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A B S T R A C T   

Detection and characterization of comorbidity, the presence of more than one distinct disorder or illness 
concurrently occurring among a specific cohort of patients, is an invaluable decision aid and a prominent 
challenge in healthcare research and practice. The aim of this paper is to design a novel visual analytics system 
that can support efficient pattern detection and intuitive visualization of comorbidity progression modeled via 
temporal disease networks (TDNs). In the underlying system, we proposed two new clustering tech-
nologies—temporal clustering and disease clustering to detect the time of notable progression changes and 
simplify the visualization of TDNs. Through two case studies on Clostridioides Difficile and stroke, we demon-
strate that the proposed system is able to provide evidence-based and visual insights regarding comorbidity 
progression effectively for clinical decision support.   

1. Introduction 

The widespread adoption of electronic health records (EHR) [1,2] and 
the increasing emphasis on the use of clinical decision support systems 
(CDSS) [3–5] have been two of the most remarkable outcomes of healthcare 
reform in the U.S. during the past decade. The adoption rate of basic EHR 
systems among U.S. hospitals has surged from 9.4% in 2008 to 83.8% in 
2015 [6]. The ubiquitous adoption of EHR by health systems has generated 
an unprecedented amount of health data, which provide the longitudinal 
picture of patients’ journeys, treatment pathways and care outcomes [7]. A 
CDSS refers to “any electronic system designed to aid directly in clinical 
decision making, in which characteristics of individual patients are used to 
generate patient-specific assessments or recommendations that are then 
presented to clinicians for consideration [8]”. The abundance and 
comprehensiveness of EHR data, in conjunction with recent advances in 
CDSS, has offered researchers and practitioners an ideal platform to mine 
actionable insights to improve clinical decision making for better healthcare 
outcomes [4,9,10]. Specific applications include test ordering [11], therapy 
management [12], improving care delivery and access [13,14], detecting 
and predicting health conditions [15,16], and medication evaluation [17], 
among others. 

Visual analytics (VA) can reduce the information overload on 
memory and cognition, and leverage the power of human perception 
[18,19]. Nowadays, it has become an integral component of CDSS 
[20–24]. For example, through VA, large volumes of data and complex 
ideas in healthcare settings can be presented with clarity, accuracy, and 
efficiency in visual diagrams [25,26]. Furthermore, VA dashboards 
allow real-time monitoring and tracking of healthcare information, such 
as hospital-specific antibiograms [27], adverse drug events [28], and 
departmental performance metrics [29]. It also has been reported that 
visualized data improved recall of important clinical information [30]. 

An emerging and important direction of VA in clinical decision 
making is to visualize and mine comorbidity progression patterns 
[31–35]. Comorbidity refers to one or more other health conditions 
coexisting with a particular index disease under investigation [36]. 
Comorbidity has been increasingly prevalent [37] and consistently 
challenging healthcare practice and research by leading to worse health 
outcomes, complicating diagnostics and treatments, and misleading 
medical statistics [36,38]. As a result, great efforts have been devoted to 
exploring effective methodology to handle comorbidity to improve 
clinical decision making during the past few decades [39–41]. Network 
modeling represents an intuitive and useful approach to investigate 
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comorbid diseases and their progression patterns [42–44] mainly for the 
following advantages: 

• User-friendly presentation of disease associations. By modeling comor-
bid diseases as nodes and their pairwise associations as edges, 
network models can present comorbidity visually. The nodes and 
edges can further carry attributes to express specific features of 
diseases and disease associations. Examples of such attributes 
include node size for disease prevalence and edge weight for asso-
ciation strength [45,46]. Furthermore, edges can be directed to 
represent the dynamic (e.g. causal or sequential) interactions among 
diseases [33,47].  

• Support for disease progression analysis. By discretizing the entire time 
frame of the index disease into different time windows, modeling 
comorbidity within each window as a disease network (hereafter 
referred to as temporal disease network, TDN), then comparing the 
dynamics through the TDN sequence across different windows, re-
searchers are able to show and analyze the progression of the index 
condition and comorbid diseases. This approach has been applied to 
chronic conditions, such as cancer and mental disorders, which often 
come with long period and multiple, comorbid diseases [49,50].  

• Capability to incorporate additional biomarkers. In addition to diseases, 
other biomarkers, such as genes and symptoms, can also be modeled 
as nodes and incorporated into the disease network by establishing 
edges that are representative of associations between the diseases 
and the biomarkers. For example, “diseasome” networks incorporate 
genes and/or proteins as nodes, and link them with diseases [51,52], 
and psychiatric symptom networks include symptoms, drugs and 
even adverse effects of drugs in addition to diseases [42,53]. 

The objective of this research is to design a VA system that can 
efficiently detect and visualize comorbidity progressions using TDN 
models. The VA system incorporates two novel TDN clustering tech-
nologies—temporal clustering and disease clustering. The temporal clus-
tering identifies notable changes during the comorbidity progression 
and aggregates windows to phases based on the time of the changes. On 
the other hand, the disease clustering captures higher-level structures of 
TDNs by clustering highly coexisting conditions and simplifies the TDN 
visualization based on the identified structures. The developed VA sys-
tem can be integrated into CDSS to provide evidence-based, visual in-
sights regarding the timeline and patterns of comorbidity progression to 
support the decision making in healthcare settings. 

The remainder of this article is organized as follows. In Section 2, we 
provide a literature review of related work in the area of TDNs, and show 
the intellectual gaps that we are addressing in this research. The system 
design and proposed clustering technologies are presented in detail in 
Section 3, followed by two case studies on Clostridioides Difficile (C. 
Diff) and stroke in Section 4. Finally, Sections 5 and 6 include the dis-
cussion and conclusion of this study, respectively. 

