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Abstract

Traditionally, machine learning algorithms relied on reliable labels from experts to build pre-
dictions. More recently however, algorithms have been receiving data from the general pop-
ulation in the form of labeling, annotations, etc. The result is that algorithms are subject to
bias that is born from ingesting unchecked information, such as biased samples and biased
labels. Furthermore, people and algorithms are increasingly engaged in interactive pro-
cesses wherein neither the human nor the algorithms receive unbiased data. Algorithms
can also make biased predictions, leading to what is now known as algorithmic bias. On the
other hand, human’s reaction to the output of machine learning methods with algorithmic
bias worsen the situations by making decision based on biased information, which will prob-
ably be consumed by algorithms later. Some recent research has focused on the ethical and
moral implication of machine learning algorithmic bias on society. However, most research
has so far treated algorithmic bias as a static factor, which fails to capture the dynamic and
iterative properties of bias. We argue that algorithmic bias interacts with humans in an itera-
tive manner, which has a long-term effect on algorithms’ performance. For this purpose, we
present an iterated-learning framework that is inspired from human language evolution to
study the interaction between machine learning algorithms and humans. Our goal is to study
two sources of bias that interact: the process by which people select information to label
(human action); and the process by which an algorithm selects the subset of information to
present to people (iterated algorithmic bias mode). We investigate three forms of iterated
algorithmic bias (personalization filter, active learning, and random) and how they affect the
performance of machine learning algorithms by formulating research questions about the
impact of each type of bias. Based on statistical analyses of the results of several controlled
experiments, we found that the three different iterated bias modes, as well as initial training
data class imbalance and human action, do affect the models learned by machine learning
algorithms. We also found that iterated filter bias, which is prominent in personalized user
interfaces, can lead to more inequality in estimated relevance and to a limited human ability
to discover relevant data. Our findings indicate that the relevance blind spot (items from the
testing set whose predicted relevance probability is less than 0.5 and who thus risk being
hidden from humans) amounted to 4% of all relevant items when using a content-based filter
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that predicts relevant items. A similar simulation using a real-life rating data set found that
the same filter resulted in a blind spot size of 75% of the relevant testing set.

Introduction

Websites and online services offer large amounts of information, products, and choices. This
information is only useful to the extent that people can find what they are interested in. All
existing approaches aid people by suppressing information that is determined to be disliked or
not relevant. Thus, all of these methods, by gating access to information, have potentially pro-
found implications for what information people can and cannot find, and thus what they see,
purchase, and learn. There are two major adaptive paradigms to help sift through information:
information retrieval and recommender systems. Information retrieval techniques [1-9] have
given rise to the modern search engines which return relevant results, following a user’s
explicit query. For instance, in the probabilistic retrieval model [2], optimal retrieval is
obtained when search results are ranked according to their relevance probabilities. Recom-
mender systems, on the other hand, generally do not await an explicit query to provide results
[10-17]. Recommender systems can be divided based on which data they use and how they
predict user ratings. The first type is content-based filtering (CBF) algorithms [12, 18-24]. It
relies on item attributes or user demographics, but often not relations between users (i.e. social
relations), as data. Collaborative Filtering (CF) [10, 17, 25-30], on the other hand, does not
require item attributes or user attributes. Rather it makes predictions about what a user would
like based on what other similar users liked. Both adopt algorithms, e.g. K-nearest neighbors
[31, 32] and non-negative matrix factorization (NMF) [33-37], that have close analogs in the
psychology literatures on concept learning, e.g. exemplar models [38-40] and probabilistic
topic models [41, 42].

Information filtering algorithms [11, 43-45] similarly provide users with a list of relevant
results, but do so in response to a query. One classic example is the Rocchio filter [46-48],
which modifies the user’s initial query after a first iteration of search to help filter less relevant
results. The query is modified based on the set of initial search result documents which are
labeled by the user as relevant and non-relevant, respectively. The new query (which is treated
like a pseudo-document) is modified by adding and subtracting a weighted combination of rel-
evant and non-relevant documents, respectively. This is quite similar to content-based recom-
mendation, where information about the items is used to rank potentially relevant results.

Common to both recommender systems and information filters is: (1) selection, of a subset
of data about which people express their preference, by a process that is not random sampling,
and (2) an iterative learning process in which people’s responses to the selected subset are used
to train the algorithm for subsequent iterations. The data used to train and optimize perfor-
mance of these systems are based on human actions. Thus, data that are observed and omitted
are not randomly selected, but are the consequences of people’s choices. Recommendation sys-
tems suggest items predicted to be of interest to a user (e.g. movies, books, news) based on
their user profile [12, 13, 26]. The prediction can be based on people’s explicit (e.g. ratings) or
implicit (e.g. their browsing or purchase history) data [49-54], or even query patterns [55].
Research into human choice suggests that both explicit and implicit choices systematically
vary based on context, especially the other options that are present when choosing [56-59].

In addition to the simple effects of the interaction between algorithms’ recommendations
and people’s choices, people may reason about the processes that underlie the algorithms.

PLOS ONE | https://doi.org/10.1371/journal.pone.0235502  August 13, 2020

2/39


https://doi.org/10.1371/journal.pone.0235502

PLOS ONE

Evolution and impact of bias in human and machine learning algorithm interaction

Research in cognitive science has shown that people reason about evidence selected by other
people. In [60], a computational framework was proposed for modeling how people’s infer-
ences may change as a consequence of reasoning about why data were selected. This frame-
work has been formalized in learning from helpful and knowledgeable teachers [61-64],
deceptive informants [65], and epistemic trust [66-68]. People’s reasoning about the inten-
tional nature of the algorithms may exacerbate the effects of cyclic interaction between the
algorithms’ recommendations and people’s choices.

We propose a framework for investigating the implications of interactions between human
and algorithms, that draws on diverse literature to provide algorithmic, mathematical, compu-
tational, and behavioral tools for investigating human-algorithm interaction. Our approach
draws on foundational algorithms for selecting and filtering of data from computer science,
while also adapting mathematical methods from the study of cultural evolution [69-71] to for-
malize the implications of iterative interactions.

In our approach, we focus on the primary sources and consequences of bias in collected
data. The primary sources of bias come from algorithms and humans. Algorithms, such as rec-
ommender systems, filter information in order to present humans with preferred content.
After receiving more labels from humans, machine learning algorithms are trained to predict
future recommendations. Unlike standard learning theory, the training data are no longer ran-
domly sampled. This in return puts in questions the guarantees about learning from such data.
The second source of bias comes from humans. In addition to receiving iterated information
optimized to their preferences, humans are not required to provide labels for the presented
data. Humans’ choices, when labelling data, are also highly non-random, and would reflect not
only their opinions about the presented content, but also inferences about why the content
was presented. Finally, the bias that is introduced into the data at any point can be amplified
after retraining models and this in turn would further impact the predictions or recommenda-
tions. Either of the individual sources of bias could yield instability, thus motivating the need
for a better understanding of the performance of such systems in the context of human-algo-
rithm interactions. Specifically, there is a need for a better understanding of the conditions
under which we can expect the emergence of systematic bias in the selection of information by
algorithms, and for the identification of the conditions under which we can “undo” the effects
of these biases to obtain accurate estimates from biased data. We expect the findings to con-
tribute insights back to the fundamental psychology of human reasoning, choice and learning
and to the fundamental computer science of learning, recommendation and information
filtering.

Related work
Iterated learning and language evolution

In language learning, humans form their own mapping rules after listening to others, and then
speak the language following the rules they learned, which will affect the next learner. Lan-
guage learning and machine learning have several properties in common (see Fig 1). For
example, a ‘hypothesis’ in language is analogous to a ‘model’ in machine learning. Learning a
language which gets transmitted throughout consecutive generations of humans is analogous
to learning an online model throughout consecutive iterations of machine learning [69].

More specifically, we point to the work of Griffith [69] because it was the first work that
showed formally, through a Markov chain mathematical framework how the iterated learning
within a language learning scenario converges to the prior in the absence of a dependence
between the previous iteration’s output and the next iteration’s input.
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(a) Analogy between language learning and machine
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(b) Chain of events in language learning (top), machine
learning (middle) and iterative human-machine learning
algorithm interaction (bottom). ML refers to Machine
Learning

Fig 1. Language learning vs. machine learning. Language learning is analogous to machine learning in several aspects, such as
‘hypothesis’ to ‘model’ in sub-figure (a). Learning a language which gets transmitted throughout consecutive generations of human
speakers is analogous to learning a model through consecutive iterations of online machine learning in sub-figure (b). In the iterative
human-machine learning algorithm interaction, the output from ML affects human behavior and human also interact with the

output which affects next iteration.

https://doi.org/10.1371/journal.pone.0235502.g001

Although the work of Griffith is situated within the context of language evolution, or more
specifically in the context of human learning of language throughout several generations, it is
“analogous”, in the sense of information flow and adaptation (and not the actual application
domain), to the problem of supervised machine learning, where a model (instead of language)
is learned iteratively throughout several iterations (instead of generations).

Thus we consider language evolution more as an “analogous”, rather than a “similar” set-
ting to the iterated machine learning in this paper. We further extend the derivations from
Griffith et al. [69] derivations which have been done within a language learning framework, to
the realistic framework of dependent interactions between a model and a human in an iterated
learning setting, which is the setting for this paper. More specifically in our setting, there is a
dependency between the previous output and the next input, and it is this dependency that
can generate iterated bias.

Iterated learning was found to produce meaningful structure patterns in language learning
[72-76]. Language evolution can be modeled as a Markov chain, as shown in Fig 2(A). The
first learner is exposed to linguistic data and forms an initial hypothesis, before producing
their own data, that will serve as the input to the next learner. After sufficient iterations, this
process generates a certain hypothesis. This iterated learning chain is expected to converge the
hypothesis to the prior distribution of all hypotheses in case that the learner is a Bayesian
learner [69]. What this means is that the knowledge learned is not accumulated during the
whole process. We refer to this iterated learning model as pure iterated learning (PIL). One
problem about this iterated language learning model is the difficulty to prove the convergence
or the boundary practically, even if it is proved theoretically [74]. Rafferty et al. gave an upper
bound for the convergence, which is nlog(n) iterations for Bayesian learning of the ranking of
n constraints or the n binary parameters values [77].

