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This paper shows that least-square estimation (mean calculation) in a reproducing kernel Hilbert space
(RKHS) F corresponds to different M-estimators in the original space depending on the kernel function
associated with F. In particular, we present a proof of the correspondence of mean estimation in an RKHS
for the Gaussian kernel with robust estimation in the original space performed with the Welsch M-
estimator. This result is generalized to other types of M-estimators. This generalization facilitates the def-

inition of new robust kernels associated to Huber, Tukey, Cauchy and Andrews M-estimators. The new
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kernels are empirically evaluated in different clustering tasks where state-of-the-art robust clustering
methods are compared to kernel-based clustering using robust kernels. The results show that some
robust kernels perform on a par with the best state-of-the-art robust clustering methods.
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1. Introduction

In the context of statistical estimation, robustness refers to the
ability of a method to deal with contamination, i.e. outliers, noise,
and, in general, departures from model assumptions. Classical
methods suffer from problems such as masking effect (a method
does not detect outliers or deviating points) and swapping (good
data points seem like outliers). A robust method needs to safeguard
against deviations from the assumptions and identify highly influ-
ential data points [1]. Robust statistics study the development of
robust methods, i.e. reasonably efficient methods in the neighbor-
hood of the assumed statistical model [2]. Examples of robust esti-
mation methods include various robust extensions of the
Maximum Likelihood Estimation (MLE) for Gaussian and other
known distributions, such as the e-contamination model, M-
estimators, and robust clustering [3,4].

Robustness is also an important issue in machine learning, and
various efforts have been done to design robust versions of unsu-
pervised and supervised methods. Some examples include: differ-
ent robust versions of principal component analysis (PCA), where
robustness is introduced by improving the computation of the
covariance matrix using a robust scale function or by centering
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the data around the L;-median [5-9]; robust classification where
loss functions are modified using, in some cases, an M-estimator
[10-15]; and, robust clustering where robustness relies on using
robust statistics techniques such as trimmed mean [16-20]. In
the particular case of kernel methods, there are few works that
deal with robustness, some examples include: robust kernel den-
sity estimation where robustness depends on changing the kernel-
ized loss function with a M-estimator function [21] and robust
support vector machines where robustness relies on changing
the Euclidean distance with a more robust function such as an
M-estimators [22].

The goal of this paper is to study the theoretical and empirical
robustness of kernel-based algorithms within the framework of
robust statistical estimation and, as a followup, to use this frame-
work to design new kernels that can deal with noise and outliers,
thus qualifying as robust kernels. In particular, we show that a
classic kernel such as the Gaussian Kernel has intrinsically robust-
ness built in. Additionally, the paper extends this result to new ker-
nels that are derived form known M-estimators. M-estimators are
a class of estimators obtained by the maximization of a loss func-
tion p, calculated over the data. Depending on the particular func-
tion p the M-estimator may be more or less robust.

In pursuing the above goal, this paper presents: (1) a unified
view of two families of methods (robust estimation and kernel-
based methods) that have had an immense impact on data analysis
and machine learning; (2) methods which can be shown to have
some classical statistical robustness mechanisms naturally built-
in, although they were not conceived to be robust; (3) a new
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framework for building new robust kernels; (4) four new robust
kernels associated with M-estimators; (5) theoretical discussion
of each new robust kernel; and (6) an empirical systematic com-
parison between new robust kernels and state-of-the-art methods
in the context of unsupervised learning.

One interesting result is showing that least-square estimation
(mean calculation) in a reproducing kernel Hilbert space (RKHS)
F corresponds to different M-estimators in the original space
depending on the kernel function associated with F. This new find-
ing opened an avenue to extend kernel based learning by propos-
ing four new robust kernels associated to Huber, Tukey, Cauchy
and Andrews M-estimators. Our evaluations further show that
these new robust kernels exhibit good performance compared to
state-of-the-art methods.

Kernel-based methods such as kernel-based clustering, Gaus-
sian Processes, and support vector machines have been significant
players in machine learning. Therefore, our findings can have a sig-
nificant impact, in particular on studying the theoretical robust-
ness properties of kernel based machine learning methods and
for designing extended robust kernel based learning algorithms
with desired robustness properties. This paper shows that using
robust statistics, kernel methods can be improved in clustering
tasks making them competitive when compared to state-of-the-
art algorithms.

The rest of this paper is organized as follows. Section 2 reviews
robust statistical estimators and related work. Section 3 presents a
formal proof that mean estimation in the feature space with a
Gaussian kernel is equivalent to robust mean estimation with the
Welsch M-estimator in the data space. Section 4 presents the def-
inition and theoretical discussions of four new kernels using the
ideas presented in Section 3. Section 5 presents an empirical com-
parison between several state-of-the-art clustering algorithms and
kernel-based clustering using the new kernels presented in Sec-
tion 4. Finally, Section 6 presents our conclusion and future work.

2. Background on M estimators and kernels
2.1. M-estimators and robust statistics

Robust statistics emerged as a family of theories and techniques
for estimating the parameters of a parametric model while dealing
with deviations from idealized assumptions [23,24,4,25]. Examples
of deviations include contamination of data by gross errors, round-
ing and grouping errors, and departure from an assumed sample
distribution. Gross errors or outliers are data severely deviating
from the pattern set by the majority of the data. This type of error
usually occurs due to mistakes in copying or computation. They
can also be due to part of the data not fitting the same model, as
in the case of data with multiple clusters. Gross errors are often
the most dangerous type of errors. In fact, a single outlier can com-
pletely spoil the Least Squares estimate, causing it to break down.
Rounding and grouping errors result from the inherent inaccuracy
in the collection and recording of data which is usually rounded,
grouped, or even coarsely classified. The most common and practi-
cal robust estimators are M and W-estimators. Other estimators
include L, Least Trimmed Squares, and Reweighted Least Squares
estimators. Below, we review several M and W-estimators [4,26].