2. Related work and gaps 

2.1. Network theory and TDN 

A most fundamental network (aka graph) model, denoted by G in this 
article, is a mathematical structure composed of a set of nodes V(G) that 
model the objects of interest and a set of undirected edges E(G) repre-
senting the pairwise relationships among the objects [54]. The number 
of nodes and the number of edges included in a network are called the 
order and the size of the network, and are denoted by ∣V(G)∣ and ∣E(G)∣ 
respectively. Given a subset of nodes S ⊆ V(G), we herein denote by G[S] 
the subgraph induced by S, i.e. a subgraph obtained by dropping nodes 
in V(G)\S and their incident edges from G. For a node v ∈ V(G), the 
neighbors of v, NG(v) refers to the set of nodes adjacent to v and its 
cardinality is called the degree of v, denoted by degG(v) herein. In this 
article, node v and its neighbors NG(v) together are referred to as the 

closed neighborhood of v, denoted by NG[v], and its induced subgraph is 
called the ego network of v, denoted by egoG(v). In other words, NG[v]:=
NG(v) ∪ {v} and egoG(v):=G[NG[v]]. 

In a basic undirected, unweighted network modeling comorbidity, 
nodes represent comorbid diseases, while edges manifest the coexistence 
relationships among diseases in a certain patient cohort. The coexistence 
relationship is usually evaluated using a statistical measure, such as 
relative risk [55], Pearson’s correlation [32], and Salton Cosine Index 
(SCI) [56], among others. Then, a threshold is used to eliminate trivial 
coexistences and retain the significant ones as edges. Comorbidity net-
works are often large, dense, and complicated. To facilitate the analysis 
and visualization of complex comorbidity networks, graph clustering 
methods have been often used to detect comorbidity patterns [56,57] 
and reduce network complexity [58]. A commonly used network clus-
tering model is the clique, i.e. a complete graph, in which all nodes are 
pairwise interconnected [59,60]. For instance, in Fig. 1, the TDN at 
Window 1 is a clique of three nodes. 

Given a sequence of TDNs across different time windows, progres-
sion analysis often involves comparing how much the TDNs are dis-
similar from each other. There have been abundant approaches 
proposed in literature to measure the network dissimilarity [61,62]. A 
majority of these methods summarize the structural features of a 
network into a vector of statistics, then define the dissimilarity between 
a pair of networks as the distance (e.g. Euclidean or Manhattan distance) 
between the two vectors associated with the networks. In addition to 
basic structures in network theory, e.g. node degree and network 
diameter, the literature also used many advanced structural features, 
including cluster coefficient [63], graphlet [64], and graph kernel 
[65,66], to name a few. 

2.2. Intellectual gaps 

Through a thorough literature review, we found that in the area of 
TDN modeling and analysis, there has been limited work to: 

• Outline progression phases. Most TDN-related studies [49,67,68] pre-
defined a granularity parameter m, then discretized the entire time 
frame of the study cohort into m windows of even length or even 
sample size, without providing algorithms that can detect at which 
window(s) notable changes of TDNs had occurred. Another issue 
brought by the simple m-window discretization method is that when 
the granularity is high, many windows come with very similar TDNs, 
which increases the redundancy of visualization, especially at late 
stages of the time frame, when the number of comorbid diseases 
grows to a stable level.  

• Streamline the visualization. Network clustering methods, such as the 
clique model, can be used to streamline the visualization of a single 
network as discussed earlier, but the extension to TDNs across mul-
tiple time windows is not straightforward. A confusion is that a cli-
que in one window may be divided in another window, as shown in 
Fig. 1. For complex TDNs with large size and many windows, the 

Fig. 1. Two TDNs in different windows. The one at Window 1 is a clique with 
three nodes. In Window 2, a clique enumeration algorithm may detect two 
cliques as circled, which is a split of the clique at the earlier window, causing 
analysts to lose track of the disease cluster implied by the clique. 
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confusion will be much deteriorated, leading to the loss of track of 
certain disease clusters. 

The new technologies developed in this research are dedicated to 
filling in these two gaps and providing an effective VA tool to discover 
insights in comorbidity progression. 

3. Methodology 

The proposed VA system consists of four modules as shown in Fig. 2. 
Module 1 receives data from clinical data warehouses and prepares the 
data for subsequent analysis and visualization. Module 2 then builds 
TDNs with sufficient granularity using the preprocessed data, while 
Module 3 identifies highly similar TDNs and clusters corresponding 
windows into phases, followed by Module 4 that visualizes TDNs over 
the phases. The role of clinical domain experts is to guide the process of 
modules by determining the initialization parameters and examine the 
output for validity, while the system eventually provides visual insights 
regarding comorbidity progression back to the clinical experts to sup-
port evidence-based decision making. Since the technological contri-
bution of our work mainly revolves around Modules 2, 3 and 4, the rest 
of this section will focus on elaborating the methodology we employed 
to design these modules. 

3.1. TDN construction 

In order to quantify the coexistence relationship among comorbid 
diseases, we make use of SCI [56,69], which can be expressed as 

SCIij =
nij̅̅̅̅̅̅̅̅
ninj

√ (1)  

where nij represents the number of hospital encounters with the onset of 
both diseases i and j, while ni (or nj) corresponds to the number of en-
counters with the onset of disease i (or j). When SCIij = γ%, at least one of 
nij/ni and nij/nj is no less than γ%. It implies that encounters with the 
onset of both diseases are at least γ percent of all encounters of one 
disease. SCI has been used as an alternative of Pearson’s correlation 
coefficient (PCC) for disease network modeling because it avoids two 
potential issues of PCC: (i) sample size can have overly high impact on 
the PCC strength [69], and (ii) PCC may underestimate the coexistence 

of a pair of diseases, of which one is rare while the other is prevalent 
[70]. 

