
Lightweight, Embeddings Based Storage and Model Construction Over Satellite

Data Collections

Kevin Bruhwiler, Paahuni Khandelwal, Daniel Rammer,
Samuel Armstrong, Sangmi Lee Pallickara, Shrideep Pallickara

Department of Computer Science
Colorado State University

Fort Collins, Colorado, 80521
Kevin.Bruhwiler@rams.colostate.edu, paahuni@colostate.edu, rammerd@rams.colostate.edu,

Sam.Armstrong@rams.colostate.edu, Sangmi.Pallickara@colostate.edu, Shrideep.Pallickara@colostate.edu

Abstract—There has been a substantial growth in remotely

sensed hyperspectral satellite imagery. These data offer op-

portunities to understand phenomena and inform decision

making. The nature of these collections introduces challenges

stemming from their volumes, variety, and spatiotemporal

resolutions. The crux of this study is to facilitate effective

training of deep learning models over satellite data collections.

We describe our novel embeddings (multidimensional latent

space representations) based approach to effectively support

model training, refinement, and inferences. We rigorously

explore several aspects relating to embeddings, including their

dimensionality, single vs multiple bands, and preservation of

inter-band metrics. We also incorporate support for transfer

learning over spatiotemporal scopes to address issues relating

to cold start and alleviate resource pressure. Our methodology

addresses disk, network, CPU/GPU, and accuracy implications

of several aspects relating to model construction. Our empirical

benchmarks assess the suitability of our methodology using

the MODIS and Sentinel-2 satellite data. We demonstrate that

our methodology reduces storage requirements by more than

6,000x and reduces model construction times by 75%.

Index Terms—hyperspectral satellite imagery, deep learning

models, spatial computing, storage systems, spatiotemporal

transfer learning

1. Introduction

Over the past few decades there has been an exponential
growth in satellite data volumes. This growth has been
driven by the proliferation of satellites and advances in
the sophistication of on-board sensing equipment. Different
satellites have different resolutions at which they perform
sensing operations. In several cases, multiple bands (cor-
responding to varying wavelengths) are sensed simultane-
ously during the same sweep. Furthermore, for different
wavelengths (or bands) at which sensing is performed, the
resolutions may be different. This results in each pixel
(across bands) representing a different spatial scope.

Scientists build models over this data, which are used to
make sense of the phenomena and to make forecasts or draw

inferences. The complexity of the model building process
is high because of the number of bands within the optical
imagery and also because of differences in the resolutions
across these bands. As a result, preprocessing overheads are
quite high.

The crux of this paper is to facilitate construction of deep
learning models at scale over satellite data. We consider data
storage, preprocessing overheads, workload orchestration,
and effective support for transfer learning during model
building.

1.1. Challenges

There are several challenges in constructing models, in
particular deep learning models, over voluminous satellite
data.
• Not only is the data voluminous, they are also in diverse
formats. These are compounded by the fact that bands
within the same spatial extent may be at different reso-
lutions. As a result, data preparation and preprocessing
costs in these settings are high.

• Model building is an iterative process involving tuning
parameters and the structure of the underlying networks.
As a result, duplicate preprocessing requirements are quite
high.

• Building deep learning based models is computationally
expensive. To be effective, model training must leverage
co-processors and operate in a distributed environment.

1.2. Research Questions

The overarching theme in this study is to facilitate effective
construction of deep learning based models over satellite
data collections. We have identified three key research ques-
tions within this broader context that we explore as part of
this study.

RQ-1: How can we account for systems implications
during model construction (training, inferences, and refine-
ment)? This encompasses reconciling the heterogeneity and
volumes inherent in satellite data collections. Furthermore,
to preserve scaling characteristics it is important to reduce
performance hotspots, amortize processing workloads, and
ensure concurrency.



RQ-2: How can we support effective and expedited
model construction? This involves reducing cold start times
for model training and also the overheads, both data access
and computing, involved in model construction.

RQ-3: How can we reuse or transform the knowledge
gleaned from different but related models to effectively scale
model training while preserving desired accuracy? This
relates to the ability to leverage transfer learning over the
voluminous satellite datasets dispersed within a cluster.

1.3. Approach Summary

Our methodology encompasses the following key steps: (1)
partitioning of satellite imagery to ensure co-location, data
locality, and effective dispersion of workloads, (2) a rigor-
ous exploration of generating multidimensional latent space
representations (embeddings) from the images to accomplish
several objectives relating to representativeness and space-
efficiency, (3) leveraging these embeddings to support model
constructions while ensuring effective resource utilization,
and (4) incorporating support for effective transfer learn-
ing across spatial and temporal scopes to reduce systems
overheads (relating to CPU, GPU, and I/O) while reducing
cold-start times and ensuring faster convergence of models.

Satellite images are partitioned based on a particular
geohash precision across a distributed hash table, ensuring
data locality during spatiotemporal model training and trans-
fer learning. Additionally, the geohash algorithm enables
efficient load balancing and incremental scalability.

We leverage representative learning to extract em-
beddings from the data. Rather than produce an all-
encompassing embedding over the entire image, we generate
an ensemble of embeddings - one for each partitioned spatial
scope. Besides allowing dispersion of workloads to facilitate
scaling, this allows the embeddings to extract local patterns
within the data.

We use deep convolutional encoder-decoder networks to
generate the embeddings. The embeddings represent higher-
order latent features extracted by the network. Both the
embeddings and the network play a key role in our frame-
work. For each spatial scope, we store one network. Multi-
band optical satellite imagery is partitioned, passed through
the corresponding trained encoder network, and once these
latent-space representations are produced we use them, and
not the raw imagery, for subsequent operations. This is
unlike compression-based schemes that require decompres-
sions and data sweeps.