Perfors et al. showed that, when certain assumptions about the independence of language
and the world are abandoned, the learners converge to languages that depend on the structure
as well as their prior biases [78]. In Fig 2(A), there is no dependency between current input x
and the previous learned hypothesis, which represents the graphic model of PIL. While in
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(a) lterated learning without dependency

(b) lterated learning with dependency

Fig 2. Markov chains for iterated learning with (bottom) and without (top) dependency from previous iterations.

https://doi.org/10.1371/journal.pone.0235502.9002

Fig 2(B), current input data x has dependency on the previous hypothesis, which in the mod-
ern world is more realistic.

While iterated learning ensembles the online learning process [79], they differ in several
ways. Online learning occurs in a consecutive manner, with the learner providing an answer
to a given question in each round. The learner answers the questions using a prediction model
or hypothesis, that maps from sets of questions to the set of answers. After prediction, the qual-
ity is measured based on the true answers. The goal is to minimize the cumulative loss in the
online learning process [80]. Meanwhile, in iterated learning, we are interested in investigating
the given information’s effect on the learned hypothesis.

Relationship between iterated learning and information retrieval

It is interesting to recognize how Iterated Learning manifests itself in the context of adaptive
information filters, as exemplified by modern search engines. Based on information retrieval,
modern search engines return relevant results, following a user’s explicit query [7]. For
instance, in the probabilistic retrieval model, optimal retrieval is obtained when search results
are ranked according to their relevance probabilities [2]. Recommender systems, on the other
hand, generally do not await an explicit query to provide results [16]. Both Information
retrieval and recommender system, to some extent, require information selection to get better
results, thus iterated interactive learning naturally fits the purpose of studying the interaction
of algorithms and humans.

Relationship between iterated algorithmic bias and other types of bias

In statistics, bias refers to the systematic distortion of a statistic. Here we can distinguish a
biased sample, which means a sample that is incorrectly assumed to be a random sample of a
population, and estimator bias, which results from an estimator whose expectation differs
from the true value of the parameter [81]. Within our scope, bias is closer to the sample bias
and estimator bias from statistics; however, we are interested in what we call ‘iterated algo-
rithmic bias‘ which is the dynamic bias that occurs during the selection by machine learning
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Table 1. Different bias types studied in recent research. Iterated algorithmic bias happens when an algorithm interacts with human response continuously, and updates
its model after receiving feedback from the human. Meanwhile, the algorithm interacts with the human by showing only selected items or options. Other types of bias are
static, which means they have a one-time influence on an algorithm.

Bias type Iterative Ethical issue Pre-algorithm Post-algorithm Research
Feature X v 4 X [82-86]
Human label X 4 4 X [87-90]
Sample selection X 4 v X [91-94]
Iterated algorithmic v v v v this paper

https://doi.org/10.1371/journal.pone.0235502.t001

algorithms of data to show to the user to request labels in order to construct more training
data, and subsequently update their prediction model, and how this bias affects the learned (or
estimated) model in successive iterations.

Algorithmic bias can be categorized based on the time in which it occurs during the
machine learning process [95]. Generally, selecting biased training samples leads to a biased
model [96]. Training data bias may come from various sources which depend on the applica-
tion, such as human labeling, sample selection and others. Several machine learning tech-
niques have been proposed to deal with this problem [87-94]. The post-algorithmic bias
emerges when users interpret the output of machine learning algorithms [97-100]. Table 1
lists several common biases and compares them with our iterated algorithmic bias based on
several properties.

Recent research pointed to the need to pay attention to bias and fairness in machine learn-
ing [101-105]. Some research has studied different forms of biases, some are due to the algo-
rithms while others are due to inherent biases in the input data or in the interaction between
data and algorithms [85, 97, 106-113]. Some research on algorithmic bias has focused on the
ethical problems that machine learning algorithms might create [82-86, 114-116]. For
instance, Zook et al. [82] have recently argued that researchers must carefully check the impact
of algorithms on specific groups of people (such as defined by gender and race) before deploy-
ing algorithms. Kirkpatrick [83] illustrated the ethical problems that can occur when algorith-
mic bias is introduced in the justice system. Garcia [85] stated that algorithmic bias may
worsen racist bias in certain circumstances. More recently, Kate Crawford’s presentation
related to research on the fairness of machine learning algorithms attracted more attention
from the machine learning community on the problem of algorithmic bias [82]. Some work
studied biases emerging due to item popularity [117-120]. A recent work studied bias that is
due to the assimilation bias in recommender systems [121]. Because recommender systems
have a direct impact on humans, some recent research studied the impact of polarization on
biasing rating data [122, 123] and proposed strategies to mitigate this polarization in collabora-
tive filtering recommender systems [124], while other recent research pointed to bias emerging
from continuous feedback loops between recommender systems and humans [125-128].
Opverall, the study of algorithmic bias falls under the umbrella of fair machine learning [129].

Similar research has been conducted about how model updates in machine learning algo-
rithms affect fairness. Sinha et al. aimed to understand how the feedback loop in recommender
systems affects the entire rating matrix, and developed an algorithm to deconvolve the feed-
back loop with multiple assumptions [130]. Patro et al. proposed an ILP (Integer Linear Pro-
gramming Problem)-based online optimization to deploy changes incrementally in multiple
steps of recommendation so that the transition is smooth, and leads to an efficient and fair rec-
ommendation for both the producers and the customers in two-sided platforms [131]. Milano
et al. focused on ethics problems within recommender systems updates, which results from
how humans react to the output of recommender systems [132]. However, our paper focuses

PLOS ONE | https://doi.org/10.1371/journal.pone.0235502  August 13, 2020 6/39


https://doi.org/10.1371/journal.pone.0235502.t001
https://doi.org/10.1371/journal.pone.0235502

PLOS ONE

Evolution and impact of bias in human and machine learning algorithm interaction

'Qs, Algorithm

Algorithm

Algorithm

Fig 3. Evolution of bias between algorithm and human. In sub-figure (a), biased data from a human may lead to a biased
algorithm, this is pre-algorithmic bias. In sub-figure (b), a biased algorithmic output might affect human behavior: For instance, by
hiding certain items from humans, algorithms may affect human discovery, learning, and awareness in the long term. Sub-figure (c)
indicates a continuous interaction between humans and algorithms that generates bias that we refer to as iterated bias, namely bias
that results from repeated interaction between humans and algorithms.

https://doi.org/10.1371/journal.pone.0235502.9003

on the interaction between algorithms and humans, and how this interaction impacts humans’
ability to see(or discover) relevant items and how this in turn impacts the algorithms’ perfor-
mance, rather than proposing a cure.

Taking all the above in consideration, we observe that most previous research has treated
algorithmic bias as a static factor, which fails to capture the iterative nature of bias that is
borne from continuous interaction between humans and algorithms. We argue that algorith-
mic bias evolves with human interaction in an iterative manner, which may have a long-term
effect on algorithm performance and humans’ discovery and learning.

In this study, we focus on simulating how the data that is selected to be presented to
humans affects the algorithm’s performance and how human choice of action (specifically, to
label or not to label the selected instance(s), that are presented to them by the algorithm), may
in turn affect the algorithm’s performance (see Fig 3). In this work, we choose recommenda-
tion systems as the machine learning algorithm to be studied. One reason is that recommenda-
tion systems have more direct interaction options with humans, while information retrieval
focuses on getting relevant information only. We further simplify the recommendation prob-
lem into a 2-class classification problem, e.g. like/relevant (class 1) or dislike/non-relevant
(class 0), thus focusing on a personalized content-based filtering recommendation algorithm.

Iterated algorithmic bias in online learning

Because we are interested in studying the interaction between machine learning algorithms
and humans, we adopt an efficient way to observe the effect from both sides by using iterated
interaction between algorithm and human action. Researchers from behavioral science have
developed frameworks for investigating the effect of iterative interactions [69]. It is known that
iterated interaction can be considered to generate Markov chains in the long-run, which gives
us a well-formed framework to analyze the asymptotic effects of local decision [72, 74]. As
stated before, we consider a simplified recommendation problem consisting of a 2-class classi-
fication problem. Thus we start with simple supervised machine learning to predict the ‘rele-
vance’ class label of an item for a single user.

To begin, we consider three possible mechanisms for selecting information to present to
users: Random, Active-bias, and Filter-bias. These three mechanisms simulate different
regimes. Random selection is unbiased and used here purely as baseline for no filtering.
Active-bias selection introduces a bias whose goal is to accurately predict user’s preferences.
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Filter-bias selection brings a bias whose goal is to provide relevant information or preferred
items.

Before we go into the three forms of iterated algorithmic bias, we first investigate Pure Iter-
ated Learning (PIL). We adopt some of the concepts from Griffiths [69]. Consider a task in
which the algorithm learns a mapping from a set of m inputs X = {x;, . . ., X,,,} to m correspond-
ing outputs {y;, . . ., ¥,,,} through a latent hypothesis /. For instance, based on previous pur-
chase or rating data (x, y), a recommendation system will collect a new data about purchased
item (X0, Ynew) and update its model to recommend more interesting items to users. Here, x
represents the algorithm’s selections and y represents people’s responses (e.g. likes/dislikes).
Following Griffiths’ model for human learners, we assume a Bayesian model for prediction.

