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Exploiting Natural Language for Efficient
Risk-Aware Multi-Robot SaR Planning

Vikram Shree ”, Beatriz Asfora

Abstract—The ability to develop a high-level understanding of
a scene, such as perceiving danger levels, can prove valuable in
planning multi-robot search and rescue (SaR) missions. In this
work, we propose to uniquely leverage natural language descrip-
tions from the mission commander in chief and image data captured
by robots to estimate scene danger. Given a description and an
image, a state-of-the-art deep neural network is used to assess
a corresponding similarity score, which is then converted into a
probabilistic distribution of danger levels. Because commonly used
visio-linguistic datasets do not represent SaR missions well, we col-
lect a large-scale image-description dataset from synthetic images
taken from realistic disaster scenes and use it to train our machine
learning model. A risk-aware variant of the Multi-robot Efficient
Search Path Planning (MESPP) problem is then formulated to use
the danger estimates in order to account for high-risk locations in
the environment when planning the searchers’ paths. The problem
is solved via a distributed approach based on Mixed-Integer Linear
Programming. Our experiments demonstrate that our framework
allows to plan safer yet highly successful search missions, abiding
to the two most important aspects of SaR missions: to ensure both
searchers’ and victim safety.

Index Terms—Multi-modal perception for HRI, multi-robot
systems, search and rescue robots.

I. INTRODUCTION

CCURATE scene awareness is the keystone for success
A in search and rescue (SaR) missions. The deployment of
robots in the World Trade Center disaster pinpointed limita-
tions in different aspects of robotic systems, including human
robot collaboration [1]. For the past two decades, sensors in
particular have evolved in number and variety, and are now able
to generate gigabytes of data within seconds, and even extract
important features autonomously. However, rigorous analysis
and summarizing of the large amount of data about a scene in
order to infer high-level understanding of the surrounding world
is still a work in progress. Errors propagate across and down the
multirobot system pipeline, with detrimental impact to the SaR
mission performance.
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Fig.1. Scene danger perception and planning pipeline. A set of descriptors and
corresponding danger levels, provided by the mission commander, is used for
estimating danger probability distribution, on a 5-point scale. This information
is used by the planning module to plan safe paths for the agents.

Prior work in robotic perception has focused on inferring low-
level information about the environment, for example, building
occupancy grid maps [2] or mapping unique landmarks [3].
These low-level attributes are indeed relevant to build a repre-
sentation of the world that is suitable for navigation. However,
planning for a team of agents typically requires humans to make
decisions based on high-level attributes of the environment.
These include the notion of “danger,” for which the ability to map
low-level aspects of the scene into a high-level and succinct rep-
resentation is still an open question in the robotics community.
In this work, we address this problem by proposing a systematic
approach for inferring scene danger from visio-linguistic inputs
to enable high-level planning for a team of agents.

Our approach, sketched in Fig. 1, asks users for descrip-
tions that they feel are important to characterize scene dan-
ger. Descriptions are matched against images seen from the
robot’s camera by leveraging a machine learning model, and
the obtained similarity scores are used to keep up-to-date a
probability distribution describing danger in different areas of
the environment. This information, in turn, is used to plan more
informed paths for the searchers. In summary, this letter makes
the following novel contributions:

1) The adaptation of a state-of-the-art deep neural net-
work [4] to assess similarity between the descriptions and
images in the scene. To facilitate the use of the network in
SaR missions, we introduce a novel dataset, consisting of
language descriptions for synthetic disaster scenes taken
from the DISC dataset [5].

2) An intuitive probabilistic model for estimating scene dan-
ger by fusing similarity scores obtained from various user
descriptions and multiple images at a scene. Compared
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against a system (e.g. a classifier) that is directly trained
on a priori notions of “danger,” our approach can adapt
to the needs of different missions (e.g. fire, earthquake, or
radioactive incident) without having to change any of its
parameters.

3) Theintroduction of a risk-aware version of the Multi-robot
Efficient Search Path Planning (MESPP) problem [6]
which can leverage scene understanding to ensure agents’
safety by accounting for each heterogeneous agent’s dan-
ger tolerance. This is an online problem, which we solve
via a distributed planning approach based on variants
of state-of-the-art Mixed-Integer Linear Programming
(MILP) models [7].