Our methodology rigorously explores several aspects
of how these embeddings are produced. These include the
choice of loss functions, preservation of inter-band metrics,
and the dimensionality of the embeddings. We leverage two
methods to inform the dimensionality of our embeddings:
image compressibility and principal component analyses
(PCA).

We posit that training models directly on the embeddings
has two distinct advantages. First, it reduces computational
footprint by reducing duplicate pre-processing costs and
generation of features from the raw data. Second, because
the embeddings are compact, we expect to see reductions

in memory consumption and faster completion times during
training. This facilitates richer and more diverse analyses.

We construct diverse types of models using these embed-
dings. To assess the suitability of these models we contrast
their performance with same models constructed using raw
data across several dimensions. This includes the space-time
efficiency of models and also the accuracy and quality of
the constructed models. During inferences, the multi-band
satellite imagery is passed through the encoder network
portion of the network.

We also explore avenues for transfer learning, a method
in which training beings with a model that has already
been trained on another task to achieve faster training and
lower error, in our methodology. There are two aspects to
this: across different spatial regions and within the same
spatial extent. We leverage the degree of spatial similarity
across regions to inform how transfer learning can occur
across models. The degree of similarity is determined by
a cluster-based meta analysis and the dimensionality of the
embeddings. Transfer learning within a spatial region allows
us to initiate layers for new bands and models.

Datasets used in this study: As part of this study,
our empirical benchmarks have been performed on hy-
perspectral imagery from MODIS and Sentinel-2. MODIS
(Moderate Resolution Imaging Spectroradiometer) is an in-
strument aboard the Terra and Aqua satellites, both part
of NASA’s Earth Observation System, which takes low
resolution images to track large-scale phenomena, such as
weather patterns. Sentinel-2 comprises a constellation of two
orbiting satellites maintained by the European Space Agency
that takes much higher resolution images with the aim of
monitoring land-surface conditions.

1.4. Paper Contributions

In this study we describe our methodology to leverage latent
space representations to support effective storage and pro-
cessing of voluminous satellite data. Specific contributions
of our work include:

1) Reduction of data storage and data processing operations
over voluminous satellite imagery. The embeddings are
data format agnostic.

2) A rigorous exploration of how the embeddings are con-
structed and their suitability for transfer learning across
spatial scopes.

3) Leveraging embeddings for model training in diverse
settings.

4) A framework that scales with increases in data volumes,
the number of models, and the number of machines.

5) Our methodology can be leveraged using diverse deep
learning frameworks (for example, in this work we have
leveraged PyTorch and Tensorflow). Furthermore, the
methodology is agnostic of the satellite systems, projec-
tions, and the formats in which the images are sensed as
evidenced by our benchmarks with MODIS and Sentinel-
2 datasets that represent two of the major publicly avail-
able satellite data collections.

2



1.5. Paper Organization

The remainder of this paper is organized as follows. Section
2 describes related work in autoencoders, spatial imagery
processing, restoring missing satellite images, and genera-
tive models. Section 3 covers the methodology, including
the way in which data is partitioned and embeddings are
generated. The experimental setup, storage reduction, and
performance of models trained on embeddings are analyzed
in Section 4. Finally, conclusions and future directions for
research are outlined in Section 5.

2. Related Work

Autoencoders. Autoencoders are a well-explored applica-
tion of deep neural networks and can be used for a number
of different applications, including dimensionality reduction,
feature extraction, data denoising, generative modeling, and
pre-training [1]. They work by reducing a given input down
to a small vector (the embedding), then reconstructing the
input, sometimes slightly modified, from that embedding.
The result is that the embedding becomes a condensed
version of the input, whose values represent high level rather
than low level features [2]. For example, an embedding
generated by encoding a picture of cat would contain in-
formation about the color, head position, fur length, etc.,
rather than information about individual pixels.

There are a number of variations on autoencoders, in-
cluding sparse autoencoders, frequently used for denoising
[3], hierarchical autoencoders for structured data[4], graph-
centric autoencoders [5], semantic autoencoders for zero-
shot learning [6], and many others. However, of primary in-
terest to us are variational autoencoders [7], which constrain
the generated embeddings by forcing them to approximate
samples from a Gaussian distribution. Variational autoen-
coders have a number of favorable properties, including
reducing over-fitting [8], providing more control over the
embeddings [9], enabling the generation of new images
via embedding interpolation [10], and creating embeddings
amenable to downstream classification and regression tasks
[11]. Consequently, we choose to use variational autoen-
coders for generating our embeddings.

Processing Spatially Partitioned Imagery. Effective
spatial partitioning of satellite imagery is necessary in a
plethora of domains. Geographic Object-based Image Anal-
ysis (GEOBIA) is the most popular technique used to pro-
duce high-quality Land Cover / Land Use maps. Recent
advances in GEOBIA [12], [13] frequently stress the im-
portance of the spatial paradigm in rectifying inclusion of
multi-source imagery to improve accuracy. Georganos et.
al. [14] applies non-uniform spatial partitions to GEOBIA.
Similarly, these same spatial partitioning techniques have
been effectively applied to efforts in building [15], farmland
[16], and irrigation [17] extraction. In our application, we
draw from these previous works, developing a verbose satel-
lite imagery spatial partitioning system enabling partitioning
of satellite imagery on various spatial bounds given in
diverse Spatial Reference Systems and up / down sampling
of imagery to rectify differences in image resolutions from
different sources.

