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Mixed-Integer Linear Programming Models for
Multi-Robot Non-Adversarial Search

Beatriz A. Asfora

Abstract—In this letter, we consider the Multi-Robot Efficient
Search Path Planning (MESPP) problem, where a team of robots is
deployed in a graph-represented environment to capture a moving
target within a given deadline. We prove this problem to be NP-
hard, and present the first set of Mixed-Integer Linear Program-
ming (MILP) models to tackle the MESPP problem. Our models
are the first to encompass multiple searchers, arbitrary capture
ranges, and false negatives simultaneously. While state-of-the-art
algorithms for MESPP are based on simple path enumeration,
the adoption of MILP as a planning paradigm allows to leverage
the powerful techniques of modern solvers, yielding better com-
putational performance and, as a consequence, longer planning
horizons. The models are designed for computing optimal solutions
offline, but can be easily adapted for a distributed online approach.
Our simulations show that it is possible to achieve 98% decrease
in computational time relative to the previous state-of-the-art. We
also show that the distributed approach performs nearly as well
as the centralized, within 6% in the settings studied in this letter,
with the advantage of requiring significant less time — an important
consideration in practical search missions.

Index Terms—Path planning for multiple mobile robots or
agents, multi-robot systems, search and rescue robots.

1. INTRODUCTION

N THIS letter, we consider the Multi-Robot Efficient Search

Path Planning (MESPP) problem introduced by Hollinger
et al. in [1]. In this problem, a team of robots is deployed in an
environment represented as an undirected graph with the aim of
capturing a moving non-adversarial target within a given dead-
line. In [1], the authors propose to tackle the MESPP problem
with areceding horizon approach that can be implemented either
in a centralized or in a distributed fashion.

In the centralized case, all the possible joint paths are enumer-
ated over a given planning horizon h, and the best set of paths
is executed until the next planning step. Considering a graph
of n vertices and a team of m searchers, this approach has a
worst-case complexity of O(n™"), i.e. exponential in both the
team size and the planning horizon. This approach is dubbed
“explicit coordination”. In the distributed case, instead, at each
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planning stepand forz = 1, ..., m (according to a lexicographic
order), the path of the ¢-th robot is computed by leaving the
paths of the remaining robots j # ¢ fixed (robots with j > i
are initially assumed to remain at their starting position). The
optimization of the ¢-th path is again performed by enumerating
all feasible paths over a given horizon h. This approach is dubbed
“implicit coordination”.

Compared to explicit coordination, implicit coordination
scales better w.r.t. the number of robots, with a worst-case
complexity of O(mn"). Implicit coordination also provides an
approximation factor (1 + x) along a single planning horizon,
where k is the approximation achieved by the solver for the
single searcher problem [1], whenever the search objective
function can be formulated as a nondecreasing sub-modular set
function [2]. However, the optimization of the single paths still
requires the expansion of a search tree with depth h. For this
reason, practical real-time implementations limit the planning
horizon to a few steps ahead (5-6 for a typical indoor environ-
ment [1], [3]).

Main contributions. First, we prove that the MESPP problem
is NP-hard even for two-dimensional grid environments with a
static target and a single searcher. Second, we present the first
set of Mixed-Integer Linear Programming (MILP) models for
tackling the MESPP problem, the most general of which is able
to encompass multiple searchers, arbitrary capture ranges, and
false negatives simultaneously. Our proposed MILP models for
the MESPP problem allow path enumeration to be performed
in a much more efficient way by leveraging the sophisticated
branching and pruning techniques of modern MILP solvers [4].
The models are primarily designed to compute optimal solutions
offline, for relatively short missions (h < 10), but they can be
used to plan single-robot paths in the same receding-horizon
planning scheme introduced in [1], for longer missions. Our
simulation results show that a receding-horizon distributed ap-
proach can yield results within 6% of an optimal offline solution
in a matter of seconds. Moreover, the adoption of MILP as a
planning paradigm in an online setting can provide 98% decrease
in computational time relative to the state-of-the-art.

