
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020 6805

Mixed-Integer Linear Programming Models for

Multi-Robot Non-Adversarial Search
Beatriz A. Asfora , Jacopo Banfi , and Mark Campbell

Abstract—In this letter, we consider the Multi-Robot Efficient
Search Path Planning (MESPP) problem, where a team of robots is
deployed in a graph-represented environment to capture a moving
target within a given deadline. We prove this problem to be NP-
hard, and present the first set of Mixed-Integer Linear Program-
ming (MILP) models to tackle the MESPP problem. Our models
are the first to encompass multiple searchers, arbitrary capture
ranges, and false negatives simultaneously. While state-of-the-art
algorithms for MESPP are based on simple path enumeration,
the adoption of MILP as a planning paradigm allows to leverage
the powerful techniques of modern solvers, yielding better com-
putational performance and, as a consequence, longer planning
horizons. The models are designed for computing optimal solutions
offline, but can be easily adapted for a distributed online approach.
Our simulations show that it is possible to achieve 98% decrease
in computational time relative to the previous state-of-the-art. We
also show that the distributed approach performs nearly as well
as the centralized, within 6% in the settings studied in this letter,
with the advantage of requiring significant less time – an important
consideration in practical search missions.

Index Terms—Path planning for multiple mobile robots or
agents, multi-robot systems, search and rescue robots.

I. INTRODUCTION

IN THIS letter, we consider the Multi-Robot Efficient Search

Path Planning (MESPP) problem introduced by Hollinger

et al. in [1]. In this problem, a team of robots is deployed in an

environment represented as an undirected graph with the aim of

capturing a moving non-adversarial target within a given dead-

line. In [1], the authors propose to tackle the MESPP problem

with a receding horizon approach that can be implemented either

in a centralized or in a distributed fashion.

In the centralized case, all the possible joint paths are enumer-

ated over a given planning horizon h, and the best set of paths

is executed until the next planning step. Considering a graph

of n vertices and a team of m searchers, this approach has a

worst-case complexity of O(nmh), i.e. exponential in both the

team size and the planning horizon. This approach is dubbed

“explicit coordination”. In the distributed case, instead, at each

Manuscript received February 24, 2020; accepted June 23, 2020. Date of

publication August 18, 2020; date of current version September 8, 2020. This

letter was recommended for publication by Associate Editor L. Pallottino and

Editor N. Y. Chong upon evaluation of the Reviewers’ comments. This work was

supported in part by the National Robotics Initiative Program of the National

Science Foundation, Award Number #1830497 and in part by PERISCOPE

MURI under Grant N00014-17-1-2699. (Corresponding author: Beatriz Arruda
Asfora.)

The authors are with the Sibley School of Mechanical and Aerospace

Engineering, Cornell University, Ithaca, NY 14850 USA (e-mail:

ba386@cornell.edu; jb2639@cornell.edu; mc288@cornell.edu).

Digital Object Identifier 10.1109/LRA.2020.3017473

planning step and for i = 1, . . . ,m (according to a lexicographic

order), the path of the i-th robot is computed by leaving the

paths of the remaining robots j �= i fixed (robots with j > i
are initially assumed to remain at their starting position). The

optimization of the i-th path is again performed by enumerating

all feasible paths over a given horizonh. This approach is dubbed

“implicit coordination”.

Compared to explicit coordination, implicit coordination

scales better w.r.t. the number of robots, with a worst-case

complexity of O(mnh). Implicit coordination also provides an

approximation factor (1 + κ) along a single planning horizon,

where κ is the approximation achieved by the solver for the

single searcher problem [1], whenever the search objective

function can be formulated as a nondecreasing sub-modular set

function [2]. However, the optimization of the single paths still

requires the expansion of a search tree with depth h. For this

reason, practical real-time implementations limit the planning

horizon to a few steps ahead (5–6 for a typical indoor environ-

ment [1], [3]).

Main contributions. First, we prove that the MESPP problem

is NP-hard even for two-dimensional grid environments with a

static target and a single searcher. Second, we present the first

set of Mixed-Integer Linear Programming (MILP) models for

tackling the MESPP problem, the most general of which is able

to encompass multiple searchers, arbitrary capture ranges, and

false negatives simultaneously. Our proposed MILP models for

the MESPP problem allow path enumeration to be performed

in a much more efficient way by leveraging the sophisticated

branching and pruning techniques of modern MILP solvers [4].

The models are primarily designed to compute optimal solutions

offline, for relatively short missions (h ≤ 10), but they can be

used to plan single-robot paths in the same receding-horizon

planning scheme introduced in [1], for longer missions. Our

simulation results show that a receding-horizon distributed ap-

proach can yield results within 6% of an optimal offline solution

in a matter of seconds. Moreover, the adoption of MILP as a

planning paradigm in an online setting can provide 98% decrease

in computational time relative to the state-of-the-art.

This letter is structured as follows. Section II frames the

MESPP problem within the multi-robot search literature. Sec-

tion III introduces the MESPP problem and Section IV proves its

NP-hardness. Section V presents the MILP models to compute

optimal solutions offline, and Section VI shows how the models

are adapted for an online distributed implementation. Simulation

results are presented in Section VII, and Section VIII concludes

the paper.

