
Small is Beautiful: Distributed Orchestration of Spatial Deep
Learning Workloads

Daniel Rammer, Kevin Bruhwiler, Paahuni Khandelwal,
Samuel Armstrong, Shrideep Pallickara, Sangmi Lee Pallickara

Colorado State University
Fort Collins, Colorado

rammerd@rams.colostate.edu,Kevin.Bruhwiler@rams.colostate.edu,paahuni@colostate.edu,
Sam.Armstrong@rams.colostate.edu,Shrideep.Pallickara@colostate.edu,Sangmi.Pallickara@colostate.edu

Abstract
Several domains such as agriculture, urban sustainability, and me-
teorology entail processing satellite imagery for modeling and
decision-making. In this study, we describe our novel methodology
to train deep learning models over collections of satellite imagery.
Deep learning models are computationally and resource expen-
sive. As dataset sizes increase, there is a corresponding increase in
the CPU, GPU, disk, and network I/O requirements to train mod-
els. Our methodology exploits spatial characteristics inherent in
satellite data to partition, disperse, and orchestrate model train-
ing workloads. Rather than train a single, all-encompassing model
we facilitate producing an ensemble of models - each tuned to
a particular spatial extent. We support query-based retrieval of
targeted portions of satellite imagery including those that satisfy
properties relating to cloud occlusion, We validate the suitability of
our methodology by supporting deep learning models for multiple
spatial analyses. Our approach is agnostic of the underlying deep
learning library. Our extensive empirical benchmark demonstrates
the suitability of our methodology to not just preserve accuracy,
but reduce completion times by 13.9x while reducing data move-
ment costs by 4 orders of magnitude and ensuring frugal resource
utilization.

Keywords
Deep Learning, Spatial Data, Workload Orchestration

1 Introduction
Advances in remote sensing and increases in the number of satellites
have contributed to a proliferation of satellite data. In particular,
there have been sustained improvements in the precision, resolu-
tion, and frequency at which these remote sensing observations
have been performed. These data offer opportunities to inform anal-
yses in several domains such as agriculture, land-use/land-change
analyses, urban systems, and forest fires.

Measurements reported by satellites are expressed as a collection
of optical imagery comprising multiple bands - one for each interval
of wavelengths for which surface reflectance is measured using
onboard instrumentation. Satellite data are geo-encoded with each
pixel representing measurements at a particular spatial extent. The
spatial extent represented by a pixel is the resolution - this is 30m x
30m for LANDSAT and 250-1000m for MODIS. The revisit interval
(or temporal resolution) for remote sensing observations performed
by these satellites are also different.

Satellite data collections are voluminous and outpace the ca-
pacities of a single machine. In particular, these collections entail

distributed and concurrent data processing. The workloads we con-
sider are deep learning workloads. Satellite data processing using
deep learning has similarities with computer vision applications,
but the nature of satellite data introduces several challenges and
opportunities. Deep learning also offers opportunities to extract
non-linear patterns from satellite data and inform analyses.

The crux of this paper is to support effective data management
and model training over large satellite data collections. To this end,
we explore the orchestration of tasks in a distributed, cluster-based
environment. Our notion of effectiveness encompasses concurrency
to facilitate timely completion of tasks, utilization of available re-
sources including coprocessors and scaling to ensure high through-
put. Another consideration is effectiveness in extracting patterns
from the datasets; the measures we consider here include the error
of regression models and representation loss for larger, composite
images from GANs.

1.1 Challenges
Effective processing and orchestration of deep learning workloads
over large satellite data collections introduces several challenges.
In particular, these challenges include:

(1) Volumes: Satellite data are voluminous and exceed hard disk
capacities available on a single disk.
(2) Variety: Satellite data are made available in different formats
(GeoTIFF, HDF) and at different resolutions. Furthermore, the num-
ber of bands available varies depending on the satellite. For example,
there are 13 available bands in Sentinel while MODIS supports 36
bands.
(3) Variability: There is variability in the availability of data. These
may be due to occlusions caused by atmospheric phenomena (clouds)
or on-board instrumentation errors or post-processing issues.
(4) Multiple bands. Satellite data processing encapsulates multiple
bands that may be sensed at different resolutions.
(5) Complexity of images is different in different portions of the im-
age. Extracting patterns from the data is subject to not just regional
variations but also temporal/seasonal variations.