Generating Missing Images. Several approaches have
been proposed to deal with missing satellite imagery. In
Das et. al. [18], the authors proposed a spatiotemporal
forecasting ensemble model using previous and future high-
resolution images to reconstruct and impute missing images.
The model is based on DSN model, in which modules con-
sisting of perceptron with a single hidden layer are stacked.
The proposed model further incorporates pixel intensities
of neighboring pixels to extract spatiotemporal features in
making predictions of a given pixel. In more recent work,
an encoder-decoder approach was developed in [19], where
authors propose a CNN-based model to learn feature in-
formation from multiple low-resolution images and then
reconstruct these encoded low-resolution states to generate
missing high-resolution images. In Kim et. al. [20], the
authors use an LSTM network to forecast the amount of
rainfall using four-band weather radar data. The model uses
a convolution operation at the input, forget and output gates
of LSTM cells to capture spatial feature changes over time.
We train a similar time series prediction network comprising
LSTM units directly on embeddings and predict embeddings
for the missing timestamps.

Generative Adversarial Networks. Generating artificial
data is useful for a number of applications, including creat-
ing synthetic datasets and transforming existing data. Gen-
erative Adversarial Networks (GANs) are the most popular
generative neural network architecture. They are generally
composed of two parts: the generator, which generates the
samples, and the discriminator, which determines if the
sample came from the dataset [21]. GANs are traditionally
used for image generation (often called Deep Convolutional
GANs (DCGAN)), but they can be used to generate nearly
any kind of data. They have also become popular in the
fields of civil and environmental engineering [22], where
they are used on satellite images and synthetics aperture
radar. However, DCGANs suffer from scalability issues,
resulting in long training times and high memory usage [22].
GAN variants have been proposed to better scale with large
images, such as ProGANs [23] which slowly up-sample
images during training .

3. Methodology

Our methodology for model construction over satellite data
accounts for both the systems and model performance im-
plications. In particular, we:

• Partition images to facilitate workload dispersion
• Leverage encoders to extract embeddings from the data
• Explore aspects relating to tuning the embeddings
• Facilitate training models directly over the embeddings
• Leverage transfer learning to speed up model training
times at different spatiotemporal scopes

3.1. Partitioning of Satellite Imagery [RQ-1]
A key component of our methodology is the partitioning of
images and embeddings. Satellite data are staged within the
cluster to ensure effective utilization of systems resources
during model construction and refinement.

3



Geohashes. Satellite images are partitioned to apportion
training workloads. Our partitioning scheme leverages the
geohash algorithm [24]. Geohashes deterministically parti-
tion the globe into a set of non-overlapping bounding boxes
and are represented as 1-dimensional strings. The length of
the geohash determines the spatial extent of the bounding
boxes; the greater the length of the string the smaller the
extent of the geohash bounds. We use precision length 5
geohashes representing approximately 5 km x 5 km.

Each pixel within satellite images have a spatial extent
associated with them (for example, it is 250-1000 m x 250-
1000 m, depending on the band, for MODIS, while it is
10-60 m x 10-60 m for Sentinel). Satellite imagery also
have accompanying metadata representing the <latitude,
longitude> coordinates for the first pixel. Based on the
resolution of the particular satellite imagery, we partition the
satellite imagery into a set of smaller images representing
the spatial extents for precision length 5 geohashes.

Data Partitioning. Effective dataset partitioning and
distribution depends on a number of components. The parti-
tioning scheme must reconcile differences between images.
These may include pixel resolutions, image formats, and
the number of bands (each of which may have different
data types and resolutions). Distribution must result in load-
balanced storage across the cluster, therefore alleviating
subsequent analytical hot-spots that degrade performance.
However, these objectives introduce a number of difficulties.
Foremost of which, support for the immense varieties of
image attributes (ie. formats, sizes, resolutions, etc). These
difficulties are compounded by the intrinsic coordination
challenges imposed by distributed environments.

To address these issues, hyperspectral satellite images
(one image per band) are partitioned in a set of smaller
images based on their geohash spatial extents. Once par-
titioned, each image alongside their geohash is managed
using our distributed hash table (DHT). DHTs, and the
consistent hashing scheme that underpin them, facilitate
load balancing; more importantly, DHTs offer scalability by
allowing commodity hardware to be added incrementally.
DHTs leverage consistent hashing to allow pair-wise load-
shedding during addition of nodes and load-aggregations
during node removals. In our DHT, each node is responsible
for managing a portion of the hash space. Our partitioning
scheme is deterministic, decentralized, and load-balanced.

The partitioning is deterministic because imagery for a
particular spatial scope are routed to, and reside on, the
same machine. The apportioning scheme is decentralized
because the geohash based partitioning can be computed at
each node independently, and does not require centralized
coordination. Finally, we are able to achieve effective load-
balancing because geohashes are passed through the SHA-
1 cryptographic hashing function [25] to ensure uniform
distribution over the hash space. This, in turn, facilitates
effective distribution of storage loads across the cluster.

Our partitioning scheme has implications for the training
and refinement of models. Model training occurs for the
spatial extents represented by the geohash. The images that
models are trained on are smaller and allow the models

to tune themselves to a particular spatial extent. More
importantly, the models have data locality during training,
eliminating training-related network I/O.

An added benefit of our partitioning scheme is that
storing embeddings and images based on geohash groupings
reduces access latencies during transfer learning. Both the
images and embeddings are available for diverse model
types being built for the same spatial scope. Furthermore,
updates to the encoder networks to keep pace with feature
space evolution over time also benefit from data locality.

Cumulatively, our partitioning and apportioning scheme
reduces network I/O, ensures data locality, balances work-
loads, and avoids centralized coordination – all key elements
in ensuring that a system scales to high data volumes.

3.2. Generating Embeddings [RQ-1]
For each precision 5 geohash there are three components: the
raw images, the network, and the learned embeddings. The
network architecture used in our methodology is a convolu-
tional variational autoencoder, illustrated in Figure 1, which
consists of two logical parts: the encoder and the decoder.
The number of channels in the input and output vary based
on whether the embedding is single or multi-band (see
Section 3.2.1). The encoder contains several convolutional
layers, which reduce the size of the input using a number of
filters, followed by two independent fully-connected layers
(also called a multilayer perceptron). The decoder is essen-
tially an inverted encoder, starting with a fully-connected
layer and followed by a series of deconvolutional layers (or
convolution-transpose layers). The purpose of the encoder
is to reduce a given image down to two one-dimensional
vectors of fixed size, which are then used to compute the em-
bedding, while the decoder is tasked with reconstructing the
input from that embedding. Intuitively, this can be thought
of as a form of non-linear data compression, reducing the
size of an image and then reconstructing it with some error.