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

6806 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

II. RELATED WORK

Target search problems have traditionally been a subject of

study in operations research [5] and game theory [6] commu-

nities. The past two decades have witnessed an ever-increasing

interest in these problems by researchers in mobile robotics,

under flavors that make them more suitable to cope with the

inherent constraints – computation, sensing, mobility, com-

munication – of mobile robots. Chung et al. [7] provide an

overview of how target search problems can be tackled from

a robotic perspective, introducing a rigorous taxonomy with

several classification dimensions. For example, the target can

be static [8] or dynamic [9]; adversarial [10], non-adversarial

or cooperative [11]; in case of known target’s motion model, this

can be a random walk [12] or Markovian [1]; the environment

can be continuous, unbounded [13] or bounded (typically repre-

sented as a polygon [14]), or discrete and represented by a finite

graph [15]. For what concerns the sensing model, this can be

assumed to be perfect, with detection events happening within

a given range [16] or when in line-of-sight with the target [17],

or affected by false negatives [1] and/or false positives [18].

In this letter, we consider the target search problem introduced

as MESPP in [1]. This problem version deals with a dynamic,

non-adversarial target which moves in a graph-represented envi-

ronment according to a known Markovian motion model. After

its introduction, the MESPP model was used in further studies in

data fusion [19] and connectivity problems [20], most recently

in [21].

The approach presented in [22] for searching a target on

graph-represented environments is also based on a MILP formu-

lation. However, it is restricted to a single searcher and capture

events in a single graph vertex. In this letter, we provide a

more general formulation able to encompass multiple searchers,

arbitrary capture ranges, and false negatives simultaneously.

III. MULTI-ROBOT SEARCH OF A NON-ADVERSARIAL OBJECT

This section formalizes the Multi-Robot Efficient Search

Path Planning (MESPP) problem. A team of cooperative robots

efficiently searches for a non-adversarial target in a known

graph-represented environment within a specified deadline, and

the problem goal is to place the searchers where they, as a

team, are most likely to intercept the target. The deadline is

defined due to a practical reason, i.e., the target must always be

located within a certain time in practical situations. This formu-

lation assumes that the robots have path planning and obstacle

avoidance capabilities, allowing them to follow a sequence of

waypoints (the graph vertices). Time evolves in discrete steps:

each step encompasses the robots’ transition between graph

vertices, followed by a sensing action at the new vertex. In this

letter, the terms capture, interception, and detection are used

interchangeably, as well as the terms object and target.

A. Environment and Searchers’ Paths

Let G = (V,E) be an undirected, connected, and sim-

ple graph representing a known environment, with V =
{1, 2, . . ., n}. The graph can be obtained by discretizing the

environment (for example, a floorplan) by hand, or by means

of automated discretization techniques, such as grids [21] or

constrained Delaunay triangulation [23]. We use δ(v) to denote

the neighbors of v ∈ V , while δ′(v) represents δ(v) ∪ {v}. Let

d(u, v) be the length of the shortest path between any two

vertices u, v ∈ V .

Each searcher is represented by s ∈ S, where S =
{1, 2, . . .,m}. Time t ∈ T evolves in discrete steps until the

deadline τ , T = {1, 2, . . ., τ}. Note that in the offline cen-

tralized approach, planning horizon h = τ . A searcher’s path

πs is defined as an ordered sequence of τ + 1 vertices πs =
[vso, v

s,1, . . . , vs,τ], where vso denotes the starting vertex of s. We

use Ps to denote the set of all the possible paths for searcher s,

andP =
∏m

s=1 Ps to denote the set of all the possible joint paths.

Each path must respect the following: at each step, the searcher

can either stay still at the current vertex, or move to a neighboring

vertex. Formally, ∀{vs,t, vs,t+1} ∈ πs, {vs,t, vs,t+1} ∈ δ′(v).

B. Object’s Motion and Capture

The object moves probabilistically in the graph, with motion

encoded by a Markov chain specified by the stochastic matrix

M ∈ Rn×n. Specifically, the entry Muv represents the proba-

bility that the object will move from u to v between time-steps

t and t+ 1.

At each step t, the objectsstate, resulting from its interactions

with searchers executing a set of joint paths π ∈ P , is repre-

sented by the belief vector,

bπ(t) = [bc(t), b1(t), . . ., bn(t)]. (1)

The first element, bc(t), represents the probability that the

searchers have located the object by time t. The remaining

elements b1(t), . . ., bn(t) represent the probability that the object

is in the corresponding vertices at time t, such that bc(t) +∑n
i=1 bv(t) = 1. Note that such probabilities can describe the

state of the object in all the possible realizations of the world.

In the remaining of this letter, we will simply denote bπ(t) by

b(t), to reduce the notation burden as the particular set of joint

paths will always be clear from the context.

Capture events are described by matrices Cs,u ∈
[0, 1](n+1)×(n+1), ∀s ∈ S, u ∈ V . Their effect is to connect the

probability of the object being at a particular location with its

capture state. In other words, the capture matrix Cs,u encodes

which vertices of the graph fall within the sensing range of

searcher s, when such is located in vertex u.

For the moment, assume the searcher has perfect sensing ca-

pabilities. Its capture matrix is constructed as follows. Initialize

the capture matrix as an identity matrix Cs,u = In+1. Then, for

each possible object location v ∈ V that allows a detection when

s is placed in u, null the v-th column of the capture matrix by

switching the 1 at Cs,u
vv with the 0 at Cs,u

v0 . Note that the first

column of Cs,u is denoted by index 0 to avoid confusion with

vertex 1.

