCC ✗1 ✓ ✓* ✗1 ✗1 ✗2 ✗2 ✗1
GRCR ✗2 ✗1 ✗1 ✓ ✓* ✗1 ✗1 ✗2

Change-Point CP2X-RCR ✗2 ✓ ✓* ✓ ✗3 ✗3 ✗3 ✗3
CP2X-CCR/RRC ✗2 ✗1 ✓* ✗1 ✓* ✗1 ✗2 ✗1
CP3X ✗2 ✗1 ✓* ✗1 ✗3 ✗1 ✗2 ✗1

Class 3A Grashof GCRR ✗1 ✗1 ✗2 ✓ ✗1 ✗1 ✓* ✗2
Change-Point CP2X-CCR ✓ ✗1 ✗2 ✗1 ✗2 ✗1 ✓* ✗1

CP3X ✗1 ✗1 ✗1 ✗1 ✗1 ✗1 ✗1 ✗1

Note: Cases are identified as being always (✓), sometimes (✓*), and never (✗i) possible, with subscripts denoting an associated failed test. Additional
guidance for ✓* scenarios is given in Table 2.

Journal of Mechanical Design AUGUST 2021, Vol. 143 / 083302-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/143/8/083302/6628932/m
d_143_8_083302.pdf by Brigham

 Young U
niversity user on 17 M

ay 2021



K1 (Figure 6)(a)): In the second stable position link 4 is exterior
to the reference surface (intramobile K1: ✗2).
The second stable position of link 4 lies at an angular displace-

ment of 2∠P243 (rotated counter-clockwise). Thale’s Theorem
shows that ∠P243 < π/2, so link 4 cannot be past δ4 ex,max.
Hence, it passes Test 2 for extramobile motion.
K4 (Fig. 6(b)): In the second stable position link 2 is rotated

toward the center of the circle (extramobile K4: ✗2).
For the second stable position of link 2 to be located further than

δ2 in,max, d13 must cross through the center of the circle, but this
cannot happen due to Eq. (17) (link 4 may not cross the center of
the circle). So, K2 passes Test 2 for intramobile motion.
K2 (Fig. 6(c)): In the second stable position, links 2 and 4 are

exterior to the reference surface (intramobile K2: ✗2). Link 2’s
second stable position is located at a rotation of 2γ13 (rotated
counter-clockwise). By Thale’s Theorem, γ13≥ π/2; so, it is not
past δ2 ex,max. The second stable position of link 4 is found by a
reflection of r4 across r1, so θ4b=−θ4o (link 4 rotated counter-
clockwise). Because θ4o≥ π/2 (Eq. (17)), the second stable position
for link 4 will not be past δ4 ex,max. So, it passes Test 2 for extramo-
bile motion.
K3 (Fig. 6(d )): In the second stable position links 2 and 4 are

exterior to the reference surface (intramobile K3: ✗2). The second
stable position of link 2 is found by a reflection of r2 across r1, so
θ2b=−θ2o (link 2 rotated counter-clockwise). Because θ2o≥ π/2
(Eq. (17)), the position of link 2 cannot exceed δ2 ex,max. The
second stable position of link 4 is located at a rotation of 2γ42
(counter-clockwise). By Thale’s Theorem, γ42 < π/2; so, the location
of link 4 cannot exceed δ4 ex,max. Hence, it passes Test 2 for extra-
mobile motion.

5.1.2 Grashof. There exist three possible mechanism configu-
rations for a Grashof Class 1A mechanism: a double-crank (r1= s),
a crank-rocker (r2= s), and a double-rocker (r3= s). Theorem 1
states that a torsional spring must be placed opposite s for bistability
to be possible. We can therefore use Test 1 to eliminate all springs
attached to s (GCCC K1, K4: ✗1) (GCRR K1,K2=✗1) (GRCR K2,
K3=✗1).

Each mechanism configuration for Class 1A Grashof mecha-
nisms will now be analyzed to identify when intramobile and extra-
mobile BDMs are possible. Note that Test 2 was already completed
in Sec. 5.1.1. Grashof mechanisms cannot fail Test 3 for extramo-
bile motion, as discussed in Sec. 4.3.1. Therefore, all the remaining
extramobile candidates (those that passed Tests 1-3) are always

Table 2 This table provides a summary of all ✓* scenarios in Table 1

Class Mechanism Spring If True, ✓

1A GCRR K4 (intramobile) θ4o − θ4min,GCRR ≤ δ4in,max
GRCR K4 (intramobile) θ4o − θ4min,GRCR ≤ δ4in,max
RRR4 K1 (extramobile) θ2max ,RRR4 − θ2o ≤ δ2ex,max

AND
θ4max ,RRR4 − θ4o ≤ δ4ex,max

K2 (extramobile) ∠P132 ≤ ∠P134
OR
∠P132 > ∠P134, θ2max ,RRR4 − θ2o ≤ δ2ex,max

K4 (intramobile) θ4o − θ4min,RRR4 ≤ δ4in,max
CPCRR K4 (intramobile) θ4o − θ4min,GCRR ≤ δ4in,max
CPRCR K3 (extramobile) ∠P132 ≤ ∠P134