Given an SCI threshold θ determined under the clinical experts’ 

guidance, we can then establish an edge between each pair of diseases 
(nodes) i and j such that SCIij ≥ θ. In addition to θ, the system also needs 
the advice from clinical experts to specify a value for the granularity 
parameter m to discretize the entire time frame into m windows that are 
as granular as possible. Re-organization of the windows will be accom-
plished by the Temporal Clustering Module of the system. 

3.2. Temporal clustering 

This module involves two techniques: (i) network dissimilarity 
measurement, and (ii) consecutive p-median clustering for time win-
dows, as elaborated in the following. 

3.2.1. Network dissimilarity measurement 
In this research, we adapted and improved the NetSimile method 

proposed by Berlingerio et al. [63] to evaluate the network dissimilarity 
among different windows. The NetSimile method “quantifies” the 
structural features of a network G by calculating multiple statistical 
metrics (including median, mean, standard deviation, skewness, and 
kurtosis in this study) for a number of features associated with each node 
v ∈ V(G). The specific features employed in this study include:  

• The degree of v;  
• Clustering coefficient of v, defined as 2

degG(v)(degG(v)−1 ) |E(G[NG(v)])| ;  
• The average degree of the neighbors of v;  
• The average clustering coefficient of the neighbors of v;  
• The size of the ego network of v;  
• The number of edges connecting the nodes in egoG(v) and nodes not 

in egoG(v);  
• The number of nodes that are not in egoG(v), but are neighbors of 

nodes in egoG(v). 

The process results in a 35-entry vector of statistics that evaluates the 
structure of a network. The vector is herein referred to as the signature 
vector, and denoted by ZG for a given network G. 

In the classical NetSimile method, the dissimilarity between a pair of 
networks, Gi and Gj, was assessed using the Canberra distance of the 
corresponding signature vectors, defined as 

δ
(
Gi,Gj

)
= 1

35

∑35

k=1

⃒⃒
ZGi

[k] − ZGj
[k]

⃒⃒
⃒⃒
ZGi

[k]
⃒⃒
+
⃒⃒
ZGj

[k]
⃒⃒ (2)  

where ZGi[k] (or ZGj[k]) indicates the kth entry of the vector ZGi (or ZGj). 
The similarity then can be expressed as 1 − δ(Gi,Gj). Nevertheless, the 
classical NetSimile method does not consider the disparity of node sets, 
thus can underestimate the dissimilarity when there are uncommon 
nodes between two networks. Considering the two TDNs, G1 and G2 
shown in Fig. 3, δ(G1,G2) = 0 indicating the “identical” edge structure 
between the two TDNs. However, the structure is based on different 
node sets (new diseases 4 and 5 are developed from G1 to G2, whereas 
diseases 1 and 2 become absent), thus are actually not the same. The 

Fig. 2. The proposed TDN-based VA system for pattern detection and visuali-
zation of comorbidity progressions. Fig. 3. Two TDNs that are cliques with different node sets.  
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classical NetSimile method fails to reflect such a disparity. This issue 
motivates us to introduce an overlapping factor to enhance the NetSi-
mile method to handle the dissimilarity caused by the difference be-
tween node sets. The overlapping factor ω(Gi,Gj) is defined as follows, 

ω
(
Gi,Gj

)
=

⃒⃒
E(Gi[D] )

⃒⃒
+
⃒⃒
E
(
Gj[D]

)⃒⃒
⃒⃒
E(Gi)

⃒⃒
+
⃒⃒
E
(
Gj

)⃒⃒ (3)  

where D = V(Gi) ∩ V(Gj). Clearly, 0 ≤ ω(Gi,Gj) ≤ 1. By incorporating 
ω(Gi,Gj), the modified dissimilarity d(Gi,Gj) is expressed as 
d
(
Gi,Gj

)
= 1−ω

(
Gi,Gj

)
×
(
1− δ

(
Gi[D] ,Gj[D]

) ) (4) 
The rationale behind the modified formula is straightforward: 1 −

δ(Gi[D],Gj[D]) evaluates the similarity between the node-overlapping 
subgraphs of Gi and Gj. Because the rest parts are completely different, 
we scale down 1 − δ(Gi[D],Gj[D]) with the overlapping factor ω(Gi,Gj) 
to evaluate the overall similarity between the two entire networks. Re- 
considering the two networks in Fig. 3, the dissimilarity between node- 
overlapping subgraphs δ(Gi[D],Gj[D]) = 0 and ω(G1,G2) = 1/6, there-
fore d(G1,G2) = 5/6 and the overall similarity between the two networks 
is 1/6, which is a better evaluation compared with that returned by the 
classical NetSimile method. 

3.2.2. Consecutive p-median clustering 
As we pointed out in Section 2.2, some consecutive windows can 

come with very similar TDNs, thus providing limited new information 
about comorbidity progression, and leading to visualization redun-
dancy. In order to address the issue, we propose and solve a consecutive 
p-median problem (CPMP) defined as follows. 

Problem: Consecutive p-median problem. 
Input: A positive integer p, a collection of m objects O :=

{O1,O2,…,Om}, and the distance between any two objects. 
Output: From O , find p objects with indices {j1, j2,…, jp} as medians 

and assign the remaining m − p objects to the medians such that.  

(i) The total summation of distances from each Oi to its assigned 
median is minimized, and  

(ii) When Oi is assigned to median Ojq, if i ≥ jq then Ok for all k such 
that jq ≤ k < i must be assigned to Ojq, otherwise Ok for all k such 
that i < k ≤ jq must be assigned to Ojq. 

The problem is an extension of the classical p-median problem that 
has been often used for clustering [71,72]. The extension is condition (ii) 
that impose the assignment of consecutive objects to medians. For 
example, if we would like to solve the consecutive 2-median problem on 
the TDNs shown in Fig. 4, we cannot assign the TDNs on Window 1 and 
Window 5 together even though they are identical. By applying CPMP to 
TDNs, we can group consecutive windows with highly similar TDNs into 
a same temporal cluster, which can be interpreted as a phase of co-
morbidity progression. 