Now consider the presence of false negatives in the searcher’s

sensing actions. False negative rates can vary across the different

team members, but we assume they remain constant for each

searcher regardless of its position. Let ζs ∈ [0, 1) be the false

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

ASFORA et al.: MIXED-INTEGER LINEAR PROGRAMMING MODELS FOR MULTI-ROBOT NON-ADVERSARIAL SEARCH 6807

negative probability of searcher s. When accounting for false

negatives, capture matrices are essentially constructed as above:

initialize it as an identity matrix In+1, but now replace the 1 at

Cs,u
vv for ζs, and the 0 at Cs,u

v0 for 1− ζs.

The belief update equation links the current belief, the

probabilistic object motion, and the searchers’ paths π =
(π1, . . . , πm) with the associated capture events, as follows:

b(t+ 1) = b(t)

[
1 01×n

0n×1 M

] m∏
s=1

Cs,πs,t+1

. (2)

C. Optimization Problem

The MESPP problem seeks to optimize the following objec-

tive, subject to Eq. (2):

π∗ = argmax
π∈P

τ∑
t=0

γtbc(t), (3)

where γ ∈ (0, 1] is a discount factor.

IV. NP-HARDNESS

In this section we show the hardness of the MESPP problem

by proving that its decision version, which we dub MESPP-D,

is NP-hard even when the graph is a two-dimensional grid, the

target is stationary, and there is a single searcher. We reduce

from the Hamiltonian-Path Between Two Points (2HP), proven

in [24] to be NP-complete on grid graphs.1

MESPP-D
INSTANCE: MESPP instance with reward function Fτ =∑τ

t=0 γ
tbc(t), and bound value B ≥ 0.2

QUESTION: Is there a search plan such that Fτ ≥ B?

HAMILTONIAN PATH BETWEEN 2 POINTS (2HP)
INSTANCE: Graph G = (V,E), vertices vA and vB .

QUESTION: DoesG contain a Hamiltonian path beginning with

vA and ending with vB?

Theorem 1: MESPP-D is NP-hard even when the following

conditions hold simultaneously:

1) G is a grid graph,

2) the target is stationary, and

3) there is only one searcher with perfect sensing capabilities.

Proof: We reduce 2HP to MESPP-D in polynomial time as

follows. The MESPP-D grid graph is the original 2HP grid

graphG = (V,E)with vertices labeled in a lexicographic order,

restricting only v1 = vA, vn = vB . We place at v1 a single
searcher with perfect sensing capabilities (no false negatives)

and able to capture the target only from its current vertex.

The target is stationary, M = In. The initial belief is set to

bc = b1 = 0, bn =
1

(n− 1)2
and bv =

1

n− 1
+

1

(n− 1)2
, 2 ≤

v ≤ n− 1. We define the deadline τ = n− 1 and bound value

1Itai et al. [24] define grid graphs as finite, vertex induced subgraphs of an

infinite graph where (a) the vertex set consists of all points of the plane with

integer coordinates and (b) two vertices are connected by an edge if and only if

the Euclidean distance between them is equal to 1.
2As customarily done, we assume that all the numbers used in the instance

are rational [25].

B =
∑n

v=1 γ
v
∑v

u=1 bu. The discount factor value does not

influence the proof, and is arbitrarily chosen as γ = 0.99.

Stating G has a Hamiltonian path between vertices vA and vB
means that it is possible to start at vA, pass through all vertices

exactly once and reach vB within n− 1 steps. Note that in the

transformation to MESPP-D, vB maps to the lowest non-zero

probability vertex vn, as bn < bv, for v = 2, . . ., n− 1. Thus the

search plan with the maximum capture probability by deadline

(Eq. 3) requires the searcher to visit each vertex exactly once

and lastly the vertex with lowest probability of reward (vn).

Following this path yields a reward of exactly Fτ = B, and

MESPP-D is therefore a yes-instance.

Conversely, if MESPP-D is a yes-instance, i.e. Fτ ≥ B, the

searcher must have started at a particular vertex v1 and reached

the lowest probability vertex vn at the last time step. Other-

wise the searcher would have collected a lower reward by the

deadline, Fτ < B, due to visiting a vertex more than once (zero

reward) or visiting the vertex with the lowest probability early

on (cumulative effect of collecting a smaller reward at t < τ).

This implies that if Fτ ≥ B, 2HP must be a yes-instance. �
Corollary 1.1: For stationary target and perfect sensing,

MESPP-D is NP-complete.

Proof: For a graph with n vertices, a searcher needs n2 steps

to visit all vertices in an arbitrary order. In the case of a static

target, the searchers will have collected all the possible reward

by t = n2 even if τ > n2. Thus the solution depends only on n
and not on τ . The solution is of polynomial size and verifiable

in polynomial time, placing the problem in NP. �

V. MIXED-INTEGER LINEAR PROGRAMMING MODELS

This section presents three MILP models for solving the

MESPP problem defined in Section III. Legal searchers’ paths

and object’s motion are modeled in Sections V-A and V-B,

respectively. These first sets of variables and constraints are

common across all models. We then introduce the constraints

for different types of capture events. In particular, capture events

limited to the same graph vertex without false negatives are

presented in Section V-C; capture events with arbitrary capture

range are shown in Section V-D; finally, capture events with

arbitrary range and false negatives are introduced in Section V-E.