OR
∠P132 > ∠P134, θ2max ,RRR4 − θ2o ≤ δ2ex,max

K4 (intramobile) θ4o − θ4min,GRCR ≤ δ4in,max

2A GCCC K3 (extramobile) θ2o≥ π/2
GRCR K1 (intramobile) θ4o − θ4min,GRCR ≤ δ4in,max
CP2X-RCR K3 (extramobile) θ2o≥ π/2
CP2X-CCR/RRC K1 (intramobile) r2= r3= s

AND
θ2o≥ π/2
AND
θ4o − θ4min,RRR4 ≤ δ4in,max

K3 (extramobile) θ2o≥ π/2
CP3X K3 (extramobile) θ2o≥ π/2

3A GCRR K3 (intramobile) 2γ13 ≤ δ4in,max
CP2X-CCR K3 (intramobile) 2γ42 ≤ δ4in,max

(a) (b)

(c) (d)

Fig. 6 Class 1A mechanisms shown in their conformed
(solid) and second stable (dashed) positions: (a) with spring
K1, (b) with spring K4, (c) with spring K2, and (d) with spring K3
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extramobile BDMs (extramobile GCCC K2,K3: ✓) (extramobile
GCRR K3: ✓) (extramobile GRCR K1: ✓).
The two remaining intramobile candidates are now discussed.

Test 3 for intramobile GCRR K4. After Tests 1 and 2 for the
crank-rocker, K4 is still a candidate for an intramobile BDM.
Test 3 shows that link 2 has no extreme positions; so, it will not
change directions. r2 and r3 must align to reach the second stable
state, causing θ4 to reach its minimum value θ4min (see Eq. 13).
Therefore, Test 3 requires that any Class 1A crank-rockers using
K4 to be checked to ensure θ4o − θ4min,GCRR ≤ δ4in,max to guaran-
tee an intramobile BDM (intramobile GCRR K4: ✓*).

Test 3 for intramobile GRCR K4. After Tests 1 and 2 for the
double-rocker, K4 is still a candidate for an intramobile BDM.
The results for K4 are identical to the previous section (GCRR),
meaning that θ4o− θmin,GRCR must be less than or equal to δin,max

to guarantee an intramobile BDM (intramobile GRCR K4: ✓*).

5.1.3 Non-Grashof. Since link 4 is constrained to be l for all
Class 1A mechanisms, only one type of non-Grashof mechanism
(RRR4) exists in Class 1A. According to Theorem 2 of Test 1, non-
Grashof mechanisms will always be bistable as long as the links
opposite the torsional spring are not collinear when the spring is
undeflected (when ψ= 0). Class 1A mechanisms are unable to
have any links collinear in the conformed position, so all Class
1A non-Grashof BDMs pass Test 1.
The Test 2 analysis from Sec. 5.1.1 applies to non-Grashof mech-

anisms, thereby eliminating K4 extramobile BDMs and K1 - K3
intramobile BDMs. We will now check Test 3.

Test 3 for intramobile RRR4 K4. After Tests 1 and 2, K4 is still a
candidate for an intramobile RRR4BDM. To reach the second stable
position for K4, the mechanism must reach a toggle position and
move back to the initial positions of link 4. When link 2 is at its
minimum angular value (θ2min,RRR4), P2 is in contact with link
4. This means that the most extreme displaced position of link 2
can also be reached by link 4. We therefore only must check the dis-
placement of link 4. Using Eq. (7), θ4o− θ4min,RRR4 must be less than
or equal to δ4 in,max to guarantee the second stable position may be
reached while interior to the reference surface (intramobile RRR4
K4: ✓*).

Test 3 for extramobile RRR4 K1, K2, K3. After Tests 1 and 2,
K1, K2, and K3 are all still candidates for extramobile RRR4
BDMs.
K1: The rotation of both links 2 and 4 must be checked to ensure

neither θ2max,RRR4− θ2o or θ4max,RRR4− θ4o (using Eqs. (6) and (8))
exceeds δex,max(extramobile RRR4 K1: ✓*).
K2:Wewill first show that link 4 never changes direction prior to

reaching the stable position. ∠P123 (the angle between r2 and r3)
decreases as the mechanism moves exterior to the reference
surface and reaches a minimum value when r4 and r1 are collinear.
It then increases in value until link 4 reaches its maximum angular
displacement θ4max,RRR4, when r2 and r3 are collinear. Between
these two positions, ∠P123 is guaranteed to have reached its
initial magnitude. Therefore, the mechanism will always reach the
second stable position for K2 prior to reaching θ4max,RRR4.
Link 2 is capable of reaching its maximum displacement θ2max,

RRR4 prior to the second stable position. If this does not happen,
the mechanism is guaranteed to be an extramobile BDM (because
it has already passed Test 2). However, if θ2max,RRR4 is reached,
we must check to ensure θ2max ,RRR4 − θ2o ≤ δex.
Figure 7 shows two RRR4 mechanisms in their conformed and

second stable positions. The toggle position for link 2 occurs
when r2 and r3 become collinear. It can then be seen that the mech-
anism in Fig. 7(a) has not yet reached the toggle position of link 2
and therefore is guaranteed to be an extramobile BDM. The mech-
anism in Fig. 7(b) must have had r3 cross r4 to reach its second
stable position; so, we must check if θ2max ,RRR4 − θ2o ≤ δex.