This letter is structured as follows. Section II frames the
MESPP problem within the multi-robot search literature. Sec-
tion Il introduces the MESPP problem and Section IV proves its
NP-hardness. Section V presents the MILP models to compute
optimal solutions offline, and Section VI shows how the models
are adapted for an online distributed implementation. Simulation
results are presented in Section VII, and Section VIII concludes
the paper.
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II. RELATED WORK

Target search problems have traditionally been a subject of
study in operations research [5] and game theory [6] commu-
nities. The past two decades have witnessed an ever-increasing
interest in these problems by researchers in mobile robotics,
under flavors that make them more suitable to cope with the
inherent constraints — computation, sensing, mobility, com-
munication — of mobile robots. Chung et al. [7] provide an
overview of how target search problems can be tackled from
a robotic perspective, introducing a rigorous taxonomy with
several classification dimensions. For example, the target can
be static [8] or dynamic [9]; adversarial [10], non-adversarial
or cooperative [11]; in case of known target’s motion model, this
can be a random walk [12] or Markovian [1]; the environment
can be continuous, unbounded [13] or bounded (typically repre-
sented as a polygon [14]), or discrete and represented by a finite
graph [15]. For what concerns the sensing model, this can be
assumed to be perfect, with detection events happening within
a given range [16] or when in line-of-sight with the target [17],
or affected by false negatives [1] and/or false positives [18].

In this letter, we consider the target search problem introduced
as MESPP in [1]. This problem version deals with a dynamic,
non-adversarial target which moves in a graph-represented envi-
ronment according to a known Markovian motion model. After
its introduction, the MESPP model was used in further studies in
data fusion [19] and connectivity problems [20], most recently
in [21].

The approach presented in [22] for searching a target on
graph-represented environments is also based on a MILP formu-
lation. However, it is restricted to a single searcher and capture
events in a single graph vertex. In this letter, we provide a
more general formulation able to encompass multiple searchers,
arbitrary capture ranges, and false negatives simultaneously.

III. MULTI-ROBOT SEARCH OF A NON-ADVERSARIAL OBJECT

This section formalizes the Multi-Robot Efficient Search
Path Planning (MESPP) problem. A team of cooperative robots
efficiently searches for a non-adversarial target in a known
graph-represented environment within a specified deadline, and
the problem goal is to place the searchers where they, as a
team, are most likely to intercept the target. The deadline is
defined due to a practical reason, i.e., the target must always be
located within a certain time in practical situations. This formu-
lation assumes that the robots have path planning and obstacle
avoidance capabilities, allowing them to follow a sequence of
waypoints (the graph vertices). Time evolves in discrete steps:
each step encompasses the robots’ transition between graph
vertices, followed by a sensing action at the new vertex. In this
letter, the terms capture, interception, and detection are used
interchangeably, as well as the terms object and target.

A. Environment and Searchers’ Paths

Let G = (V,E) be an undirected, connected, and sim-
ple graph representing a known environment, with V =
{1,2,...,n}. The graph can be obtained by discretizing the
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environment (for example, a floorplan) by hand, or by means
of automated discretization techniques, such as grids [21] or
constrained Delaunay triangulation [23]. We use d(v) to denote
the neighbors of v € V, while ¢’ (v) represents d(v) U {v}. Let
d(u,v) be the length of the shortest path between any two
vertices u,v € V.

Each searcher is represented by s & .S, where S =
{1,2,...,m}. Time t € T evolves in discrete steps until the
deadline 7, T ={1,2,...,7}. Note that in the offline cen-
tralized approach, planning horizon h = 7. A searcher’s path
7° is defined as an ordered sequence of 7 + 1 vertices 7° =
[vS, 051, ... v*7], where v$ denotes the starting vertex of s. We
use P° to denote the set of all the possible paths for searcher s,
and P = [].., P* todenote the set of all the possible joint paths.
Each path must respect the following: at each step, the searcher
can either stay still at the current vertex, or move to a neighboring
vertex. Formally, V{v*!, v 1} € 75, {5t v®1H1} € §'(v).

B. Object’s Motion and Capture

The object moves probabilistically in the graph, with motion
encoded by a Markov chain specified by the stochastic matrix
M e R™ ", Specifically, the entry IM,,,, represents the proba-
bility that the object will move from w to v between time-steps
tandt + 1.