A. Legal Paths for Searchers

We use V s,t = {(v, t) ∈ V × T | d(vso, v) � t, s ∈ S} to

denote, for each searcher s, the set of all the possible (v, t)
states that are compatible with its starting position vso (i.e. the

searcher can actually be in v at time t). With a slight abuse

of notation, we also define V s,t(t) = {v ∈ V | (v, t) ∈ V s,t}
and V s,t(v) = {t ∈ T | (v, t) ∈ V s,t}. Let us also introduce a

dummy goal vertex vg , which can be thought of as connecting

to all vertices of G in a fictitious manner.

Consider two sets of binary variables: xs,t
v denotes the pres-

ence of searcher s in vertex v at time t, and ys,tuv conveys the fact

that searcher s will move from u to v between steps t and t+ 1.

The following constraints enforce the legality of the paths for

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

6808 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

the searchers:

xs,0
vs
o
=

∑
j∈δ′(vs

o)

ys,0vs
oj

=
∑

j∈V s,t(τ)

ys,τjvg
= 1, ∀s ∈ S, (4)

xs,t
v =

∑
j∈δ′(v)

∩V s,t(t−1)

ys,t−1
jv =

∑
i∈δ′(v)

ys,tvi , ∀(v, t < τ) ∈ V s,t,
(5)

xs,τ
v =

∑
j∈δ′(v)

∩V s,t(τ−1)

ys,τ−1
jv = ys,τvvg

, ∀v ∈ V s,t(τ).
(6)

Equations (4) set the searchers’ starts and goal vertices, while

Eqs. (5)–(6) ensure path consistency. The variables are formally

defined as

xs,t
v ∈ {0, 1}, ∀s ∈ S, (v, t) ∈ V s,t, (7)

ys,tuv ∈ {0, 1}, ∀s ∈ S, (u, t < τ) ∈ V s,t(t), v ∈ δ′(u), (8)

ys,τuvg
∈ {0, 1}, ∀s ∈ S, u ∈ V s,t(τ). (9)

B. Object’s Motion

We introduce two sets of continuous variables: βt
i , represent-

ing the entries of the belief vector at time t, and αt
v , representing

the result of the application of the object’s motion model. The

constraints below respectively set the initial belief and evolve

the object’s location based on the previous belief:

β0
i = bi(0), ∀i ∈ V ∪ {c}, (10)

αt
v =

∑
u∈V

Muvβ
t−1
u , ∀v ∈ V, t ∈ T. (11)

The variables are formally defined as

βt
i ∈ [0, 1], ∀i ∈ V ∪ {c}, t ∈ {0} ∪ T, (12)

αt
v ∈ [0, 1], ∀v ∈ V, t ∈ T. (13)

C. Capture Events in Same Vertex, Binary Detection

Define same-vertex capture with binary detection (0 or 1) as

the searcher being in vertex v at time t, and able to determine

with certainty if the object is also in v. This entails the following

property: if no searcher is at vertex v, no new information is

available about that vertex, and the belief in v is simply the

probability that the object might have moved there between t − 1
and t, denoted by Eq. (11). On the other hand, if there is at least

one searcher at v and no object was detected, one can infer the

object is not in v.

Define then, for each time-step, a binary variable ψt
v that

equals one if and only if there is at least one searcher located in

v at time t. The belief vector entries can be expressed as

βt
v = αt

v

(
1− ψt

v

)
, ∀t ∈ T, v ∈ V, (14)

which translates to βt
v = αt

v if ψt
v = 0, or βt

v = 0 if ψt
v = 1.

The above constraint is nonlinear and can not be applied

directly in a MILP model, but it can be formulated in a linearized

manner [26]. The following constraints substitute Eq. (14) for

the belief,

βt
v � 1− ψt

v, ∀v ∈ V, t ∈ T, (15)

βt
v � αt

v, ∀v ∈ V, t ∈ T, (16)

βt
v � αt

v − ψt
v, ∀v ∈ V, t ∈ T, (17)

ψt
v ∈ {0, 1}, ∀v ∈ V, t ∈ T. (18)

The relationship between the capture variable ψt
v and the

searchers’ positions variables xs,t
v is expressed as∑

s∈S s.t.
v∈V s,t(t)

xs,t
v � mψt

v, ∀v ∈ V, t ∈ T, (19)

ψt
v �

∑
s∈S s.t.
v∈V s,t(t)

xs,t
v , ∀v ∈ V, t ∈ T, (20)

which means that, if all searchers are in vertex v at time t, ψt
v =

1, and the sum of the searchers positions xs,t
v ∀s ∈ S equals the

number of searchers in the team, mψt
v . If however no searcher

is in v, ψt
v = 0 and so is the sum of xs,t

v ∀s ∈ S.

Finally, the probability of the object being intercepted within

step t is the remaining probability after the belief update on all

vertices,

βt
c = 1−

∑
v∈V

βt
v, ∀t ∈ T. (21)

D. Capture Events Within Given Range, Binary Detection

Generalizing the capture event, let us say that a searcher po-

sitioned in vertex u is able to detect, with certainty, the presence

of the object in vertex v located within some arbitrary capture

range. As before, this assumption entails that the team does not

gain additional knowledge about the object’s true position unless

the latter can be intercepted. This rationale is again expressed by

Eq. (14) and linearized in Eqs. (15)–(18). Equations (19)–(20)

must, however, be replaced by the following:∑
s∈S

∑
u∈V s,t(t)
s.t. Cs,u

v0 =1

xs,t
u � mψt

v ∀v ∈ V, t ∈ T, (22)

ψt
v �

∑
s∈S

∑
u∈V s,t(t)
s.t. Cs,u

v0 =1

xs,t
u ∀v ∈ V, t ∈ T. (23)

Now, when v is within range, ψt
v = 1 and the sum of xs,t

u

such that Cs,u
v0 = 1 ∀s ∈ S is at most the number of searchers,

or mψt
v . The opposite logic also applies. The probability of the

object being intercepted within step t is enforced by Eq. (21).