A quick check can be made of a K2 RRR4 mechanism in its con-
formed position to see which of the two cases (Fig. 7(a) or 7(b)) the
mechanism is. In case (a), ∠P132 ≥ ∠P134 while in case (b),
∠P132 < ∠P134. Because these angles are the same in the second
stable position, it can be seen that their relative magnitude demon-
strates if r3 and r4 have passed their collinear position.
In summary, if ∠P132 ≥ ∠P134, K2 RRR4 mechanisms are

guaranteed to be an extramobile BDM. If ∠P132 < ∠P134, θ2max,

RRR4− θ2o must be less than or equal to δex,max to ensure a viable
extramobile BDM (extramobile RRR4 K2: ✓*).
K3: ∠P234 (the angle between r3 and r4, see Fig. 6(d )) increases

as the mechanism moves exterior to the reference surface and
reaches a maximum value when r2 and r1 are collinear. It then
decreases in value until link 2 reaches its maximum angular displa-
cement θ2max,RRR4, when r3 and r4 are collinear. Between these posi-
tions, ∠P234 is guaranteed to have reached its initial magnitude.
Therefore, the mechanism will always reach the second stable posi-
tion for K2 prior to reaching θ2max,RRR4.
Because l= r4, r2 reaches its maximum prior to r4, meaning that

θ4max,RRR4 is never reached prior to the second stable position.
Therefore, the K3 RRR4 mechanism is guaranteed to be an extra-
mobile BDM (extramobile RRR4 K3: ✓).

5.1.4 Change Point. Change-point mechanisms are unique due
to their ability to move between their open and crossed circuits
without disassembly, and their capacity to be fabricated monolithic
with a single surface [22]. To reach a change-point position (posi-
tion where all pin joints lie in a line), a mechanism must satisfy

s + l = p + q (18)

Because θ1o= 0 and r4= l (requirement for Class 1A), there are
three possible Class 1A change-point mechanisms: CPCCC,
CPCRR, and CPRCR. Each of these have only one change-point
position, and since no links are collinear in the initial position,
they all pass Test 1. Test 2 was already completed for all Class
1A mechanisms (Sec. 5.1.1). Hence, after Tests 1 and 2, mecha-
nisms with springs K1–K3 are still candidates for extramobile
BDMs, while mechanisms with spring K4 are still candidates for
intramobile BDMs. Test 3 will now be discussed for these remain-
ing mechanisms, organized by change-point type.

(a)

(a) (b)

Fig. 7 Two possible bistable positions for RRR4 mechanisms
using K2 are shown. In (a), the mechanism reaches its second
stable position without link 2 changing direction. In (b), link 2 has
reached a maximum and changed direction before reaching the
second stable position. (a) With spring K2 and (b) with spring K2.
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CPCCC. For a CPCCC, the link lengths and the positions of
these links at the change-point position are

r1 = s; r2 = p; r3 = q; r4 = l

CP Position 1: θ1 = 0; θ2 = 0; θ3 = 0; θ4 = 0
(19)

The mechanism cannot reach this change-point position without
either link 2 or 4 exceeding δex,max or δin,max. Therefore, any addi-
tional stable positions are not accessible without violating Condi-
tion 1, and the possible extramobile and intramobile BDMs are
the same as for a double-crank (extramobile CPCCC K1,K4: ✗3,
extramobile K2,K3: ✓, extramobile K4: ✗3).

CPCRR. The change-point position for a CPCRR mechanism
occurs when the position of each link is

r1 = p; r2 = s; r3 = q; r4 = l

CP Position 1: θ1 = 0; θ2 = 0; θ3 = π; θ4 = π
(20)

To reach this position, link 2 must move interior while link 4
must move exterior to the reference surface. Additional stable posi-
tions can therefore not be reached without violating either Condi-
tion 1 or 2. Consequentially, CPCRR mechanisms do not reach
any additional stable positions than the crank-rocker (extramobile
CPCRR K1,K2: ✗3, K3: ✓, intramobile K4: ✓*).

CPRCR. The positions of each link in the CPRCR mechanism
are given by

r1 = p; r2 = q; r3 = s; r4 = l

CP Position 1: θ1 = 0; θ2 = π; θ3 = 0; θ4 = π
(21)

This change-point position may only be reached while exterior to
the reference surface, meaning any changes from the GRCR case do
not apply to intramobile mechanisms (intramobile K4:✓*). We will
therefore only look at the extramobile case.
At the change-point position, the mechanism may move upwards

and downwards in either its open and crossed configurations. If the
mechanism moves up toward the reference surface, it follows the
same logic presented for the GRCR mechanism, allowing K1 to
pass Test 3 (extramobile CPRCR K1: ✓).
If the mechanism moves downward in its crossed configuration,

the mechanism follows the same logic as was presented for the extra-
mobile triple-rocker. The mechanism always passes Test 2 for both
moving springs and always passes Test 3 for K3 (extramobile
CPRCR K3: ✓). It therefore fails Test 2 for the intramobile K2
and K3. For K2, ∠P132 must be greater than ∠P134 to guarantee
an extramobile BDM. If ∠P132 < ∠P134, θ2max,RRR4 must be less
than δex,max to guarantee an extramobile BDM (extramobile
CPRCR K2: ✓*).