The embeddings are computed from the vectors gener-
ated by the encoder using the reparamaterization trick [26],
a method that approximates sampling from a distribution in
a differentiable manner. Reparameterization is necessary be-
cause, during model training, we will be minimizing both the
reconstruction error of the decoder and an approximation of
the Kullback-Liebler divergence (KLD) [27], that measures
the distance between the distribution of ”samples” generated
by the encoder and a Gaussian distribution. Minimizing the

Figure 1. The architecture for the variational autoencoder. Repeated cells of
convolutional layers followed by reparamaterization create the embedding.
Repeated cells of conv-transpose layers reconstruct the image.

4



Figure 2. An example of encoding and decoding a satellite image with multi
and single-band embeddings. Encoding each band individually results in a
slightly blurrier image, but both are difficult to distinguish from the original.

KLD is what differentiates variational autoencoders from
regular autoencoders.

We chose to use variational autoencoders because they
provide a much greater degree of control over the em-
beddings by mapping similar inputs to similar regions in
the multi-dimensional embedding space. The fact that the
encoder can approximate generating samples from a distri-
bution makes the decoder generative: it can decode embed-
dings that it has not been trained on [28]. This opens a
number of possibilities for future work, including manipu-
lating embeddings to change the season or cloudiness of an
image, sub-linear time identification of similar images [29],
and image-based forecasting [30].

3.2.1. Multi vs. Single-Band Embeddings

Satellites monitor many frequency bands, both in the visible
and non-visible spectrums. One important design decision
is whether image bands should be encoded individually
or collectively. The Sentinel-2 satellite monitors thirteen
bands, ranging from 21-185 nanometer wavelengths. En-
coding bands individually is more flexible, allowing new
bands to be added to the system without constructing a
new model. However, it also requires the storage of ad-
ditional embeddings, one for each band rather than one
for all thirteen, and, as can be seen in Figure 2, images
reconstructed from individual bands show a minor loss in
resolution. Additionally, as profiled in Section 3.3 and Fig-
ure 4, single-band embeddings are approximately the same
size as multi-band embeddings. These differences can most
likely be attributed to the fact the multi-band encoder learns
something about the relationship between bands and is both
better able to align the regions in the image and represent
their relationships more efficiently. The single-band encoder
is not aware of relationships between bands, resulting in
more minor discrepancies and less efficient embeddings.

3.2.2. Metric-Aware Embeddings

Inter-band metrics are an essential aspect of any satellite
image analysis, and can be used to reliably identify urban
regions (NDBI), bodies of water (NDWI), and cloud cover
in satellite images. The most commonly used metric is
the Normalized Difference Vegetation Index (NDVI), which
quantifies both the amount and the general health of the
vegetation in each pixel of an image [31]. Given the number
of applications that depend on these metrics, it is critical that
our methodology preserves them within a reasonable degree
of accuracy. Even if a decoded image appears indistinguish-
able from the original, it is possible that minor errors on each

Figure 3. A comparison of reconstruction and NDVI loss during model
training, with and without NDVI loss as a second target. The second target
dramatically reduces NDVI loss, without impacting reconstruction loss.

band could cumulatively alter these metrics to a significant
degree, with deleterious effects for any applications that
depend on them.

Figure 3 backs up this hypothesis, demonstrating that
the difference between the NDVI of the original and re-
constructed images is approximately twice as large as the
difference between the individual bands. This is unaccept-
able for many applications such as crop biomass estimation
[32]. To mitigate the issue, we experiment with adding
the NDVI loss as a second target for our encoder. The
equations for most common inter-band metrics, including
NDVI, NDBI, and NDWI, are differentiable, allowing us
to simply add the metric loss to the reconstruction loss
and back-propagate through both. Figure 3 demonstrates
performing this operation with NDVI dramatically reduces
the NDVI loss without impacting the reconstruction loss.
Interestingly, it appears that the encoder is able to learn
and preserve relationships between bands more quickly and
effectively than the values of the bands.

3.3. Fine Tuning Embeddings [RQ-1, RQ-2]
In order to optimize the storage and computational savings
of an embedding-based data store it is important to make
the embeddings as small as possible while remaining within
a given error-bound. In the case of storage with a single
encoding model, determining the minimum size is relatively
straight-forward; the model can be trained repeatedly with
smaller embedding sizes until the optimal size is found.
However, in the case of our spatiotemporal-based storage
system, this processes is markedly less efficient. It would
be necessary to go through this process for each new spatial
and temporal scope, tens of thousands of times. To resolve
this issue, we compute and examine several heuristics to
quickly choose the optimal embedding size.

To compute these heuristics, we train encoders with
a variety of embedding sizes on 100 randomly sampled
regions. The encoders are trained until their loss has not
decreased for 50 iterations, and the best loss is recorded.
We also compute three different scores for each region:

Complexity: An approximation of its Kolmogorov

5



Function Complexity Linear PCA Kernel PCA

Linear 0.196 0.197 0.197
Polynomial 0.402 0.402 0.418
Exponential 0.852 0.849 0.849

TABLE 1. R2 FOR ESTIMATING MULTI-BAND EMBEDDING SIZE

Function Complexity Linear PCA Kernel PCA

Linear 0.183 0.229 0.218
Polynomial 0.456 0.491 0.495
Exponential 0.869 0.869 0.858

TABLE 2. R2 FOR ESTIMATING SINGLE-BAND EMBEDDING SIZE

Complexity[33], calculated as the ratio between the size of
the images in that region in bytes with and without gzip
compression.