The ordinary Least Squares (LS) method to estimate parameters

is not robust because its objective function, Zj’\’: 1X2, increases

indefinitely with the residuals x; between the j™ data point and
the estimated fit, with N being the total number of data points in
a data set. Hence, extreme outliers with arbitrarily large residuals
can have an infinitely large influence on the resulting estimate. M-
estimators [24] attempt to limit the influence of outliers by replac-
ing the square of the residuals with a less rapidly increasing loss
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function of the data value, x, and parameter estimate, t, p(x; t). This
function is usually called contrast function. The M-estimator,
T(x,---,xy) for the function p and the sample xq,---,xy, is the
value that minimizes the following objective

N
T = min {]:];p(xj;t)}. (2.1
The optimal parameter, T, is determined by solving
J &
TS w0 =0 22)
=
where, except for a multiplicative constant,
oy 9p(x;:0)
Yxit) == (2.3)
When the M-estimator is equivariant, i. e., T(x; +a,---,
Xy +a) =T(x1,---,xn) + a for any real constant a, we can write

and p in terms of the residuals x — t. Also, in general, an auxiliary
scale estimate, S is used to obtain the scaled residuals r =%t
Hence, we can write

('5)

o) = p(*5") = pixit

The M-estimator can be written as a weighted average of the
samples:

Y(x;8),

n
T=> wx;T)x
j=1

where the weight function is defined as:

v (xit)

¥(0),

The p-functions for some familiar M-estimators are listed in
Table 1. Note that LS can be considered an M-estimator, even
though it is not a robust M-estimator. As seen in this table, M-
estimators rely on both an accurate estimate of scale and a fixed
tuning constant, c. Most M-estimators use a multiple of the Median
of Absolute Deviations (MAD) as a scale estimate which implicitly
assumes that the noise contamination rate is 50%. MAD is defined
as follows:

MAD(x;) = med;{|x; — med;(x;)|}

if xj;ﬁO
ifXjZO

Wi t) = (2.4)

The most common scale estimate used is 1.483 x MAD where
the 1.483 factor adjusts the scale for maximum efficiency when
the data samples come from a Gaussian distribution. Fig. 1.

2.2. Robust machine learning

Robustness to outliers, noisy samples, and heavy-tailed distri-
butions is an important issue for machine learning methods. How-
ever, this is not necessarily an issue which is directly addressed
when developing new methods. Nevertheless, there are some
works that apply robust statistical concepts and methods to
machine learning techniques.

In some works, robust statistical techniques, such as influence
curves and breaking point analysis, have been applied to analyze
the robustness of some machine learning methods. Kim et al.
[21] propose a novel robust kernel density estimation method,
where robustness depends on changing the kernelized loss
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Table 1
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Different familiar M-estimators with p(r),y(r) and w(r) functions. Some functions are defined piece-wise, so the scale parameter c defines the breakpoint where the principal
residual function is replaced with a less rapidly increasing loss function the range of r defines the range of residual r for the p(r) function is defined.

Type p(r) w(r) w(r) Range of r
L (mean) ir? r 1 IR
L, (median) 1| sgn(r) sgnr(r) IR
Huber 12 r 1 r<c
clr| - %¢c? c sgn(r) fsg;l(r) 1 >c
Cauchy %log[l + (g)z] TE? 1-l<5>Z IR
Welsch g [1-exp(-?) rexp(—(2)”) exp(— (%) IR
Tukey’s 3 2,2 2 rl<c
y 1-[1-¢7] (1 - (%) [1- 67 "
Biweight 1 0 0 Ir|>c
Andrews c[1 - cos(t)] sin(%) sin(t)/r rf<cm
2c 0 0 |r| >cm
(a) Huber contrast function (b) Welsch contrast function
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Fig. 1. Different examples of robust M-contrast functions using c¢ := 1: (a) Huber contrast function for different k parameters, note that parameter k is chosen arbitrary and
modifying the weight of the residuals, (b) Welsch contrast function, (c) Andrews contrast function for different k parameters, note that a higher value of k decrease the power
of the residual in the estimation of p, (d) Tukey’s Bisquare contrast function for different k parameters 2.1.

function with an M-estimator function, which showed good behav-
ior for different datasets according to the influence curve and the
breakdown point. Among the robust statistical techniques, the
most widely used are M-estimators, see Section 2, which has been
applied to robust regression, robust estimation, and clustering,
among other tasks [21,22,27,28].
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In the case of PCA [5], the first efforts to robustify it were based
on finding a robust estimate of the covariance matrix. One of the
drawbacks of this approach is its high computational demand
[29]. An important step for applying PCA is to previously center
the data. One approach to robustify this step is to use a robust loca-
tion estimator such as the median[9]. In the case of the use of the
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sum of squared errors cost function as an optimization function,
some authors have used regularization of parameters and weight-
ing errors to make the optimization more robust against outliers
[30]. Reformulating the reconstruction function has been one of
the ways to robustify PCA. In [31], de la Torre et al. showed that
the loss function can be changed by a related Geman-McLure M-
estimator. The idea is to define the reconstruction error as
argming, p(X — pt—Z,0) where ¢ is a scale parameter of the

X

Geman-MClure function, defined as p(x; 0) = 5*=. In this case, o
is responsible for the outlier proportion. In [32], Huang and Yeh
proposed an iterative kernel principal component analysis (KPCA)
using a relaxed optimization function. This new optimization func-
tion enables the use of m-estimators such as the Geman-McClure
m-estimator. This approach shows good performance and conver-
gence when contamination is added to real datasets. In [33],
Svensén and Bishop proposed a new approach to Bayesian mixture
modeling. They used a heavy-tailed t-student distribution provid-
ing a more robust algorithm when the data has outliers. However,
there is no relationship with robust estimation.

In the case of k-Means, which generally uses the Euclidean dis-
tance, the centroid estimation may be biased by outliers [34]. In
this sense, several strategies have been proposed in order to robus-
tify it. One approach is to create a new cluster where all the out-
liers are added so that every point in the data set will be
equidistant from that cluster. Other strategies use fuzzy member-
ship functions instead of the minimum Euclidean distance-based
hard membership assignments [35,15,19]. Krishnapuram et al.
[36] use possibilistic memberships in a version known as Possi-
bilistic c-means. Del barrio et al. [37] propose to use the Wasser-
stein space to obtain the trimmed k-barycenters that enable
parallel computation. The method proposed by Zhou et al. [38]
estimates a local density using non-parametric density estimation
and assign each point to the nearest neighbor with higher density.

Other problems, such as manifold learning and matrix factoriza-
tion has been addressed with robust methods. A good example is
Robust Manifold Non-Negative Matrix Factorization (RMNMF)
[39] which uses the norm I, ; instead of the Frobenius’ norm. The
objective function of RMNMF, measures the difference between
matrix X and factorization FG'in a robust way. The authors propose
a regularization with the Laplacian graph, to obtain a spectral clus-
tering. Another example of non-negative matrix factorization
method claiming to be robust is non-negative matrix factorization
random walks (NMFR) [40], which uses the random walks notion
in order to improve clustering results in spectral clustering.