5.2 Class 2A. Class 2A mechanisms are linkages whose two
grounded links (r2 and r3) are crossed in the conformed position
(Fig. 1(b)). Hyatt et al. demonstrated that any crossed cyclic quad-
rilateral will result in a Grashof mechanism (including change-
points) [23]. Therefore, the discussion on Class 2A mechanisms
need not discuss non-Grashof mechanisms.
To remain a Class 2A mechanism, the area enclosed between the

four links may not contain the center of the circle [3]. Because θ1o=
0, both grounded links must remain on the left side of the center of
the circle. The initial angular position of each grounded link must
then reside with the ranges

0 ≤ θ2o ≤ π

π/2 ≤ θ4o ≤ π
(22)

5.2.1 Grashof Mechanisms. There are two possible configura-
tions of Grashof Class 2A mechanisms. Because link 4 always sub-
tends link 1, and link 2 always subtends link 3, either link 1 or link 3

will always be s. These configurations lead to a double-crank and a
double-rocker.

Double-Crank (GCCC). By Test 1, the double-crank (r1= s)
cannot use spring K1 or K4 (GCCC K1,K4: ✗1). We will therefore
analyze the use of K2 and K3, as shown in Fig. 8. The second stable
positions are found by the Principle of Reflection.
K2 (Fig. 8(a)): In the second stable position, links 2 and 4 are

exterior to the reference surface (intramobile GCCC K2: ✗2). At
this position, link 2 has undergone a net rotation (counter-
clockwise) of 2γ13. By Thale’s Theorem, γ13 > π/2, so link 2
cannot be past δ2 ex,max. The second stable position of link 4 is
when θ4b=−θ4o (net rotation counter-clockwise). Equation (22)
shows that θ4o≤ π, so link 4 cannot be past δ4 ex,max. Hence, K2
passes Test 2 for extramobile motion. Grashof mechanisms
cannot fail Test 3 in extramobile motion (extramobile GCCC K2:
✓).
K3 (Fig. 8(c)): In the second stable position, links 2 and 4 are

exterior to the reference surface (intramobile GCCC K3: ✗2).
Here, θ2b=−θ2o (net rotation counter-clockwise). Since θ2o can
be less than π/2 (Eq. (22)), θ2o must be checked to ensure link 2
will be exterior to the surface to pass Test 2. The second stable posi-
tion of link 4 is a net rotation (counter-clockwise) of 2γ42. By
Thale’s Theorem, γ42≤ π (r2 cannot cross the center of the circle),
so link 4 cannot be past δ4 ex,max. As above, Grashof mechanisms
in extramobile motion cannot fail Test 3. Therefore (extramobile
GCCC K3: ✓*), depending on the result from Test 2.

Double-Rocker (GRCR). Using Test 1 for double-rockers (r3=
s), we can eliminate springs K2 and K3 (GRCR K2,K3: ✗1). We
will therefore analyze the use of K1 and K4, as shown in Fig. 9.
The second stable positions are found by the Principle of Reflection.

(a) (b)

Fig. 9 Class 2A GRCR mechanisms shown in their conformed
(solid) and second stable (dashed) positions: (a) with spring K1
and (b) with spring K4

(a) (b)

Fig. 8 Class 2A GCCC mechanisms shown in their conformed
(solid) and second stable (dashed) positions: (a) with spring K2
and (b) with spring K3
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K1 (Fig. 9(a)): The second stable position exists when r4 is
rotated toward the center of the circle (extramobile GRCR K1:
✗2). At this position, link 2 has undergone a net rotation (clockwise)
of 2∠P243. To pass Test 2 for intramobile motion, ∠P243 must be
checked to see if it is less than δ4in,max/2. Test 3 shows that r3 and
r4 must align prior to the second stable position. If
θ4o − θ4min ,GRCR ≤ δ4in,max, it will pass Test 3 and be an intramo-
bile BDM. Note that the corresponding θ4min,GRCR always super-
sedes the checking of ∠P243. Using the same logic as the Class
1A GRCR mechanism, the extreme positions of θ2 do not need to
be checked. Hence, (intramobile GRCR K1: ✓*) depending on
Test 3 for link 4.
K4 (Fig. 9(b)): In the second stable position, link 2 is exterior

to the reference surface (intramobile GRCR K4: ✗2). Here, link
2 is located at a net rotation (counter-clockwise) of 2∠P312.
By Thale’s Theorem, ∠P312 ≤ π/2, so link 2 cannot be past
δ2 ex,max, and this mechanism passes Test 2. Grashof mechanisms
cannot fail Test 3 for extramobile motion (extramobile GRCR
K4: ✓).