E. Capture Events With False Negatives

In order to account for the false negatives in detection (see

Sec. III), one must modify Eq. (14). First, consider a team of

only one searcher. If the capture range can reach a particular

vertex, the probability the object might be there is no longer

zero, but rather βt
v = ζαt

v , to account for the chance that the

object is actually in that vertex, but has not been detected. If the

searcher can not reach vertex v, no new information is available,

and the belief is the probability the target has moved there, as

before.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

ASFORA et al.: MIXED-INTEGER LINEAR PROGRAMMING MODELS FOR MULTI-ROBOT NON-ADVERSARIAL SEARCH 6809

Considering the capture variable ψt
v as previously presented,

the belief update equation for one searcher becomes

βt
v = (1− ζ)αt

v

(
1− ψt

v

)
+ ζαt

v. (24)

For multiple searchers, however, the detection uncertainty

must decrease as more robots are in locations where they can

potentially detect the object. This is expressed by updating the

belief in an iterative manner, one searcher at a time. To this aim,

we define capture and belief variables ψs,t
v and βs,t

v for each

searcher, and impose the following constraints:

βs,t
v = (1− ζs)βs−1,t

v

(
1− ψs,t

v

)
+ ζsβs−1,t

v ,

∀s ∈ S, t ∈ T, v ∈ V, (25)

where

β0,t
v = αt

v, ∀t ∈ T, v ∈ V. (26)

The variables are formally defined as

βs,t
v ∈ [0, 1], ∀t ∈ T, v ∈ V, s ∈ S, (27)

ψs,t
v ∈ {0, 1}, ∀t ∈ T, v ∈ V, s ∈ S. (28)

To linearize Eq. (25), we define the auxiliary variable,

δs,tv = βs−1,t
v

(
1− ψs,t

v

)
, (29)

δs,tv ∈ [0, 1] ∀t ∈ T, v ∈ V, s ∈ S, (30)

and use the same technique as before to yield linear constraints:

δs,tv � 1− ψs,t
v , ∀s ∈ S, t ∈ T, v ∈ V, (31)

δs,tv � βs−1,t
v , ∀s ∈ S, t ∈ T, v ∈ V, (32)

δs,tv � βs−1,t
v − ψs,t

v , ∀s ∈ S, t ∈ T, v ∈ V. (33)

Equation (25) can therefore be rewritten as

βs,t
v = (1− ζs) δs,tv + ζsβs−1,t

v , ∀t ∈ T, v ∈ V, s ∈ S. (34)

The capture events must now be expressed separately for each

searcher: ∑
u∈V s,t.(t)
s.t. Cs,u

v0 >0

xs,t
u � ψs,t

v ∀t ∈ T, v ∈ V, s ∈ S, (35)

ψs,t
v �

∑
u∈V s,t.(t)
s.t. Cs,u

v0 >0

xs,t
u ∀t ∈ T, v ∈ V, s ∈ S. (36)

Equation (21) is again used to express the probability that the

object has been captured by time t, noting that

βt
v = βm,t

v , ∀t ∈ T, v ∈ V. (37)

F. Complete MILP Models

For same-vertex capture, no false negatives:

(SV−MILP) max
∑
t∈T

γtbc(t) s.t.

Eqs. (4)-(13), (15)-(21).

For arbitrary capture range, no false negatives:

(MV−MILP) max
∑
t∈T

γtbc(t) s.t.

Eqs. (4)-(13), (15)-(18), (21)-(23).

Finally, the most general model, encompassing arbitrary capture

ranges and false negatives:

(FN−MV−MILP) max
∑
t∈T

γtbc(t) s.t.

Eqs. (4)-(13), (26)-(28), (30)-(37).

VI. DISTRIBUTED ONLINE IMPLEMENTATION

The MILP models presented on Section V are primarily

designed to compute optimal or near-optimal solutions offline.

However, for large values of mission deadline τ and team size

m, a centralized approach does not scale well computationally.

An implicit coordination approach is inherently more scalable

than explicit coordination. Recall the algorithm proposed in [1]:

at each planning step and for i = 1, . . . ,m (according to a

lexicographic order), the path of the i-th robot is computed by

leaving the paths of its teammates j �= i fixed; robots with j > i
are initially assumed to remain at their starting position, i.e.,

πj,t = vso, ∀t = 1, . . . , h. In [1], the paths of the single robots

are optimized by enumeration. Exploring the same search space

by leveraging modern solver techniques ensures better scalabil-

ity in general. To this aim, we can easily adapt our a models for

this task. We adopt the implicit coordination algorithm of [1],

using our MILP-based approach to perform a more efficient

iterative optimization of single paths.

We can solve a sequence of m models, one for each searcher,

while assigning a deterministic value to the variables associated

with the paths of the teammates. When planning the path for

searcher i, a deterministic value is assigned for ∀j �= i ∈ S:

xj,t
v =

{
1, iff v = πj,t

0, otherwise.
(38)

A distributed approach decreases the number of variables to

be optimized on the MILP model and thus the complexity of the

problem, which generally yields a smaller solution time than

a centralized planning scheme for m > 1. Although commu-

nication constraints are not addressed here, these could also

be incorporated into the proposed model by leveraging recent

work which proposes MILP-based approaches to connected

multi-robot path planning [21], [27].