Linear PCA: The number of components that explain �
95% of the variance in the images of that region, determined
by the Principal Components Algorithm[34]

Kernel PCA: The number of kernels required to explain
� 95% of the variance in the images of that region, deter-
mined by the Kernel Principal Components Algorithm[35],
a non-linear variation of PCA

The algorithms chosen for computing these scores are in-
tended to measure the informational content of each region.
For example, a region comprising entirely of unchanging
desert is likely to be highly regular, more easily compressed,
represented by fewer components, and requiring a smaller
embedding size.

We attempt to fit three different functions against each
set of losses and scores. We use a linear function, a single-
degree polynomial function, and an exponential function.
The results for multi-band embeddings can be seen in
Table-1, and single-band embeddings in Table-2. The scores
shown are the coefficients of determination (also known as
R2) which represent the proportion of variance in the data
explained by the model, with 1.0 being a perfect fit.

In both cases, the exponential function fits the data con-
siderably better than either linear or polynomial functions
do. Intuitively this makes sense, as the loss is unlikely
to decrease when the embedding size is increased past
its optimal point, while shrinking it should dramatically
increase the reconstruction loss. It also appears as though
the complexity score is slightly more informative than the
variants on PCA. Consequently, we use the exponential
function and the complexity score to estimate the optimal
embedding size of each region.

The process of using this heuristic to determine the
optimal embedding size for the region identified by geohash
”9qdfr” is illustrated in Figure 4. First, the complexity score
for the region is computed, in this case it’s 0.866, then a
variety of embedding sizes are passed through the heuristic,
creating the plot shown. In our experiments, we observed
that any reconstruction with a loss lower than 0.002 is
largely indistinguishable from the original image, so we’ll
use that as our error bound (although Figure 4 suggests that
0.0015 is the best we can do). For ”9qdfr”, the first single-
band embedding size to meet our error bound is 32, and
the first multi-band embedding size is 16. This gives us a

Figure 4. The predicted loss for encoders of varied embedding size for
geohash 9qdfr (complexity score of 0.866), using exponential models.

very quick way to estimate the ideal embedding size without
training many networks for each spatiotemporal scope.

3.4. Effective Transfer Learning [RQ-2, RQ-3]
Training deep neural networks is time consuming and com-
putationally expensive, requiring hours or even days. Any
system that depends on the continuous training or re-training
of many networks, especially one such as ours that requires
many networks on a single machine, must be able to do
so quickly and efficiently to avoid excessive resource con-
sumption or contention. To reduce model training time we
depend heavily on transfer learning.

Transfer learning is an essential part of many modern
deep learning applications. Generally, it involves taking the
weights of a model trained on one dataset and training it on
another, in the hope that it will converge more quickly and to
a more optimal minimum than if it had been trained from
scratch. Our methodology makes use of transfer learning
in two different ways: across spatial scopes and across
temporal scopes.

3.4.1. Spatial Transfer Learning

Spatial transfer learning is guided by the similarity between
spatial regions. Specifically, we leverage land classification
from the National Land Cover Database [36]. It provides
images encompassing the continental US which label each
pixel as one of 16 unique types or as unclassified, for a
total of 17 potential labels. Classification examples include
Evergreen and Deciduous Forest, Cultivated Crops, and four
levels of Developed Land. Our methodology posits that
geohash-defined regions with similar classification propor-
tions will have similar high-level features and may benefit
significantly from transfer learning.

We chose to use the NLCD for this task because it
is effectively a meta-analysis of many different data sets.
NLCD’s classifications are an amalgamation of a variety
of sources, including satellite imagery and government al-
locations, and consequently it captures information at a
very high level (at the loss of some resolution) making it
ideal for very broad tasks such as clustering. Additionally,
while the NLCD is specific to the continental U.S., similar
classifications can be created for the entire planet.

We begin by computing the proportion of each classi-

6



fication for each geohash-defined region. This results in a
normalized vector of 17 values (one for each of 16 unique
labels and unclassified), where each value is between 0.0
and 1.0. We then use the k-means clustering algorithm [37]
to group similar regions based on their proportion vectors.
We tested multiple techniques to determine the optimal
number of clusters, including canopy clustering, silhouette
scores with a variety of distance functions (ie. Manhattan,
euclidean, and cosine, etc), and aggregate cluster distortions.
Analysis of aggregate results determines clustering should
be performed with seven to nine clusters, so we chose eight.

Figure 5 illustrates the effects of training a model on
a region without transfer learning, with transfer learning
from a randomly chosen cluster with the same embedding
size (excluding the cluster of the region), and with trans-
fer learning from another region of the same cluster and
embedding size. In each case, loss was averaged over the
course of training 10 different models. It can be seen that
transfer learning has a substantive impact on convergence
time: starting with a model from a different cluster cuts
convergence time in half, and starting with a model from
the same cluster cuts the time in half again, down from 400
epochs (iterations) to approximately 50. Additionally, trans-
fer learning appears to reduce the final loss of the model,
albeit only slightly. In summation, a naive transfer learning
methodology reduces the computational cost of adding new
regions by 50%. Our methodology, using the NLCD dataset
and k-means clustering, reduces training times by 75%.

3.4.2. Temporal Transfer Learning

Temporal transfer learning is required for two reasons: spa-
tial regions change over time, new data may not resemble
old data, and decoding old embeddings requires that the
network originally used to encode them remains unchanged.
Consequently, we must occasionally train another network
for some regions as new data arrives, since the old network
will no longer meet the error threshold. However, we can
reduce the cost of generating new networks by transfer
learning, under the assumption that the high level features
of the region in question have not changed dramatically. To
simulate this process we train an encoder on the first thou-

Figure 5. A comparison of average losses (shown with standard deviation)
during model training with and without targeted transfer learning. Transfer
learning results in much faster convergence and lower total loss.

sand images for a region, then keep a running average of the
losses as it encodes new images. Once that running average
exceeds the error threshold (0.002) we begin training two
new networks, one initialized from the old network, and one
initialized from scratch.