At each step t, the objectsstate, resulting from its interactions
with searchers executing a set of joint paths w € P, is repre-
sented by the belief vector,

bﬂ(t) - [bc(t)vbl(t)w-wbn(t)}' (D

The first element, b.(¢), represents the probability that the
searchers have located the object by time ¢. The remaining
elements b (¢), . . ., b, (t) represent the probability that the object
is in the corresponding vertices at time ¢, such that b.(t) +
> i1 by(t) = 1. Note that such probabilities can describe the
state of the object in all the possible realizations of the world.
In the remaining of this letter, we will simply denote b™ (¢) by
b(t), to reduce the notation burden as the particular set of joint
paths will always be clear from the context.

Capture events are described by matrices C*" ¢
[0, 1]+ > (+1) 'vs € § 4y € V. Their effect is to connect the
probability of the object being at a particular location with its
capture state. In other words, the capture matrix C*" encodes
which vertices of the graph fall within the sensing range of
searcher s, when such is located in vertex w.

For the moment, assume the searcher has perfect sensing ca-
pabilities. Its capture matrix is constructed as follows. Initialize
the capture matrix as an identity matrix C** = I,,41. Then, for
each possible object location v € V' that allows a detection when
s is placed in u, null the v-th column of the capture matrix by
switching the 1 at C$;* with the 0 at C;j". Note that the first
column of C** is denoted by index 0 to avoid confusion with
vertex 1.

Now consider the presence of false negatives in the searcher’s
sensing actions. False negative rates can vary across the different
team members, but we assume they remain constant for each
searcher regardless of its position. Let ¢* € [0, 1) be the false
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negative probability of searcher s. When accounting for false
negatives, capture matrices are essentially constructed as above:
initialize it as an identity matrix I,,4;, but now replace the 1 at
Cs: for ¢, and the 0 at C} " for 1 — (*.

The belief update equation links the current belief, the
probabilistic object motion, and the searchers’ paths 7 =
(mt,...,©™) with the associated capture events, as follows:

b(t + 1) = b(t) |:0n1><1 Oll\;f[n:| H Cs,ﬂ—s,t+1. 2)

s=1

C. Optimization Problem

The MESPP problem seeks to optimize the following objec-
tive, subject to Eq. (2):

x _ t
w" = argmax > 'be(t), 3)
t=0
where 7y € (0, 1] is a discount factor.

IV. NP-HARDNESS

In this section we show the hardness of the MESPP problem
by proving that its decision version, which we dub MESPP-D,
is NP-hard even when the graph is a two-dimensional grid, the
target is stationary, and there is a single searcher. We reduce
from the Hamiltonian-Path Between Two Points (2HP), proven
in [24] to be NP-complete on grid graphs.'

MESPP-D

INSTANCE: MESPP instance with reward function F, =
>0 7"be(t), and bound value B > 0.2

QUESTION: Is there a search plan such that . > B?
HAMILTONIAN PATH BETWEEN 2 POINTS (2HP)
INSTANCE: Graph G = (V, E), vertices v4 and vg.
QUESTION: Does G contain a Hamiltonian path beginning with
v4 and ending with vg?

Theorem 1: MESPP-D is NP-hard even when the following
conditions hold simultaneously:

1) G is a grid graph,

2) the target is stationary, and

3) there is only one searcher with perfect sensing capabilities.

Proof: We reduce 2HP to MESPP-D in polynomial time as
follows. The MESPP-D grid graph is the original 2HP grid
graph G = (V, F) with vertices labeled in a lexicographic order,
restricting only v; = va, v, = vp. We place at vy a single
searcher with perfect sensing capabilities (no false negatives)
and able to capture the target only from its current vertex.
The target is stationary, M = 1,,. The initial belief is set to

1 1
bc:b:7bn:7 dbv: 72§
1 =000 = ypandbe = g T G Ty

v < n — 1. We define the deadline 7 = n — 1 and bound value

'tai et al. [24] define grid graphs as finite, vertex induced subgraphs of an
infinite graph where (a) the vertex set consists of all points of the plane with
integer coordinates and (b) two vertices are connected by an edge if and only if
the Euclidean distance between them is equal to 1.

2 As customarily done, we assume that all the numbers used in the instance
are rational [25].
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B=>"_ "> v_; by The discount factor value does not
influence the proof, and is arbitrarily chosen as v = 0.99.