In this study, we developed a (linear) integer programming (IP) 
formulation (5)–(12) to model and solve the CPMP on a sequence of 
TDNs, G = {G1,G2,…,Gm}. In the formulation, the binary variable xij 
= 1 if and only if TDN Gi is assigned to median Gj, for any i, j ∈ {1,2,…, 
m} such that i ∕= j, otherwise xij = 0. When xjj = 1, it indicates that Gj is 
designated as a median for any j ∈ {1,2,⋯,m}. The objective function 
(5) aims to minimize the total dissimilarity between TDNs and the me-
dians to which the TDNs are assigned across all windows. Constraint (6) 
ensures that at most p TDNs are selected as medians. In Constraint (7), 
we force each TDN Gi to be assigned to exactly one median. While 
Constraint (8) guarantees that if Gi is assigned to Gj then Gj must be a 
median. Constraints (9) and (10) make sure that only consecutive TDNs 
can be grouped into a same cluster. In constraint (11), τ represents a 
threshold for not clustering. When the dissimilarity between two 
consecutive TDNs Gi and Gi+1 is greater than or equal to τ, they will not 
be grouped into a same cluster. This constraint allows us to avoid 
clustering highly different TDNs. 

min
∑m

i=1

∑m

j=1

d
(
Gi,Gj

)
xij (5)  

subject to :

∑m

j=1

xjj ≤ p (6)  

∑m

j=1

xij = 1 ∀i ∈ {1, 2,⋯,m} (7)  

xij ≤ xjj ∀i, j ∈ {1, 2,⋯,m}|i ∕= j (8)  

xij ≤ xkj ∀i ∈ {1, 2,⋯,m− 2}, j ∈ {i+ 2, i+ 3,⋯,m}, k
∈ {i+ 1, i+ 2,⋯, j− 1} (9)  

xij ≤ xkj ∀i ∈ {3, 4,⋯,m}, j ∈ {1, 2,⋯, i− 2}, k ∈ {j+ 1, j+ 2,⋯, i− 1}
(10)  

xij + xi+1,j ≤ 1 ∀j ∈ {1, 2,⋯,m}, i ∈ {1, 2,⋯,m − 1}|d(GiGi+1) ≥ τ (11)  

xij ∈ {0, 1} ∀i, j ∈ {1, 2,⋯,m} (12)  

3.2.3. Selection of the value for p 
The parameter p determines how many clusters the initial time 

windows should be grouped into; in other words, how many phases the 
entire time frame is supposed to be broken down into. Usually, we are 
interested in a relatively small p to simplify the TDN sequence to allow 
us to capture the primary changes of comorbidity over time. Meanwhile, 
we need to avoid using a value that is too small, because an overly small 
p can result in very broad phases that combine windows little similar. 
The clinical advice from domain experts is essential to decide a proper 
value of p. Whereas, data analytic methods can also be used to support 

Fig. 4. A sequence of TDNs across five time windows, of which the ones on Window 1 and Window 5 are identical and the ones through Window 2 to Window 4 are 
highly similar. 
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the decision on this parameter. 
The Silhouette Index (SI) has often been used in literature to deter-

mine the value of p for p-median models [72,73]. In this study, we 
adapted SI to find a proper value of p for our proposed CPMP. Let C (p) ={C1,C2,…Cp

} be a clustering of TDNs G = {G1,G2,…,Gm}; given a 
network G ∈ G , let Ck represent the cluster that contains G and G A 
denote the network(s) in G that are adjacent to G. Then, our adapted SI 
for G is defined as   

The adapted SI considers four scenarios: (i) When a cluster contains 
too many TDNs (σ∣G ∣ or more), or (ii) a cluster contains a single TDN, 
but this TDN does not differ much (dissimilarity is less than τ) from an 
adjacent TDN, then the SI is set to be 0 to discourage the scenarios. (iii) 
However, when a single TDN is too dissimilar (dissimilarity is τ or 
larger) from adjacent TDNs to be grouped into other clusters, we let SI be 
1 to allow the TDN to form a cluster by itself. (iv) When a cluster is 
neither too large (less than σ∣G ∣) nor too small (size is at least 2), we 
compute an SI that measures how a TDN is similar to its assigned cluster 
compared with other clusters. ΔCk (G) = 1

|Ck |−1
∑

Ĝ∈Ck\Gd
(

G, Ĝ
)

is the 
“internal distance” of G within its own cluster, defined as the average 
dissimilarity between G and the other networks in the cluster that G 

belongs to. While ΔC \Ck (G) = min
⎧
⎨
⎩

1
|Ci |

∑
Ĝ∈Ci

d
(

G, Ĝ
)
,∀i ∈ {1,2,⋯ 

, p}|i ∕= k
⎫
⎬
⎭ is the “external distance” of G, and is evaluated with the 

smallest average dissimilarities between G and the clusters to which G 
does not belong. The scenarios establish “soft” bounds of 2 (lower 
bound) and σ∣G ∣ (upper bound) for the cluster size. “Soft” means that 
though discouraged, the bounds still can be exceeded if necessary. 

The overall clustering quality can be then evaluated using the 
average SI of all TDNs in the sequence G , i.e. 