1.2 Research Questions
The overarching theme of this study is the effective storage, pro-
cessing, and learning from large satellite data collections. Specific
research questions that we explore include:

RQ-1: How can we amortize data management and processing work-
loads? These have implications for CPU, memory, and I/O footprints.
For example, training a particular deep network in a distributed
setting may trigger network I/O.



Satellite Format Spatial Reference System Scan Frequency Coverage Pixel Resolution Band Count

MODIS hdf Sinusoidal 1-2 Days Global 200m 7
500m 7

NAIP zip / jp2 Transverse Mercator 2 Years United States 1m 4
NLCD img Albers Equal-Area Conic 3 Years United States 30m 1

Sentinel-2 SAFE Transverse Mercator 5 Days Global
10m 6
20m 4
60m 3

Table 1: Satellite imagery dataset definitions. Our system currently supports MODIS, NAIP, NLCD, and Sentinel-2 imagery; enabling support for reconciliation
between diverse formats, spatial reference systems, pixel resolutions, band types, and dimensionality.

RQ-2: How can we extract patterns from the data? The patterns we
consider cross-cut spatiotemporal scopes.
RQ-3: How can we scale with increases not just in data volumes, but
also increases in the diversity and availability of data?

1.3 Approach Summary
We posit that different characteristics of the observational space are
accentuated by different features at different spatial scopes. As such
different regions can benefit from customized processing and re-
finements. This entails partitioning images and extracting patterns
from the smaller spatial extents that can then be aggregated and
combined. This approach is amenable to distribution and scaling.

Our methodology partitions satellite data across all bands based
on their spatial extents for analysis, reconstruction, and refine-
ment. Spatial extents have geocodes associated with them. These
geocodes are computed deterministically and the precision of these
geocodes correspond to geographical extents. We use geocodes to
collocate images from proximate geographical extents on the same
machine. A single machine is responsible for data from multiple
spatial extents. The size of the spatial extents is informed by the
memory footprints and computational overheads.

Satellite optical imagery is partitioned as they are ingested. The
partitioning scheme is based on spatial extents and is consistent
across all available bands. Our underlying substrate is based on
a DHT (distributed hash table) scheme to ensure decentralized
dispersion and management of partitioned images.

We organize metadata and ancillary information to support
queries. As images are partitioned during the ingestion process
and staged within the DHT we extract metadata associated with
them. The metadata for each partitioned image includes those that
are inherited from the original image and those that are computed
from the optical imagery. Metadata inherited from the original
image include satellite information, available bands, per-band res-
olutions, and chronological information. Metadata that is recali-
brated include spatial extents for which the data is available. These
metadata are complemented with additional metadata relating to
occlusion (cloud cover, unavailability) that we compute. We allow
users to identify useful datasets for model training while construct-
ing predicates based on particular satellites, cloud cover, bands,
spatial extents, etc.

We support several data wrangling operations that are aligned
with the needs of satellite data processing. The data wrangling oper-
ations include support for reconciling data formats (GeoTIFF, HDF).
We also support creation of composite images from contiguous
spatial regions and also from contiguous temporal segments from
the same spatial extent. The latter scheme is useful for cases where
we need to construct images that are not occluded or transform

satellite images into tensors (multidimensional arrays) based on
the prescribed dimensionality. These tensors are amenable for use
as inputs in different learning algorithms. Additionally, we support
the model creation and refinement process through support for
several operations, including transfer learning.

Queries and data wrangling are used to identify relevant data
and facilitate custom datasets for model training. This includes
support for creating composite images from data based on temporal
proximity to reduce occlusion/sparsity issues. We use the spatial
partitioning schemes to inform orchestration of training workloads.
In particular, our collocation properties ensure data locality for a
given spatial extent. Furthermore, when training different models
for the same spatial extent we support pinning the corresponding
tensor in memory for different types of analyses. This reduces dupli-
cate preprocessing and disk I/O overheads. We also identify spatial
extents that are likely to benefit from transfer learning based on
the extracted metadata. This significantly reduces model training
times. We demonstrate that our methodology is amenable to con-
tainerization using frameworks such as Docker and Kubernetes,
allowing it to integrate easily into modern cloud computing clusters.
Additionally, we observe substantial performance benefits provided
by containerization.