Stating GG has a Hamiltonian path between vertices v4 and vp
means that it is possible to start at v4, pass through all vertices
exactly once and reach vp within n — 1 steps. Note that in the
transformation to MESPP-D, vp maps to the lowest non-zero
probability vertex v,,as b, < b,,forv =2,...,n — 1. Thusthe
search plan with the maximum capture probability by deadline
(Eq. 3) requires the searcher to visit each vertex exactly once
and lastly the vertex with lowest probability of reward (v,,).
Following this path yields a reward of exactly F. = B, and
MESPP-D is therefore a yes-instance.

Conversely, if MESPP-D is a yes-instance, i.e. F; > B, the
searcher must have started at a particular vertex v, and reached
the lowest probability vertex v,, at the last time step. Other-
wise the searcher would have collected a lower reward by the
deadline, F. < B, due to visiting a vertex more than once (zero
reward) or visiting the vertex with the lowest probability early
on (cumulative effect of collecting a smaller reward at ¢ < 7).
This implies that if F- > B, 2HP must be a yes-instance. W

Corollary 1.1: For stationary target and perfect sensing,
MESPP-D is NP-complete.

Proof: For a graph with n vertices, a searcher needs n? steps
to visit all vertices in an arbitrary order. In the case of a static
target, the searchers will have collected all the possible reward
by t = n? even if 7 > n?. Thus the solution depends only on n
and not on 7. The solution is of polynomial size and verifiable
in polynomial time, placing the problem in NP. |

V. MIXED-INTEGER LINEAR PROGRAMMING MODELS

This section presents three MILP models for solving the
MESPP problem defined in Section III. Legal searchers’ paths
and object’s motion are modeled in Sections V-A and V-B,
respectively. These first sets of variables and constraints are
common across all models. We then introduce the constraints
for different types of capture events. In particular, capture events
limited to the same graph vertex without false negatives are
presented in Section V-C; capture events with arbitrary capture
range are shown in Section V-D; finally, capture events with
arbitrary range and false negatives are introduced in Section V-E.

A. Legal Paths for Searchers

We use Vo' ={(v,t) €V x T |d(vs,v) <t s€S} to
denote, for each searcher s, the set of all the possible (v,t)
states that are compatible with its starting position v; (i.e. the
searcher can actually be in v at time ¢). With a slight abuse
of notation, we also define V!'(t) = {v e V | (v,t) € VS'}
and V*t(v) = {t € T'| (v,t) € V='}. Let us also introduce a
dummy goal vertex v,, which can be thought of as connecting
to all vertices of GG in a fictitious manner.

Consider two sets of binary variables: 5" denotes the pres-
ence of searcher s in vertex v at time ¢, and y5;! conveys the fact
that searcher s will move from u to v between steps t and ¢ + 1.
The following constraints enforce the legality of the paths for
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the searchers:

vé _E yvj_

Z Y, =1, Vs€8, 4

jed'(vg) JEVH(T)
= 2w = Ve < e v,
jeé'(v) 1€8’(v) ®)
NVt (t-1)

Z Yo ! =Ypu» YU E VEH(T).
jed’' (v) - (6)
AV Et(r—1)
Equations (4) set the searchers’ starts and goal vertices, while
Eqgs. (5)—(6) ensure path consistency. The variables are formally
defined as

3t €{0,1}, Vs € S, (v,t) € VS, @)
yst e {0,1},Vs € S, (u,t <7) € V¥'(t),v € §'(u), (8)
Yo, € 10,1}, Vs € S,u € V(7). 9)

B. Object’s Motion

We introduce two sets of continuous variables: 3¢, represent-
ing the entries of the belief vector at time ¢, and o, representing
the result of the application of the object’s motion model. The
constraints below respectively set the initial belief and evolve
the object’s location based on the previous belief:

87 = bi(0), Vi e VU {c}, (10)
aZ:ZMuvﬁfjl, YoeV,teT. a1
ueV
The variables are formally defined as
Bt el0,1], Vie Vu{c}, te {0} UT, (12)
€0,1], YVoeV, teT. (13)

C. Capture Events in Same Vertex, Binary Detection

Define same-vertex capture with binary detection (0 or 1) as
the searcher being in vertex v at time ¢, and able to determine
with certainty if the object is also in v. This entails the following
property: if no searcher is at vertex v, no new information is
available about that vertex, and the belief in v is simply the
probability that the object might have moved there betweent — 1
and ¢, denoted by Eq. (11). On the other hand, if there is at least
one searcher at v and no object was detected, one can infer the
object is not in v.