The results of this experiment are visualized in Figure 6,
averaged over 10 runs. It can be seen that using transfer
learning modestly reduces convergence time and increase
consistency. Additionally, just like spatial transfer learning,
temporal transfer learning leads to a better overall perfor-
mance. While the experiment does not suggest that temporal
transfer learning is effective in meaningfully reducing com-
putational load, it does lead to improved model performance
at no computational cost.

3.5. Training Models On Embeddings [RQ-2, RQ-3]
A key capability provided by data stores is data analyses.
In our system it is entirely possible to decode an arbitrary
subset of the data and perform any typical remote-sensing
analysis on the decoded images. However, storing embed-
dings of high-level image features introduces some intrigu-
ing possibilities. In Xi Chen et. al. [11], it was observed that
embeddings may be more amenable to classification than
the original data. Additionally, the fact that embeddings are
significantly smaller than the original data not only reduces
both the time required to read them and their memory
footprint, it also reduces the size of the models required
to analyze them.

To asses the impact of performing statistical analyses
directly on embeddings, we examine two popular types
of deep learning models: a generative adversarial network
(GAN) and an image-to-image time series prediction. Both
were chosen due to their long training times, high mem-
ory requirements, and the fact that they work on images.
To asses our methodology, the models are trained on raw
images and on embeddings, and the error, resource con-
sumption, and training times for each model are contrasted.

3.5.1. Generative Sampling

Generative adversarial networks are a popular deep learning
application that typically require a large volume of data
and a long training time. Here, we train a GAN capable of

Figure 6. The average losses (shown with standard deviation) during model
training with and without temporal transfer learning. Transfer learning
results in more consistent and lower total loss, with reduced training time.

7



Figure 7. The architecture for the raw satellite image DCGAN

Figure 8. The architecture for the multi-band embedding GAN

generating representative images for a given geohash region
on both raw images and multi-channel embeddings and show
that models trained on embeddings are dramatically less
resource intensive and suffer almost no increase in error.

We use two different types of GANs for this experiment.
The first is a deep convolutional GAN (DCGAN) trained
on raw satellite images, whose architecture can be seen in
Figure 7. The second GAN is the embedding GAN which
generates multi-band embeddings, visible in Figure 8. The
embedding GAN comprises three separate networks: the
generator, the decoder, and the discriminator. The decoder
is taken directly from the encoding network (Figure 1), is
pre-trained, and its weights remain constant during training.
The discriminator in the embedding GAN is identical to the
discriminator in the satellite image GAN.

3.5.2. Time Series Convolutional Nets

Missing satellite images are a common problem caused by
clouds and cloud shadows, distortions from satellite sensors,
and lack of satellite coverage. This often results in contam-
inated pixel values across multiple bands which hinder any
further analyses of data such as weather monitoring, soil
monitoring, or rainfall predictions. It is critical to gather
quality sensor data with high accuracy and to be able to
estimate data that are not available.

In this experiment, we trained a convolutional neural

Figure 9. The Convolution Model architecture to predict missing timestamp
satellite image for Sentinel-2 data using multi-band embeddings

Dataset Format Size Ratio

Sentinel-2 Tiles SAFE Zip Archive 120.88GB 2.1x
Partitioned Images LZW Compressed

GeoTIFF
250.89GB 1.0x

Single-Channel Float Array 253.26MB 990.6x
Multi-Channel Float Array 19.48MB 12,879.3x

TABLE 3. STORAGE SIZES OF SENTINEL-2 TILE T11SKA

network to predict missing Sentinel-2 satellite images using
the embeddings or raw-images from the previous times-
tamps. Sentinel-2 satellite images are captured every five
days, however, due to occasional sensor malfunction or
clouds, data loss is unavoidable. For instance, for a given
geohash, after removing images with a cloud coverage of
more than 15%, only 10% of the images remained. Our
model learns the temporal changes from the latent space
vector extracted by the encoder model for multiple bands at
timestamp Ti�2 and Ti�1 to generate the encoding image
for missing timestamp Ti as shown in Figure 9. The same
model is trained on raw images, with only the input/output
sizes changed. The training set comprised 565 geohashes
with an average of 40 time sequences from months March-
November of 2018.

4. Systems Benchmarks

To assess the suitability of our embedding-based data store
it is necessary to demonstrate that it both results in mean-
ingfully reduced storage requirements and in faster and
more efficient analyses, while not significantly impacting
their performance. To do so we quantify the storage space
required under our various schemes and perform two types
of analysis (GAN training and time-series prediction) chosen
for their ubiquity and high resource requirements.

Experimental Setup. Experiments were performed on a
cluster of 50 nodes (Xeon E5-2620, 64 GB Memory), each
with a single Quadro P2200 GPU (5GB of memory).

4.1. Storage Reduction [RQ-1]
In this experiment we aim to profile dataset size reduction
achieved using our approach. We performed this on a dataset
containing Sentinel-2 tile images from the T11SKA region
(a 100km x 100km region centered on Fresno, CA) ranging
from 2016 - 2020. This dataset contains 433 images; which,
after partitioning, produces 428k geohash bounded images.

Table 3 reports aggregate dataset sizes covering a variety
of formats. Sentinel-2 tiles are the raw imagery provided
by the Copernicus project. Geohash partitioned images are
the GeoTiff images (with LZW compression) produced by
partitioning the Sentinel-2 tiles along geohash bounds. Both
the multi-channel and single-channel embeddings, the result
of applying our encoder network to each partitioned image,
are stored as arrays. We see that single and multi-channel

embeddings reduce dataset sizes by a factor of 477x and

6,205x, respectively, compared to raw Sentinel-2 tiles.