Extensive numerical and realistic ROS/Gazebo simulations
show that our holistic approach to multi-robot SaR planning en-
forces the safety of heterogeneous agents under different notions
of risks specified by the user, while maintaining performance in
terms of time required to locate the victim.

II. RELATED WORK
A. Collaborative Search and Rescue Missions

The challenges encountered in SaR missions depend upon the
operational environment, which can be divided into three main
categories: maritime, urban, and wilderness [8]. In this letter, we
focus on SaR in urban environments. Robots can go into more
dangerous areas to avoid risking human lives, however they still
need to leverage the human expertise for scene understanding.
Yazdani et al. [9] studied how high-level instructions from a
human can be used to plan actions for the robot during SaR
missions. In order to bridge the gap between scene perception
and decision-making, researchers have proposed ontology mod-
els [10] that consist of rules to represent the environment and
action space. However, these approaches have been only shown
to work in simple settings and are prone to failure in more
complex, uncertain scenarios, which are often encountered in
SaR missions.

B. Language-Based Scene Assessment

In a typical rescue mission, human rescuers talk with each
other on a low-bandwidth radio channel since it has virtually
unlimited range. The human brain is great at interrelating data
from visual and language domains, but when it comes to neural
networks, this task becomes more challenging due to the lack of
a one-to-one relationship between the two inputs.

Modern deep neural architectures [4], [11] tend to address
this challenge by extracting high-level features from each one
of the inputs before jointly reasoning about them. The benefits
of these models, however, have only been tested on datasets
describing serene environments (e.g. [12]) because of the con-
straints associated with replicating a realistic SaR scenario. In
this work, we leverage photo-realistic synthetic images from
disaster scenes [5] to conduct a large-scale survey. This allows us
to obtain language data, which is vital for training state-of-the-art
visual-language models before applying them in SaR missions.
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Compared to other approaches for processing visio-lingual
data that can be found in the computer vision community, like
visual question answering [13] and visual commonsense reason-
ing [14], caption-based image retrieval [15] is the most relevant
from the standpoint of this work. This refers to the task of
identifying an image from a large pool given a caption describing
its content, thus, requiring to estimate similarity between images
and text data. There is a rich line of work towards mapping
images and sentences to a common semantic space for assessing
image-text similarity. In this letter, we compare the usage of
SCAN [11] and ViLBERT [4] on a new dataset built on top of
the disaster scenes contained in the DISC dataset [5], due to their
superior performance reported in the literature [4].

C. Multirobot Search

We assess the advantages brought by our danger estimation
pipeline by formulating and evaluating a risk-aware version of a
famous robotic search problem, the Multi-robot Efficient Search
Path Planning (MESPP) problem introduced by Hollinger et
al. [6]. In the original version of the MESPP problem, a team
of robots is deployed in a graph-represented environment with
the aim of locating a moving non-adversarial target within a
given deadline. In this new online version, graph vertices are
associated with probabilistic danger estimates, and robots are
heterogeneous in terms of their tolerance to hazardous condi-
tions. This is different from the settings that can be found in the
literature, which either focus on static threats [16], or consider
dynamic threats but in presence of a single agent that has to reach
a given goal location while maximizing its chances of survival
(without optimizing a second performance metric) [17].

III. PROPOSED ARCHITECTURE

Let us define five intuitive danger levels : low, moderate,
high, very high, and extreme, and assign a value [ € L to each,
respectively £ = {1,...,5}. We assume that an experienced
user (the commander in chief) is able to provide at least one
sentence characterizing a description of each danger level (e.g.,
“aroom is filled with fire,” associated with [ = 5). Our pipeline
consists of three layers, as shown in Fig. 2. Layer I is tasked
with estimating similarity between the user’s descriptions and
images collected in a scene, providing a matching score for each
image-description pair. The scores of all images are combined
into a probabilistic estimate of the danger level (Layer II), which
is in turn used for planning an efficient risk-aware search for the
team (Layer III). This plan is then sent to the team of robots
operating in the environment, where they search for victim and
acquire new images. Each layer is described in detail in the
following sections.