5.2.2 Change-Point Mechanisms. The three different configu-
rations of Class 2A change-point mechanisms (CP2X-RCR,
CP2X-CCR/RRC, and CP3X) are shown in Fig. 10. All of these
mechanisms have at least two pairs of links that have equal
length, allowing them to have more than one change-point position.

CP2X-RCR. The CP2X-RCR mechanism (Fig. 10(a)) has no
links collinear in the conformed position and therefore passes
Test 1. This mechanism has all links collinear in the following
two positions:

r1 = r3 = s; r2 = r4 = l

CP Position 1: θ1 = 0; θ2 = π; θ3 = 0; θ4 = π

CP Position 2: θ1 = 0; θ2 = 0; θ3 = 0; θ4 = 0

(23)

CP Position 1 can be achieved during extramobile motion
because link 2 and link 4 are exterior to the reference surface. In
CP Position 2, link 2 has moved inside the reference surface and
has then violated Condition 1 (since r2 > r1). Tests 2 and 3 will
now be completed for each dominant torsional spring.
K1: For Test 2, the same logic as the Class 2A GRCR applies

(extramobile CP2X-RCR K1: ✗2). To achieve bistability using
K1, r3 and r4 must align. Since neither CP position 1 or 2 can
occur during intramobile motion, this mechanism fails Test 3 (intra-
mobile CP2X-RCR K1: ✗3).
K4: For Test 2, the same logic as the Class 2A GRCR applies

(intramobile CP2X-RCR K4: ✗2). Test 3 shows that r2 and r3
must align prior to the second stable position for K4. As shown
above, CP Position 1 can be achieved in extramobile motion; so,
this mechanism passes Test 3 (extramobile CP2X-RCR K4: ✓).
K2: For Test 2, the same logic as the Class 2A GCCC applies

(intramobile CP2X-RCR K2: ✗2). The mechanism must pass
through one of the two CP Positions prior to the second stable posi-
tion for K2. As shown above, CP Position 1 can be achieved in
extramobile motion; so, this mechanism passes Test 3 (extramobile
CP2X-RCR K2: ✓).

K3: For Test 2, the same logic as the Class 2A GCCC applies
(intramobile CP2X-RCR K3: ✗2), including the fact θ2o must be
checked to ensure link 2 will be exterior to the surface. For the
same reason as K2, this mechanism passes Test 3. Hence, (extramo-
bile CP2X-RCR K3: ✓*) depending on the result from Test 2.

CP2X-CCR/RRC and CP3X. The analysis for CP2X-CCR/RRC
and CP3X is similar and will be discussed together, with differences
noted. Both of these types of mechanisms require links to be collin-
ear in the conformed position. Because Theorem 3 states that bist-
ability cannot be achieved if links are collinear when opposite an
undeflected torsional spring, K2 and K4 fail Test 1 (CP2X-CCR/
RRC K2,K4: ✗1; CP3X K2,K4: ✗1).
These mechanisms reach change-point positions when

CP2X − CCR/RRC:r1 = r4; r2 = r3
CP3X: r1 = r2 = r3 = r4

CP Position 1: θ1 = 0; θ2 = π; θ3 = 0; θ4 = π

CP Position 2: θ1 = 0; θ2 = 0; θ3 = π; θ4 = π

CP Position 3 (CP3X): θ1 = 0; θ2 = 0; θ3 = 0; θ4 = 0

(24)

where CP Position 3 only applies to the CP3X mechanism. CP posi-
tion 1 lies outside the surface and can be reached by extramobile
motion. CP position 2 lies interior to the surface and can be
reached by intramobile motion only if links 2 and 3 are s and
links 1 and 4 are l > s (which is by definition the CP2X-CCR mech-
anism). For example, the mechanism in Fig. 11(a) passes Test 2 but
may never reach this position as r2 and r3 cannot become collinear
with r1 and r4 without exceeding δ4 in,max. CP position 3 (only appli-
cable to CP3X) also lies interior to the surface, but the mechanism
cannot unfold into a kite directly from this position (due to sequen-
tial folding).
Because links of equal length are adjacent, the second stable posi-

tions using K1 and K3 are always in a kite shape (see Fig. 11).
K1 (Fig. 11(a)): To pass Test 2, K1’s kite must fit within the

reference surface (extramobile CP2X-CCR/RRC K1: ✗2; extramo-
bile CP3X K1: ✗2). This happens if θ2o≥ π/2, which is possible,
but not required (by Thale’s Theorem). Test 3 shows that the
mechanism must reach a CP Position prior to reaching the second
stable (kite) position. Only CP Position 2 can be reached during
intramobile motion and unfold to a kite (and when r2= r3= s and
r1= r4= l> s, as discussed above). All links in the CP3X mecha-
nism are the same length; so, it does not meet this criteria and
fails Test 3 (CP3X intramobile K1: ✗3). The CP2X-CCR/RRC
mechanism can meet this criteria.