Iterated learning with iterated filter-bias dependency

The extent of the departure that we propose from a conventional machine learning framework
toward a human—machine learning framework, can be measured by the contrast between the
evolution of iterated learning without and with the added dependency. As shown in Fig 2(a),
without the dependency, the algorithm at step #n accepts input point x from a set X, which is
generated from a distribution p(x) that is independent of all other variables. Notation g(x) is
used to represent this independence. Specifically, g(x) indicates an unbiased sample from the
world, and not a selection made by the algorithms. On the other hand, with the dependency as
shown in Fig 2(b), the algorithm, at iteration #, sees input x,, which is generated from both the
objective distribution g(x) and another distribution p,..,(x) that captures the dependency on
the previous hypothesis h,,. This in turns implies bias that con-affect of what can be seen by the
user in the future. Thus, the probability of input item x is given by:

p(xlh,) = (1 = €)p,,(x|h,) + eq(x) (1)

Recall that the probability of seeing an item is related to its rank in a rating based recom-
mendation system or an optimal probabilistic information filter [2]. For a rating based recom-
mendation system, the ranking is based on the prediction from the system, or the probability
of relevance from prediction. In both situations, the selected data point x is likely to be highly
rated or relevant, given h. In most circumstances, the recommendation system has a preferred
goal, such as recommending relevant items (with y = 1). Then x will be chosen based on the
probability of relevance p(y = 1|x, h,,), x € X. Assume that we have a candidate pool X at time n
(In practice X would be the data points or items that the system can recommend at time ),
then

ply =1x,h,)
> owex Py = 1x,h,) (2)

Poan(xlh,) =

The selection of inputs depends on the hypothesis, and therefore information is not unbi-
ased, p(x|h,,)#q(x). The derivations of the transition probabilities in Eq 2 will be modified to
take into account Eq 1, and will become

Pltyallt) = S5 plhy %, ¥)p(YIx, o (K11, o)

xeX yeYy
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Eq 3 can be used to derive the asymptotic behavior of the Markov chain with transition
matrix T(h,,,) = P(hn+1|h

p(h,.y) = ep(h,yy) + (1 — )Ty (4)

Ty = [ DD P |xy) D p(yI% 1, )P (xIB,) | p(R,) (5)

xeX yey h,eH

Thus, iterated learning with filter bias converges to a mixture of the prior and the bias
induced by filtering. To illustrate the effects of filter bias, we can analyze a simple and most
extreme case where the filtering algorithm shows only the most relevant data in the next itera-
tion (e.g. top-1 recommender). Hence

X" = argmaxP(y|x, h) (6)

(7)

0 otherwise

1 forx = x'
Peen(X[h,) = { }

. [zzp T y|x::mh,,] h). ®

xeX yey h,eH

Based on Eq 3, the transition matrix is related to the probability of item x being seen by the
user, which is the probability of belonging to class y = 1. The fact that x/”” maximizes p(y|x, h)
suggests limitations to the ability to learn from such data. Specifically, the selection of relevant
data allows the possibility of learning that an input that is predicted to be relevant is not, but
does not allow the possibility of learning that an input that is predicted to be irrelevant is
actually relevant. In this sense,selection of evidence based on relevance is related to the
confirmation bias in cognitive science, where learners have been observed to (arguably mala-
daptively) select data which they believe to be true (i.e. they fail to attempt to falsify their
hypotheses) [133]. Put differently, recommendation algorithms may induce a blind spot
where data that are potentially important for understanding relevance are never seen.

Iterated learning with iterated active-bias dependency

Active learning was first introduced to reduce the number of labeled samples needed for learn-
ing an accurate predictive model, and thus accelerate the speed of learning towards an
expected goal [134, 135]. Instead of choosing random samples to be manually labeled for the
training set, the algorithm can interactively query the user to obtain the desired data sample to
be labeled [136].

Pacive(X|H) o< 1 = p(y[x, h) ©)

where y = arg max (p(y[x, h)). That is, x values are selected to be least certain about y, the
predicted y value.

Assuming a simplified algorithm where only the very uncertain data are selected, we can
investigate the limiting behavior of an algorithm with the active learning bias. Assuming a
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mixture of random sampling and active learning, we obtain:

X%t — argm;ix (]. _p(?|xv h)) (10)

p(hn+1) = ep(hn+1) + (1 =€) T e (11)

Where

e = | 2> P 1%,¥)> p(yxe,h,) | plh,). (12)

xeX yeYy h,€H

The limiting behavior depends on the iterated active learning bias, x2*. This is, in most
cases, in opposition to the goal of filtering, the algorithm will only select data point(s) which
are closest to the learned model’s boundary, if we are learning a classifier for example. In con-
trast, the filtering algorithm is almost certain to pick items that it knows are relevant.

This is, of course, consistent with the different goals of recommendation and active learn-
ing. The analysis illustrates how the long-run implications of these different biases may be ana-
lyzed: By deriving the transition matrices implied by iterated application of data selection
biases, we can see that both active learning and filtering have different goals, but focus on an
ever more extreme (and therefore not representative) subset of data. Similar methods can be
applied to more nuanced and interesting biases to shed light on the consequences of iterative
interactions on the data.

Iterated learning with random selection

The iterated random selection is considered as baseline for comparison purpose. This selection
mechanism randomly choose instance to pass to next learner during iterations, i.e., the selec-
tion of the input x does not depend on the model learned.

p(xlh,..) = p(x) (13)

Iterated learning with human action bias

The above analysis assumes that people’s response is always observed. In the following, we
extend our analysis to the more realistic case where users have a choice of whether to act or
not on a given input.

Assume that people have some target hypothesis, h*, which represents optimal performance
for the algorithm. Data are composed of an input provided by the algorithm, x, an output, y,
and an action, a. The indicator variable a takes a value of 1 when people have provided a
response, and a value of 0 when people have not. When the value of y is not observed, it is
notated as y = NULL. These form triples d = (x, y, a){(x1, y1, 1), - - -» (Xu» Y> ,)}. The basic
inference problem, from one iteration to the next, is then, p(h,|d) o p(d|h;_1, K*)p(h;_y),

p(h,|d) o< p(ylx, a, h*)p(aly”, x, h*)p(x|h,_)p(h,_,) (14)

where y* represents the output that would be observed, if an action were taken. The main
change is in people’s choice of whether to respond, p(aly*, x, h*). A missing at random assump-
tion implies that p(a|y*, x, h*) does not depend on x, y*, or h, thus p(a|x, y*, h*) = p(a). If vari-
ables are missing due to a person’s choice, the probability of a missing value almost certainly
depends on x, y* and/or h*. We can formalize this choice using Luce choice [56], a special case

PLOS ONE | https://doi.org/10.1371/journal.pone.0235502  August 13, 2020 10/39


https://doi.org/10.1371/journal.pone.0235502

PLOS ONE

Evolution and impact of bias in human and machine learning algorithm interaction

of softmax [137] (Note that both softmax and Luce choice have known issues for modeling
human choice [56, 138]),

Ula = 1)y", x, b)

p(a |y ,X,h ) U(a — 0|)/*7-x7 h*) + U(g = ]_|)/*7x7 h*) ( 5)

where the choice of whether to act depends on the relative utility of acting as opposed to not
acting. For example, if it is especially effortful to act, then people will be biased against acting.
Alternatively, the utility of acting may depend on the value of y*. For example, it may be that
there is greater perceived utility in acting when the value of y* is very low, as in the case of an

angry customer or disappointed user. It is interesting to study the effect of biases in case of an

pla=1ly"=1)

Sazib=o» Which we call imbalanced human action

imbalanced ability in acting as quantified by

ratio.

In principle, one might think that this is related to the problem of dealing with missing data
that is common in statistics [139]. Indeed, in our analyses, we showed one special case that
reduces to the missing at random typically assumed in statistical applications [139]. However,
the framework proposed here is in fact more general; it proposes a theory of why data are miss-
ing, and formalizes the problem as one of understanding human behavior [66, 140, 141].

Evaluating the effect of iterated algorithmic bias on learning algorithms

In this section, we present the metrics we will use to measure the impact of different bias types
on: (1) The discoverability of items: we define the blind spot metric for this purpose and this
metric is novel; (2) The model: Thus we measure the boundary shift resulting from bias, which
ends up being related to the proportion of items predicted as relevant by the model; (3) The
inequality of the relevance predictions: We measure this using a standard metric for this pur-
pose, namely the Gini coefficient.

Blind spot. The blind spot is defined as the set of data available to a relevance filter algo-
rithm, for which the probability of being seen by the human interacting with the algorithm,
that learned the hypothesis h is less than 6:

D} = {x € X | p,,,(x|h) < 5} (16)

In the real world, some data can be invisible to some users because of bias either from users
or from the algorithm itself. Studying blind spots can enhance our understanding about the
impact of algorithmic bias on humans. In addition, we define the class-1-blind spot or relevant-
item-blind spot as the data in the blind spot, with true label y = 1

DI"={xeD} and y=1)} (17)

Note that the blind spot in Eq 16 is also called all-classes-blind spot.

Boundary shifting. Boundary shifting indicates how different forms of iterated algorith-
mic bias affect the model k that is learned by an algorithm. It is defined as the number of points
that are predicted to be in class y = 1 given a learned model h:

b=3 p(y=1lxh) (18)

xeX

Here b is the number of points that are predicted as class y = 1 given a learned model .

Gini coefficient. We also conduct a Gini coefficient analysis on how boundary shifts affect
the inequality of predicted relevance for the test set. Let p; = p(y = 1|x;, h). For a population
with # values p;, i = 1 to n, that are indexed in non-decreasing order (p;y < p(i+1)). The Gini
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coefficient can be calculated as follows [142]:

o (2i—n— 1)P(i)
ny . P

The higher the Gini coefficient, the more unequal are the frequencies of the different labels.
Given that the Gini coefficient measures the heterogeneity of the distribution of the relevance
probabilities, it can be used to gauge the impact of different iterated algorithmic bias modes on
the heterogeneity of the predicted probability in the relevant class during human-machine
learning algorithm interaction.

G=(

) (19)

Research questions

The key issue is to show that information filtering may lead to systematic biases in the learned
model, as captured by the classification boundary. Based on three metrics, we formulate three
research questions:

(RQ 1) How do different iterated algorithmic biases affect the behavior of models
learned by a ML algorithm (with human action probability equal to 1)? We consider three
aspects of a learned model to measure the outcome of algorithmic bias:

RQ 1.1) Boundary shift pre and post iteration (Eq 18);
RQ 1.2) Gini coefficient of predicted testing set labels (Eq 19);
RQ 1.3) Blind spot size pre and post iteration (Eq 17).

(RQ 2) How does human action (whether to label data when requested to by the
machine learning algorithm) affect the boundary shift? We consider the same three aspects
to measure the effects as in RQ 1.

(RQ 3) Does human preference towards labeling relevant data affect the boundary? We
consider the same three aspects to measure the effects as in RQ 1.

Experimental data sets

Our preliminary results are based on both synthetic and real data. As stated in Section Iterated
Algorithmic Bias in Online Learning 1, we mainly focus on a two-class model of recommenda-
tion in order to perform our study. The classes are relevant/non-relevant, or like/dislike. In
this situation, any classical supervised classification could be used in our model, such as Bayes-
ian classifier [143], Logistic regression [144], Support Vector Machine (SVM) [145], or
Extreme Learning Machine algorithms (ELM) [146, 147]. For the purpose of easier interpreta-
tion and visualization of the boundary and to more easily integrate with the probabilistic
framework in Section Iterated Algorithmic Bias in Online Learning 1, we chose the Naive
Bayes classifier.