IV. TEXT-IMAGE SIMILARITY ASSESSMENT

As a first step to establish the user-perceived danger level
of the scene, we start with determining similarity between the
provided language descriptors and the scene. In this work, a
scene consists of a set of images acquired online by the robot.
The robot can compute a similarity score £ for each (image,
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Fig. 2.

descriptor) pair. This can be done with one of the following
deep learning architectures.

1. Scan

Stacked Cross Attention for Image-Text Matching
(SCAN) [11] uses a two-stage attention architecture for
calculating text-image similarity. First, the word and image are
converted into a set of word and image features, respectively.
This is followed by calculating a cosine similarity matrix for
each possible word-image feature pair. The first attention stage
attends to image regions w.r.t each word in the sentence. The
next stage compares the words based on the attended image
vector and decides the importance of each word. The final
pooling layer outputs a similarity score.

2. Vilbert

Visual-Language BERT (VILBERT) [4] introduces two sep-
arate streams for processing vision and language data that
can communicate with each other via co-attention transformer
layers. After having converted word and image into features,
VIiLBERT processes the features with transformer blocks in-
dependently before they could interact with each other. The
co-attention layers produce attention features for each modality
conditioned on the other. The final pooling layer outputs a
similarity score.

A. A Novel Emergency Scene Dataset: DISC-L

The DISC-Language dataset! is built on top of DISC dat-
set [5], consisting of 300 K photo-realistic synthetic images
taken in several environments (like office and subway) with
two types of damage conditions: collapse and fire. The images
are captured from a stereo-camera, moving along a pre-defined
path in a 3D model world. To reduce redundancy in images,
we uniformly sample 1 out of every 150 images from the left
camera, yielding a set of 1000 images.

We conduct an online survey on Amazon Mechanical Turk
(AMT) to collect sentence descriptions for each image. AMT
is a global service enabling us to reach a huge participant pool

'Freely available for academic purposes at https:/github.com/vikshree/
DISC-L.git
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* The view of a corridor where on the right you
see windows with closed blinds.

* In the middle of the corridor all the furniture
is lying on the floor and overturned.

* A number of houses could be seen along

the roadside. The place looks green.

* The houses are lit on fire and looks like a

big accident has occurred.

Fig.3. A few sample descriptions for images in the DISC-L dataset, collected
through AMT survey.

which favorably introduces diversity in the collected data. Each
task requires the user to read the instructions, look at annotated
examples, and describe important aspects of a given image with
two sentences in English. To incorporate diversity in language,
each image was labelled by four unique workers, yielding a
total of 4000 descriptions. Furthermore, to ensure high quality
language input from the users, the responses are first filtered
automatically and then manually approved to remove unsatis-
factory descriptions. A few examples are shown in Fig. 3. More
examples of accepted and rejected responses can be found on
the DISC-L Github page.

In summary, DISC-L dataset consists of rich and diverse
descriptions of emergency situations from 720 unique Amazon
users. There are a total of 3386 unique words in our proposed
dataset. The word-count ranges from 10 words to 70 words per
description, with a median of 20. A key observation is that the
most frequently used words (fire, smoke, flame, dark etc.) are
related to situations commonly encountered during SaR mission.

B. Caption-Based Image Retrieval Performance

1) Dataset: The DISC-L dataset is used to evaluate the per-
formance of SCAN and VILBERT. The dataset is divided into
train, validation and test sets such that all images corresponding
to a environment remain in the same set. The train set consists
of 828 images from six environments; validation has 75 images
from three environments; and test has 97 images from two
environments.

2) Training: SCAN is pre-trained for caption-based image
retrieval on the Flickr30 K dataset [12]. A bottom-up attention
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TABLE I
SCAN vs VILBERT MODELS EVALUATED ON DISC-L

Model Training type R-1 R-5 R-10
Pre-trained 7.5 24.0 39.2

SCAN Fine-tuned on DISC-L 7.7 304 48.2
. Pre-trained 9.7 39.3 59.7
ViLBERT Fine-tuned on DISC-L 194 52.0 70.4

network [18] is used to compute a 36 x 2048 dimensional
feature vector for each image, before feeding it to the SCAN
network. Finally, the data batch is shuffled online to get negative
sentence-image pairs, and a triplet loss function is used to
fine-tune the network on the DISC-L dataset. Triplet loss is
a ranking-based loss function, commonly used in image-text
matching task where distance between an anchor is minimized
from the truth value (see [11] for details).