(a) (a) (c)

Fig. 10 Class 2A change-point mechanisms in their conformed
positions. Hatch marks indicate equal lengths: (a) CP2X-RCR,
(b) CP2X-CCR/RRC, and (c) CP3X.

(a) (b)

Fig. 11 Class 2A CP2X-RRCmechanism in its initial and second
stable positions: (a) with spring K1 and (b) with spring K3
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Test 3 also shows that r2 and r3 must align (extended) prior to the
second stable position, so the minimum position of θ4 (which is
equivalent to θ4min,RRR4) must be checked to ensure it does not
cross the reference surface: θ4o − θ4min < δ4in,max. Hence, it will
be an intramobile BDM, depending on the results from Test 2
and Test 3 (CP2X-CCR/RRC intramobile K1: ✓*).
K3 (Fig. 11(b)): It can be seen that the second stable position

occurs when links 2 and 4 are exterior to the surface (intramobile
CP2X-CCR/RRC K3: ✗2; intramobile CP3X K3: ✗2). To pass
Test 2, K3’s kite must be entirely exterior the surface: θ2o must
be greater than or equal to π/2.
For Test 3, CP position 3 lies outside the surface and can be

reached by extramobile motion, as discussed earlier. Other than at
this position, neither r2 and r3 nor r3 and r4 will align prior to the
second stable configuration; so, this mechanism passes Test 3
assuming it has passed Test 2 (extramobile CP2X-CCR/RRC and
CP3X K3: ✓*).

5.3 Class 3A. Class 3A mechanisms are linkages whose
coupler (r3) crosses ground (r1) in the conformed position
(Fig. 1(c)). In order to remain a Class 3A mechanism, the entire
mechanism must be on one side of the circle. Hence,

3π/2 ≤ θ2o ≤ 2π

π/2 ≤ θ4o ≤ π
(25)

Because Class 3A mechanisms are always crossed, they must
always be Grashof mechanisms [23]. It can also be seen that r2 is
subtended by all other links, making it s for all non-change-point
mechanisms. These constraints therefore require all Class 3A mech-
anisms to be either a crank-rocker or change-point mechanism.

5.3.1 Grashof Mechanisms

Crank-Rocker (GCRR). Test 1 eliminates the possibility of using
K1 or K2 for bistability because they are always attached to s
(GCRR K1,K2: ✗1). We will therefore analyze the use of K4 and
K3, as shown in Fig. 12. The second stable positions are found
by the Principle of Reflection.
K4 (Fig. 12(a)): In the second stable position, link 2 is exterior to

the surface (intramobile GCRR K4: ✗2). Here, link 2 is located at a
net rotation (clockwise) of 2∠P213. By Thale’s Theorem,
∠P213 ≥ π/2; so, link 2 cannot be past δ2 ex,max and this mechanism
passes Test 2. Grashof mechanisms cannot fail Test 3 for extramo-
bile motion (extramobile GCRR K4: ✓). K3 (Fig. 12(b)): Link 2
must be rotated toward the center of the circle in the second
stable position (extramobile GCRR K3: ✗2). The second stable posi-
tion for link 2 is a reflection of r2 across r1. Since r1 must be below
the center of the circle, link 2 for this mechanism always passes Test
2. For link 4 to pass Test 2 for intramobile motion, its position in the
second stable position (a net rotation of 2γ42) must be checked to
ensure its displacement is less than δ4 in,max.

For Test 3, link 2 is fully revolute and does not change directions.
Furthermore, Test 3 shows that θ4 will not reach an extreme
minimum value prior to the second state. This is because, in both
stable states, the angle between links 2 and 3 remains less than π
(r2 and r3 are never collinear prior to reaching the second stable
position). By Thale’s Theorem, ∠P124 ≥ π/2, ∠P324 ≥ π/2, and
∠P123 (the angle between links 2 and 3) is less than π in the first
stable position. By the Principle of Reflection, in the second
stable position, the angle between links 2 and 3 is equal to
2π − (∠P124 + ∠P324), which must also be less than π. Therefore,
r2 and r3 cannot align (and θ4 cannot reach its maximum) prior to
the second stable position using K3. Hence, this mechanism may
be an intramobile BDM, depending on the result for Test 2 (intra-
mobile GCRR K3: ✓*).

5.3.2 Change-Point Mechanisms. The two possible change-
point mechanisms in Class 3A are a CP2X-CCR and a CP3X mech-
anism, as shown in Fig. 13. Their change-point positions are the
same as those for the CP2X-CCR/RRC and CP3X in Class 2A
(Eq. (24)).