SIG (C (p) ) = 1

|G |
∑

G∈G

SIG (C (p) ,G) (14) 

The value of SIG (C (p) ) falls within the range of [−1,1]. The higher 
is the SIG (C (p) ), the more likely are TDNs clustered properly such that 
TDNs are close within each cluster, but distant across different clusters. 
Note that, given a TDN sequence G , C (p) is determined by the solution 
of IP formulation (5)–(12) with the input parameter p. Hence, 
SIG (C (p) ) is essentially a function of the number of clusters p ∈ {1,2,⋯, 
m}. The desired value for the parameter p, p* should be the one that 
maximizes this function; in other words, 
p* = argmax

p∈{1,2,…,m}
SIG (C (p) ) (15)  

3.3. TDN visualization and disease clustering 

A major challenge of TDN visualization is that complex networks 
may include too many nodes and edges to be displayed in an intuitive 
and orderly manner. In our TDN Visualization Module, we propose and 
solve a minimum atomic clique partition problem (MACPP) to address this 
challenge, as elaborated in the following. 

Definition 1 (Atomic Clique). Given a collection of networks, G =
{G1,G2,⋯,Gm}, a subset S ⊆ ∪m

i=1V(Gi) is called an atomic clique if S is a 
clique in Gj, ∀ j ∈ M, but S ∩ V(Gk) = ∅ , ∀ k ∕∈ M, where M = {i ∈ {1,2,⋯, 
m}|S ⊆ V(Gi)}. 

Definition 1 requires that in any network Gi ∈ G , all nodes in an 
atomic clique S are either forming a clique or completely absent. For 
example, in Fig. 1, the atomic cliques across Window 1 and Window 2 
are {1,2,3}, {4}, {5}. The clique {1,2,3} represents the initial comorbid 
diseases in Window 1, while {4} and {5} are newly developed diseases 
in Window 2. They are not interconnected directly, indicating that from 
diseases {1,2,3}, patients are very likely to develop either disease {4} or 
disease {5}, separately. Recall that in Section 2.2, we have shown that 
classical clique models could not necessarily capture this progression 
pattern. Instead, our proposed atomic clique model succeeds to address 
this challenge. Now, let us define MACPP that can decompose TDNs into 
a minimum set of atomic cliques. 

Problem: Minimum atomic clique partition problem. 
Input: A collection of networks, G = {G1,G2,⋯,Gm}. 
Output: A collection of atomic cliques K =

{K1,K2,…,Kq
} such that.  

• Ki ∩ Kj = ∅, ∀i, j ∈ {1,2,…,q}|i ∕= j  
• ∪q

i=1Ki = ∪m
j=1V(Gj)  

• q is minimized. 

The partition nature of the problem requires that the atomic cliques 
are mutually exclusive and in combination containing all nodes from the 
network collection. While the objective of minimizing the number of 
atomic cliques allows us to simplify the decomposition of the network 
collection as much as possible. 

In this research, we developed an iterative algorithm—Algorithm 
1—to find a feasible solution to MACPP. According to Definition 1, an 
atomic clique exists either in a single network or within an intersection 
of multiple networks. As a result, Algorithm 1 first finds a common node 
subset D across as many networks as possible through Lines 4–8. The 
initialization of D is performed at Line 4. Specifically, we assign the 
entire node set of the network Gk to D, where k is the smallest index of 
the networks remained in G . The nested while loop from Line 9 to Line 
16 then seeks an atomic clique partition on all D-induced subgraphs, 
Gi[D], ∀i ∈ M. Once we narrow down to Gi[D], we can iteratively detect 
and remove a maximum atomic clique across all Gi[D] each time by 
leveraging an IP formulation until a partition is formed. After an atomic 
clique partition is found on Gi[D], the algorithm excludes D and repeats 
previous steps until all Gi ∈ G are empty.  

SIG (C (p) ,G) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∣Ck∣ ≥ σ∣G ∣

0 if ∣Ck∣ = 1 and ∃Ĝ ∈ G A|d
(

G, Ĝ
)
< τ

1 if ∣Ck∣ = 1 and d
(

G, Ĝ
)
≥ τ,∀Ĝ ∈ G A

ΔC \Ck
(G) − ΔCk

(G)
max

{
ΔCk

(G) ,ΔC \Ck
(G)

} if 2 ≤ ∣Ck∣ < σ∣G ∣

(13)   
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The IP formulation we used to find a maximum atomic clique across 
Gi[D], ∀ i ∈ M is presented in (16)–(18). The binary variable xj = 1 if and 
only if j ∈ D is selected in the solution. Constraint (17) ensures that at 
most one of nodes j, k ∈ D can be included in the solution if j and k are 
disconnected in any single network Gi[D], so the solution will be guar-
anteed to be an atomic clique. While the objective function aims to 
maximize the cardinality of the atomic clique. 
max

∑

j∈D

xj (16)  

xj + xk ≤ 1 ∀{j, k} ∈ Q = {{j, k}⊆D |∃i ∈ M such that {j,k} ∕∈ E(Gi) }
(17)  

xj ∈ {0, 1} ∀j ∈ D (18) 
Algorithm 1 is essentially a greedy algorithm because the IP formu-

lation tries to find a maximum atomic clique in each iteration of the 
nested loop through Lines 9–16. Clearly, the algorithm returns a feasible 
solution to MACPP because each K found in one iteration is isolated from 
that found in other iterations, and K exhausts all nodes in G . 

4. Case studies 

To assess the effectiveness of our proposed system, we applied it to 
two case studies on analyzing and visualizing the comorbidity pro-
gressions during hospitalizations for C. Diff and stroke patients, 
respectively. In the case studies, our system was implemented using 
Python 3.7, and the IP formulations involved were solved using a state- 
of-the-art optimization solver—Gurobi 8.1.1 [74]. 

4.1. Data cohorts and data preparation 

We integrated Cerner Health Facts® EHR data warehouse as the data 
source into our system. Health Facts® contains clinical data extracted 
directly from the U.S. hospitals that operate on Cerner EHR systems. 
Cerner Corporation collects and integrates the data through its estab-
lished operations in compliance with the Health Insurance Portability 
and Accountability Act (HIPAA) laws. Because the data has been 
completely de-identified according to HIPAA regulations, the Institu-
tional Review Boards (IRB) at Oklahoma State University exempted the 
study from review. 