1.4 Paper Contributions
In this study we have designed a framework to process satellite
optical imagery at scale. In particular, our contributions include:

(1) Effective reconciliation of differences in satellite data formats,
resolutions across bands, and sparsity/occlusion across different
spatiotemporal scopes.
(2) Effective extraction of patterns in spatiotemporal phenomena
and scalable orchestration of workloads (storage and processing)
over large satellite data collections.
(3) Effective utilization of resources, leveraging co-processors and
frugal network I/O while minimizing duplicate work.
(4) A deep learning library agnostic framework to process large
satellite data collections; we interoperate with several popular li-
braries (PyTorch, TensorFlow) and outperform their own native
distributed implementations.

1.5 Paper Organization
The remainder of this paper is organized as follows. Section 2 de-
scribes our methodology, including data staging and partitioning,
querying schemes, workload orchestration, sample analyses, and
transfer learning. Section 3 covers systems benchmarks, including
the experimental setup, an analysis betweenmodel trainingmethod-
ologies, and the performance of our varied analyses. Other work
related to satellite data partitioning, deep learning orchestration,
and some applications of satellite data is addressed in Section 4.

2



Figure 1: An example of partitioning the globe using quad-tiles. Each
additional character produces 4 subregions.

Finally, Section 5 summarizes the conclusions and future research
directions.

2 Methodology
Our methodology to orchestrate satellite data processing while en-
suring effective resource utilizations includes a carefully calibrated
mix of:
(1) Data partitioning and staging within a distributed cluster
(2) Support for queries to identify/explore data of interest and data
wrangling operations at diverse spatiotemporal scopes
(3) Decentralized orchestration of model training workloads
(4) Profiling effectiveness of our methodology with support for
different analytic operations

Table 1 provides a compilation of datasets that we currently sup-
port. Our methodology leverages design patterns to abstract and
simplify integration of satellite data collections. Each implementa-
tion of the abstraction is customized primarily to handle parsing
image formats and metadata retrieval for a particular collection. All
image manipulation code is agnostic of image format, number and
type of bands, pixel resolution, and spatial reference system. This
facilitates seamless support for additional image datasets.

2.1 Partitioning and Staging Within a Cluster
[RQ-1 / 3]

Partitioning and staging data is a precursor to model construction
and pattern extraction across spatial scopes. Inefficiencies in parti-
tioning and staging entail data movements. The costs associated
with data movement are expensive as they incur disk I/O (during
reads and writes) and network I/O to complete the transfers. To
be effective these must be decentralized, deterministic, and per-
formed without centralized coordination. Given the model building
is iterative, the impact of these inefficiencies are amplified.

A consideration when we deal with hyperspectral imagery is
their size, which may induce resource pressure. Hyperspectral im-
agery (comprising multiple bands) fed into models result in tensors
being created and exchanged between different layers. The size of
these tensors and the memory pressure they induce is correlated
with the size of the input.

Our methodology to facilitate partitioning and staging data
within the cluster involves two key steps that are aligned with
the overall goal to facilitate model creation: (1) preprocessing the
images to reconcile formats, spatial reference systems, and any
alignment issues that these involve to address boundary condi-
tions, and (2) ensuring that the deterministic, decentralized, and
colocation properties are preserved during dispersion.

Rather than build an all-encompassing model we build an en-
semble of deep learning models each tuned to the particular spatial
extent. Partitioning must be aligned with expected model training

workloads; in particular, it must ensure that we can preserve data lo-
cality (all data from a given spatial extent must be colocated) while
at the same time ensuring that storage and processing workloads
are balanced.

The partitioning phase encompasses steps to ensure discovery,
load balancing, timeliness, and throughput of operations. These op-
erations include pre-processing of images to reconcile projections,
formats, etc. We harness two distinct spatial partitioning schemes
to support the desired objectives: geohashes and quad-tiles. Both
these algorithms rely on hierarchically partitioning the globe into
smaller spatial extents. We use the overarching term geocode to
refer to spatial extents represented using either geohash or quad-
tiles. The geocodes represented by geohashes and quad-tiles are
represented as 1-dimensional strings. The greater the length (or
precision) of the string, the smaller the spatial extent represented by
the geocode. The choice of the algorithm is mostly influenced by the
input dataset and types of analyses. The spatial reference system
within the imagery also plays a role in this choice: geohashes work
with <latitude, longitude> bounding boxes while quad-tiles lever-
age Mercator projections. Another consideration is the granularity
of the hierarchical splits as the length of the geocode increases. Geo-
hashes produce 32 subregions at each level, while quad-tiles result
in 4 subregions. An example of the quad-tile algorithm is provided
in Figure 1. We leverage the appropriate geocoding algorithm to
split images along spatial boundaries.