VII. SIMULATIONS

A. General Setup

We use GUROBI [28] to solve the MILP models3 on a

machine equipped with Intel-Core i9-9900 K and 32 GB RAM.

The maximum number of used threads is set to eight and the

presolve level is kept as default (automatic). The solver timeout

3Code is open source and available at https://github.com/basfora/milp_

mespp.git

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

6810 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 1. Environments from [1] used in evaluations, each room is associated

with the corresponding vertex number. Left: OFFICE; Right: MUSEUM.

Fig. 2. Solution times with MILP centralized approach, m = 1 and varying

h. Left: OFFICE. Center: GRID-NOFN. Right: GRID-FN.

is set to 30 min for the offline (centralized) approach, and 10 sec

for the distributed. Except when stated otherwise, default values

are used for the remaining parameters.

We consider three graph environments: OFFICE and MU-

SEUM, both used in [1] and shown in Fig. 1; and a 10x10

4-connected GRID graph. For OFFICE and MUSEUM, we

assume perfect sensing capability and same-vertex capture. For

the GRID environment, we assume that the robots’ sensing range

spans the current vertex plus its 1-hop neighbors, and consider

two settings: without (GRID-NOFN) and with (GRID-FN) false

negatives, with ζs = 0.3, ∀s ∈ S for the latter. We use SV-

MILP on MUSEUM and OFFICE, MV-MILP on GRID-NOFN,

and FN-MV-MILP on GRID-FN.

We perform five experiment sets, each consisting of 100

instances per environment, except for set 4 in which we double

this quantity. The initial configurations (searchers and object po-

sitions) are randomly chosen. In all instances, the initial capture

belief is zero, i.e., the searchers are not able to detect the object at

the start of the mission. For the initial object’s location belief,

we assume an uniform probability between an assorted number

of vertices, chosen randomly. For experiment sets 1− 3, 5, there

are five possible initial vertices; for experiment set 4, we vary

the number of vertices randomly from two to fifteen; particularly

for GRID-FN in set 5, we consider four possible vertices, drawn

from each of the 3× 3 corner regions of the grid graph, while

the initial position of the searchers is drawn from the central

portion of the grid.

B. Results

1) Scalability of the MILP Models for Centralized Approach
w.r.t. Planning Horizon Length: Fig. 2 shows the solution times

for one searcher (m = 1) and varying horizons h, for OFFICE,

GRID-NOFN and GRID-FN.

The complexity of the model, and therefore the time required

to solve it, increases with the complexity of the graph, the robots’

sensing range, and the presence of false negatives. OFFICE

instances are simpler than GRIDs due to the smaller average

Fig. 3. Solution times with centralized approach,h = 10 and varyingm. Left:

OFFICE. Center: GRID-NOFN. Right: GRID-FN.

Fig. 4. MIP gaps with centralized approach, h = 10 and varying m. Left:

OFFICE. Center: GRID-NOFN. Right: GRID-FN.

graph degree, plus capture events limited to the same vertex. As

a result, all OFFICE instances are solved to optimality within a

couple of minutes (see Fig. 2, left). On the other hand, GRID

instances with h > 16 tend to hit the solver time limit before

an optimal solution can be found. In these sub-optimal cases,

the median MIP gap values (not shown in plot) for GRID-FN

and h = 18, 20 were respectively 11% and 23%. The presence

of false negatives in the centralized approach does not have a

significant impact for m = 1 (Fig. 2 center, right). As defined

in Eq. (25), additional intermediate variables are necessary for

each searcher and time-step, causing the increase in complexity

to become relevant for multiple searchers. This is confirmed by

experiment set 2 (Figs. 4–3).

2) Performance of the Centralized MILP Approach for
Different Team Sizes: We choose a planning horizon of h = 10,

shown previously to be optimally solvable within our time limit

for a single searcher in all instances. Figs. 3–4 show the solution

times and corresponding MIP gaps for OFFICE, GRID-NOFN

and GRID-FN.

A larger search team increases the model complexity (see

Fig. 3), and consequently even OFFICE instances hit the time

limit for m ≥ 3. These sub-optimal solutions, however, present

small MIP gap values (≤7%), with median gaps of less than

0.8% (Fig. 4, left). On GRID-NOFN, median gap values are

still low (<1.2%), although we have some outliers (max. 22%).

Overall higher gaps are found on GRID-FN, with median values

around 12% for m ≥ 3 (Fig. 4, right). As it becomes compara-

tively easier to intercept the object with an extra searcher in an

environment of this size, the higher MIP gaps in both GRIDs

arise when m = 3, 4.

3a) Scalability of the MILP models for distributed ap-
proach w.r.t. team size: We implement the implicit coordination

algorithm described in Sec. VI, replanning at each time step.

Fig. 5 shows the solution times with a planning horizon h = 10
for OFFICE and GRID-FN.

The distributed solution presents a significantly better scala-

bility than the centralized approach under equivalent conditions,

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

ASFORA et al.: MIXED-INTEGER LINEAR PROGRAMMING MODELS FOR MULTI-ROBOT NON-ADVERSARIAL SEARCH 6811

Fig. 5. Solution times with distributed approach,h = 10 and varyingm. Left:

OFFICE. Right: GRID-FN.

Fig. 6. Performance of distributed and centralized MILP approaches for

OFFICE and GRID-FN, h = 10. Left: Relative reward loss computed at t = 0.