C. Diff is a bacterial infection that are mostly hospital-acquired 
among senior patients [75], while stroke is one of the leading chronic 
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Table 1 
The statistics of encounters and TDNs in each window (TDNs are ego networks).  

Window C. Diff - Senior Female Cohort Stroke - Senior Female Cohort  
Enct # Diag # ∣V∣ ∣E∣ Enct # Diag # ∣V∣ ∣E∣ 

1 158,408 1,088,614 6 15 13,070 57,703 105 602 
2 173,611 1,400,515 7 21 11,641 55,473 110 727 
3 200,907 1,625,593 9 34 11,721 55,131 108 723 
4 196,913 1738,845 14 90 11,201 54,259 113 776 
5 242,541 2,056,285 12 65 10,251 50,313 113 821 
6 173,887 1,612,831 26 321 8697 42,569 114 843 
7 164,309 1,533,572 28 372 7392 36,497 117 889 
8 128,370 1,246,318 32 482 6348 31,215 119 936 
9 116,790 1147,284 34 547 5259 26,660 120 1072 
10 95,243 962,605 39 692 4680 23,286 122 1101 
11 86,439 883,730 35 584 3850 19,480 120 1147 
12 72,727 750,208 42 811 3507 17,752 123 1250 
13 66,558 703,248 44 931 2868 14,422 118 1308 
14 55,194 581,826 50 1195 2660 13,407 120 1371 
15 47,954 519,614 54 1401 2061 10,627 121 1551 
16 39,010 423,053 54 1360 1849 9288 117 1516 
17 33,844 380,795 61 1738 1501 7780 124 1660 
18 30,021 332,668 62 1754 1502 7637 125 1655 
19 25,702 295,288 62 1806 1157 6028 131 1831 
20 23,662 265,881 61 1739 1155 6013 133 1864 
21 20,171 233,745 68 2155 924 4816 117 1682 
22 18,604 213,280 66 2039 936 4894 125 1859 
23 15,760 187,325 70 2275 738 3957 133 1893 
24 15,514 177,554 74 2484 839 4361 122 1771 
25 13,080 155,944 75 2595 586 3076 123 1707 
26 13,832 160,786 67 2139 869 4542 121 1770 

Total 2,229,051 20,677,407 – – 117,262 571,186 – –  

Fig. 5. The heat maps of dissimilarities among TDNs and the SI charts for different values of p. (A) and (C) are diagrams for C. Diff; (B) and (D) are diagrams 
for stroke. 
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conditions for death/disability in the U.S. [76]. Our C. Diff and stroke 
study cohorts were extracted from Health Facts® using International 
Classification of Diseases 9th/10th Revision (ICD-9/10) codes (the ICD- 
9/10 codes are listed in the Supplementary Material). The cohorts 
included hospitalized encounters of female patients aged 65 or older 
with the onset of C. Diff/stroke between November 1999 and August 
2017. Patient age, length of stay (LOS), and all diagnoses associated with 
the encounters were exported as well. 

Our data preprocessing mainly dealt with outlying LOS, erroneous 
diagnoses, and diagnosis combination. In order to exclude extreme 
outliers in LOS, we restricted analysis to the encounters of LOS within 
the range of 24 h to 14 days, which is a common range for inpatient 
hospital stays. We noticed that the data included some infeasible di-
agnoses, such as birth/labor-related diagnoses and male conditions. 
Encounters with such erroneous diagnoses were excluded from the study 
cohorts. Furthermore, the ICD-9/10 codes used in Health Facts® can be 
overly specific to express disease states in the usual sense. We used the 
Clinical Classifications Software (CCS) [77] to aggregate ICD-9/10 codes 
into relatively high-level disease states. For example, CCS combines 
malignant neoplasms at different locations of esophagus together as the 
“cancer of esophagus”. Our data extraction and preprocessing eventu-
ally resulted in two large datasets containing hundreds of thousands or 
millions of encounters and diagnosis records as shown in Table 1 (under 
the “Enct #” and “Diag #” columns). 

4.2. TDN construction 

In Health Facts®, diagnoses were recorded in encounters, but lacking 
specific timestamps about at what time during the encounter a condition 
was diagnosed. In other words, given time points t1 < t2 < … < tm within 
an encounter, we cannot tell what diagnoses occurred exactly during a 
time interval [ti, ti+1]. Therefore, we defined the windows based on LOS 
as Warner et al. did in their studies on hospital-acquired complications 
[31,78]. In particular, Window i includes all encounters with LOS ∈ [l +
(i − 1)ϵ, l + iϵ), where l is the smallest LOS included for analysis (24 h in 
our case studies in light of the data preparation). The rational is that 
when a large sample is included in a window, the statistical results based 
on the sample can be considered as the expected values of the attributes 
of a general population in the window. Then, the changes newly 
happened to Window i + 1 from Window i can be well representative of 
the events occurring within the interval [l + iϵ, l + (i + 1)ϵ) for the 
population. In our case studies, we specified ϵ = 12 hours, which 
resulted in 26 windows in total, i.e. m = 26. 

Then, we built networks over the 26 windows with SCI threshold θ =
0.05. Since our interest was concentrated on the progression of C. Diff/ 
stroke and its strongly coexisting diseases, we only considered the ego 
networks of C. Diff/stroke as the TDNs for analysis and visualization 
henceforth. The TDNs constructed based on our C. Diff and stroke co-
horts are visualized in Figs. A1 and A2 respectively in the Appendix, 
while the data (including the edge lists and the mapping between nodes 
and diseases) of the TDNs are provided in the Supplementary Material. 
The orders and sizes of the TDNs are listed in Table 1. 