4.2. GAN Training [RQ-2]
We selected 485 geohashes to run each model on, each
of which generated 100 samples. All of the generated
embedding samples were then decoded (using the same

8



Figure 10. An illustration of the generated embeddings/images loss ratio
on 485 geohashes, averaged over 100 samples and grouped by channel.

Input GPU Mem(Mb) Memory % Minutes

Raw Images 2113.0 41.7 5:33
Embeddings 1033.0 20.4 1:15

TABLE 4. TIME AND MEMORY CONSUMPTION DURING GAN TRAINING

decoder in the embedding GAN) to create a set of satellite
images. By running both the generated images and the
decoded generated embeddings through the discriminator
from the image GAN we are able to get an apples-to-apples
comparison between GANs. By averaging the binary cross
entropy (BCE) losses over 100 samples and then dividing
the average BCE loss from the decoded embeddings by the
average BCE loss of the generated raw images we create a
ratio where a value above 0.5 represents more raw images
being classified as real. The results of this comparison can
be seen in Figure 10.

We see that the quality of the generated raw images
is slightly better than that of the generated embeddings.
Although most (90.2%) of the geohash regions had ratios
above the red line, there were some (9.8%) of the regions
where the embeddings performed better than the raw images.
Additionally, Figure 10 shows that the range of the ratios
for all the regions only spans from 0.4999 to 0.5005. This
shows that the difference in quality between the generated

images and generated embeddings is very slight.

We are also able to compare the computational footprints
from training the embedding GAN and the image GAN. This
allows us to analyze the trade-off between the quality of the
data and the memory-usage and training time when using
embeddings compared to using raw images. The results of
this comparison are shown in Table 4.

It can be seen that the multi-band embedding GAN took
approximately 22.5% as long as the raw image GAN. We see
a similar relationship between the amount of GPU memory
used when training each of the models: the embedding GAN
used approximately 49% of the GPU memory required by
the raw image GAN. Although the generated raw images
do produce slightly higher quality images, the generated

embeddings result in a significant decrease in the com-

putational footprint when training GANs.

4.3. Time Series Convolutional Nets [RQ-2]
To evaluate the performance for the time series model as
described in Section 3.5.2, we trained 13 models for each
band on both embeddings and raw values. In Table 5, we
have reported mean absolute and mean squared errors that

Input GPU Mem(Mb) Memory % Epochs Minutes

Raw Images 2567.0 50.7 56.1 120.4
Multi-Band 524.0 10.3 11.5 60.1
Single-Band 515.0 10.1 24.5 56.5

TABLE 5. AVERAGE TIME AND MEMORY CONSUMPTION FOR
SINGLE-BAND AND MULTI-BAND MODELS

Metrics Multi-Band Single-Band Raw Images
MSE 0.0039 0.00097 0.00086
MAE 0.0473 0.01327 0.01003

TABLE 6. TESTING METRICS FOR TIME SERIES CONVNET

precisely depicts the amount of deviation of predictions from
targets per pixel. The models trained on embeddings are at
average twice as fast as those with raw images. Additionally,
comparing the memory consumption of both the models,
training with embeddings consumes roughly 515.0 Mb of
GPU memory and is five times more efficient than training
on raw images. In total, training models on embeddings
significantly outperform raw images in terms of memory
consumption and training times.

In Table 6 we measure the model performance on the test
data. Both the models with single-band and raw inputs per-
form better than multi-band embeddings. The average mean-
squared error on the raw image model is 0.00086, slightly
lower error than compared to single-band embeddings. The
model learns changes happening for individual bands more
rapidly and accurately than multi-band changes. Using the
time series model directly on embeddings results in compa-
rable test errors, however with low computational resources.
From the results, it is clear that using our methodology,

similar CNN models can not only be efficiently trained

on embeddings but with considerably reduced GPU

memory consumption and training times.

5. Conclusions and Future Work

In this study we described our methodology to facilitate
effective construction of deep-learning based models over
satellite data collections. Our methodology is agnostic of
deep learning libraries that are used to fit models, and our
empirical benchmarks profile, and demonstrate, the suitabil-
ity of several aspects of our methodology. In particular:

RQ-1: Our spatial partitioning of satellite imagery al-
lows us to ensure effective distribution of workloads. Our
partitioning scheme ensures co-location of imagery for par-
ticular spatial extents. This co-location facilitates creation of
models that are tuned to particular spatial extents. Further-
more, co-location ensures data locality and precludes net-
work I/O during model training. Partitioning of workloads
also facilitates greater concurrency of tasks. Leveraging em-
beddings (latent space representations) allows us to signifi-
cantly reduce data storage (by a factor of 990-12,879x) and
computing requirements while facilitating faster completion
times. In summary, we are able to do more with less.

RQ-2: To support effective model construction we lever-
age embeddings. Embeddings encapsulate higher-order rep-
resentational features extracted from the raw data. By rig-
orously exploring several aspects relating to embeddings –
dimensionality of the latent space, single and multiple bands,

9



and preservation of metrics computed across diverse bands
– we ensure space-efficiency, timeliness, and accuracy. We
demonstrated the suitability of our methodology with two
broad classes of model fitting algorithms. Our methodol-
ogy reduced training times by ⇠75% in every case, while
requiring as little as 1/5th of the GPU memory.

RQ-3: By accounting for spatial characteristics of dif-
ferent geographical extents, we are able to identify spatial
similarities across different regions. These spatial similar-
ities form the basis for identifying candidates for transfer
learning. Our methodology is able to significantly reduce
cold start times and do so accurately, faster, and with lower
consumption of resources. We demonstrated that, using spa-
tial transfer learning, models both converged 4x faster and
achieved greater performance.