Right: Average mission time. Bars show the std. error of the mean.

which can be seen by comparing the solution times in Fig. 5

(left, right) and Fig. 3 (respectively left, right). The following

results from OFFICE illustrate this claim: although for m = 1
the median computational times of the centralized and dis-

tributed approaches are similar, respectively 0.52 sec and 0.54

sec, for m = 5 these values increase to approximately 1800 sec

(centralized) and 1.46 sec (distributed). In comparative terms, a

5x increase in the team size caused the median solution time to

increase 3x for the distributed algorithm, against a drastic 3400x

increase in solution time for the centralized approach.

3b) Comparative performance of online (distributed) and
offline (centralized) MILP search plans: As basis for compari-

son, we introduce two metrics: the average mission time, defined

as the time-step the mission ends due to the expiration of the

deadline or capture of the object; and the relative reward loss,

defined as the percentage difference between the distributed and

centralized reward functions computed at time t = 0. Fig. 6

shows the relative reward loss (left) and the average mission

time (right) for OFFICE and GRID-FN, for a mission deadline

τ = 50 with h = 10 and varying m.

The relative reward loss for the environments studied in this

letter is minimal, as shown in Fig. 6 (left). The higher loss is

seen for the OFFICE environment (within 3% of optimal reward)

and slightly lower for GRID-FN (2% difference). Recall from

Fig. 3 (right) that the centralized approach often fails to solve

the GRID-FN problem to optimality in the time given, which

might result in a sub-optimal offline plan, however with a higher

reward when compared to the proposed distributed plan. This

small difference in reward translates into an overall shorter, if

at times irrelevant,4 average mission time for the centralized

approach (see Fig. 6, right). Given the same planning horizon,

4Note for m = 3 in GRID-FN, the false negative causes the actual detection

of the target in the distributed, but not in the centralized instance.

Fig. 7. Comparison of MILP and SoA [1] distributed approaches for OFFICE,

MUSEUM and GRID-FN, m = 3 and varying h. Left: Average solution time

(log scale). Right: Solution time decrease with MILP (relative change with SoA

as the reference value). Bars show the std. error of the mean.

Fig. 8. Performance of MILP distributed approach, h = 5, 10 for OFFICE,

MUSEUM and GRID-FN. Left: Average mission time. Right: Average solution

time. Bars show the standard error of the mean.

the distributed approach often performs nearly as well as the

centralized, both w.r.t. reward (within 3%) and mission time

(within 6%), with the advantage of requiring significant less

time.

4) Comparison Between MILP Approach and Previous State-
of-the-Art (SoA) Algorithm: The solution times for varying plan-

ning horizons and m = 3 are shown in Fig. 7 for MUSEUM,

OFFICE and GRID-FN.

The implicit coordination algorithm (SoA) was implemented

in C++ by the authors.5 as presented in [1]. The same machine

is used to run the MILP and SoA experiments, and no time limit

is imposed. While the algorithms provide interchangeable solu-

tions (same computed reward), the computational time required

to do so varies greatly between them. The MILP paradigm out-

performs the previous SoA w.r.t. computational time in all cases,

and this difference becomes more expressive as the planning

horizon increases (see Fig. 7, left). In average terms, for h = 8
and m = 3 in the environments tested in this letter, the MILP

models allow for a solution time decrease of 98% compared to

the previous SoA (see Fig. 7, right).

5) Performance of the MILP Distributed Approach With Dif-
ferent Planning Horizons: Fig. 8 shows the average mission

time for τ = 50 and the solution time with h = 5, 10 for OF-

FICE, MUSEUM and GRID-FN.

For both OFFICE and MUSEUM there is virtually no differ-

ence in performance for the planning horizons tested (Fig. 8,

left). For GRID-FN, the imposed restriction on searchers and

object’s initial positions (Sec. VII-A) creates a more challeng-

ing planning scenario given their relative initial distance. For

this case, a longer planning horizon yields better performance,

5Code is open source and available at https://github.com/jacoban/implicit_

coordination

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

6812 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

however at the expense of a greater computing time, which grows

expressively with the number of searchers (see Fig. 8, right).

VIII. DISCUSSION

In this letter, we proved the MESPP problem to be NP-hard

even on seemingly simple instances, i.e. grid graphs, static target,

and single searcher. We also presented the first set of MILP

models able to encompass multiple searchers, arbitrary capture

ranges, and false negatives simultaneously. Our results show

that the adoption of MILP as a planning paradigm outperforms

the previous state-of-the-art approach, both in terms of planning

horizon and computational performance.

Leveraging the powerful techniques and tools used by mod-

ern solvers comes with a minor challenge: very rarely (three

instances in total), the presolver might deal poorly with small

probabilities and deem the problem infeasible. This numerical

issue is fixed either by turning the presolver off and increasing

the solver timeout, or by keeping the searchers’ in their current

positions and re-planning on next time-step (always a feasible

solution and the one we adopted). We believe this is just a small

inconvenience, given the benefits provided by the MILP models.

As shown in our simulations, the trade-off between expected

mission time and required computational time is a challenging

choice. Specially for practical situations, such choice is depen-

dent upon the desired search mission’s goals and is fundamental

for its success. Future work will continue investigating MILP as a

planning paradigm, towards the generalization of the presented

models to handle heterogeneous teams of searchers (humans,

ground and aerial vehicles), and the incorporation of connectiv-

ity constraints.