Synthetic data: First, a 2D data set (see Fig 4) was generated from two Gaussian distribu-
tions corresponding to classes y € {0, 1} for like (relevant) and dislike (non-relevant), respec-
tively. Each class contains 1000 data points centered at {-2, 0} and {2, 0}, with standard
deviation o = 1. The data set is then split into the following parts:

o Testing set: used as a global testing set (200 points from each class).
« Validation set: used for the blind spot analysis (200 points from each class).

« Initializing set: used to initialize the first boundary (we tested different initializations with
class 1/class 0 ratios as follows: 10/100;100/100;100/10).
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Fig 4. Original data with two classes.

https://doi.org/10.1371/journal.pone.0235502.9004

o Candidate set: used as query set of data which will be gradually added to the training set
(points besides from the above three groups will be added to the candidate set).

The reason why we need the four subsets is that we are simulating a real scenario with inter-
action between human and algorithm. Part of this interaction will include picking query data
items and labeling them, thus augmenting the training set. Thus, to avoid depleting the testing
set, we need to isolate these query items in the separate “candidate pool”. A similar reason
motivates the remaining separate subsets in order to keep their size constant throughout all
the interactions of module learning.

We are also motivated to run experiments on high dimensional synthetic data set. We thus
generate 3D, 4D and 10D synthetic data to study the effects of different iterated algorithmic
bias in Section 1.

Real-life data set: In addition to synthetic data, we are motivated to use a real data set that
expresses likes/dislikes that could be used as a two-category data set similar to the synthetic
data set. Here we use the movielens dataset [148], which contains 100,004 ratings on 9125
movies. These ratings were made by 671 users between January 09, 1995 and October 16, 2016.
The latest dataset was generated on October 17, 2016. All 671 users had rated at least 20 mov-
ies. The ratings range in [1, 5] and include missing values. This data is a publicly available
benchmark data of anonymous user ratings. No identifying demographic information is
included. Each user is represented by an artificial id, and no other information is provided.

PLOS ONE | https://doi.org/10.1371/journal.pone.0235502  August 13, 2020 13/39


https://doi.org/10.1371/journal.pone.0235502.g004
https://doi.org/10.1371/journal.pone.0235502

PLOS ONE

Evolution and impact of bias in human and machine learning algorithm interaction

The collection method complied with the terms and conditions of the website here http://files.
grouplens.org/datasets/movielens/ml-latest-small-README.html. We discretized the ratings
into two labels: the range [1, 3] was mapped to class 0, while (3,5] was mapped to class 1. The
item content features were the movie genres. In order to perform similar experiments to the
synthetic data simulations, we needed to focus on one user at a time. Thus we selected users
who rated the highest number of movies and whose ratings are balanced between the two clas-
ses, analogously to our synthetic data. We first selected user ID = 547 to perform our study,
then repeated the experiments on 7 more users. User 547 has rated 2312 movies throughout
the 10 years. After removing some genres which appear across the movies less than 10 times,
we end up with 18 valid genres. We then perform Principal Component Analysis (PCA) to
reduce the dimensionality with component cutoff as 0.90 [149], and ended up with 11 content
features. One reason we perform PCA is to be more consistent with the Naive Bayesian
assumption that all features are independent.

Methods: The synthetic dataset represents a typical classification problem, it is the same for
our real-life dataset after selecting one user and corresponding items. Each dataset contains
two ground-truth categories of liked and disliked items. We wish to simulate the human-algo-
rithm interaction at the heart of recommendation and information filtering. To do so, we con-
sider three initialization possibilities: unbiased initialization in which examples are randomly
selected from both categories in the same proportion; two types of biased sampling in which
the relevant class (class 1) was oversampled by 10:1 or 1:10. Note that for the real-life data set,
we only explore the unbiased initialization. We consider three forms of iterated algorithmic
bias: random selection, active-bias which attempts to learn the true boundary between the two
categories, and filter (or reccommendation) bias which attempts to recommend only preferred
items (see Section 1). We simulate different types of responses by the user as action probabili-
ties that vary from labeling each item as it is recommended (human action probability of 1), to
two cases where the user labels only some of the items provided by the algorithm (human
action probabilities of 0.5 and 0.01). Note that absent any additional information, we assume
action probabilities to be 1 for the real-life data set. We then simulate runs of 200 iterations
where a single iteration consists of the algorithm providing a recommendation, the user label-
ing (or not) the recommendation, and the algorithm updating its model of the user’s prefer-
ences. Each combination of parameters yields a data set that simulates the outcome of the
human and algorithm interacting. We simulate this whole process 40 times independently,
which generates the data that we will use to investigate the research questions listed in Section
Research Questions 1.

Results

In this section, we present results using both synthetic and real-life data. We first present
results from the 2D synthetic data described in Section Experimental Data Sets 1. We also
explore high dimensional synthetic data in Section Experiments on High Dimensional Syn-
thetic Data Set 1. The real-life data set experiments are presented in Section Experimental
Data Sets 1. Finally, we summarize the conclusions from all our synthetic data experiments in
Table 19, and from the real-life data experiments in Table 20.

Experiments on 2D synthetic data

In this section, we presented results from the 2D synthetic data.

RQ 1: How does iterated algorithmic bias affect the learned categories?. To answer this
question, we control for human action bias by assuming the data are labeled in each iteration,
i.e. the probability of action is 1, p,erion = 1. We adopt four different approaches to investigating
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this question. First, we will compare the inferred boundaries after interaction to the ground
truth boundaries. Second, we will focus on the effects of iteration alone by analyzing the
boundary before interaction and after. Third, We use the Gini coefficient to measure the het-
erogeneity or inequality of the predicted label distribution in the testing set. Fourth, we investi-
gate the size of the blind spot induced by each of the iterated algorithmic bias modes.
Together, these will describe the outcomes of algorithmic bias, in terms of how it interacts
with initialization, and the consequences of algorithmic bias in terms of the induced blind
spot.

RQ 1.1: Do different forms of iterated algorithmic bias have different effects on the
boundary shift?. To answer this question, we control for human action bias by assuming the
data are labeled in each iteration i.e. the probability of action is 1. And the initialization is bal-
anced, i.e the ratio = 1:1. As shown in Eq 1, we here assume that g(x) is identical for all data
points, thus we can ignore the second part of the equation, i.e. the probability of being seen is
only dependent on the predicted probability of candidate points. Note that we could get some
prior probability of X;, in which case we could add this parameter to our framework. Here, we
assume them to be the same, hence we set € = 0.

We wish to quantify differences in the boundary between the categories as a function of the
different algorithm biases. To do so, we generate predictions for each test point in the test set
by labeling each point based on the category that assigns it highest probability. We investigate
the proportion of test points with the relevant label y = 1 at two time points: prior to human-
algorithm interactions (immediately after initialization), and after human algorithm
interactions.

We run experiments with each of the three forms of algorithm bias, and compare their
effect on boundary shift. We also report the effect size based on Cohen d algorithm [150]. In
this experiment, the effect size (ES) is calculated by ES = (Boundary; — o — Boundary, _ 200)/
standard.dev, here standard.dev is the standard deviation of the combined samples. We will
use the same strategy to calculate the effect size in the rest of this paper. The results indicate
significant differences for the filter bias condition (p <.001 by Mann-Whitney test or t-test,
effect size = 1.96). In contrast, neither the Active Learning, nor the Random conditions
resulted in statistically significant differences (p = .15 and.77 by Mann-Whitney test, or p = .84
and 1.0 by t-test; effective sizes.03 and 0.0, respectively).

To illustrate this effect, we plot the number of points assigned to the target category versus
ground-truth for each iterations. Fig 5 shows that random selection and active learning bias
converge to the ground-truth boundary. Filter bias, on the other hand, results in decreasing
numbers of points predicted in the target category class 1, consistent with an overly restrictive
category boundary.

RQ 1.2: Do different iterated algorithmic bias modes lead to different trends in the
inequality of predicted relevance throughout the iterative learning, given the same initiali-
zation?. In order to answer this question, we run experiments with different forms of iterated
algorithmic bias, and record the Gini coefficient when a new model is learned and applied to
the testing set during the iterations. We first run the Shapiro-Wilk normality test with all
groups [151]. The p-value for filter bias, active learning bias and random selection are 0.91,
0.63 and 0.99 respectively. Therefore, we perform a one-way ANOVA tests [152].

Although the absolute difference between the first iteration and the last iteration is small
(see Fig 6), a one-way ANOVA test across these three iterated algorithmic bias forms shows
that the Gini index values are significantly different. The p-value from the ANOVA test is
close to 1.0e-20 (<0.05), which indicates that the three iterated algorithmic bias forms have
different effects on the Gini coefficient.
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Fig 5. Boundary shift (Eq 18) based on the three iterated algorithmic bias forms. The y axis is the number of testing points which
are predicted to be in class y = 1. This figure shows that random selection and active learning bias converge to the ground-truth
boundary. Filter bias, on the other hand, results in decreasing numbers of points predicted in the target category class 1, consistent
with an overly restrictive category boundary.
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Fig 6. Box-plot of the Gini coefficient resulting from three forms of iterated algorithmic bias. An ANOVA test
across these three iterated algorithmic bias forms shows that the Gini index values are significantly different. The p-
value from the ANOVA test is close to 0.000 (<0.05), which indicates that the three iterated algorithmic bias forms
have different effects on the Gini coefficient. Here, FB, AL and RM are the abbreviations of filter bias, active learning
bias and random selection, respectively. The ‘first’ indicates the beginning of iteration (i.e., t = 0), while the ‘last’ means
the end of iteration (i.e., t = 200). Note that we use these abbreviations in the rest of our paper.

https://doi.org/10.1371/journal.pone.0235502.g006
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Interpretation of this result: Given that the Gini coefficient measures the inequality or het-
erogeneity of the distribution of the relevance probabilities, this simulated experiment shows
the different impact of different iterated algorithmic bias forms on the heterogeneity of the
predicted probability to be in the relevant class within human machine learning algorithm
interaction. Despite the small effect, the iterated algorithmic bias forms affect this distribution
in different ways, and iterated filter bias causes the largest heterogeneity level as can be seen in
Fig 6.

RQ 1.3: Does iterated algorithmic bias affect the size of the class-1-blind spot and the
all-classes-blind spot, i.e. is the initial size of the blind spot D! significantly different com-
pared to its size in the final iteration?. The blind spot represents the set of items that are
much less likely to be shown to the user. Therefore this research question studies the signifi-
cant impact of an extreme filtering on the number of items that can be seen or discovered by
the user, within human—algorithm interaction. If the size of the blind spot is higher, then iter-
ated algorithmic bias results in hiding items from the user. In the case of the blind spot from
class 1, this means that even relevant items are affected.