2.3. Kernels and kernels methods

In the case of kernel methods, some works involved robust esti-
mation. For example, in [41], the authors define a new way to cen-
ter the data in the feature space. They use the L; norm in order to
center the data in a robust way. Instead of removing the outliers in
the input space, the outliers can be deleted in the feature space.
This is achieved through the reconstruction error which can be
found in the feature space and by doing so, the points that have
a large deviation with respect to the normal values can be identi-
fied. The authors claim that in the case of Kernel PCA, the kernel
chosen does not have any significance [42]. In [17], Chen et al. pro-
pose a new optimization function for robust kernel c-means where
the robustness depends on a kernelized version of probabilistic
fuzzy clustering. The optimization problem involves a multi-step
solution where the Gaussian kernel is used.

Only a few works are found that linked M-estimators with ker-
nels. Chen [22] proposed a new kernel for support vector machines.
Basically, the Euclidean distance between the samples is
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exchanged for a more robust distance given by the M-estimator
defined as Zjd:lpﬂxj — Xj|,7)- Liao et al. [27] proposed a robust ker-
nel inspired by a robust M-estimator to achieve robust machine
learning.

The previously discussed papers [27,42] showed a robust
behavior of some kernel methods. However, they did not attempt
to explain why this happens. In this paper, we show that there is
an intrinsic relationship between some types of special kernels
and M-estimators. This relationship is not only interesting for its
own sake, but it further builds a new more general framework that
allows to create new robust kernels, which, to our knowledge, had
not been previously discovered.

In [43], Liang et al. proposed a method called robust linear dis-
criminant analysis for dimensionality reduction where the squared
of the projection distance using a kernel is maximized. The word
robust in the name is related to the use of kernel embedding. In
[44], Kang et al. proposed a new method for sparse similarity learn-
ing. This method used the addition of positive definite kernels to
solve a sparse representation of the original matrix. Besides in
[45], Kang et al. proposed a clustering method using the intrinsic
structure of a learning graph. This method shows good perfor-
mance in state-of-the-art datasets. However, none of the above
results methods are related to robust estimation.

3. The robustness of kernel estimation

In [46], we showed, empirically, that the use of a Gaussian ker-
nel makes clustering techniques more robust to outliers compared
to a linear kernel. These results showed that when the contamina-
tion is increased, the linear kernel had a higher bias measure
between the location estimates (centroids) and the real parameters
compared to the results when using the Gaussian kernel. Taking
this empirical result into account, in this section, we formally
establish the intrinsic relationship that exists between kernels
and robust M-estimators. In particular, we propose a formal proof
that doing mean estimation in a feature space, induced by some
kind of kernel, is equivalent to doing robust mean estimation in
the original space. The overall process for doing robust location
estimation using a kernel is as follows: first, we start with data rep-
resented in the original problem space; second, a kernel function is
used to implicitly map every data point in the data space to an
induced feature space; third, the centroid of the images of the data
points is calculated in the feature space (note that in the feature
space, the centroid is not necessary robust); finally, with the help
of an approximate inverse function Py, the centroid in the feature
space is mapped back to the original problem space. We will show
that the inverse image of the centroid in the feature space is a
robust estimator of the mean of the original data points. In partic-
ular, it corresponds to the Welsch-estimator which is a robust M-
estimator. This relationship is proved in Proposition 2.

3.1. Approximate pre-image definition

Let k : X x X — R be a kernel (not necessarily positive semidef-
inite) and let ® : ¥ — F be a mapping from the original space to
the corresponding reproducing kernel Hilbert space (RKHS), i.e,
k(x,y) = (¢(x), ¢(¥)) [47]. Since ® is not onto, in general, there
are elements ¢ € F# which do not have a pre-image, i.e.,
Ax € X, D(x) = ¢. The next definition is motivated by this fact.

Definition 1. An Approximate pre-image Py is defined as
Pq; : .7: — P(X)

b argnxmin||d><x>f¢>\|i
XE
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where Hf||,2t = (f,f)r is the squared norm in the corresponding
Hilbert space.

3.2. Kernel robust estimation

In the following propositions, we show that if we find the cen-
troid’s pre-image-from a set of points projected in a feature space,
then these centroids will correspond to robust location estimators
if the appropriate kernel is used [48]. In this case, appropriate
means that the kernel is isotropic. An isotropic kernel is a kernel
that only depends on the distance, in the input space between its
arguments, i.e., k(x,y) = g(||x — y||) [49]. We will indistinctly use
the notation k(||x — y||) and k(x,y) to refer to the application of
the kernel, hoping the meaning will be clear from the context.

Proposition 1. Let k: X x ¥ — R be an isotropic kernel with
®: X — F the associated mapping to the induced feature space
and {xi,---,X,} C X a set of samples, then

Po(p) = argmanH(I) X;)

yeX G4

. 18
—QW)|[7, with p=_% "0 (x)
i=1

Proof. By Definition 1,

Po (1) = argmin||®(y) — ||
yex

. 1& 2
=argmin||®(y) — =) D(x;
gminl|0() — 3 0>

= argmmk (ly =yl +

zzzkllxz Xl[) **Zk Iy —xill)

i=1 j=1

_argmmZk ly =yl +Zk [1X: — xi|)

i=1

n
=2 k(lly —xil)
i=1

—argmmz (ly = yll) + k(lIx; — xil]) — 2k(|ly — xi[]))
—ar;gmmz (@), D)) - + (D), D(x:))  — 2(D(y), D(X))) )
ceX i1
*argmmZHCD ) — OW)|>
eX i-1

The equality in the fourth line follows from the fact that the first
and second terms on the right side of the third equality do not
depend on y, since k(||y — ¥||) = k(0); hence they can be substituted
by an arbitrary constant (an expression that does not depend on y).
For the same reason, the 1 coefficient of the third term of the right
side of the third equality can be eliminated.