REFERENCES

[1] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-robot

search for a moving target,” Int. J. Robot. Res., vol. 28, no. 2, pp. 201–219,

2009.

[2] A. Singh, A. Krause, C. Guestrin, W. J. Kaiser, and M. A. Batalin, “Efficient

planning of informative paths for multiple robots,” in Proc. 20th Int. Joint
Conf. Artif. Intell., 2007, vol. 7, pp. 2204–2211.

[3] G. Hollinger, “Search in the physical world,” Ph.D. dissertation, Robot.

Inst., School Comput. Sci., Carnegie Mellon University, Pittsburgh, PA,

USA, 2010.

[4] K. Bernhard and J. Vygen, Combinatorial Optimization: Theory and
Algorithms. 3rd ed., Berlin, Germany: Springer, 2008.

[5] L. Stone, Theory of Optimal Search. Amsterdam, The Netherlands: Else-

vier, 1976, vol. 118.

[6] S. Alpern and S. Gal, The Theory of Search Games and Rendezvous. Berlin,

Germany: Springer, 2006, vol. 55.

[7] T. Chung, G. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile

robotics,” Auton. Robot., vol. 31, no. 4, pp. 299–316, 2011.

[8] J. Tisdale, Z. Kim, and J. Hedrick, “Autonomous uav path planning and

estimation,” IEEE Robot. Autom. Mag., vol. 16, no. 2, pp. 35–42, Jun. 2009.

[9] A. Kolling, A. Kleiner, M. Lewis, and K. Sycara, “Computing and execut-

ing strategies for moving target search,” in Proc. IEEE Int. Conf. Robot.
Automat., 2011, pp. 4246–4253.

[10] A. Kolling and S. Carpin, “Pursuit-evasion on trees by robot teams,” IEEE
Trans. Robot., vol. 26, no. 1, pp. 32–47, Feb. 2010.

[11] F. Riccio, E. Borzi, G. Gemignani, and D. Nardi, “Multi-robot search for a

moving target: Integrating world modeling, task assignment and context,”

in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1879–1886.

[12] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, “Random-

ized pursuit-evasion in graphs,” Comb. Probab. Comput., vol. 12, no. 3,

pp. 225–244, 2003.

[13] S. Alexander, R. Bishop, and R. Ghrist, “Capture pursuit games on un-

bounded domains,” lEnseignement Mathematique, vol. 55, pp. 103–125,

2009.

[14] D. Bhadauria and V. Isler, “Capturing an evader in a polygonal environment

with obstacles,” in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 2054–2059.

[15] V. Isler and N. Karnad, “The role of information in the cop-robber game,”

Theor. Comput. Sci., vol. 399, no. 3, pp. 179–190, 2008.

[16] R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattacharya, and S.

Hutchinson, “Surveillance strategies for a pursuer with finite sensor range,”

Int. J. Robot. Res., vol. 26, no. 3, pp. 233–253, 2007.

[17] L. Guibas, J. Latombe, S. LaValle, D. Lin, and R. Motwani, “Visibility-

based pursuit-evasion in a polygonal environment,” Int. J. Comput. Geom.
Appl., vol. 9, no. 5, pp. 471–494, 1999.

[18] M. Kress, K. Y. Lin, and R. Szechtman, “Optimal discrete search with im-

perfect specificity,” Math. Method. Oper. Res., vol. 68, no. 3, pp. 539–549,

2008.

[19] G. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. Sukhatme, “Dis-

tributed data fusion for multirobot search,” IEEE Trans. Robot., vol. 31,

no. 1, pp. 55–66, Feb. 2015.

[20] G. Hollinger and S. Singh, “Multirobot coordination with periodic con-

nectivity: Theory and experiments,” IEEE Trans. Robot., vol. 28, no. 4,

pp. 967–973, Aug. 2012.

[21] J. Banfi, N. Basilico, and F. Amigoni, “Multirobot reconnection on graphs:

Problem, complexity, and algorithms,” IEEE Trans. Robot., vol. 34, no. 5,

pp. 1299–1314, Oct. 2018.

[22] M. Morin, I. Abi-Zeid, P. Lang, L. Lamontagne, and P. Maupin, “The

optimal searcher path problem with a visibility criterion in discrete time

and space,” in Proc. FUSION, 2009, pp. 2217–2224.

[23] J. Shewchuk, “Delaunay refinement algorithms for triangular mesh gen-

eration,” Comp. Geom. Theor. Appl., vol. 22, no. 1–3, pp. 21–74, 2002.

[24] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, “Hamilton paths in grid

graphs,” SIAM J. Comput., vol. 11, no. 4, pp. 676–686, 1982.

[25] O. Madani, S. Hanks, and A. Condon, “On the undecidability of probabilis-

tic planning and related stochastic optimization problems,” Artif. Intell.,
vol. 147, no. 1-2, pp. 5–34, 2003.

[26] F. Glover, “Improved linear integer programming formulations of nonlin-

ear integer problems,” Manage. Sci., vol. 22, no. 4, pp. 455–460, 1975.

[27] J. Banfi, N. Basilico, and S. Carpin, “Optimal redeployment of multirobot

teams for communication maintenance,” in Proc. IEEE Int. Conf. Intell.
Robots Syst., 2018, pp. 3757–3764.

[28] Gurobi Optimization, LLC. “Gurobi - The Fastest Solver,” [Online].

Available: www.gurobi.com, Accessed: Jan. 20, 2020.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 05,2021 at 20:39:55 UTC from IEEE Xplore. Restrictions apply.