Recall from section 1 that some of the validation set data points have high probability to be
seen, while others have low probability to be seen, the latter make up what we refer to as the
blind spot. We study how iterated algorithmic bias affects the size of the blind spot. Here, J is
the threshold on the probability of being seen for an item to be considered in the blind spot.
Recall that the blind spot items from class y = 1 are called relevant item blind spot or class-

1-blind spot and the items from both classes are called all-classes-blind spot.

We run experiments with § = 0.5 for the class-1-blind spot, and record the size of the class-
1-blind spots with three different iterated algorithmic bias forms. Here, we aim to check the
effect of each iterated algorithmic bias form. Filter bias has significant effects on the class-
1-blind spot, while random selection and active learning do not have a significant effect on the
class-1-blind spot size (see Fig 7). The negative effect from iterated filter bias implies a large
increase in the class 1 blind spot size, effectively hiding a significant number of ‘relevant’
items. Table 2 summarizes the result of the statistical analysis. Note that the effect size is calcu-
lated by ES = (BlindSpot|,—o — BlindSpot|,—,00)/standard:dev.

& & @
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AL: Active Learning Bias
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Fig 7. Box-plot of the size of the class-1-blind spot for all three iterated algorithmic bias forms. In this figure, the x-axis is the
index of the three forms of iterated algorithms biases. As shown in this box-plot, the initial class-1-blind spot is centered at 7. This is
because the 200 randomly selected initial points from both classes force the boundary to be similar regardless of the randomization.

https://doi.org/10.1371/journal.pone.0235502.9007
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Table 2. Results of the Mann-Whitney U test and t-test comparing the size of the class-1-blind spot for the three
forms of iterated algorithmic bias. Bold means significance at p<0.05. The effect size is (BlindSpot|, - o — Blind-
Spot|; = 200)/standard.dev. The negative effect size shows that filter bias increases the class-1-blind spot size. For active
learning bias, the p-value indicates the significance, however the effect size is small. Random selection has no signifi-

cant effect.
Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 2.4e-10 0.03 0.06
t-test p-value 2.2e-10 0.03 0.06
effect size -1.22 -0.47 -0.4

https://doi.org/10.1371/journal.pone.0235502.t1002

We perform a statistical test on the all-classes-blind spot with § = 0.5. We first run the Sha-
piro-Wilk normality test. The p-values for the first and last iterations are respectively, 2.74e-7
and 0.037 for filter bias; 2.74e-7 and 1 for active learning bias; and 2.74e-7 and 2.9e-11 for ran-
dom selection. Therefore, we perform a non-parametric statistical test on the pairs of data
using the Mann-Whitney U test [153]. The p-value from the Mann-Whitney U test is close to
0.000 for filter bias. The negative effect from iterated filter bias implies a large increase in the
all-class blind spot size, effectively hiding a significant number of ‘relevant’ and irrelevant
items (see Table 3). For AL, the effect size has the opposite sign (positive) implying a signifi-
cant decrease in hidden items (both relevant and non-relevant) based on the Mann-Whitney
U test. Random selection results in no significant effect on the blind spot size.

Interpretation of this result: Given that the blind spot represents the items that are much
less likely to be shown to the user, this simulated experiment studies the significant impact of
an extreme filtering on the number of items that can be seen or discovered by the user, within
human-machine interaction. Iterated filter bias effectively hides a significant number of ‘rele-
vant’ items that the user misses out on compared to AL. AL has no significant impact on the
relevant blind spot, but increase the all-class blind spot to certain degree. Random selection
has no such effect.

However, online systems which have a very wide set of options and where users tend to pro-
vide initial ratings for items that they like or see, do suffer from initial class imbalance. Class
imbalance can also emerge from the algorithm intentionally asking users to rate only the most
popular items, a common strategy used to collect initial ratings for new users. It is also impor-
tant to notice that in different domains, initialization can have different imbalance patterns.
For example in the popular Movielens-100k dataset [148], around 65% of users have rated
more items with ratings higher than their own average rating. A similar phenomenon can be
observed in other data sets such as Movielens-1M [148], Movelens-10M [148], Netflix Prize
challenge dataset [154], and Book Crossings data set [155]. There are also users who have rated
more items with lower ratings.

Table 3. Results of the Mann-Whitney U test and t-test comparing the size of the all-classes-blind spot for the
three forms of iterated algorithmic bias. The effect size is conducted as (BlindSpot|; - o — BlindSpot|, - 200)/standard.
dev. The negative effect size shows that filter bias increases the class-1-blind spot size. On the other hand, both active
learning and random selection have no significant effect.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 5.9e-12 0.5 0.47
t-test p-value 1.4e-19 0.18 0.13
effect size -1.44 -0.3 -0.29

https://doi.org/10.1371/journal.pone.0235502.t003
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Here, we measure how imbalanced initialization affects the algorithm’s performance. We
set up three different class imbalance initialization ratios (class0: class1): 1:10, 1:1 and 10:1.
Then we compare the learned boundaries with those three ratios. As shown in Fig 8, highly
imbalanced class initialization leads to a bigger difference between the learned boundary and
the ground-truth boundary. The ground-truth boundary is obtained from the Gaussian distri-
butions that were used to generate the data points described in Section Experimental Data Sets
1. We also quantify the difference between the learned and true boundaries by measuring how
initial boundaries predict the labels on the testing set. The accuracy of the ground-truth
boundary and three imbalanced initial boundaries are recorded in Table 4. We can see that the
increase in initialization imbalance ratio leads to lower accuracy on the testing set. Note that
accuracies are averaged from 10 independent runs.

We wish to understand how imbalanced initialization affects the boundary shifting during
the interactive learning process. To answer this question, we run experiments 40 times with

Table 4. Prediction accuracy of different imbalanced initializations ratio (class 1: Class 0) on the testing set and ground-truth boundary.

ground truth

ratio = 1:1

ratio = 10:1

ratio = 1:10

accuracy

0.985

0.982

0.94

0.95

https://doi.org/10.1371/journal.pone.0235502.t004
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the different class imbalanced initialization ratios and record the number of points which
cross the boundary during iterative learning as well as the blind spot size. We will consider
three imbalanced initialization (class 1: class 0) ratios, namely 10:1, 1:1 and 1:10.

We record the number of points whose labels are different between the first iteration and
last iterations, with imbalanced initialization ratio set to 10:1, 1:1 and 1:10. We first perform
the Shapiro-Wilk normality test with all groups [151]. The p-value are 0.002, 0.001 and 0.06
for filter bias with four ratios; 0.01, 0.0003 and 0.001 for active learning bias; and 0.01, 0.0003
and 0.07 for random selection. Therefore, we perform a non-parametric statistical test using
the Kruskal-wallis test [40] on each form of algorithmic bias. Fig 9 show the trends of label
changes. The Number of label-changed points with ratio = 10:1 is higher than 2 for ratio = 1:1
in the iterated filter bias mode, and a similar result can be seen with iterated active learning
bias and iterated random selection (see Fig 9). The p-values from the Kruskal-wallis test for all
three forms of iterated algorithmic bias are 5.5e-19 (filter bias), 3.27e-17 (active learning bias)
and 1.34e-15 (random selection), close to 0.00, which indicates that the class imbalance initiali-
zation affects the boundary shift for all three forms of bias. Also, the higher the class imbal-
anced initialization ratio, the more boundary shifting, as shown in Fig 9. On the other hand,
the boundary shift of filter bias has a big difference when the ratio is 1:10, indicating that filter
bias has a dramatic impact on the boundary shift when the imbalanced initialization ratio is
high and more points are from the irrelevant class.

Interpretation of this result: Given that the number of label-changed points represents the
number of items that move across the relevance boundary learned by the machine learning
algorithm, this simulated experiment studies the impact of an initial class imbalance (a ratio of
10:1 or 1:10 versus a ratio of 1:1) when an extreme filtering strategy is used within human
machine interaction.

In all cases and regardless of whether extreme filtering, AL, or random selection is used to
collect feedback from the user, the initial class imbalance has a significant impact on the shift
in the learned model’s boundary between relevant and non-relevant items. This test confirms
that a more drastic initial class imbalance in the training data has a significant impact on the
resulting boundary, and as a result on the judgment of items to be relevant or not by the
learned model. Online systems which have a very wide set of options and where users tend to
provide initial ratings for items that they like or see, do suffer from initial class imbalance.
Class imbalance can also emerge from the algorithm intentionally asking users to rate only the
most popular items, a common strategy used to collect initial ratings for new users.

RQ 2: Does human action bias affect the boundary?. In order to test how the human
reaction affects the boundary shift, we set p,cion = 1.0, 0.5 and 0.01, and record the results with
different iterated algorithmic bias modes.
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RQ 2.1: Does human action affect the boundary shift during iterative learning given a
fixed iterated algorithmic bias mode?. We first want to compare the shift in the boundary
induced by the different algorithmic bias forms, alone. We do so by analyzing the change in
the boundary, i.e., the number of points in the test set which are predicted to be in class y = 1.
We perform the Mann-Whitney U statistical test to see whether the different human action
probabilities affect the boundary shift of the learned model for each iterated algorithmic bias
and three possible human action probability levels. We also record results from the t-test.
Effect size is also recorded between any pair of sets of boundary shift from the first iteration
and last iteration. Table 5 shows that p,;,, affects the boundary shift more with iterated filter
bias than with the other two forms of bias, which support the same conclusion as the previous
experiment. The Mann-Whitney U test results agree with the t-test. Thus we conclude that
human action affects the boundary shift: the more frequent human action is, the more signifi-
cant is the effect on the boundary shift for only the iterated filter algorithmic bias. The other
bias modes are not affected by different human action probabilities. Note that the effect size is
calculated by the difference between the boundary of t = 0 and ¢ = 200 divided by the standard
deviation.

In addition, it is interesting to compare the final learned boundaries from the three iterated
algorithmic bias forms with the ground truth. Therefore, we follow the same procedure as in
RQ 1, comparing the learned boundary during the iterations with the ground truth boundary.
Fig 10 shows the results for different iterated algorithmic bias modes with different human
action probability. We can see that for both random selection and active learning bias, the
number of points predicted as relevant converges to the ground truth boundary when there is
a high probability of human action. On the other hand, filter bias tends to diverge from the
ground truth boundary with high human action probability. With p,i,, = 0.01, there are no
obvious trends for all three algorithmic bias forms.