We use a multi-token distributed hash table (DHT) to dissemi-
nate geocode-based image splits throughout the cluster. We support
dispersion based on any substring length of the geocode. For ex-
ample, processing length k ensures that all images beginning with
the same k characters are collocated. Alternatively, using geocode
length k-1 disperses images so that data from spatially proximate
subregions are collocated. The geocodes are passed through a cryp-
tographic hashing function (SHA-1) and each DHT node is respon-
sible for a contiguous portion of the cryptographic hash space. The
dispersion properties of the cryptographic hash function ensure
that the load is uniformly dispersed over the cluster. In particular,
this allows for fine-grained and dynamic load balancing of storage
workloads within the system. This, in turn, ensures that subsequent
pre-processing and model training workloads are dispersed and
dynamically balanced as well.

During partitioning, as each hyperspectral image comprising
multiple bands is being ingested, we extract metadata from the
images and organize them so that they are amenable to query eval-
uations. Our dispersion scheme allows us to load balance storage,
query evaluation, and model training workloads. Once the spatial
granularity is finalized, the geocode and the DHT node responsi-
ble can be calculated deterministically and without coordination.
Furthermore, since all data for a particular geocode are stored on
the same DHT node our methodology ensures colocation of data
from spatial regions across different temporal ranges on the same
machine. A consequence is that our methodology supports tar-
geted processing of fine-grained spatiotemporal extents. Model
training in distributed environments often entail substantial data
movements as data are pulled from multiple nodes. Since we ensure
colocation when training models for a particular spatiotemporal
extent, we substantially alleviate the adverse impact of network
I/O during data transfers.

3



2 3 4
10

15

20

25

30

35

Du
ra

tio
n 

(s
ec

on
ds

)

MODIS

5 6 7
Geohash Length

2

3

4

5

NAIP

4 5 6

100

200

300
Sentinel-2

Image Spatial Partitioning Duration

Figure 2: Duration to partition and distribute satellite imagery at differ-
ent geohash precisions. The number of bands and their accompanying
resolutions are a significant impact on performance.

Microbenchmark: In Figure 2 we performed a series of experi-
ments profiling raw-image processing, including spatial partition-
ing and distribution. We chose 3 unique geohash lengths for each
dataset based on image pixel resolutions – with all these datasets
there is a point at which image resolutions become too small and
the utility diminished. The first observation is the relative difference
in processing time between datasets. This may be attributed to the
difference in the number of bands and unique resolutions within
each image. Next, we see a difference in variance among processing
times between datasets. We noticed a strong correlation between
file sizes and processing time. MODIS and NAIP images are typically
uniform across observations. Sentinel-2’s higher bands and vary-
ing resolution introduce variances. Consequently, decompression,
parsing, and data transfer speeds are higher for Sentinel-2.

Microbenchmark: To highlight the effectiveness of our DHT
we staged a satellite data collection and report on the distribution of
image geocode splits. In this experiment, our base dataset comprises
all available Sentinel-2 images for the Continental United States
during July 2019, roughly 6,400 images. We staged this collection
by partitioning the data using geohashes of length 5, producing
bounding regions approximately 5km x 5km. Table 2 profiles the
effectiveness of our distribution scheme using a variety of metrics.
We present dataset size, or the aggregate size of all images at a
specific node, and image count, which is the total number of images
at a specific node. As can be seen, the standard deviation are quite
small for each metric indicating balanced data distribution.

2.2 Support for Queries [RQ-1 / 2]
To support effective query evaluation as partitioned imagery is in-
gested within our system we: (1) extract and organize metadata, (2)
support a rich set of queries, and (3) leverage structural properties
of the DHT and data structures that we use to organize the meta-
data to effective support query evaluations. In particular, our query
evaluations are effective due to search space reductions, distributed
evaluations, and fast traversal of data structures during evaluations.