CP2X-CCR. The CP2X-CCR mechanism is unable to use K2
and K4 as they are opposite collinear links (CP2X-CCRK2,K4: ✗1).
The second stable positions for each spring can be found with the

Principle of Reflection and are shown in Fig. 14. As was the case in
Class 2A, these mechanisms form a kite.
K1 (Fig. 14(a)): Link 2 is exterior to the reference surface in the

second stable position (intramobile CP2X-CCR K1: ✗2). In this
second stable position, it has undergone a net rotation of 2γ42
(counter-clockwise). By Thale’s Theorem, γ42 < π/2; so, it cannot
be past δ2 ex,max and therefore passes Test 2 for extramobile
motion. CP position 1 can be reached through extramobile
motion because at this point link 2 will never have rotated more
that π radians (Eq. (25)). From CP position 1, the mechanism can
unfold into the kite configuration, but must pass the toggle position
when r2 and r3 align, causing θ4max. However, the equation for
θ4max,CP2X−CRR= θ4max,RRR4 and is therefore bounded by 0 and π.

(a)

(b)

Fig. 12 Class 3A mechanisms shown in their conformed (solid)
and second stable (dashed) positions: (a) with spring K4 and
(b) with spring K3

(a) (b)

Fig. 13 Class 3A change-point mechanisms in their conformed
positions. Hatchmarks indicate equal lengths. (a) CP2X-CCR and
(b) CP3X.

(a) (b)

Fig. 14 Class 3A CP2X-CCR mechanism in its second stable
positions: (a) with spring K1 and (b) with spring K3
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Hence, this mechanism passes Test 3 (extramobile CP2X-CCR K1:
✓).
K3 (Fig. 14(b)): Link 4 is rotated toward the center of the circle in

the second stable position (extramobile CP2X-CCR K3: ✗2). This
mechanism will pass Test 2 for intramobile motion if ∠P243
(which equals γ42) is less than δin/2. For Test 3, the mechanism
must use change-point position 2 to remain interior to the reference
surface. From this position, no link will change direction until it
reaches the second stable position. Therefore, assuming the mecha-
nism has passed Test 2, it will pass Test 3 (intramobile CP2X-CCR
K3: ✓*).

CP3X. Because the CP3X mechanism requires all four links to
be collinear in the conformed position (which is the first stable posi-
tion), it fails Test 1 (CP3X K1,K2,K3,K4: ✗1).

6 Discrete Sampling and Demonstration
A sampling of cylindrical developable mechanisms throughout

the design space were numerically simulated and analyzed. This
section is not intended to be a proof, but instead is used as a demon-
stration of the principles explored in the preceding sections. The
simulation also allows for useful visualization of BDMs, their
motion, and how their strain energy changes as they move. Accord-
ingly, this section also includes two of the simulated mechanisms as
examples that succinctly illustrate the approach and outcomes of
this paper.

6.1 Generating Mechanism Samples. The design space for
Class 1A, 2A, and 3A mechanisms can be represented by the non-
dimensional arc lengths of links 1, 2, and 3 [3]. This design space
was systematically sampled in 7.5 deg increments to create 8096
mechanisms capable of intramobile and extramobile motion (2024
in Class 1A, 4048 in Class 2A, 2024 in Class 3A). Note that change-
point mechanisms were not included due to the bifurcations in their
motion path.
The motion of each mechanism was simulated using a simple

MATLAB script based on four-bar linkages. This script mapped the
position of the curved links as the device moved through its

motion (both intramobile and extramobile). It was able to determine
when the mechanism violated Condition 1 or 2 by using Eqs. (1)
and (2). The motion was also correlated with the expected strain
energy due to the deflection of dominant torsional spring K1 (Equa-
tion 4). By tracking the changes in strain energy, it would identify
if/when the mechanism had reached a minimum in the strain energy
function (the second stable position). If this occurred after the mech-
anism violated Condition 1 or 2, the mechanism configuration is not
a valid BDM. Otherwise, it is. This was then repeated for springs
K2, K3, and K4.
In all, 32,384 mechanism configurations (four each for 8096

mechanisms) were simulated. Each binary result from the simula-
tion (i.e., valid or invalid BDM) was compared with the expected
result found from Tables 1 and 2. All mechanism configurations
returned results in agreement with those provided in Tables 1 and 2.

6.2 Examples. We now provide two example mechanisms to
provide a holistic demonstration of how different mechanism con-
figurations may or may not create an extramobile or intramobile
BDM. The mechanisms discussed in this section were arbitrarily
selected from the simulated mechanisms in Sec. 6.1. For both exam-
ples, the motion of each mechanism is represented along the x-axis,
where both ends of the axis represent the conformed position.

6.2.1 Class 2A GCCC. Our first example is that of a Class 2A
GCCC mechanism. From Table 1, we find that Test 1 has elimi-
nated springs K1 and K4 from consideration, and Test 2 has elim-
inated K2 and K3 for intramobile BDMs. Spring K2 should always
create an extramobile BDM, and K3 may create an extramobile
BDM as long as θ2o≥ π/2.
Figure 15 shows the analysis for the simulated Class 2A GCCC

mechanism. Subfigures (a) and (b) show the analysis of Conditions
1 and 2. While traveling exterior to the surface (left to right), link 2
violates the Conditions (in this case, Condition 1 because it passed
δex,max) before link 4. While traveling interior to the surface (right to
left), link 2 again violates the Conditions before link 4. These
become the limits of intramobile and extramobile motion, respec-
tively, in Subfigure (c), which shows the strain energy curves for
springs K1–K4.