As part of future work, we plan to explore support
for query evaluations over embeddings to inform targeted
observations and model fitting operations. A related issue
that we plan to explore is visualization of embeddings.

Acknowledgments

This research was supported by the National Science Foun-
dation [OAC-1931363, ACI-1553685], the National Institute
of Food & Agriculture [COL0-FACT-2019], and a Cochran
Family Professorship.

References

[1] Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, et al.
Autoencoders. In Machine Learning, pages 193–208. Elsevier, 2020.

[2] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103, 2008.

[3] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes,
72(2011):1–19, 2011.

[4] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical
neural autoencoder for paragraphs and documents. arXiv preprint
arXiv:1506.01057, 2015.

[5] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction
tree variational autoencoder for molecular graph generation. arXiv
preprint arXiv:1802.04364, 2018.

[6] Elyor Kodirov, Tao Xiang, et al. Semantic autoencoder for zero-shot
learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3174–3183, 2017.

[7] Matt J Kusner, Brooks Paige, and José Hernández-Lobato. Grammar
variational autoencoder. arXiv preprint arXiv:1703.01925, 2017.

[8] Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, et al. Generalized
zero-and few-shot learning via aligned variational autoencoders. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8247–8255, 2019.

[9] Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv
preprint arXiv:1810.00597, 2018.

[10] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow.
Understanding and improving interpolation in autoencoders via an
adversarial regularizer. arXiv preprint arXiv:1807.07543, 2018.

[11] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla
Dhariwal, John Schulman, Ilya Sutskever, and Pieter Abbeel. Varia-
tional lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016.

[12] Stefan Lang, Geoffrey J Hay, et al. Geobia achievements and
spatial opportunities in the era of big earth observation data. ISPRS
International Journal of Geo-Information, 8(11):474, 2019.

[13] Nicholus Mboga, Stefanos Georganos, et al. Fully convolutional
networks and geographic object-based image analysis for the clas-
sification of vhr imagery. Remote Sensing, 11(5):597, 2019.

[14] Stefanos Georganos, Tais Grippa, Moritz Lennert, et al. Scale
matters: Spatially partitioned unsupervised segmentation parameter
optimization for large and heterogeneous satellite images. Remote
Sensing, 10(9):1440, 2018.

[15] Gunho Sohn and Ian Dowman. Data fusion of high-resolution satellite
imagery and lidar data for automatic building extraction. ISPRS
Journal of Photogrammetry and Remote Sensing, 62(1):43–63, 2007.

[16] Lu Xu, Dongping Ming, Wen Zhou, Hanqing Bao, Yangyang Chen,
and Xiao Ling. Farmland extraction from high spatial resolution re-
mote sensing images based on stratified scale pre-estimation. Remote
Sensing, 11(2):108, 2019.

[17] Hassan Bazzi, Nicolas Baghdadi, Dino Ienco, et al. Mapping irrigated
areas using sentinel-1 time series in catalonia, spain. Remote Sensing,
11(15):1836, 2019.

[18] Monidipa Das and Soumya K Ghosh. A deep-learning-based fore-
casting ensemble to predict missing data for remote sensing analysis.
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 10(12):5228–5236, 2017.

[19] Michel Deudon, Alfredo Kalaitzis, Israel Goytom, et al. Highres-net:
Recursive fusion for multi-frame super-resolution of satellite imagery.
arXiv preprint arXiv:2002.06460, 2020.

[20] Seongchan Kim, Seungkyun Hong, Minsu Joh, and Sa-kwang Song.
Deeprain: Convlstm network for precipitation prediction using mul-
tichannel radar data. arXiv preprint arXiv:1711.02316, 2017.

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

[22] Akshat Gautam, Muhammed Sit, and Ibrahim Demir. Realistic river
image synthesis using deep generative adversarial networks. arXiv
preprint arXiv:2003.00826, 2020.

[23] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progres-
sive growing of gans for improved quality, stability, and variation.
arXiv preprint arXiv:1710.10196, 2015.

[24] Gustavo Niemeyer. Geohash, 2008.
[25] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in

the full sha-1. In Annual international cryptology conference, pages
17–36. Springer, 2005.

[26] Durk P Kingma, Tim Salimans, and Max Welling. Variational
dropout and the local reparameterization trick. In Advances in neural
information processing systems, pages 2575–2583, 2015.

[27] John R Hershey and Peder A Olsen. Approximating the kull-
back leibler divergence between gaussian mixture models. In 2007
IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

[28] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[29] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, et al. Varia-
tional autoencoders for collaborative filtering. In Proceedings of the
2018 World Wide Web Conference, pages 689–698, 2018.

[30] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert.
An uncertain future: Forecasting from static images using variational
autoencoders. In European Conference on Computer Vision, pages
835–851. Springer, 2016.

[31] Toby N Carlson and David A Ripley. On the relation between ndvi,
fractional vegetation cover, and leaf area index. Remote sensing of
Environment, 62(3):241–252, 1997.

[32] Jihua Meng, Xin Du, et al. Generation of high spatial and tempo-
ral resolution ndvi and its application in crop biomass estimation.
International Journal of Digital Earth, 6(3):203–218, 2013.

[33] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov com-
plexity and its applications, volume 3. Springer, 2008.

[34] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular
value decomposition and principal component analysis. In A practical
approach to microarray data analysis, pages 91–109. Springer, 2003.

[35] Sebastian Mika, Bernhard Schölkopf, Alex J Smola, et al. Kernel pca
and de-noising in feature spaces. In Advances in neural information
processing systems, pages 536–542, 1999.

[36] Collin G. Homer, Joyce A. Fry, and Christopher A. Barnes. The
national land cover database. Technical report, Reston, VA, 2012.

[37] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern
recognition letters, 31(8):651–666, 2010.

10