VIiLBERT is pre-trained for multiple visual-language tasks on
12 different datasets [19]. A combination of pre-trained Faster
R-CNN and ResNet [20] is used to compute a 101 x 2048
dimensional feature vector for each image, which is fed to
the VILBERT network. Following the authors’ approach [4],
we adopt a 4-way multiple choice training process where for
each sentence-image pair in the dataset, three distractor pairs
are sampled with no correspondences. Finally, we fine-tune the
model on DISC-L dataset with a cross-entropy loss.

3) Results: We use standard rank-based performance metrics
(R-1, R-5, R-10) to evaluate the models, where R-k denotes the
proportion of times the correct image is present in the top &
likely hypotheses for a description.

Table I shows the results. Fine-tuning the models on DISC-L
significantly improves the retrieval performance for both SCAN
and ViLBERT, since the pre-trained models have never encoun-
tered danger-related images or sentences. Also, we observe that
ViLBERT outperforms SCAN by a margin of 150%, 100%
and 79% for R-1, R5 and R-10 respectively. The superior per-
formance of VILBERT can be attributed to its more complex
model architecture and the use of higher dimensional feature
representation for the images. Therefore, we use the VILBERT
model in the remainder of the letter.

V. SCENE DANGER ESTIMATION

We formulate the task of estimating a probability mass func-
tion over the danger space £ = {1,...,5}, given a set of lan-
guage descriptors from a user and a scene as a probabilistic
inference task. A scene consists of a set of r local images taken
from a given region of the environment: I = {iy,i,...,%,}.

For notational simplicity, let us assume that a scene consists
of a single image. A single set of descriptions is not sufficient
to assess the danger level in different hazard conditions. Hence,
our model allows the commander in chief to specify multiple
descriptions for each level, which can then be grouped together
based on m danger “types”. For example, those related to de-
scriptions of a fire. In symbols, S = {57, S, ..., S, }, where
each set S; = {sjl, ceey s?} contains a language descriptor for
each of the 5 danger levels related to the j-th danger type. Given
a single image ¢ and the full set of language descriptors .S, the
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Fig. 4. Graph abstraction of the school environment. Each vertex v =
1,...,461is color-coded based on its danger level in NFF scenario. Left: Human
reasoned ground truth; Right: Estimate using 5% of images and fire descriptors.

VIiLBERT model is used to generate a matrix of similarity scores,
denoted by = = {{&1,..., &0}, ..., {&, ..., €5} ). To reduce
the impact of noise, the scores are converted into one-hot vectors
vy ={¥y1,-..,yYm} based on a threshold 0, such that:

y,=1ife, >0else0Vie L, uec{l,...,m} (1)

The posterior distribution of danger level for the scene
P(D|E, S, I), denoted by the vector § = [y 12 - - - 15, is cal-
culated based on the frequency of samples in the data as:

1 m
nl:;ZyLVZEL 2

u=1

where p = > 37, v, is the normalizing constant. For the
more general case where a scene consists of 7 images, we simply
include one-hot vectors obtained from each one of the images
while calculating 7; in Eq. (2).

To evaluate our danger estimation approach, we use the
School environment from the DISC dataset [5] because of its
relatively larger size and create the graph structure shown in
Fig. 4, containing n = 46 vertices. Each vertex in the graph is
associated with a set of local images collected from its immediate
surroundings. The DISC dataset allows each vertex to be defined
with images containing three different types of danger: none (N),
collapse (C), and fire (F). Three ‘environments’ are designed for
simulation based on a predefined proportion of hazards: ‘NCF’
denotes environments where vertices are associated with haz-
ardous images in equal proportion; ‘NFF’ denotes environments
with no C-type danger and 2/3 of vertices with F-type danger,
etc. We introduce a set of descriptions for assessing collapse and
fire danger (see the DISC-L dataset Github page for details). For
example, the description “The room is engulfed in huge flames”
describes a fire danger level [ = 5. Ground truth danger values
l,, for each vertex v are obtained by having a human user reason
about danger based on the descriptions and the images associated
with vertex v.