Define then, for each time-step, a binary variable ¢!, that
equals one if and only if there is at least one searcher located in
v at time t. The belief vector entries can be expressed as

Bl=al (1-vl),VteT,veV, (14)

which translates to 8! = of if ! =0, 0or 8L = 0if ¥! = 1.
The above constraint is nonlinear and can not be applied
directly in a MILP model, but it can be formulated in a linearized

manner [26]. The following constraints substitute Eq. (14) for
the belief,

BL<1—9l YoeV, teT, (15)
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Bt <al,YoeV, teT, (16)
By zay, =, YweV, teT, (17)
te{0,1}, YoeV, teT. (18)

The relationship between the capture variable 1! and the
searchers’ positions variables x5 is expressed as

oyt <myl, WweV, teT, (19)
seS s.t.
veVSt(t)
Ph< Y ay, eV tel, (20)
seS s.t.
veV S t(t)

which means that, if all searchers are in vertex v at time ¢, ¥, =
1, and the sum of the searchers positions x5! Vs € S equals the
number of searchers in the team, mz/Jf). If however no searcher
isin v, ¢! = 0 and so is the sum of 25! Vs € S.

Finally, the probability of the object being intercepted within
step ¢ is the remaining probability after the belief update on all
vertices,

BL=1-> Bl vteT. 1)

veV

D. Capture Events Within Given Range, Binary Detection

Generalizing the capture event, let us say that a searcher po-
sitioned in vertex w is able to detect, with certainty, the presence
of the object in vertex v located within some arbitrary capture
range. As before, this assumption entails that the team does not
gain additional knowledge about the object’s true position unless
the latter can be intercepted. This rationale is again expressed by
Eq. (14) and linearized in Egs. (15)—(18). Equations (19)—(20)
must, however, be replaced by the following:

S ayt<myl WweV, teT, (22
SES weVeri(t)
s.t. Coy'=1
Z Z 2t eV, teT.  (23)

SES weVSi(t)

s.t. Co'=1

Now, when v is within range, ¢! = 1 and the sum of x%?
such that C}" = 1 Vs € S is at most the number of searchers,
or ma)’,. The opposite logic also applies. The probability of the
object being intercepted within step ¢ is enforced by Eq. (21).

E. Capture Events With False Negatives

In order to account for the false negatives in detection (see
Sec. III), one must modify Eq. (14). First, consider a team of
only one searcher. If the capture range can reach a particular
vertex, the probability the object might be there is no longer
zero, but rather 3! = (al, to account for the chance that the
object is actually in that vertex, but has not been detected. If the
searcher can not reach vertex v, no new information is available,
and the belief is the probability the target has moved there, as
before.
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Considering the capture variable 1) as previously presented,
the belief update equation for one searcher becomes

By = (1= Qo (1-4) +Caj.

For multiple searchers, however, the detection uncertainty
must decrease as more robots are in locations where they can
potentially detect the object. This is expressed by updating the
belief in an iterative manner, one searcher at a time. To this aim,
we define capture and belief variables ¢35 and 5" for each
searcher, and impose the following constraints:

ﬁi,t — (1 _ CS) 6371’t (1 _ wi,t) 4 ngf)fl,ii7

(24)

Vse S,teT,veV, (25)
where
Y =al VteT,vecV. (26)
The variables are formally defined as
Bt e0,1], vVt € T,v e V,s €S, (27)
Pt e {0,1}, Vte T,v € V,s € S. (28)
To linearize Eq. (25), we define the auxiliary variable,
oyt =By (L=, (29)
§5teo,1] VteT,veV,se S, (30)

and use the same technique as before to yield linear constraints:

L1 -yt Vse S;teT,veV, (€29)
st pst vseSiteT,veV, (32)
otz gt st Yse SiteT,weV.  (33)

Equation (25) can therefore be rewritten as
St =(1-C) 6+ B, VteT,veV,seS. (34)