RQ 2.2: Does human action affect the class-1-blind spot size during iterative learning
given a fixed iterated algorithmic bias mode?. We want to compare the blind spot within
each different iterated algorithmic bias mode, alone. We do so by analyzing the class-1-blind
spot size. We run experiments with different human action probabilities and record the class-
1-blind spot size comparing the blind spot sizes from the first iteration and last iteration. As
shown in Table 6, with higher human action probability, the class-1-blind spot size is higher
through all three iterated algorithmic bias modes.

RQ 2.3: Does human action affect the relevance prediction inequality or Gini coefficient
during iterative learning given a fixed iterated algorithmic bias mode?. We wish to

Table 5. Results of the Mann-Whitney U test and t-test for the boundary shift of the computed three forms of iterated algorithmic bias based on the different proba-
bility levels of human action. Here, effect size is ES = (Boundary|, - o — Boundary|, - 200)/standard.dev. Bold means the significance at p<0.05. The more the human reacts

to the system, the larger is the boundary shift.

Paction = 1

Paction = 0.5

Daction = 0.01

https://doi.org/10.1371/journal.pone.0235502.t005

Measurement Filter Bias Active Learning Random
Mann-Whitney test p-value 0.4e- 11 0.9e- 5 0.486
t-test p-value 7.1e- 14 0.002 0.52
effect size 3.087 0.24 -0.15
Mann-Whitney test p-value 1.8e- 6 0.283 0.229
t-test p-value 1.0e- 5 0.08 0.75
effect size 0.87 0.19 0.08
Mann-Whitney test p-value 0.259 0.336 0.42
t-test p-value 0.38 0.6 0.9
effect size -0.27 0.14 -0.08
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compare the inequality induced by each algorithmic bias form, alone. We do so by analyzing
the Gini coefficient. We perform the Mann-Whitney U statistical test to see whether the
human action will lead to different trends in the inequality of prediction. We run experiments
with different human action probabilities, namely 1.0, 0.5 and 0.01, and compare the inequal-
ity between the first iteration and last iteration. Table 7 shows that higher human action

Table 6. Results of the Mann-Whitney U test and t-test for the class-1-blind spot of the computed three forms of iterated algorithmic bias based on the different
probability levels of human action. Here, effect size is ES = (BlindSpot|, - o — BlindSpot|, - »0)/standard.dev. Bold means the significance at p<0.05. The more the human

reacts to the system, the bigger is the class-1-blind spot size.

Measurement Filter Bias Active Learning Random
Paction =1 Mann-Whitney test p-value 2.4e-10 0.03 0.06
t-test p-value 2.2e- 10 0.03 0.06
effect size -1.22 -0.47 -0.4
Paction = 0.5 Mann-Whitney test p-value 0.0002 0.49 0.50
t-test p-value 7e-5 0.66 0.67
effect size -0.8 -0.1 -0.1
Paction = 0.01 Mann-Whitney test p-value 0.16 0.5 1.0
t-test p-value 0.16 1 0.5
effect size 0.02 0.0 0.0

https://doi.org/10.1371/journal.pone.0235502.t006

Table 7. Results of the Mann-Whitney U test and t-test for the inequality of the computed three forms of iterated algorithmic bias based on the different probability
levels of human action. Here, effect size is computed as ES = (Gini|, — ¢ — Ginil; - »00)/standard.dev. Bold means the significance at p<0.05. The more the human reacts to

the system, the bigger is the inequality in the prediction.

Measurement Filter Bias Active Learning Random
Paction =1 Mann-Whitney test p-value 2.5e- 14 3.8¢-9 0.46
t-test p-value 5.2e- 35 2e-9 0.68
effect size -1.7 1.2 -0.05
Paction = 0.5 Mann-Whitney test p-value 3.5e- 26 1.84e-21 0.46
t-test p-value 2.5e- 14 1.8e-14 0.54
effect size -1.3 1.78 -0.07
Paction = 0.01 Mann-Whitney test p-value 0.16 0.14 0.45
t-test p-value 0.17 0.001 0.22
effect size 0.023 0.18 0.03

https://doi.org/10.1371/journal.pone.0235502.t007
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probability leads to high inequality with the filter bias mode. On the other hand, active learn-
ing significantly decreases the inequality by querying points which are near the learned
boundary.

RQ 3: Does human preference towards labeling relevant data affect the boundary?. In
research question 2 (RQ 2), we assumed that humans have a prior probability to act which is
not dependent on the true label of the item presented. However, in a more realistic world,
humans interact with the recommended items, according to their inner preference. In this sec-
tion, we try to simulate this by assuming that humans have a higher probability to label or rate
when the item presented is from relevant class y = 1 (see Eq 15). We therefore setup the class-
dependent human action probability ratio to 10:1, i.e., p(action|y = 1) = 10p(action|y = 0).

RQ 3.1: Does human preference towards labeling relevant data affect the boundary
shift during iterative learning given a fixed iterated algorithmic bias mode?. To answer
this question, we run experiments and record the number of points which are predicted to be
in class y = 1 before and after iterative learning. We first aim to understand how human prefer-
ence changes the boundary. We do so by performing the Mann-Whitney test and t-test.

Table 8 shows that the filter bias significantly decreases the number of points predicted to be
in class y = 1. On the other hand, random selection significantly increases the number of
points predicted to be in class y = 1. Active learning has no such significant effect. We also
compare the effect across different iterated algorithmic bias modes by performing a Kruskal-
wallis test. The p-value is 1.87e-21 (<0.01), which indicates that the bias modes have different
effects on the boundary shift (see Fig 11).

It is also interesting to compare the effect on boundary shift for different bias modes when
the class-dependent human action probability ratios are set as 10:1 and 1:1. Table 9 shows the
results. Both Filter bias and active learning biases show no significant difference in boundary
shift between the two ratios. On the other hand, random selection has increased the number of
points predicted to be in class y = 1 when the ratio was 10:1. The results are expected, since fil-
ter bias already prefers points from class y = 1. Active learning bias shows a smaller effect since
this bias already prefers points that are close to the boundary. Random selection with class-
dependent human action probability prefer points from class y = 1, however randomly. There-
fore, it slightly shifts the boundary to class y = 0.

RQ 3.2: Does human preference towards labeling relevant data affect the size of the
blind spot during iterative learning given a fixed iterated algorithmic bias mode?. To
answer this question, we run experiments and record the size of the class-1 blind spot during
iterative learning. Recall that the class-1 blind spot indicates how the interaction affects the
human’s ability to discover items. We first aim to understand how human preference changes
the blind spot size before and after iterative learning. We do so by performing the Mann-Whit-
ney test and t-test. Table 10 shows that filter bias significantly increases the size of the class-1
blind spot. On the other hand, random selection significantly decreases the size of the class-1

Table 8. Results of the Mann-Whitney U test and the t-test comparing boundary shift for the three forms of iter-
ated algorithmic bias with class-dependent human action probability ratio 10:1. The effect size is calculated as
(Boundary|; - o — Boundary|; - 200)/standard.dev. The negative effect size for filter bias shows that it decreases the num-
ber of points which are predicted to be in class y = 1. Random selection increases the number of points, while active
learning does not have a significant effect.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 1.8e-13 0.05 4.3e-7
t-test p-value 6.4e- 24 0.18 6.1e - 13
effect size 1.6 -0.2 -1.1

https://doi.org/10.1371/journal.pone.0235502.t1008
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Fig 11. The box-plots showing the distribution of the number of points that are predicted to be in class y = 1 in the first and last
iterations of the iterated learning for three iterated algorithmic biases with human action probability ratio 10:1. Filter bias
significantly decreases the number of points predicted to be in class y = 1. On the other hand, random selection significantly
increases the number of points predicted to be in class y = 1. Active learning has no such significant effect.

https://doi.org/10.1371/journal.pone.0235502.g011

Table 9. Results of the Mann-Whitney U test and the t-test comparing boundary shift for the three forms of iter-
ated algorithmic bias with class-dependent human action probability ratio 1:1 and 10:1. The effect size is calculated
as (Boundary|,asio = 1. 1 — Boundary|,asio - 10. 1)/standard.dev at time t = 200. Both Filter bias and active learning bias
show no significant difference between the two ratios. On the other hand, random selection leads to more points pre-

dicted to be in class y = 1.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 0.038 0.30 7.8e-9
t-test p-value 0.07 0.18 1.4e-9
effect size -0.4 0.04 -1.28

https://doi.org/10.1371/journal.pone.0235502.t009

blind spot. Active learning has no such significant effect. We also compare the effect across dif-
ferent iterated algorithmic bias modes by performing a Kruskal-wallis test. The p-value is 3.4e-
15 (<0.01), which indicates that they have different effects on the boundary shift (see Fig 12).
It is also interesting to compare the effect on the class-1 blind spot size with the class-depen-
dent human action probability ratio set to 10:1 and 1:1. Table 11 shows the results for the
class-1 blind spot size. Both Filter bias and active learning bias show no significant difference

Table 10. Results of the Mann-Whitney U test and the t-test comparing the size of class-1 blind spot for the three
forms of iterated algorithmic bias with class-dependent human action probability ratio 10:1. The effect size is cal-
culated as (Boundary|, - o — Boundary, - »0)/standard.dev. The negative effect size for filter bias shows that it increases
the size of the class-1-blind spot. Random selection decreases the blind spot size, while active learning does not have a

significant effect.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value l.1e- 10 0.16 0.0008
t-test p-value 1.2e-9 0.32 0.002
effect size -1.2 -0.22 0.7

https://doi.org/10.1371/journal.pone.0235502.t1010
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Fig 12. The box-plots showing the size of the class-1 blind spot in the first and last iterations of the iterated learning for three
iterated algorithmic biases with human action probability ratio 10:1. Filter bias significantly decreases the number of points
predicted to be in class y = 1. On the other hand, random selection significantly increases the number of points predicted to be in
class y = 1. Active learning has no such significant effect.

https://doi.org/10.1371/journal.pone.0235502.9012

between the two ratios. On the other hand, random selection has increased the number of
points predicted to be in class y = 1. Filter bias already prefers points from class y = 1 so they
do not show any significant difference. Active learning bias has less effect since it prefers points
that are close to the boundary. Random selection with class-dependent human action proba-
bility prefers points from class y = 1, however it is randomly. Therefore, it slightly shifts the
boundary to class y = 0.