Proposition 2. Given a set of points {x1,...,x,} CX, the approxi-
mate pre-image of its centroid in a feature space, F, induced by a
Gaussian kernel, k, corresponds to the Welsch location M-estimator.
In other words:

Pcl) P(I)( Z‘D Xi ) =arg r};lei}(]prelsch(”xi 7yH)
i=

Proof. Let Py (1) be the approximate pre-image of u, defined as in
Proposition 1,
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Po (1) —ar§mm§ju<b i) —Oy)|%
eX i—1
—ar§mm2 )£+ (DY), DY) - — 2(D(X:), DY) £)
eX i—1

—argmmz (k(xi,%:) +k(y,y) —2k(X:,y))

yexX i—1

(eryH2>
_argmmZZ 2e \ 2 )y

ye¥ G4
n
=argmin Xi—
%E/Y ;pwelsch(H 1 _VH)
with ¢ = /20, where the first equality follows by the Proposition 1.

4. Robust kernels

Section 3 showed that location estimation in a feature space
induced by a Gaussian kernel is equivalent to doing robust estima-
tion in the original space using a robust Welsch estimator. Propo-
sition 1 is a general result and it can be used as a framework to
build new robust kernels. Consequently, we propose four new
robust kernels, Tukey, Andrew, Cauchy and Huber kernels, which
are motivated by their corresponding robust M-estimators.

Before presenting the proposed robust kernels, it is necessary to
point out the following. In the case of isotropic and radial kernels,
we will use the residual r indistinct of the euclidean distance
||x — y||- Besides, the constant c is always positive R*. We present
two definitions: compactly supported univariate function and con-
ditional positive definite kernel [50].

Definition 2. ®: R — R is a compactly supported univariate
function if 3p : R — R such that:

o(r) = {p(r), ifre [O,l]}

0, o.C.
Definition 3. A kernel K is conditionally positive definite if and
only if it satisfies:

iicicﬂ((xi,xj) >0

i=1 j=1

wherexq,---,x, e X,n > 1,¢q,---,
K is a symmetric function, i.e. K(x,y)

¢n € Rwith 37 ;¢; = 0 and kernel
= K(y7 X).

4.1. Tukey robust kernel

Definition 4. The Tukey Robust kernel is defined as follows:

}

Proposition 3. Given a set of points S = {xy,...,xn} C X, the preim-
age of its centroid in a feature space, F, induced by a Tukey kernel, k,
corresponds to Tukey’s Bisquare location M-estimator. In other words:

11—, ifr<1

4.1
0, iff>1 @)

kTukey‘c(r) = {
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Pa(p) = Po E;Wf) =arg I;ggl;pmkey(\le -yl

Proof. Lets Py () be the approximate pre-image of y, defined as in
Proposition 1,

Pa(jr) = argminy Jj0(x) — O)|2

yex 4

= argmini((q’(xf)-, O(x1)) 5 + (O), ©Y)) s — 2(D(x:), D(Y)) £)

YEX i

:agmmiiw@h&)+kWJ)*2M&Jﬁ

yex 4

= argmin

yex

23
LI I (Hx,c—yu) ), if vl <
i=1 1
2

+% ifHXi;}’H >1

" 1-(1- (M)2)3) if vl < 1
= argmin’y c < =
yex 4 1

)

if Hx,;yH >1

n
= argminzptukey(‘ ‘Xi - y”)

YEX i

A desirable feature for a kernel is to be positive definite. This
guarantees that there is a Hilbert space, the feature space, for
which the kernel corresponds to its dot product [51]. Nevertheless,
undefined kernels may be useful for different applications [47].
Tukey Robust kernel is not positive definite in R® for every s
because it is a radial function with compact support [52], however,
it is strictly positive definite for some s as the following proposition
show.

Proposition 4. The Tukey Robust kernel is definitive positive in a
space with dimensions less or equal to R°.

Proof. Following Bernstein’s representation theorem in monoto-
nous functions [52], compactly supported univariate functions, as
defined in 2, are not (conditional) positive definite in R¢ for all
d>1][53].

The function

!
o(r)=(1-r%),
where (x), = {x, if x > 0,0 otherwise} is strictly positive definite
and radial on R?! as shown by Wu [54].

The multiplication by 1/2 and the positive constant c in 4.2 are
positive definite [55,51] so that we can remove them. If we replace
3 with [ in Definition 4 and change the variables x and y with the
residual r, we get the following equation:

Mﬂ:{agﬂ% ﬁl—ﬂ>0}

, if1-r*<0
we can deduce then that Tukey Robust kernel is conditional positive
definite in a space with dimensions less or equal than R°.

leN (4.2)

1
(43)

One of the remarkable findings is the relationship found
between Tukey robust kernel and the Epanechnikov kernel defined
by Ong Cheng in [47] as follows,

0, if bl g

k(xhy)
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where he showed that if principal eigenvalues are calculated, sev-
eral of them will be negative.

4.2. Andrews robust kernel

Definition 5. The Andrews Robust kernel is defined as:

}

Proposition 5. Given a set of points S = {x1,...,x,} C X, the preim-
age of its centroid in a feature space, F, induced by an Andrews
kernel, k, corresponds to the Andrews location M-estimator. In other
words:

sl -cos()], if 1<

44
-, if I>m (44)

kAndrews,C (T') = {

1¢ L
Po(pt) = Po (n Z@(x») = argmin® ppuarens (X = Y1)
i=1 i=1

The Andrew’s Kernel is not (conditional) positive definite as the
following proposition shows.

Proposition 6. The Andrews kernel is not (conditional) positive
definite.

Proof. Suppose that kangrews(r) is (conditional) positive definite.
Define

P(r) = kAndrews,c(r) +C

A (conditional) positive kernel plus a positive constant is (con-
ditional) positive definite [55,52]. Therefore, ¢(r) is (conditional)
positive definite. However, ¢(r) has compact support and using
the same argument as in Tukey Robust kernel, compactly sup-
ported univariated functions are not (conditional) positive definite
inR? foralld > 1.

4.3. Huber Robust Kernel

Definition 6. The Huber Robust kernel is defined as follows:

‘ " ~120ifr < (45)
r) = )
Huber. —§r+%, iff>1

Proposition 7. Given a set of points S = {xy,...,xn} C X, the preim-
age of its centroid in a feature space, F, induced by a Huber kernel, k,
corresponds to the Huber location M-estimator. In other words:

1¢ L
Po(jt) = Pa (n Z@(x») = argmind (% =)
i=1 i=1

[52] proved that a non trivial positive definite function cannot
have zeros for R". Therefore, Huber robust kernel is not positive
definite for R". In [56], it is proved that —|[x —y||® for 0 < B <2
is conditional positive kernel. Huber robust kernel is conditional
positive definite and is proved in Proposition 9. First, We need to
define a relationship between conditional positive definite and
completely monotone on (0, co):

Proposition 8 (Michelli). Let ¢ € C[0,c]. (—1)" @™ is completely
monotonous, ie., (-1)"@™ >0 for m=1,2,3,--, if and only if
® = (|| - ||?) is conditionally positive definite of order m and radial on
R" for all n [52].
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Proposition 9. The Huber Robust kernel is conditional positive
definite.