The capture events must now be expressed separately for each
searcher:

doayt <Yyt VteTweV,seS, (39
weV st (t)
s.t. Czbu>0
gt Y al! VteTweViseS.  (36)
ueV st (t)
s.t. CI >0

Equation (21) is again used to express the probability that the
object has been captured by time ¢, noting that

Bt =pmt vteT,veV. (37)

F. Complete MILP Models
For same-vertex capture, no false negatives:

(SV-MILP) max » +'be(t) st

teT

Egs. (4)-(13), (15)-(21).
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For arbitrary capture range, no false negatives:

(MV-MILP) max Y ~'be(t) st.
teT

Egs. (4)-(13), (15)-(18), (21)-(23).

Finally, the most general model, encompassing arbitrary capture
ranges and false negatives:

(FN-MV-MILP) max » ~'be(t) s.t.

teT

Eqgs. (4)-(13), (26)-(28), (30)-(37).

VI. DISTRIBUTED ONLINE IMPLEMENTATION

The MILP models presented on Section V are primarily
designed to compute optimal or near-optimal solutions offline.
However, for large values of mission deadline 7 and team size
m, a centralized approach does not scale well computationally.

An implicit coordination approach is inherently more scalable
than explicit coordination. Recall the algorithm proposed in [1]:
at each planning step and for ¢ = 1,...,m (according to a
lexicographic order), the path of the i-th robot is computed by
leaving the paths of its teammates j # 7 fixed; robots with j > i
are initially assumed to remain at their starting position, i.e.,
it =8, YVt =1,..., h. In [1], the paths of the single robots
are optimized by enumeration. Exploring the same search space
by leveraging modern solver techniques ensures better scalabil-
ity in general. To this aim, we can easily adapt our a models for
this task. We adopt the implicit coordination algorithm of [1],
using our MILP-based approach to perform a more efficient
iterative optimization of single paths.

We can solve a sequence of m models, one for each searcher,
while assigning a deterministic value to the variables associated
with the paths of the teammates. When planning the path for
searcher 4, a deterministic value is assigned for Vj # i € S:

S &
Lt {1, iff v =7

v 0, otherwise. (38)

A distributed approach decreases the number of variables to
be optimized on the MILP model and thus the complexity of the
problem, which generally yields a smaller solution time than
a centralized planning scheme for m > 1. Although commu-
nication constraints are not addressed here, these could also
be incorporated into the proposed model by leveraging recent
work which proposes MILP-based approaches to connected
multi-robot path planning [21], [27].

VII. SIMULATIONS

A. General Setup

We use GUROBI [28] to solve the MILP models® on a
machine equipped with Intel-Core 19-9900 K and 32 GB RAM.
The maximum number of used threads is set to eight and the
presolve level is kept as default (automatic). The solver timeout

3Code is open source and available at https:/github.com/basfora/milp_
mespp.git
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Fig. 1. Environments from [1] used in evaluations, each room is associated
with the corresponding vertex number. Left: OFFICE; Right: MUSEUM.

1500
200 1250

1000

5
g L] 750
210 H
2 . 50 A
0 i 20 i .
o = = = = & 0 — = & °

6 8 10

T

L

] [ ]
h

2 1 16 18 2 ] [
b h

Fig. 2. Solution times with MILP centralized approach, m = 1 and varying
h. Left: OFFICE. Center: GRID-NOFN. Right: GRID-FN.

is set to 30 min for the offline (centralized) approach, and 10 sec
for the distributed. Except when stated otherwise, default values
are used for the remaining parameters.

We consider three graph environments: OFFICE and MU-
SEUM, both used in [1] and shown in Fig. 1; and a 10x10
4-connected GRID graph. For OFFICE and MUSEUM, we
assume perfect sensing capability and same-vertex capture. For
the GRID environment, we assume that the robots’ sensing range
spans the current vertex plus its 1-hop neighbors, and consider
two settings: without (GRID-NOFN) and with (GRID-FN) false
negatives, with (* = 0.3, Vs € S for the latter. We use SV-
MILP on MUSEUM and OFFICE, MV-MILP on GRID-NOEN,
and FN-MV-MILP on GRID-FN.