We use the average Bhattacharya coefficient (BC)[21], a
standard metric to quantify the disparity between two discrete
probability distributions, to measure the closeness of the esti-
mates with the ground truth, computed as:

n

1
BC = — vy
- ; Vil 3
where 7, ,, is the probability corresponding to the ground-truth
danger level [, at vertex v. The results are shown in Table II.
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TABLE II
COMPARISON OF AVERAGE BC FOR ESTIMATED DANGER DISTRIBUTION WITH
DIFFERENT DESCRIPTIONS, FOR THREE SCENE TYPES

Scene Type | F-Descriptors C-Descriptors FC-Descriptors
NFF 0.63 0.42 0.59
NCC 0.30 0.49 0.47
NCF 0.47 0.49 0.53

First, we observe that the danger estimates for all environments
are most accurate when the descriptions corresponding to that
specific environment are used. For example, if it is a fire hazard
(NFF), using only fire-related descriptions yields the best dan-
ger estimates (BC = 0.63). If there are both fire and collapse
vertices (NCF), then using a combination of both descriptors
yields the best danger estimates (BC' = 0.53). Furthermore,
the average BC obtained from the ‘uniform-prior’ baseline is
0.45, which is lower than the best estimates for each one of the
scene-types: NFF (0.63), NCC (0.49), and NCF (0.53). Thus,
we conclude that customizing descriptions, depending on the
hazard, is indeed beneficial for danger estimation. It should
be noted that one can leverage homogeneous domain adapta-
tion techniques [22] to minimize any performance deterioration
when transferring the system to the real world.

VI. MULTI-ROBOT PLANNING
A. Risk-Aware MESPP Problem

We now introduce a risk-aware version of the Multi-Robot
Search Path Planning (MESPP) problem [6]. In the original
MESPP problem, a team of robotic agents A = {1,...,m} is
deployed in a graph-represented environment G = (V, E), with
the aim of locating a possibly moving non-adversarial “target”
(e.g. a victim) within a given deadline 7. Time T = {1,..,7}
evolves in discrete steps, and both the agents and the target can
either stay at the same vertex or reach a neighbor vertex between
two subsequent steps, for vertices V' = {1,...,n}. Agents can
communicate with each other at all time-steps.

The target’s probable motion in the graph is encoded by a
Markovian matrix M € [0, 1]"*™. At each step ¢, the target’s
state, resulting from its interactions with agents executing a set
of joint paths 7 € P, is represented by the belief vector

b7 () = [be(t), bi(t),- - - b (t)], )

where be(t) + Y1 4 by(t) = 1. The first element, b(t), rep-
resents the probability that the agents have located the target
by time ¢t when following paths 7. The remaining elements
b1(t),. .., b, (t) represent the probability that the target is located
in the corresponding vertices at time ¢.

Detection events are described by matrices C** €
[0,1](FD*(n+1) g € A, u € V. Their effect is to connect the
probability of the target being at a particular location with its
detection state. In other words, the matrix C** encodes which
vertices of the graph fall within the sensing range of agent a,
when such is located in vertex u. A belief update equation links
the current belief, the target’s motion, and the agents’ paths 7

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

with associated detection events as follows:

bﬂ(t + 1) — bﬂ'(t) |:O ]. 1 Oll\;[n:| H Ca,'n'a,H»l' (5)
m acA

In the original MESPP problem, the goal is to find the optimal
path 7* that maximizes ., _,v'bc(t), where v € (0,1] is a
discount factor.

Our risk-aware version of the MESPP problem is an online
problem defined as follows. Let us associate a ground truth
danger level [, € L for each v € V, and, accordingly, a prob-
ability of agent loss for each danger level, p(loss|l,). Define
for each agent a € A, a fixed nominal danger threshold k* € L,
which is the expected danger level that agent a is apt to endure
throughout the mission. We assume the agents are equipped with
a danger estimation module they can leverage for estimating
danger level distributions n¢, for each vertex v and step ¢. Such
a module provides estimates at t = 0 simply based on a fixed
prior, uniform by default. Once an agent visits a vertex v for
the first time, it is allowed to update the distribution of v (for
example, by leveraging the method of Section V) and, possibly,
that of neighboring vertices. We introduce two risk-aware vari-
ants of MESPP, based on different additional path constraints,
contingent upon available danger information.