2.2.1 Metadata Extraction As partitioned images are ingested, we
extract and organize metadata to support fast query evaluations.
Image attributes are typically drawn from source metadata, which
includes spatial and temporal ranges, dataset identifiers, etc. We
supplement these attributes with additional metadata relevant for
building spatial deep learning models. In particular, we compute
two additional attributes as satellite imagery are ingested into the
system: pixel coverage and cloud coverage. Pixel coverage is the
percentage of pixels within the image (across bands) that contain

Metric Mean Standard Deviation
Dataset Size 139.5GB 1.5GB
Image Count 255k 2.8k

Table 2: 50 machine cluster distribution metrics performed on 6,400 raw
Sentinel-2 images partitioned at geohash length 5. Our DHT provides load-
balanced distribution evaluated under dataset sizes and image counts.

valid information. Source images may misalign with geocode spa-
tial bounds. As a result, spatially partitioned images may contain
partial information with padded ’fill’ value pixels. This may be seen
in Figure 3, which shows four separate NAIP images with less than
100% pixel coverage percentages combined into a full image. Cloud
coverage refers to the percentage of pixels that are identified as
clouds within an image. Clouds result in occlusions, and their opac-
ity preclude analyses for the areas that they impact. Therefore, for
each pixel we use a likelihood estimate to identify the probability
of cloud coverage. We make aggregate information available for
filtering as a percentage of cloud coverage within an image. This is
particularly useful for applications requiring spatial imagery that
may be subject to extremes, such as vegetation covers, urban areas,
deserts, etc.

2.2.2 Query Support Fitting deep learning models to satellite im-
agery benefit from inclusion/exclusion of certain portions of the
dataspace. We support expressive queries aligned with the char-
acteristics of the data to support model construction over the un-
derlying dataspace. This becomes increasingly important when
considering the iterative nature of the modelling process which
may involve diverse temporal queries for a particular spatiotem-
poral scope. Challenges in efficiently filtering large datasets are
exacerbated in distributed environments where approaches based
on distributed indexing and cooperative query evaluation have
been studied. Distributed data indices are expensive in terms of
both memory and computation. Additionally, solutions where the
indices and the underlying data are resident on disparate nodes
introduces overheads stemming from indirections and network
transfers. Cooperative query evaluation introduces processing inef-
ficiencies with nodes participating in queries even when they do
not have relevant data.

Our query evaluations are distributed and avoid wasteful pro-
cessing. First, any node within our DHT can serve as the conduit for
query evaluations. Second, at a given node the subset of DHT nodes
that must be contacted is deterministic and computed without hav-
ing to coordinate/gossip with other nodes in the system. As a result,
we reduce search space during query evaluations. These search
space reductions ensure that only nodes holding relevant content
are involved in query evaluation and avoid wasteful processing at
other nodes within the system.

Figure 3: An example of producing a complete image for a spatiotemporal
scope where multiple image partitions exist with incomplete pixel coverage.

4



(a) Distributed architecture. (b) Partitioned Architecture. (c) Containerized Architecture.
Figure 4: The three training architectures used. (a) is a typical master model setup, provided by most libraries, (b) and (c) are variations on our methodology.

At each node comprising our DHT, we use B+-Trees for efficient
range-based queries over data features, including images times-
tamps, cloud coverage, and pixel coverage. We also employ Radix
Trie’s for fast (and recursive) geocode prefix matching, meaning we
can quickly identify regions starting with a given character string.
Finally, we perform query evaluations in parallel on each cluster
node; results from the nodes where the queries are evaluated are
streamed to ensure that data retrieval is not a bottleneck.

We support queries involving predicates that span the following
characteristics.
• Chronological range based on open or closed bounds: Filter
images by temporal bounds, either end may be open.
• Spatial range: Identify all images within the given bounding
spatial bounding box. This query may be recursive (i.e. all subre-
gions) or not (i.e. only the queried region).
• Cloud coverage: Retrieve imagery where the occlusion due to
clouds is above the specified threshold.
• Pixel coverage: Source images may not provide data for the
spatial extent represented by a geocode. Pixel coverage refers to
percentage of image representing valid data.
• Dataset:Given that the system supports a variety of data sources,
users may specify the satellite imagery of interest: MODIS, NAIP,
NLCD, or Sentinel-2.