RQ 3.3: Does human preference towards to relevant class affect the inequality or Gini
coefficient during iterative learning given a fixed iterated algorithmic bias mode?. To
answer this question, we run experiments and record the Gini coefficient before and after iter-
ative learning. We first aim to understand how human preference affects the prediction
inequality. We do so by performing the Mann-Whitney test and t-test. Table 12 shows that the
filter bias significantly decreases the number of points predicted to be in class y = 1. On the
other hand, random selection significantly increases the number of points predicted to be in
class y = 1. Active learning has no such significant effect. We also compare the effect across dif-
ferent iterated algorithmic bias modes by performing a Kruskal-wallis test. The p-value is 3.3e-
18 (<0.01), which indicates that they have different effect on the boundary shift (see Fig 13).

It is also interesting to compare the effect on the inequality of prediction with the class-
dependent human action probability ratio set to 10:1 and 1:1. Table 13 shows the results for

Table 11. Results of the Mann-Whitney U test and the t-test comparing boundary shift for the three forms of iter-
ated algorithmic bias with class-dependent human action probability ratio 1:1 and 10:1. The effect size is calculated
as (Boundary|,asio - 1. 1 — Boundary|,asio - 10. 1)/standard.dev at time t = 200. Both Filter bias and active learning bias

show no significant difference between the two ratios. On the other hand, random selection decreases the class-1 blind

spot size.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 0.7 1.0 0.003
t-test p-value 0.47 1.0 0.004
effect size 0.08 0.0 0.64

https://doi.org/10.1371/journal.pone.0235502.t011
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Table 12. Results of the Mann-Whitney U test and the t-test comparing the inequality of prediction for the three
forms of iterated algorithmic bias with class-dependent human action probability ratio 10:1. The effect size is cal-
culated as (Ginil, - ¢ — Ginil; - 00)/standard.dev. The negative effect size for filter bias shows that it increases the
inequality. Both active learning and random selection decrease the inequality.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 8.2e- 14 4.6e- 14 1.3e-7
t-test p-value 3.3e- 34 1.7e- 13 2.9e-19
effect size -1.6 1.31 1.84

https://doi.org/10.1371/journal.pone.0235502.1012
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Fig 13. The box-plots showing the inequality score at the first and last iterations of the iterated learning for three iterated
algorithmic biases with human action probability ratio 10:1. Filter bias significantly increases the Gini coefficient. On the other
hand, random selection significantly decrease the Gini coefficient, as well as the active learning.

https://doi.org/10.1371/journal.pone.0235502.9013

the inequality of prediction. Both Filter bias and active learning bias show no significant differ-
ence between the two ratios. On the other hand, random selection has increased the number
of points predicted to be in class y = 1. There is no significant difference for the filter bias
mode, since it already prefers points from class y = 1. Active learning bias has less effect since
it prefers points that are close to the boundary. Random selection with class-dependent human
action probability prefers points from class y = 1, however this occurs randomly. Therefore, it
slightly decreases the inequality.

Experiments on high dimensional synthetic data set

We perform similar experiments on 3D and 4D synthetic data using a similar data generation
method. Our experiments produced similar results to the 2D data. We found that as long as

Table 13. Results of the Mann-Whitney U test and the t-test comparing the inequality for the three forms of iter-
ated algorithmic bias with class-dependent human action probability ratio 1:1 and 10:1. The effect size is calculated
as (Boundary|,asio - 1. 1 — Boundary|,asio - 10. 1)/standard.dev at time t = 200. Both Filter bias and active learning bias
show no significant difference between the two ratios. On the other hand, random selection has decreased the class-1
blind spot size.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 0.47 0.11 1.8e- 6
t-test p-value 0.83 0.83 1.6e- 8
effect size 0.04 0.05 1.06

https://doi.org/10.1371/journal.pone.0235502.t1013
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Table 14. Experimental results with a 10D synthetic data set. The effect size is calculated by (Measurement|; — o — Measurement|; - 590)/std(-). The measurements are the
three metrics presented in Section Evaluating the Effect of Iterated Algorithmic Bias on Learning Algorithms 1. We report the paired t-test results. For filter bias mode
(FB), the results are identical to those of the 2D synthetic data across all three research questions. Active learning bias (AL) generates the same result as for the 2D synthetic
data. Random selection (RM) has no obvious effect, similarly to the 2D synthetic data experiments.

Statistical test

Bias type Boundary Shift (p-value, ES) Blind spot (p-value, ES) Inequality (p-value, ES)
FB (8e-15, 1.4) (3e-13,-1.4) (1.8e-13, -1.6)

AL (0.68, -0.09) (0.5, 0.15) (1.8e-15, 1.63)

RM (0.17,0.17) (0.1,-0.3) (0.8, -0.01)

https://doi.org/10.1371/journal.pone.0235502.t1014

the features are independent from each other, similar results are obtained to the 2D case
above. One possible reason is that when features are independent, we can reduce them in a
similar way to the 2D synthetic data set, i.e., one set of features that are highly related to the
labels and another set of features that are non-related to the labels. Another possible reason is
that independent features naturally fit the assumption of the Naive Bayes classifier. Finally,
we generated a synthetic data with 10 dimensions, centered at (-2,0,0,0,0,0,0,0,0,0) and
(2,0,0,0,0,0,0,0,0,0) with zero covariance between any two dimensions. We follow the same
experimental procedure as the 2D synthetic data. Table 14 shows that the 10D synthetic data
leads to similar results to the 2D synthetic data set. In order to avoid repetition, we here only
report the results that show how different iterated algorithm bias modes affect the learned
model during iterative learning. To conclude, repeated experiments on additional data with
dimensionality ranging from 2 to 10 led to the same conclusions as the 2D data set.

Experiments on the real-life data set

We follow the same experimental procedure as for the synthetic data set from Section 1, but
using the MovieLens data (as described in Section Experimental Data Sets 1). 200 items are
randomly selected as testing set from both classes (like/dislike) for user 547. The testing set is
also considered as validation set for the blind spot study. After that, 200 more items from the
negative class (dislike) and 300 more items from the positive class (like) are randomly selected
to initialize the first boundary. The reason we chose a different proportion from each is to be
consistent with the proportions in the whole data set. The iterated learning commences after
the initialization and continues for 200 iterations. With the real data, we aim to investigate
how different iterated algorithmic biases affect the learned model. Thus, the human action
probability is set to p,.ion = 1 and the preference to a certain class is not considered.

Visualizing the boundary in high-dimensional data is difficult. However most classifiers
produce connected areas for each group [156]. We therefore can employ the number of data
points which changed their label after applying the new model to intuitively capture the level
of the boundary shift and to understand how the model is affected during the iterated learning
process. By also studying the blind spot evolution, we can get a sense of the items that have a
very low probability to be shown to the user, because they are part of the blind spot when con-
sidering the probability of belonging to class y = 1.

Boundary shift study. Following the same procedure as in RQ 1 1, we run experiments
for three different forms of iterated algorithmic bias and record the number of points which
are predicted to be in class 1 in the first iteration and last iteration. We perform the Mann-
Whitney U statistical test to see whether the different iterated algorithmic biases lead to dif-
ferent trends of the boundary shift, we also report the t-test results and effect size. Table 15
shows that there is a significant decrease in the number of points predicted to be in class
y = L in the testing set for iterated filter bias. On the other hand, there is no significant
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Table 15. Results of the Mann-Whitney U test and the t-test comparing the boundary shift for the three forms of
iterated algorithmic bias with the Movielens data set. The positive effect size indicates that filter bias leads to fewer
points predicted to be in class y = 1. Random selection and active learning do not have a significant impact.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 7.1e-15 0.002 0.42
t-test p-value 7.6e- 25 0.0004 0.84
effect size 1.88 -0.57 -0.04

https://doi.org/10.1371/journal.pone.0235502.t1015

difference with active learning bias and random selection. The effect size here is calculated
using (Boundary|, - o — Boundary|, - y00)/standard.dev, we will use this setup for the rest of
this section. It is also interesting that three different iterated algorithmic bias modes have
different results of prediction given similar initialization (see Fig 14). All these results are
consistent with the results from the synthetic data set.

We conclude that both iterated filter bias and iterated active learning bias have a signifi-
cantly effect on the boundary shift, while random selection does not have a significant effect.
This means that the nature of the model, and hence which items will be judged to be relevant
to the user, changes depending on the iterated algorithmic bias, with filtering bias exerting the
biggest influence. This kind of phenomenon was found to hold based on all the statistical tests
performed in this paper for synthetic and real data.

Blind spot size study. In order to test how different iterated algorithmic bias modes affect
the blind spot size, we ran experiments for three different forms of iterated algorithmic bias
and recorded the size of the blind spot in the first iteration and last iteration. We performed
the Mann-Whitney U statistical test and we also report the t-test results and effect size.

Table 16 shows that there is a significant increase in the class-1 blind spot sizes in the testing
set for iterated filter bias and active learning bias. On the other hand, there is no significant dif-
ference with random selection (see Fig 15).
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Fig 14. The box-plots showing the distribution of the number of points that are predicted to be in class y = 1 in the first and last
iterations of the iterated learning for three iterated algorithmic biases with the MovieLens data set. Filter bias significantly
decreases the number of points predicted to be in class y = 1. On the other hand, random selection and Active learning have no such
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https://doi.org/10.1371/journal.pone.0235502.9014
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Table 16. Results of the Mann-Whitney U test and the t-test comparing the size of the class-1-blind spot for the
three forms of iterated algorithmic bias with the Movielens data set. The negative effect size indicates that filter bias
leads to a bigger blind spot. Both random selection and active learning do not have a significant impact.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 7.0e- 15 0.0002 0.15
t-test p-value 4.2e- 26 0.0001 0.46
effect size -1.89 0.66 0.16

https://doi.org/10.1371/journal.pone.0235502.t1016
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Fig 15. The box-plots showing the distribution of the size of the class-1 blind spot in the first and last iterations of the iterated
learning for three iterated algorithmic biases with the MovieLens data set. Filter bias significantly increases the size of the class-1
blind spot. On the other hand, random selection and Active learning have no such significant effect.

https://doi.org/10.1371/journal.pone.0235502.9015

It is important to note that this impact is significant enough to result in hiding even rel-
evant items from the user. A similar impact was found when the initial labeled (training) set
is class imbalanced with more relevant items than non relevant items. Optional human will-
ingness to label items seems to have a significant impact on the resulting model and thus
on which items are judged to be relevant and in turn can be discovered by the user.