4.3. Temporal clustering 

The dissimilarity between each pair of the TDNs of the C. Diff cohort 
is calculated and plotted as a heat map shown in Fig. 5 (A). From the 

heat map, we may roughly observe that (i) there exist a few dark blocks, 
which correspond to clusters of windows that may imply progression 
phases; and (ii) the phases tend to include more windows over time, 
indicating that comorbidity evolves more rapidly at earlier phases 
compared with later phases. We now present the CPMP results on this 
TDN sequence to demonstrate CPMP’s effectiveness to capture the ob-
servations algorithmically. In order to solve the CPMP on this TDN 
sequence, we firstly used the SI method described in Section 3.2.3 to 
determine a proper p* for the TDNs. During the calculation of SI, we let 
both the parameters τ and σ be 0.5, meaning we do not intent to cluster a 
window with its adjacent window(s) if the dissimilarity is no less than 
0.5, and we discourage a cluster that includes half or more of all win-
dows since it might be overly broad. The result in Fig. 5 (C) shows that 
p* = 5, indicating that the entire window sequence should be clustered 
into five phases. Given p = p* = 5, the CPMP solution is: Phase 1 includes 
Windows 1–3, Phase 2 contains Windows 4–5, Phase 3 consists of 
Windows 6–11, Phase 4 is comprised of Windows 12–20, and Phase 5 
includes Windows 21–26. The corresponding days of the phases are 
shown in Table 2. The results are aligned with the observations we can 
inspect from Fig. 5 (A), demonstrating that the proposed consecutive p- 
median model is capable to identify the progression patterns 
algorithmically. 

The stroke results are presented in Fig. 5 (B) and Fig. 5 (D). Fig. 5 (D) 
shows that p* = 3, implying that hospitalized stroke patients may 
experience three phases: Phase 1 includes Windows 1–8, Phase 2 con-
tains Windows 9–15, and Phase 3 consists of Windows 16–26, as shown 
in Table 2. Similar to the C. Diff results, the phases outlined by the 
proposed consecutive p-median model are also in line with what we can 
observe from Fig. 5 (B). 

4.4. Visualization of TDNs in phases 

By visualizing TDNs on the identified phases, we can reduce the 
complexity of the entire TDN sequence over time. However, the 
complexity inside a single TDN remains because some TDNs can include 
many nodes and edges. For example, the C. Diff TDN at Phase 5 includes 
688 edges incident to 38 nodes. Visualizing such dense networks in a 
user-friendly format will significantly facilitate subsequent inspection 
and analysis. To that end, we firstly found an atomic clique partition 
using Algorithm 1. Then, for the TDN at every phase, we plotted each 
atomic clique together in a compact, shaded space. In addition, to keep 
consistency, each atomic clique was rendered in the same color across all 
phases. 

The C. Diff comorbidity progression is visualized in Fig. 6, from 
which we can observe that acute renal failure (node 5), fluid and elec-
trolyte disorder (node 88), other gastrointestinal disorders (node 167), 
and septicemia (node 211) along with C. Diff (node 0) form an atomic 
clique that occurs persistently across all phases (marked as AC0 in 
Fig. 6). It implies that these diseases are highly coexisting with C. Diff 
throughout the entire time frame. Many clinical studies [79,80] have 
reported similar findings that these diseases are highly associated with 
C. Diff, thus validating our VA results. Another interesting progression 
pattern we can inspect from Fig. 6 is that instead of occurring inde-
pendently, the comorbid diseases appeared at later phases tend to form 
atomic cliques as well. In other words, the onset of one of these diseases 
may indicate one or more other conditions in the same atomic clique. 
For example, urinary tract infections (UTI, node 228) appears in Phases 
3–5, which echoes a previous study finding that UTI is associated with 
prolonged hospitalization of C. Diff patients [31]. Furthermore, our 
approach discovers that UTI occurs in an atomic clique that also includes 
cardiac dysrhythmias (node 55), chronic kidney disease (node 57), and 
disorders of lipid metabolism (node 78). It suggests that doctors should 
pay attention to not only UTI but also these UTI-associated diseases to 
prevent prolonged hospitalization. 

The stroke comorbidity progression is visualized in Fig. 7, which 
shows that a few diseases start to be highly coexisting with stroke after 

Table 2 
Phases and corresponding windows and days.  

Cohorts Time Unit Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 
C. Diff Window 1–3 4–5 6–11 12–20 21–26  

Day 2–3 3–4 4–7 7–11 12–14 
Stroke Window 1–8 9–15 16–26 – –  

Day 2–5 6–9 9–14 – –  
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Fig. 6. TDNs constructed on the phases of the C.Diff cohort.  

Fig. 7. TDNs constructed on the phases of the stroke cohort. There exists a set of common cliques throughout all the phases. The common cliques are visualized in 
detail at the upper left part of the figure and simplified as a large node in the TDNs across the phases. The edge weight in the TDNs indicates how many nodes inside 
the set of common cliques are connected to a node outside the common cliques. 
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Phase 1. It implies that these disease states are highly associated with 
prolonged hospitalization more than one week of stroke patients. This 
association of some of the diseases, such as mental health disorders 
(node 130) and shock (node 213), are also supported by other clinical 
studies [81,82]. Furthermore, other two risk factors for prolonged hos-
pitalizations—fracture of lower limb (node 89) and fracture of hip (node 
90)—occur in the same atomic clique. It indicates that these two con-
ditions are very likely to occur together, which may be resulted from 
post-stroke fall [83]. 

5. Discussion 

Our proposed VA system for comorbidity progression has significant 
implications in both the technology advance and healthcare application, 
as discussed in the following. 