Point estimate constraints: at each step ¢, the current plan

of each agent a can not prescribe a visit to a vertex v where
the most probable danger level of the vector 1%, denoted by
2! € arg max,.,n!, belongs to a danger level strictly larger than
kY.
Cumulative probability constraints: define an agent’s re-
quired danger confidence, a® € (0, 1] as the cumulative prob-
ability of estimated danger up to that agent’s threshold x®. At
each step ¢, the current plan of each agent a can only include
vertices where the cumulative danger distribution, denoted by
Hot =50 1, is equal or higher than . This allows to
express more nuanced constraints since we need to consider all
danger probabilities up to an agent’s danger threshold x*.

In both cases, the problem objective remains locating the
victim as soon as possible, considering that agents might be
lost along the mission according to p(loss|l, ). Note that while
we define our thresholds as static parameters, they can also be
time-dependent, allowing for a dynamic behavior throughout the
mission.

B. MILP Models

Our solution is based on a receding-horizon distributed plan-
ning approach, where planning is performed by iteratively solv-
ing an extension of the MILP models presented in [7]. We refer
the reader to [7] for the complete set of MILP variables and
constraints, as well as implementation details, and focus here
solely on modeling danger-related constraints.

Analogously to the original MILP models, the binary variable
x%% indicates agent a is at vertex v at time ¢ in the computed
path. Plans compliant with the point estimated constraints are
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obtained by enforcing?

a,t t

2tz < K YveV teT, ae A (6)

When dealing with the cumulative probability constraints, we
instead impose:

Hg’t > x‘;’t a® YveVteT,ac A. (7

VII. SIMULATIONS

A. Environment

We use the School scenario of the DISC dataset [5] with NFF
image distribution (see Sec. IV) to validate and analyze the
performance of our proposed system in its entirety. Since the
available dataset measurements represent what the robot would
have collected while moving through the simulated environment,
we use the left camera poses to infer our layout, which is then ab-
stracted into the graph shown in Fig. 4. We also use it to re-build
the environment in Gazebo [23], an open-source 3D robotics
simulator, for more realistic experiments accounting for robot
dynamics, asynchronous agents and navigation challenges.

B. Danger Estimation

The general setup is the same for both numerical and qual-
itative simulations. The human-reasoned ground truth for each
vertex (Fig. 4, left), defines the probability of losing the agent
p(loss|l,) = 7.47e — 8(1, — 1)e!* Vi, € L, which yields values
between 0.009% and 49.5%.

A partial collection of images (5%) is used for danger dis-
tribution estimation. These correspond to the first set of images
an agent would see when entering the vertex area, according
to the DISC dataset camera pose. Note from Fig. 4 that the
estimated danger distribution, and thus the maximum likelihood
level (right), do not always match the human-reasoned ground
truth (left). Processing all images in a scene requires minutes
even with a powerful GPU [24], thus using the first few acquired
images for estimation aligns well with practical time limitations.

We divide the school space into neighborhoods, based upon
common structures such as walls and doorways (see Fig. 4).
We start with an a priori danger distribution for each vertex
and the estimated danger distribution for that vertex is made
available when an agent visits it for the first time, mimicking
online information gathering. This information is then spread
to vertices in the neighborhood, if they have not been visited
yet. For instance, once an agent reaches v = 3, its danger in-
formation (n}, 2%, Hy Y is passed on to the other vertices in the
gym neighborhood, v = 4,5, 6, but not v = 1, 2 since they have
already been visited.

In our simulations, a discrete time-step comprises the follow-
ing actions: call the planner; get a new plan for the search team;
move the agents towards their next goals; retrieve danger data;
update danger estimation on visited and neighboring vertices;
compute and apply probability of loss given ground truth; update

2We remark that a similar effect of usage could be obtained by removing
unsuitable states in the definition of legal searchers’ paths, prior to planning
(see again [7] for details).
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team status (if agents are lost); scan for the victim; and finally,
output target detection status.