Inequality study. In order to test how different iterated algorithmic bias modes affect the
inequality of predictions, we ran experiments for three different forms of iterated algorithmic
bias and recorded the Gini coefficient in the first iteration and last iteration. We performed
the Mann-Whitney U statistical test and we also report the t-test results and effect size.

Table 17 shows that filter bias leads to a significant increase in the Gini coefficient, while both

Table 17. Results of the Mann-Whitney U test and the t-test comparing the inequality of prediction for the three
forms of iterated algorithmic bias with the Movielens data set. The negative effect size indicates that filter bias leads
to high inequality of relevance prediction. Both random selection and active learning significant decrease on the

inequality.

Filter Bias Active Learning Random Selection
Mann-Whitney test p-value 7.7e-15 1.9¢-5 0.008
t-test p-value 7.4e- 25 1.7e-9 4.4e-5
effect size -1.83 0.95 0.5

https://doi.org/10.1371/journal.pone.0235502.t1017
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Fig 16. The box-plots showing the distribution of the Gini coefficient of the prediction in the first and last iterations of the
iterated learning for three iterated algorithmic biases on the MovieLens data set. Filter bias significantly increases the in equality
of prediction. On the other hand, random selection and Active learning lead to a significantly decrease in the inequality of
prediction.

https://doi.org/10.1371/journal.pone.0235502.9016

active learning and random selection result in a significant decrease in the Gini coefficient. It
is important to note that both random selection and active learning are used to build an accu-
rate model in machine learning. Therefore, both bias modes decrease the inequality (see
Fig 16).

We also ran experiments with other 7 users. They all produced similar results (see
Table 18).

Conclusion

We investigated three forms of iterated algorithmic bias (filter, active learning, and random
baseline) and how they affect the performance of machine learning algorithms by formulating
research questions about the impact of each type of bias. Based on statistical analysis of the
results of several controlled experiments using synthetic and real data, we found that (see the
overall synthesis of findings in Tables 19 and 20):

1. The three different forms of iterated algorithmic bias (filter, active learning, and random
selection, used as query mechanisms to show data and request new feedback/labels from
the user), do affect algorithm performance when fixing the human interaction probability
to 1. Different initial class imbalance in the training data used to generate the initial rele-
vance boundary, significantly affect the machine learning algorithm’s results for all three
forms of iterated algorithmic bias, impacting boundary shift which hides relevant items
(class 1-blind spot).

2. Tterated filter bias has a more significant effect on the class-1-blind spot size compared to
the other two forms of algorithmic biases. This means that iterated filter bias, which is
prominent in personalized user interfaces, can limit humans’ ability to discover data
that is relevant to them.

3. The iterated learning framework is effective for analyzing the impact of iterated algorithmic
bias in human-algorithm interaction.
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Table 18. Top 8 most active users in MovieLens data set and statistical analysis results with paired t-test. The effect size is calculated as (Measurement|, _ o — Measure-
ment|, _ 200)/standard.dev. Bold means significance, and ES means the effect size. Filter bias has a consistently significant and sizable effect on the three measurements
across all 8 users. Random selection has less impact on the boundary shift and blind spot. However it significantly decreases the inequality. Active learning aims to help

learn correct boundary, therefore it highly depends on the initial data points. Active learning affects points close to the boundary, thus it has limited effects overall.

User ID = 547

User ID = 564

User ID = 624

User ID =15

User ID =73

User ID = 452

User ID = 468

User ID = 380

Total movies rated |Positive rated | Negative rated |Bias type | Boundary Shift (p-value, ES) |Blind spot (p-value, ES) |Inequality (p-value, ES)

2391

1868

1735

1700

1610

1340

1291

1063

1409

1115

1043

857

1016

613

795

620

https://doi.org/10.1371/journal.pone.0235502.t1018

982 FB (7.6e-25, 1.88) (4.2¢-26, -1.89) (7.4e-25, -1.83)
AL (0.0004, -0.57) (0.001, 0.66) (1.7e-9, 0.95)
RM (0.84, -0.04) (0.46, 0.16) (4.4e-5, 0.5)
753 FB (1.0e-14, 1.37) (1.1e-12, -1.45) (1.5e-21, -1.67)
AL (1.7e-9, -0.99) (3e-9,0.95) (9e-12, 0.92)
RM (0.004, -0.48) (0.008, 0.45) (2.6€-6, 0.73)
692 FB (2.3¢-7, 0.8) (2.7e-7, -1.28) (8.2-26,-1.7)
AL (8.4e-11, -1.28) (7.8e-11, 1.29) (7.5e-17, 1)
RM (2.8€-5, 0.64) (1.6-5, 0.7) (8e-6, 0.64)
843 FB (3.4¢-18,1.4) (2.3e-18, -1.5) (2.6e-30, -1.76)
AL (4.3¢-8, 0.93) (7.4¢-9, 0.9) (0.0003, 0.35)
RM (1.6e-6, 0.73) (2.1e-6, -0.7) (0.16, -0.17)
594 FB (1.8¢-8, 1.02) (1.6e-8, -1.0) (7.6€-36, -1.81)
AL (1.7e-12, -1.5) (5.4e-11, 1.46) (9.3e-24, 1.42)
RM (2e-7,-0.9) (5.6e-7, 0.85) (6.4¢-7, 0.66)
727 FB (0.001, 0.46) (0.0006, -0.7) (1.1e-12,-1.31)
AL (2.8¢-8,1.2) (5.9¢-10, -1.24) (0.78, 0.34)
RM (0.0101, 0.5) (0.009, -0.52) (0.7, 0.04)
496 FB (5.2e-10, 1.18) (8.8e-12, -1.29) (3.3e-26, -1.74)
AL (1.8¢-18, -1.6) (3.1e-18, 1.61) (1.9e-26, 1.67)
RM (5.6e-12, -1.36) (3.2e-13, 1.44) (1.1e-13, 1.15)
443 FB (3.2e-11, 1.22) (2.6e-11, -1.26) (2.3e-27,-1.76)
AL (1.36e-13, -1.32) (1.13e-12, 1.28) (4.7e-15, 0.96)
RM (1.3e-9, -0.96) (1.53e-5, 0.89) (0.002, 0.7)

There is a long tradition in machine learning algorithms whose performance is guaranteed
in the context of unbiased data. Similarly, there is a long tradition in the psychology of human
learning of treating learning as inference from unbiased data. Humans and Al algorithms are
both increasingly intertwined in feedback loops that end up feeding biased data to both
humans and algorithms. Our research attempted to better understand how algorithm perfor-
mance and human behavior depend on one another and how those dependencies affect long
run performance. Our ongoing work will pave the road for a framework in which the study of
human-algorithm interaction may progress.

Future work

Future work will consider the following three directions: 1) extending our framework and
experiments to more users in a collaborative filtering setting; 2) taking into account additional
parameters and configurations when testing the impact of iterated algorithmic bias and
human interaction on ML models, including: (A) changing the number of items recom-
mended in top N relevant item recommendation lists and (B) applying different types of AL
(we only investigated uncertainty-based AL); 3) human experiments that study research ques-
tions that are similar to the ones formulated for the simulated experiments.
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Table 19. Summary of research question (RQs) and findings for synthetic data.

RQ | Sub Questions

Main Findings

1 | « RQL.1: Do different forms of iterated algorithmic

bias have different effects on the boundary shift?
« RQ1.2: Do different iterated algorithmic bias
modes lead to different trends in the inequality of
predicted relevance throughout the iterative
learning?
RQ1.3: Does the iterated algorithmic bias affect the
size of the class-1-blind spot?

RQ2.1: Does human action affect the boundary
shift during iterative learning?

RQ2.2: Does human action affect the class-1-blind
spot size during iterative learning given a fixed
iterated algorithmic bias mode?

RQ2.3: Does human action affect the relevance

prediction inequality (or Gini coefficient)?

RQ3.1: Does human preference towards labeling
relevant data affect the boundary shift during

iterative learning?

RQ3.2: Does human preference towards labeling
relevant data affect the size of the blind spot during
iterative learning?

RQ3.3: Does human preference towards to relevant
class affect the inequality or Gini coefficient during

« Filter bias reduces the # of items predicted as class
y = 1 and increases the blind spot size, which
indicates it will limit the users’ ability to discover
new items.

Filter bias increases the inequality of prediction,
which leads to even more inequality.

Random selection and active learning bias show no/
little effect on the blind spot.

Highly imbalanced class initialization leads to a
bigger difference between the learned boundary and
the ground-truth boundary.

Human action affects the boundary shift more with
iterated filter bias than with the other two forms of
bias.

For both random selection and active learning bias,
the number of points predicted as relevant
converges to the ground truth boundary when there
is a high probability of human action.

Filter bias tends to diverge from the ground truth
boundary with high human action probability.
The more humans react to the recommender
system, the higher the impact of each iterated
algorithmic bias mode.

For both filter bias and active learning, the number
of points predicted as class y = 1, with and without
the class-dependent human action probability,
show no significant difference.

For both filter bias and active learning, the size of
the class-1 blind spot, with and without the class-
dependent human action probability, have no
significant difference.

iterative learning?

https://doi.org/10.1371/journal.pone.0235502.t1019

Random selection decreases the class-1 blind spot
size, and increases the number of points predicted
as class y = 1, with the class-dependent human
action probability.

Table 20. Summary of research question (RQs) and findings for real data.

Research Question

« How do different iterated algorithmic bias
modes affect the boundary shift?

« How do different iterated algorithmic bias
modes affect the blind spot size?

« How do different iterated algorithmic bias
modes affect inequality of prediction?

https://doi.org/10.1371/journal.pone.0235502.t1020

Main Findings

« Both iterated filter bias and iterated active learning bias have a
significantly effect on the boundary shift, while random selection
does not have a significant effect, indicating that the nature of the
model, and hence which items will be judged to be relevant to the
user, changes depending on the iterated algorithmic bias, with
filtering bias exerting the biggest influence.

« There is a significant increase in the class-1 blind spot size in
the testing set for iterated filter bias and active learning bias. On
the other hand, there is no significant difference with random
selection.

« Filter bias leads to a significant increase in the Gini coefficient,
while both active learning and random selection show a
significant decrease in the Gini coefficient.
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