Technical Contributions: The highlight of this research from technical 
perspective is that we look into the temporal and disease clustering of 
TDNs for the first time. In this effort, two new problems and associated 
algorithms, rooted from methodology for the single network, were 
extended to network sequences (i.e. TDNs) to address the challenges in 
implementing the temporal and disease clustering of TDNs:  

• The consecutive p-median problem was extended from the classical p- 
median problem, by requiring each cluster to only include consec-
utive objects (TDNs in our case) to model temporal clustering. An IP 
formulation was developed to solve the problem, and the classical 
Silhouette Index was modified to determine a suitable value for the 
parameter p.  

• The minimum atomic clique partition problem was extended from the 
minimum clique partition problem for a single network to clustering 
diseases across a sequence of TDNs. A greedy heuristic algorithm was 
developed to find a feasible solution for the problem. 

Application in Healthcare: Supported by the temporal clustering 
module, our proposed system can automatically detect the comorbidity 
progression phases. Because the disease states and coexistence re-
lationships are highly similar within each phase while remarkably 
distinct across different phases, the end of a phase can indicate a 
beginning time point of significant progression changes. Furthermore, 
through our visualization module, we are able to show the comorbidity 
coexistence relationships and progression patterns visually and 
concisely. It can help doctors understand when and what diseases are 
most likely to be comorbid with the index disease, and plan prevention 
and treatments in advance. For example, in our stroke case study, the VA 
results in Fig. 7 show that fractures are associated with prolonged hos-
pitalization more than one week. Furthermore, the fractures often 
include both lower limb and hip fractures. By being aware of this fact, 
hospitals and doctors can prepare proper care resources to prevent/ 
handle both types of fractures during patients’ hospitalizations. In 
addition, the TDNs can be used to compare different subgroups of pa-
tients, such as matched case-control cohorts based on a certain treat-
ment [84] to evaluate the treatment’s efficacy or different gender groups 

[69] to reveal progression disparities between genders. 
Limitations: This research mainly has two limitations. First, in liter-

ature there are many approaches for the network dissimilarity mea-
surement. The choices of the method may influence the temporal 
clustering results. However, a systematic review and comparison of all 
the methods on our problem is beyond the scope of this study. Second, 
our temporal and disease clustering approaches only work on undi-
rected, unweighted networks. TDNs can be more sophisticated by car-
rying node attributes (like disease frequency), edge weight (like SCI 
value), and edge direction (like presence order). Performing temporal 
and disease clustering on such complex TDNs requires corresponding 
dissimilarity measurement methods and graphical cluster models. 
Nevertheless, many of the approaches are either still absent or requiring 
much effort for suitable adaptions. As a result, we leave these challenges 
for future work. 

6. Conclusion 

Comorbidity is a prominent challenge in healthcare practice and 
research. In this work, we modeled comorbidity progression as a 
sequence of TDNs, and designed a VA system, which integrates novel 
temporal and disease clustering technologies to mine and visualize 
progression patterns from the TDN sequence. Two case studies of 
applying the system to C. Diff and stroke demonstrate the effectiveness 
of the system. Based on the discussion in Section 5, we summarize two 
directions for our future work—healthcare application and technical 
improvement. From the healthcare application perspective, we plan to 
apply the proposed system to more diseases to mine useful insights for 
healthcare practice. We will also incorporate more biomarkers besides 
comorbidity during the applications to reveal more progression pat-
terns. In order to improve the proposed technologies, we plan to extend 
our temporal and disease clustering approaches to more sophisticated 
TDNs that can carry node attributes and edge weights. In this study, we 
proposed a heuristic algorithm for MACPP, which does not necessarily 
find a minimized solution. Hence, we are interested in developing exact 
algorithms, such as IP formulations, which are able to provide optimal 
solutions for MACPP in our future work. 
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Fig. A1. TDNs (ego networks) constructed on the 26 windows for the C. Diff cohort (senior female patients). The node color is used to indicate the existence pattern 
of a node in adjacent windows: C.Diff node is in green color through all windows. Given a window, a blue node indicates that the node also appears in both adjacent 
windows or the unique adjacent window. A red node means that the node does not appear in any adjacent window(s). Pink means that the node also appears in the 
next window but not in the previous window, while orange indicates that the node also occurs in the previous window but not in the next window. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A2. TDNs (ego networks) constructed on the 26 windows for the stroke cohort (senior female patients).  
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[64] N. Pržulj, D.G. Corneil, I. Jurisica, Modeling interactome: scale-free or geometric? 
Bioinformatics 20 (2004) 3508–3515. 

[65] S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, K.M. Borgwardt, Graph 
kernels, J. Machine Learning Res. 11 (2010) 1201–1242. 

[66] S. Ghosh, N. Das, T. Gonçalves, P. Quaresma, M. Kundu, The journey of graph 
kernels through two decades, Computer Sci. Rev. 27 (2018) 88–111. 

[67] M.M. Martel, C.A. Levinson, J.K. Langer, J.T. Nigg, A network analysis of 
developmental change in adhd symptom structure from preschool to adulthood, 
Clin. Psychol. Sci. 4 (2016) 988–1001. 

[68] E. McElroy, P. Fearon, J. Belsky, P. Fonagy, P. Patalay, Networks of depression and 
anxiety symptoms across development, J. Am. Acad. Child Adolesc. Psychiatry 57 
(2018) 964–973. 

[69] P. Kalgotra, R. Sharda, J.M. Croff, Examining health disparities by gender: a 
multimorbidity network analysis of electronic medical record, Int. J. Med. Inform. 
108 (2017) 22–28. 

[70] B. Fotouhi, N. Momeni, M.A. Riolo, D.L. Buckeridge, Statistical methods for 
constructing disease comorbidity networks from longitudinal inpatient data, Appl. 
Network Sci. 3 (2018) 46. 

[71] T.D. Klastorin, The p-median problem for cluster analysis: a comparative test using 
the mixture model approach, Manag. Sci. 31 (1985) 84–95. 
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