C. Planner Parameters

In order to define a challenging initial belief vector, we pick
nine random vertices across neighborhoods and assign a uni-
form probability of victim location among the chosen vertices,
assuming such is static when updating the belief. Our team of
three agents starts from v = 1 (gym entrance) with probability
of capture equal to zero, i.e. the victim is not reachable at
t = 0. For simplicity, we consider a perfect sensing model with
detection when both agent and target are in the same location.
However, assuming different victim motions and sensing models
is straightforward [7].

We use GUROBI [25] on 8 threads of a machine equipped
with Intel-Core 19-9900 K and 32 GB RAM to solve our path
planning problem. We implement a distributed approach, with a
mission deadline and planning horizon of 100 and 14 time-steps,
respectively. The solving time is consistently under 0.1 secs for
the settings studied in this letter.

D. Configurations

We perform ten sets of experiments, with 1000 instances each.
We vary:

1) Planner: without danger constraints (NC), with point es-
timate (PT) and cumulative probability constraints (PB);

2) APriori Danger Knowledge: availabletoouragentsatt =
0, either perfect (ground truth) knowledge (PK) or no knowledge
at all, where we assume an uniform distribution for all vertices
(PU);

3) Team Makeup: different threshold combinations; (345)
for k = [3,4,5], @ =[0.6,0.4,0.4]; (335) k =[3,3,5], a =
[0.6,0.6,0.4]; and (333) k = [3, 3, 3], @« = [0.6,0.6,0.6];

4) Best Case Baseline: danger-free environment (ND), i.e.,
without probability of loss.

The configurations are denoted in this order: {planner — a
priori knowledge — team makeup}. Thus, PB-PK-345 denotes
cumulative probability planner, perfect a priori knowledge and
team threshold makeup of k = [3,4, 5], & = [0.6,0.4,0.4].

E. Metrics

1) Mission Outcomes: success, target is found within the
deadline; abort, all agents are lost; and cutoff, deadline is reached
before target is found.

2) Average Mission Time: discrete time step when mission
ends, either due to target detection, mission abortion or cutoff.

3) Losses: percentage of missions where agents are lost due
to the dangerous environment. To evaluate the safety potential of
our framework, we denote as ‘Most Valuable Agent’ (MVA) the
agent we want to protect the most, setting its danger threshold
as the lowest among the team. Thus, for the team configuration
(345), the MVA is agent a = 1 with kMVA = 3. for (335),
there are two MVAs, a = 1, 2; configuration (333) represents a
homogeneous team. For a fair comparison, we consider a MVA
loss when at least one MVA is lost (analogously for N-MVA).
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Numerical simulations with varying planner and a priori danger knowledge. Planner: point estimate (PT) and cumulative probability (PB) constraints,

with & = [3,4, 5] and o = [0.6, 0.4, 0.4]. A priori knowledge: uniform (PU) and perfect (PK), i.e., equal to the human-reasoned ground truth. Additionally, we
simulate best (danger-free environment, ND) and worst case (no constraints, NC) scenarios. Left: Mission outcomes. Middle: Mission times. Right: Losses.

F. Numerical Results

The numerical simulation results with varying planner and a
priori knowledge are shown in Fig. 5, for an heterogeneous team
with danger thresholds k = [3,4,5] and a = [0.6, 0.4, 0.4].

The best-case scenario (ND) establishes a baseline of 100%
success in the environment studied, which starts to decrease
when probabilities of loss and danger constraints are added.
The former has the effect of incapacitating the team so they
are unable to proceed with the mission, while the later may slow
down the search if some plans are considered unsuitable given
the agents thresholds.

With perfect knowledge (PT-PK, PB-PK), the team is able to
plan accordingly (Fig. 5, left-red): there are only two missions
aborted, and our MVA is rarely lost (Fig. 5, right-red). However,
as danger estimation becomes less accurate (PT-PU, PB-PU), the
planner cannot be so protective, thus the MVA losses increase
(Fig. 5, right-red) as well as aborted missions (Fig. 5, left-red),
leading to the worst-case scenario, where danger is present but
there are no constraints (NC). Note the cause of failure with
perfect knowledge (PK) is due to the deadline being reached,
while without danger constraints (NC) the mission fails due
to abort, which is corroborated by its much shorter average
mission time? (Fig. 5, middle-blue). The target detection time is
roughly the same across configurations (Fig. 5, middle-black),
indicating efficiency is still the main goal. Whenever this goal
is not achieved, however, the danger constraints still allow the
agents to be safer. Meanwhile, if danger constraints are not used
and the mission fails, both agents and target are lost.