Proof. Huber robust kernel can be written as:

}

The first derivative of the Eq. 4.6 is positive and is defined as
follows:

(pgtzber.c(rz) = { _

In general, the (—1)" @™ for all m greater than two of Huber
kernel is positive and is defined as follows:

-r, if 7 <c

4.6
Ceiid, e (49

(pHuber.c(rz) = {

-1, ifrgc

4.7
clri ifr>c (4.7)

0, if 7<c

L e e i BN
(4.8)

(m) 2\ _
(pHuber,c(r ) -

According to Definition 8, Huber Robust kernel is a completely
monotonous function, therefore, it is a conditionally positive
definite.

4.4. Cauchy robust kernel

Definition 7. The Cauchy Robust kernel is defined as follows:

Keauchy (1) = {*Czj log {1 * (;)2} }

Proposition 10. Given a set of points S = {x1,...,X,} C X, the preim-
age of its centroid in a feature space, F, induced by a Cauchy kernel, k,
corresponds to the Cauchy location M-estimator. In other words:

(4.9)

1 &
Pa(p) = Po (n Zd)(xf)) =argmind _peayeny ([ = Y1)
i=1 i=1

Using the results in [55], it can be proved that Cauchy Robust
Kernel is a conditional positive definite kernel.

Proposition 11 (Berg). If K; : X x X — R is conditionally positive
definite and satisfies K1 (x,x) < 0 for x € X, then any new built kernel
defined as Ky (x,y) = —(—K1(x,¥))® for 0< B<lor
K3(x,y) = —In(1 — Ky (x,y)) is also conditional positive definite for
X,y e .

Proposition 12. The Cauchy Robust kernel is conditional positive
definitive.

Proof. The multiplication by c?/2 and the fraction c are positive
definite [55,51] so that we can remove them. Cauchy Robust kernel
can be expressed as —In(1 — K) where K is the euclidean distance.
According to the Definition 11, Cauchy Robust kernel is conditional
positive definite.

The computational cost of these new robust kernels is similar to
classic kernels as Gaussian Kernel and Polynomial kernel. There is a
new cost due to the kernel being piecewise definite, however, the
cost is very low so it can be ignored.
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5. Empirical evaluation of robust kernels

The use of kernels in unsupervised learning has been well
studied [13,10,22,15]. In this section, we evaluate the new robust
kernels, presented in the previous section, using them as part of
kernel clustering algorithms and show that the performance of
these algorithms is on par with state-of-the-art robust clustering
algorithms. Nevertheless, in this section, we will show, in a sys-
tematic way, that Tukey Kernel outperforms the results given
by Linear and Gaussian Kernels and other non-kernel-based
robust clustering algorithms, such as Robust Manifold Nonnega-
tive Matrix Factorization (RMNMF) or Nonnegative Matrix Fac-
torization Random Walks (NMFR) [39,40]. We evaluate different
kernel-based algorithms that use linear, Gaussian, Tukey,
Andrews, Huber, and Cauchy kernels. In our experiments (see
Table 2).

5.1. Datasets

We used thirteen data sets for evaluation. The datasets are
described below:

e Abalone is a dataset that predicts the age of an abalone from
eight features including sex, length, diameter, and height. The
age is discretized in three different classes [57].

AR is a dataset of cropped images of 100 faces of 50 men, and 50

women. These images are frontal view faces that were taken in

two different sessions with different facial expressions, illumi-
nation conditions, and occlusions such as by use of glasses or
scarf. To manage the dimensionality of the images, we use an

image resizing of one over five [58].

ATR&T is a dataset of 40 distinct subjects, where each subject has

10 different images. These images were taken at different times,

varying the lighting, facial expressions, and facial details. To

manage the dimensionality of the images, we use an image

resizing of one over eight [59].

e Balance Scale is a dataset that models psychological experi-
mental results where each example is classified as having
the balance scale tip to the right, tip to the left, or be balanced
[57].

e Coil is a dataset that consists of images of 20 objects that con-
tains both the object and the background [60].

o Steel Plates Faults is a dataset of steel plates, classified into 7
different types[57].

o Jaffe is a dataset of images with 10 different Japanese females,
where each set of images has 7 facial expressions. To manage
the dimensionality of the images, we use an image resize of 1
over 25 [61].

Table 2
Data set description
Data set Number of Number of Number of
features samples classes
Abalone 8 4177 3
AR 792 2600 100
AT&T 168 400 40
Balance Scale (BS) 4 625 3
Coil 484 1440 20
Fault 27 1941 7
Jaffe 100 213 10
Movement Libras (ML) 90 360 15
Orl 1024 400 40
Segment 19 2310 7
Umist 644 575 20
Wineq 11 4898 3
Yale 1024 2414 38
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e Movement Libras is a dataset that contains references to a hand
movement type in LIBRAS which is the name of the official
Brazilian signal language [57].

The Orl database of faces is a dataset of face images from 40 dis-
tinct subjects. The images were taken at different times, varying
light and different facial expression, among others. This data-
base is the same as AT&T but with no reduction of the dimen-
sionality [57].

Image Segmentation (Segment) is a dataset of high-level
numeric-valued attributes. The images were drawn randomly
from a database of 7 outdoor images [57].

The Sheffield (Umist) is an image dataset of 20 individuals
(mixed race/gender/appearance). The photographs of the indi-
viduals show a range of poses from profile to frontal views [62].
Wineq is a dataset of chemical analysis to determine the origin
of different wines [57].

Yale is a grayscale image dataset of 15 individuals, with 11
images per individual. Each image has a different configuration
or expression.

5.2. Clustering methods

Clustering methods are used to identify groups of data where
elements have some similarity [63-65]. Kernel-based clustering
uses kernels as the similarity function in order to identify those
groups. We use two kernel-based clustering methods for our eval-
uation of robust kernel: Convex nonnegative matrix factorization
(CNMF) and Kernel K-Means (KKM).