We perform five experiment sets, each consisting of 100
instances per environment, except for set 4 in which we double
this quantity. The initial configurations (searchers and object po-
sitions) are randomly chosen. In all instances, the initial capture
belief is zero, i.e., the searchers are not able to detect the object at
the start of the mission. For the initial object’s location belief,
we assume an uniform probability between an assorted number
of vertices, chosen randomly. For experiment sets 1 — 3, 5, there
are five possible initial vertices; for experiment set 4, we vary
the number of vertices randomly from two to fifteen; particularly
for GRID-FN in set 5, we consider four possible vertices, drawn
from each of the 3 x 3 corner regions of the grid graph, while
the initial position of the searchers is drawn from the central
portion of the grid.

B. Results

1) Scalability of the MILP Models for Centralized Approach
w.r.t. Planning Horizon Length: Fig. 2 shows the solution times
for one searcher (m = 1) and varying horizons h, for OFFICE,
GRID-NOFN and GRID-FN.

The complexity of the model, and therefore the time required
to solve it, increases with the complexity of the graph, the robots’
sensing range, and the presence of false negatives. OFFICE
instances are simpler than GRIDs due to the smaller average
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Fig.3. Solution times with centralized approach, A = 10 and varying m. Left:
OFFICE. Center: GRID-NOEN. Right: GRID-FN.
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Fig. 4. MIP gaps with centralized approach, h = 10 and varying m. Left:
OFFICE. Center: GRID-NOFN. Right: GRID-FN.

graph degree, plus capture events limited to the same vertex. As
a result, all OFFICE instances are solved to optimality within a
couple of minutes (see Fig. 2, left). On the other hand, GRID
instances with A > 16 tend to hit the solver time limit before
an optimal solution can be found. In these sub-optimal cases,
the median MIP gap values (not shown in plot) for GRID-FN
and h = 18,20 were respectively 11% and 23%. The presence
of false negatives in the centralized approach does not have a
significant impact for m = 1 (Fig. 2 center, right). As defined
in Eq. (25), additional intermediate variables are necessary for
each searcher and time-step, causing the increase in complexity
to become relevant for multiple searchers. This is confirmed by
experiment set 2 (Figs. 4-3).

2) Performance of the Centralized MILP Approach for
Different Team Sizes: We choose a planning horizon of h = 10,
shown previously to be optimally solvable within our time limit
for a single searcher in all instances. Figs. 3—4 show the solution
times and corresponding MIP gaps for OFFICE, GRID-NOFN
and GRID-FN.

A larger search team increases the model complexity (see
Fig. 3), and consequently even OFFICE instances hit the time
limit for m > 3. These sub-optimal solutions, however, present
small MIP gap values (<7%), with median gaps of less than
0.8% (Fig. 4, left). On GRID-NOFN, median gap values are
still low (< 1.2%), although we have some outliers (max. 22%).
Overall higher gaps are found on GRID-FN, with median values
around 12% for m > 3 (Fig. 4, right). As it becomes compara-
tively easier to intercept the object with an extra searcher in an
environment of this size, the higher MIP gaps in both GRIDs
arise when m = 3, 4.

3a) Scalability of the MILP models for distributed ap-
proach w.r.t. team size: We implement the implicit coordination
algorithm described in Sec. VI, replanning at each time step.
Fig. 5 shows the solution times with a planning horizon = 10
for OFFICE and GRID-FN.

The distributed solution presents a significantly better scala-
bility than the centralized approach under equivalent conditions,
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Fig. 6. Performance of distributed and centralized MILP approaches for
OFFICE and GRID-FN, h = 10. Left: Relative reward loss computed at ¢t = 0.
Right: Average mission time. Bars show the std. error of the mean.

which can be seen by comparing the solution times in Fig. 5
(left, right) and Fig. 3 (respectively left, right). The following
results from OFFICE illustrate this claim: although for m =1
the median computational times of the centralized and dis-
tributed approaches are similar, respectively 0.52 sec and 0.54
sec, for m = b these values increase to approximately 1800 sec
(centralized) and 1.46 sec (distributed). In comparative terms, a
5x increase in the team size caused the median solution time to
increase 3x for the distributed algorithm, against a drastic 3400x
increase in solution time for the centralized approach.