Results for different team threshold makeups are shown in
Fig. 6. The cumulative probabilistic constraints (PB) have a more
stable performance than the point estimate (PT) with different
teams, as seen in Fig. 6 (left). For a homogeneous team (PB-PU-
333), the mission success rate is only slightly lower than for a
heterogeneous one (PB-PU-345). This is likely due to the more
nuanced thresholding, e.g. 60% confidence that a vertex level is
between 1-3, rather than considering a single estimate. However,
point estimate is simpler to tune and therefore may perform
better in a multimodal danger distribution. For both planners,
the main cause of failure is cutoff, particularly for PT-PU-333,
which presents a significant longer mission time (Fig. 6, right),

3Bars denote 95% confidence interval; if not shown, values are < 1 times-step
and overlap with marker.
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Fig. 6. Numerical simulations with varying team threshold makeups. Left:
Mission outcomes. Right: Mission times.

Fig. 7. Environment built in ROS/Gazebo based on the poses extracted from
DISC dataset. Left: Structure. Middle: Mapping process. Right: Resultant map.

and lower success rate. On the other hand, the mission abort rate
decreases as the team becomes more homogeneous, illustrating
the trade-off between protecting the agents and exploring the
environment.

G. Qualitative Simulations

We use Gazebo 7 [23] with ROS-Kinetic [26] to incorporate
one Hector quadrotor (agent 1) and two Jackal ground robots;*
(agents 2, 3), as shownin Fig. 7 (left). The simulator’s main capa-
bilities of mapping, localization, and autonomous navigation are
built off the ROS Navigation Stack. Gazebo simulates the actual
robot dynamics, which adds to the possibility of mission failure.
The robots can now become inactive either due to danger, or
incidents while navigating between vertices, for example getting
lost, crashing, or tipping over. If a robot cannot reach its goal
vertex before a given time has elapsed, that robot is considered
to be inactive, and can no longer participate in the search.

We perform 5 instances per configuration, with each discrete
time step corresponding in average to 11.72 secs. The team

4ROS packages: https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor
https://clearpathrobotics.com/jackal-small-unmanned- ground- vehicle
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Fig. 8. ROS/Gazebo simulations: percentage of missions where each agent
becomes inactive, due to dangerous environment or navigation challenges.

performance follows the trend of the numerical simulations,
with similar capture time across configurations. The best-case
scenario (ND) presents 100% success, followed by 80% for
heterogeneous teams (PT/PB-PU-345), 60% for perfect a priori
knowledge (PT/PB-PK-345), and 40% for the others (PT-PU-
335, PB-PU-335/333); particularly for PT-PU-333, none of the
missions are successful due to cutoff. There are less agent
losses and no abort missions with PK, but also less exploring,
which results in a lower success rate than PU in these particular
instances. All mission failures when employing constraints are
due to cutoff, except for one abort instance in PB-PU-345/335.

Fig. 8 shows the percentage of missions where each agent
becomes inactive, partitioned into losses caused by Danger and
Navigation. There is an expected increase in agent loss when
accounting for navigation, particularly for agents 2 and 3 —which
can be attributed to the fact that these are ground robots, and
thus more likely to run into each other or get stuck. Our results
suggest that a risk-aware planner can reduce losses on one set
of agents, without a significant loss in performance, even when
dealing with practical navigation challenges and imperfect scene
knowledge.

VIII. CONCLUSION

In this letter, we presented a danger estimation framework
which is adaptable to different environmental settings. Our
results shows its potential in enhancing team performance in
SaR missions. In the future, we would like to investigate ways
to reject redundant collected images, which could potentially
reduce the computational overhead during online operations. In
order to study a more realistic SaR scenario, we would also like to
apply a dynamic Bayesian model for estimating danger. We also
believe that replacing DISC images with realistic images from
movies can be key in bridging the performance gap between our
simulations and real-world application. Furthermore, we would
like to tailor our approach to SaR missions with human-robot
teams, communicating succinct and reliable information, as
firefighters do in the real world.
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