¢ Kernel-Convex NMF (KCNMF) is a generalization of the Convex
NMF algorithm. KCNMF solves the following optimization prob-
lem:arg min-

16(x) — p(x)WB|* = Tr(I - B'W')($(x), p(x))(I - B'WT), where
X € RP" B e R*" and W € R [66].

e Kernel K-Means (KKM) is a generalization of the K-Means clus-
tering algorithm. Basically, KKM performs k-means in a feature
space implicitly defined by a kernel. The most important char-
acteristic of KKM is that it is possible to carry it out without
explicitly using the mapping ® [67].

Ten baseline algorithms for clustering were selected, Several are
classic methods such as K-Means while others are state-of-the-art
methods:

e The K-Means algorithm represents the clusters by a set of cen-
troids {Cy, ..., Cy}. These centroids are a disjoint partition of the

input data set X, such that X = ULQ. The minimization is
accomplished by an optimization process that iteratively reas-
signs data points to clusters while refining the centroid estima-
tions in each iteration [68].

Nonnegative matrix factoriazation: NMF attempts to factorize X
as: X, zﬂGi, where positive symbols means X,F,G > 0 and
X € RP" F e RP** and G € R™, This type of factorization may
be used to perform clustering. The input data points are the col-
umns of X (p n-dimensional data points). The columns of F cor-
respond to the coordinates of the centroids. The columns of G
indicate to which cluster each sample belongs, specifically if x;
belongs to C;, then G;; = 1, otherwise G;; = 0. With this inter-
pretation, this function is equivalent to K-Means with the Eucli-
dean distance. An important advantage of this approach is that
values in the matrix G are not required to be binary; in fact, they
can be continuous values. These values can be interpreted as
soft membership values of data samples into clusters, i.e. NMF
can produce a soft clustering of the input data [69,70].
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Convex nonnegative matrix factorization (CNMF): CNMF
attempts to factorize X as: X. =~ XiW+G£, where X € RP¥,
W, € RP and G € R™[66].

Projective NMF (PNMF): PNMF attempts to factorize X as:
X, =W, W'X", X e R”" and W e RP** [71].

Orthogonal Nonnegative matrix factorization (ONMF). ONMEF is
a matrix factorization method like NMF that attempts to find a
subspace where the data lie, but this time the basis vectors F
and G are restricted to be orthogonal, i.e., F'F =] andG'G = I
72].

Llor]malized cuts (NCUT): NCUT is used and it is defined as fol-
lows: Ncut(A,B) = SW@B) | @B " yyhere A, B and V be two

~ assoc(A,V) assoc(B,V)’

subsets of vertices; assoc(A,V) =", 4.c,W(U,t) is the sum of
connection weights from nodes in A to all nodes in the graph;
and assoc(B, V) is similarly defined [73].

NSC: The principal idea in Nonnegative Spectral Cut is to impose
a nonnegative restriction in the optimization of Normalized Cut
[67].

Left-stochastic matrix factorization (LSD): The principal idea in
left-stochastic matrix factorization is to produce a probability
matrix P € R”* where each column i indicates the probability

that each row sample j belongs to the i cluster. This method
deals with a similarity matrix that is a more general matrix
compared to the kernel matrix where the similarity matrix
needs not be positive semi-definite (PSD) and it can be an indef-
inite kernel matrix [74].

e Robust Manifold NMF (RMNMF) uses the ,; norm instead of
Frobenius. The objective function of the RMNMF algorithm,
which is based on the error between matrix X and factorization

FG', needs to be robust. This is achieved by using a robust dis-
tance for the values with noise in matrix X. A regularization
with the Laplacian graph is also used in order to obtain a spec-
tral clustering. For further reference, see [39].

Nonnegative matrix factorization random walks (NMFR) uses
the random walks notion in order to improve clustering results
in Spectral Clustering. To do so, a W regularization parameter is

added, thus: miny-o — Tr(WTAW) + 233 W2)” st WW = 1.
In so doing, the author claims that the trace is minimized since
by augmenting parameter 4, optimization will tend to give les-

ser values to its diagonal [40].

5.3. Experimental setup

The goal of the experimental evaluation in this section is to
show the robustness of kernel algorithms in unsupervised learning.
In the case of kernel algorithms, four different kernels will be used;
linear kernel, Gaussian kernel, Tukey kernel, Andrews kernel,
Huber kernel and Cauchy kernel.

As evaluation measure, we use clustering accuracy that requires
a one to one mapping between clusters and classes, which is
known to be an NP-hard problem for k > 3. The confusion matrix
has a dimensionality of k clusters by k' classes where the(i,j)'h
entry of the matrix correspond to the number of data points from
cluster i that are classified in class j. Clustering accuracy is com-
puted with the following equation Acc = M Tracelconfusion-matrix()) ‘1

solve this maximization problem the Hungarian algorithm is used
[75].

5.4. Hyperparameters optimization

We performed an exploration of hyperparameters for each of the
proposed and baseline methods. The exploration was performed
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with the appropriate scale for the type of parameter. In the particu-
lar case of the bandwidths of the different kernels used, a logarith-
mic scale was used, varying them from two to the power of minus
fifth power to two to the fifth power.

5.5. Results

Fig. 2 shows the sensibility of clustering accuracy for each
robust kernel with different bandwidth parameter. Tukey,
Andrew’s and RBF show good results between two to the minus
second power to two to the second power for the Movement Libras
dataset. Both RBF and Andrews robust kernels have poor clustering
accuracy for high values of the bandwidth parameter. Tukey robust
kernel has better results for both datasets when the bandwidth
parameter is greater.

Fig. 3 shows the clustering accuracy results for thirteen datasets
and CNMF as the main algorithm with five robust kernels and one
linear kernel. It can be seen that Tukey KCNMF is better in six of the
thirteen datasets. Also, Andrews KCNMF is better in three of the
thirteen datasets. It is worth nothing that CNMF without any
Robust Kernels is the worst in three of the thirteen datasets and
also it is not the best in any of the thirteen datasets.

Fig. 4 shows clustering accuracy results for thirteen datasets
and KMeans as the main algorithm with five robust kernels and
one linear kernel. It can be seen that RBF KMeans is better in three
of the thirteen datasets. Also, Tukey KMeans is better in three of
the thirteen datasets. It is worth nothing that KMeans with the lin-
ear kernel is not the best in any of the thirteen datasets.