(a)

(b)

(c)

Fig. 15 Subfigures (a) and (b) show θ2 and θ4, respectively, and their corresponding limits for extramobile and intra-
mobile motion for a simulated Class 2A GCCCmechanism. From these, we find where link 2 or 4 violates Conditions 1
or 2 (markedwith dashed lines). These translate to the limits of extramobile and intramobilemotion in subfigure (c). K1
and K4 cannot produce a BDM because they only have one minimum. K2 produces a valid extramobile BDM, but K3
does not (its stable position is outside the range of extramobile motion). (a) Motion of link 2, (b) motion of link 4, (c)
energy curves along the full range of motion of themechanism, where each curve corresponds to a different dominant
torsional spring. Stable states are also noted and shown.
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There is only one minimum in the strain energy using K1 and
K4 (and therefore no second stable position, as predicted by Test
1). For K2, the second stable position occurs while the mechanism
is in extramobile motion (therefore precluding it from creating
an intramobile BDM, as was predicted by Test 2). While K3
also has a second stable position, this occurs outside both intramo-
bile and extramobile motions. The conformed position of link 2,
seen in both Subfigures (a) and (c), has an orientation less than
π/2 (in agreement with Table 2). Therefore, this mechanism with
K2 is an extramobile BDM. It is not an intramobile BDM with
any spring.

6.2.2 Class 1A RRR4. Our second example is a Class 1A
RRR4 mechanism. Table 1 states that only extramobile K3
should always work, while extramobile K1–K2 and intramobile
K4 are conditional cases that depend on the displacements of
links 2 and 4.
Figure 16 shows the analysis for a Class 1A RRR4 mechanism.

While traveling exterior to the surface (left to right), link 2 violates
the Conditions (in this case, Condition 2 because it moved inside the
surface, then crossed back outside the surface) before link 4 does.
While traveling interior to the surface (right to left), link 4 violates
the Condition 2 before link 2 does. These become the limits of intra-
mobile and extramobile motion, respectively, in subfigure (c),
which shows the strain energy curves for springs K1–K4.
Each spring produces a minimum, as expected by Test 1. K1, K2,

and K3 produce extramobile BDMs because the stable positions are
within the extramobile motion range. K4 produces an intramobile
BDM because its stable position is within the intramobile motion
range. All of these stable positions are therefore in agreement
with Table 1.

7 Discussion and Conclusion
By highlighting all possible cases of when mechanisms will

always, sometimes, and never be an extramobile or intramobile
BDM, Tables 1 and 2 make the design of these bistable mechanisms

approachable and straightforward. A survey of the tables provides a
few points for discussion.
The Intramobile section of Table 1 indicates that there are no

cases of intramobile BDMs that will always work. This requires
that the design of developable mechanisms that will reach a
second stable position interior to a cylinder must always take into
consideration the geometry and/or motion of the mechanism
during the design process to ensure a valid intramobile BDM. It
should also be noted that there are few cases of possible intramobile
mechanism configurations that result in a viable intramobile BDM.
Furthermore, there are no cases where two or more different springs
on a given mechanism will create an intramobile BDM.
Class 1 mechanisms provide more variety in mechanism types

than the other classes, including the only possible non-Grashof
mechanisms. In contrast, Class 3 provides the least variety but is
the only class that can create an intramobile BDM that uses a
moving spring.
Lastly, as can be seen with the sample mechanisms in Figs. 15(c)

and 16(c), the second stable positions can be visually identified
when two links joined by a torsional spring form an arc. This beha-
vior is unique to developable mechanisms and could be utilized as a
design feature.
Bistable developable mechanisms that remain interior or exterior

to a cylinder show promise for implementation in many applica-
tions. Their ability to reach stable positions with minimal power
consumption and minimal interference with existing systems
make them a great candidate in settings where power may be
limited and volume is at a premium, including space and medical
applications. To fully realize their potential, additional steps could
be taken, such as developing methods to incorporate mechanical
compliance to induce strain. The implementation of compliance
could be combined with recent work to model the deflection of
compliant parts [24], enable out-of-plane motion [25] while main-
taining bistability44 or plausibly adapt geometry to integrate
constant-force behaviors [26] with extramobile or intramobile bist-
ability. Additionally, understanding bistable behaviors can form a
basis for considerations of actuation in BDMs.

(a)

(b)

(c)

Fig. 16 Subfigures (a) and (b) show θ2 and θ4, respectively, and their corresponding limits for extramobile and intramobile
motion for a simulated Class 1A RRR4 mechanism. From these, we find where link 2 or 4 violates Conditions 1 or 2 (marked
with dashed lines). These translate to the limits of extramobile and intramobile motion in subfigure (c). K4 produces a valid intra-
mobile BDM, while K1, K2, and K3 produce valid extramobile BDMs. (a) Motion of link 2, (b) motion of link 4, and (c) energy curves
along the full range of motion of the mechanism, where each curve corresponds to a different dominant torsional spring. Stable
states are also noted and shown.
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