3b) Comparative performance of online (distributed) and
offline (centralized) MILP search plans: As basis for compari-
son, we introduce two metrics: the average mission time, defined
as the time-step the mission ends due to the expiration of the
deadline or capture of the object; and the relative reward loss,
defined as the percentage difference between the distributed and
centralized reward functions computed at time ¢ = 0. Fig. 6
shows the relative reward loss (left) and the average mission
time (right) for OFFICE and GRID-FN, for a mission deadline
7 = 50 with h = 10 and varying m.

The relative reward loss for the environments studied in this
letter is minimal, as shown in Fig. 6 (left). The higher loss is
seen for the OFFICE environment (within 3% of optimal reward)
and slightly lower for GRID-FN (2% difference). Recall from
Fig. 3 (right) that the centralized approach often fails to solve
the GRID-FN problem to optimality in the time given, which
might result in a sub-optimal offline plan, however with a higher
reward when compared to the proposed distributed plan. This
small difference in reward translates into an overall shorter, if
at times irrelevant,* average mission time for the centralized
approach (see Fig. 6, right). Given the same planning horizon,

“Note for m = 3 in GRID-FN, the false negative causes the actual detection
of the target in the distributed, but not in the centralized instance.
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time. Bars show the standard error of the mean.

the distributed approach often performs nearly as well as the
centralized, both w.r.t. reward (within 3%) and mission time
(within 6%), with the advantage of requiring significant less
time.

4) Comparison Between MILP Approach and Previous State-
of-the-Art (SoA)Algorithm: The solution times for varying plan-
ning horizons and m = 3 are shown in Fig. 7 for MUSEUM,
OFFICE and GRID-FN.

The implicit coordination algorithm (SoA) was implemented
in C++ by the authors.’ as presented in [1]. The same machine
is used to run the MILP and SoA experiments, and no time limit
is imposed. While the algorithms provide interchangeable solu-
tions (same computed reward), the computational time required
to do so varies greatly between them. The MILP paradigm out-
performs the previous SoA w.r.t. computational time in all cases,
and this difference becomes more expressive as the planning
horizon increases (see Fig. 7, left). In average terms, for h = 8
and m = 3 in the environments tested in this letter, the MILP
models allow for a solution time decrease of 98% compared to
the previous SoA (see Fig. 7, right).

5) Performance of the MILP Distributed Approach With Dif-
ferent Planning Horizons: Fig. 8 shows the average mission
time for 7 = 50 and the solution time with A = 5,10 for OF-
FICE, MUSEUM and GRID-FN.

For both OFFICE and MUSEUM there is virtually no differ-
ence in performance for the planning horizons tested (Fig. 8,
left). For GRID-FN, the imposed restriction on searchers and
object’s initial positions (Sec. VII-A) creates a more challeng-
ing planning scenario given their relative initial distance. For
this case, a longer planning horizon yields better performance,

3Code is open source and available at https://github.com/jacoban/implicit_
coordination
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however at the expense of a greater computing time, which grows
expressively with the number of searchers (see Fig. 8, right).

VIII. DISCUSSION

In this letter, we proved the MESPP problem to be NP-hard
even on seemingly simple instances, i.e. grid graphs, static target,
and single searcher. We also presented the first set of MILP
models able to encompass multiple searchers, arbitrary capture
ranges, and false negatives simultaneously. Our results show
that the adoption of MILP as a planning paradigm outperforms
the previous state-of-the-art approach, both in terms of planning
horizon and computational performance.

Leveraging the powerful techniques and tools used by mod-
ern solvers comes with a minor challenge: very rarely (three
instances in total), the presolver might deal poorly with small
probabilities and deem the problem infeasible. This numerical
issue is fixed either by turning the presolver off and increasing
the solver timeout, or by keeping the searchers’ in their current
positions and re-planning on next time-step (always a feasible
solution and the one we adopted). We believe this is just a small
inconvenience, given the benefits provided by the MILP models.

As shown in our simulations, the trade-off between expected
mission time and required computational time is a challenging
choice. Specially for practical situations, such choice is depen-
dent upon the desired search mission’s goals and is fundamental
forits success. Future work will continue investigating MILP as a
planning paradigm, towards the generalization of the presented
models to handle heterogeneous teams of searchers (humans,
ground and aerial vehicles), and the incorporation of connectiv-
ity constraints.
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