Table 3 presents the findings after running each algorithm
thirty (30) times for each algorithm in every data set. Each cell of
the table presents the mean accuracy for the column algorithm
with the row data set. It can be observed that none of the algo-
rithms is the best in every data set, also that the Gaussian, Tukey,
Andrews, Huber and Cauchy kernels together are the best in five of
the 13 datasets. The NMFR state-of-the-art algorithm performs
quite well, being the best in five of the 13 datasets but with poor
performance on datasets like Abalone, AR and WineQ.

Given that none of the algorithms is the best with every data
set, it is necessary to do a non-parametric test to verify if a signif-
icant difference exists among algorithms. A variance analysis non-
parametric Friedman’ test was used in order to test the behavior of
the different algorithms. It is sought to determine whether or not
there is a significant difference between the different algorithms
in Table 3. The test is implemented as follows: Based on {x;},, .
- a data table where m is the number of datasets and n is the num-
ber of algorithms. The rank of the algorithms is defined for each of
the datasets, organizing them from highest to lowest in accordance

Movement Libras

Kernels
—e— Andrews
0.45 Rbf
—=— Tukey
—+— Cauchy
—— Huber

Clustering Accuracy
o o o o o
N N w w B
o o [~1 (3] o

o
3

2 il 2 a3 20 22 24
Logarithmic Scale Bandwidth
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with the clustering accuracy presented in Table 3. Finally, the aver-
age rank, among the datasets, is calculated for each algorithm, as
reported in the last column of Table 4. A small average rank for
an algorithm means that the algorithm performs better than other
algorithms, so it is ranked close to the top, for several datasets.

The null hypothesis of the Friedman’s test is that all algorithms
are equivalent. To perform the test, we calculate:

(-39

where R; is the rank of the j-th algorithm, and it is distributed
according to a y with k — 1 degrees of freedom. A Fr statistic is
found with

(n—1xp
nk—1)—;

12n

P = k1)

Fr = = 3.6524

With this, we rule out the null hypothesis that states that there
is no significant statistical difference in the accuracy of the meth-
ods. In light of the above, a pairwise Nemenyi post hoc test is per-
formed in order to attempt to determine whether there is a
significant difference between two algorithms. To this effect, two
algorithms are significantly different if the range average differs
by at least one critical difference

k(k+1)
* 6n

Where k=19 and n = 13. g, is obtained as the t standardized
distribution, divided by +/2. Fig. 5 illustrate the differences
between methods according to their average rank and the critical
differences. The length of the bars for each method correspond to
the critical difference (CD). According to the Nemenyi post hoc test,
the average rank of two methods is significantly different if the
corresponding bars do not intercept.

(D=q

5.6. Discussion

In this section, we presented a systematic comparison between
state-of-the-art algorithms and robust kernels built under Proposi-
tion 1. It was found at first glance that the kernel algorithms, Ker-
nel KMeans and Kernel CNMF, perform better when a robust
kernel, such as Gaussian or Tukey Kernel, is used compared to
the use of a linear kernel. Furthermore, it was found that Tukey
kernel improves the results obtained by the Gaussian kernel; this
would imply that this kernel could be used in other domains where
the Gaussian kernel has been successful, notably in conjunction

WineQ
045 A ;
\ ol 5
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Fig. 2. Sensibility study of bandwidth parameters (c or &) for each robust kernel in two datasets using kernel convex nonnegative matrix factorization (Kernel CNMF). The x-
axis represents a logarithmic scale from two to the minus fifth power to two to the fifth power. The hue represents the standard deviation of the clustering accuracy for a

given robust kernel with a certain bandwidth number.
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Fig. 3. Clustering accuracy results for Convex Non Negative Matrix Factorization (CNMF) with different robust kernels.
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Fig. 4. Clustering accuracy results for Kernel KMeans algorithm with different kernels.

Table 3

Clustering Accuracy Results for different robust kernel and non-kernel methods.
Abalone AR AT&T  Scale Balance Coil Fault Jaffe Libras Movement ORL Segment Umist Wineq Yale
Tukey KCNMF 0.500 0.203 0.738 0.533 0.668 0346 0.875 0.486 0.600 0.568 0.445 0.482 0.280
RBF KCNMF 0.513 0.223  0.735 0.538 0.620 0345 0.848 0.4756 0.623 0.615 0.432 0457 0242
Andrews KCNMF 0.529 0.181 0.631 0.590 0.607 0275 0.866 0.479 0.564 0.544 0.461 0466  0.072
Huber KCNMF 0.488 0.119 0.469 0.537 0385 0382 0.501 0.387 0.517 0 0 0.427  0.073
Cauchy KCNMF 0.487 0.145 0.334 0.5301 0310 0400 0.398 0.32 0379 0 0.298 0.455 0.165
RBF KKMeans 0.508 0.146 0.668 0.531 0.617 0.167 0.776 0.433 0.514 0.520 0.445 0480 0.123
Tukey KKMeans 0.507 0.110  0.596 0.515 0649 0346 0.818 0.435 0.505 0.503 0.474 0.460  0.085
Andrews KKMeans 0.505 0.104  0.591 0.596 0514 0.168 0.762 0.442 0.512 0.545 0.436 0.473 0.087
Huber KKMeans 0.508 0.106 0.588 0.516 0.582 0306 0.729 0.437 0.499 0.550 0.432 0.395 0.082
Cauchy KKMeans 0.508 0.105 0.598 0.512 0619 0428 0.732 0.437 0.481 0.143 0.437 0484  0.093
NSC 0.388 0.183 0.799 0.562 0.806 0.279 0.910 0.470 0.661 0.611 0.615 0.445 0314
NCUT 0.387 0.181 0.801 0.559 0.804 0.262 0.910 0.467 0.671 0.610 0.588 0.456  0.308
LSD 0.388 0.171 0.810 0.546 0.754 0.252 0.910 0.496 0.676 0.641 0.613 0.400  0.300
NMFR 0.372 0.160  0.810 0.569 0.850 0234 0910 0.461 0.671 0.733 0.680 0.393 0.296
PNMF 0.404 0.177 0.8 0.557 0.735 0.246 0.910 0.500 0.662 0.506 0.513 0.413 0.268
ONMF 0.383 0.1383  0.798 0.550 0.669 0.246 0.910 0.500 0.665 0.504 0.575 0.417  0.258
RMNMF 0.520 0.212 0.693 0.585 0554 0337 0.809 0.429 0.328 0.491 0.433 0.443 0.215
ConvexNMF 0.407 0.160  0.638 0.543 0.573 0 0.808 0.432 0.551 0 0.422 0.450  0.099
KMeans 0.499 0.1061  0.650 0.517 0.561 0333 0.707 0.4478 0.492 0.224 0.380 0437  0.095

with support vector machines [76,51]. Finally, our comparisons to
several state-of-the-art algorithms such as robust manifold, ran-
dom walk NMF, and NMF, found no significant difference between
these algorithms and Robust Kernel CNMF that uses Tukey kernel.
Something worth noting is that the two algorithms RNMF and
RKNMEF use the framework of augmented Lagrangian optimization,
which could be used to improve the results of KC(NMF, and could
also kernelize the two algorithms RNMF and RMNMEF.

Tukey KCNMF performs quite well on non-image data such as
Fault and Wineq. State-of-the-art algorithms such as NSC, NCUT
and NMFR do not have as good a performance as Robust Kernel
KCNMF algorithms on non-image data. The poor performance of
Robust Kernels for image data may be due to the CNMF Algorithm’s
sub-optimal optimization process. A future testing with LSD and
Robust Kernels such as Tukey kernel could show better perfor-
mance, because the linear approach, LSD, shows very good results
on Image data. Andrews robust kernel exhibited a strange behavior
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because on some data such as Abalone and Umist, it outperformed
the other robust kernels, even though for the other datasets, it
showed a very poor performance. This behavior may be due to
the mapping generated by the cosine function used in the Andrews
kernel. On the contrary, by using a robust kernel such as the RBF
kernel, the kernel K-Means was able to obtain a robust cluster esti-
mation in spite of the noise contamination. Huber and Cauchy ker-
nels had a poor performance with Kernel CNMF. These behaviors
due to the Kernel CNMF does not converge to any value when all
the values of the Gram Matrix are negative. Further modifications
to kernel CNMF are necessary to work with these two kernels.
Additionally, a sensibility study of bandwidth parameters (c or
o) in Movement Libras and Fault datasets was performed. In Move-
ment Libras, there is a clear behavior of the dependency of a good
selected bandwidth parameter on the clustering accuracy. There is a
gap of almost forty percent between a good parameter selection and
a bad one. In WineQ, there is not a clear behavior of the dependency
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Table 4
The rank of each clustering method on the different datasets. The last column corresponds to the average rank, a lower value is better. 3.
Abalone AR AT&T Scale Balance Coil Fault Jaffe Libras Movement ORL Segment Umist Wineq Yale Average Rank
Tukey KCNMF 9 3 7 13 7 4 7 4 8 6 9 2 5 6.46 4
RBF KCNMF 3 1 8 11 9 6 9 6 7 3 14 7 8 7.08 6
Andrews KCNMF 1 5 13 2 12 11 8 5 9 9 8 5 19 8.23 8
Huber KCNMF 11 14 18 12 18 3 18 18 11 17 19 14 18 14.69 19
Cauchy KCNMF 12 12 19 15 19 2 19 19 18 17 18 9 10 14.54 18
RBF KKMeans 4 11 10 14 11 18 13 15 12 10 9 3 11 10.85 11
Tukey KKMeans 7 15 15 18 8 4 10 14 14 13 7 6 16 11.31 12
Andrews KKMeans 8 19 16 1 17 17 14 11 13 8 12 4 15 11.92 14
Huber KKMeans 4 17 17 17 13 9 16 12 15 7 14 18 17 13.54 16
Cauchy KKMeans 4 18 14 19 10 1 15 12 17 16 11 1 14 11.69 13
NSC 15 4 5 5 2 10 1 7 6 4 2 11 1 5.62 1
NCUT 17 5 3 6 3 12 1 8 2 5 4 8 2 5.85 2
LSD 15 8 1 9 4 13 1 3 1 2 3 17 3 6.15 3
NMFR 19 9 1 4 1 16 1 9 2 1 1 19 4 6.69 5
PNMF 14 7 4 7 5 14 1 1 5 11 6 16 6 7.46 7
ONMF 18 13 6 8 6 14 1 1 4 12 5 15 7 8.46 9
RMNMF 2 2 9 3 16 7 11 17 19 14 13 12 9 10.31 10
ConvexNMF 13 9 12 10 14 19 12 16 10 17 16 10 12 13.08 15
KMeans 10 16 11 16 15 8 17 10 16 15 17 13 13 13.62 17
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Fig. 5. Pairwise Nemenyi test with critical difference of 4.72 for results of clustering accuracy in Table 3. NSC is the algorithm with less average rank (5.62) followed by NCUT
with 5.85 of average rank. The worst method according to average rank is Huber KCNMF with average rank of 14.69.

of a good selected bandwidth parameter. In robust statistics, the
bandwidth parameter controls the robustness of the M-estimator.
There seems to be a relationship between the robustness of the
method and the selected bandwidth parameter.

6. Conclusions and future work

We showed that performing location estimation in a feature
space obtained from special kernels such as the Gaussian kernel, is
equivalent to performing location estimation in the original data

184

space using a robust M-estimator. M-estimators have been used
recently in different areas of machine learning, pattern recognition,
and data mining. A connection between M-estimators and kernels
opens the interesting possibility of working with contaminated data
sets in a non-linear feature space. Building new kernels that match
the notion of high dimensionality with robust statistics opens new
possibilities in kernel mean embedding, support vector machines,
scattered data approximation, kernel principal component analysis
among others. Tukey Robust kernel is not positive definite PD" for all
n. Andrews Robust kernel is not positive definite even not conditional
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positive definite. Huber and Cauchy Robust kernel are conditionals
positive definite of order 1. We could find - in the practical realm - that
Tukey kernels and Andrews kernels also work fairly well, and that fur-
thermore, with the aid of Convex Nonnegative Matrix Factorization,
they are as good as Nonnegative Spectral Cut and Normalized Cuts,
since it could not be statistically proven that there is a significant dif-
ference between these methods.

Tukey and Andrews kernels showed good performance in the
unsupervised machine learning task of clustering. Further testing
in other areas such as dimensionality reduction with principal
component analysis, or classification with support vector machi-
nes, is needed to show the potential advantage of using robust ker-
nels. Future research calls to build new algorithms with new
robust and sparse kernels. Tukey and Andrews kernels have the
particularity of being sparse in accordance with the regularization
parameter. Besides, new kernels can be defined by combining
other kernels, this means that a mixture of robust kernels may
be robust. Exploring the robustness of these mixtures is also part
of our future work.
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