2.2.3 Complementing Dataspace Queries We also support data
wrangling operations that complement our dataspace queries. Specif-
ically, they remedy situations where simple filtering operations are
not powerful enough to identify and retrieve complex data subsets.
For example, co-processing of multiple image sources where each
has different spatiotemporal granularity’s and pixel resolutions.
We logically partition these operations into three subsets, namely
bolstering filtering criteria, reconciling image extents, and aligning
data from diverse spatiotemporal scopes.

The first capability we provide is to combine temporally- proxi-
mate data for the same spatial region to construct a synthetic image
that satisfies pixel or cloud coverage properties. Since each source
image relates to a specific spatial bound, splitting a collection of
source imagery by geocodes may result in incomplete images for
the same spatiotemporal scope. We are able to efficiently identify
collections of images that share a spatiotemporal scope and for
which the pixel/cloud coverage satisfies the queries. By combining
portions from different hyperspectral images we are able to dy-
namically splice together an image with the desired coverage. This
construct is depicted in Figure 3, where four partial images from
the same spatiotemporal extent that are aggregated to produce a
complete image. These temporal reconciliations of the dataspace
ensure a complete dataset and are useful for effective deep learning
over satellite imagery.

Another capability we support is tensor dimensionality reconcil-
iation across bands that comprise the hyperspectral image. As seen
in Table 1, images from different bands for the same scan may be at
different resolutions. In some cases, we may also attempt to perform
analyses on data from bands from different satellites. In each case,
the tensors (multidimensional arrays) that serve as inputs during
processing must be at a desired dimensionality. To solve this issue,
we provide image up-sampling and down-sampling functionality
which amalgamates data with contrasting resolutions.

2.3 Orchestration of Workloads [RQ-1 / 2 / 3]
Effective workload orchestration and concurrent execution are nec-
essary to harness resources within a commodity cluster. Orchestra-
tion of distributed spatial deep learning tasks introduces a number
of challenges. First, deep learning operations depend on every layer
of the resource hierarchy (i.e. CPU, GPU, RAM, disk, and network)
and varying workflow stages have different resource requirements.
Second, the model building process is iterative, involving synchro-
nization barriers as model weights are aggregated after each epoch.
Given the speed differential across the memory and I/O hierarchy,
network I/O costs start to dominate completion times. Finally, right-
sizing resource allocations is difficult. Under-provisioning leaves
system resources unused, while over-provisioning may further pro-
long completion times due to excessive disk head movements, CPU
context switches, memory pressure, and I/O interference.

Our orchestration (see Figure 4) based on decentralized DHT
leveraging traits aligned with the characteristics of the spatial
workloads. Specifically, we train a single model for each individ-
ual geocode within the system, producing an ensemble of smaller
models rather than a large, all-encompassing model. This allows us
to reconcile spatial heterogeneity by having smaller regions tune
themselves to particular spatial extents; our performance bench-
marks (see empirical benchmarks in section 3.4). It also permits
us to use the DHT’s balanced distribution of geocodes as a guide
for orchestrating workloads. In addition to balanced evaluation,
it ensures training jobs are scheduled with data locality, avoiding
unnecessary network transfers and coordination-related overheads.

Figure 5: The architecture for the NDVI model. It conforms to a typical
convolutional structure and the output is a single value.

5



Figure 6: The architecture of model used for generating NDMI maps.

We also demonstrate that our workload orchestration scheme is
amenable to containerized environments. We containerize the pro-
cess of training an individual model using Docker [1] and schedule
the execution of model training using Kubernetes [2]. We show that
Kubernetes is able to take advantage of our partitioning scheme to
train multiple data-local models on each machine simultaneously,
further optimizing resource use.

2.4 Leveraging our Methodology in Different
Analyses [RQ-2]

As part of this study, we also profile the suitability of our methodol-
ogy for diverse deep learning networks. The networks were chosen
based on the types of spatial analyses that are typically performed,
and also the representativeness of the structural elements such as
depth of the network, layers, regularization schemes, and the types
of network. We profile our methodology’s impact on training time,
resource consumption, and statistical error of models with varying
sizes and requirements. These real-world use cases are: (1) Calcula-
tion of metrics across bands in hyperspectral imagery, (2) Image
translations with preservation of structural characteristics such
as roads, buildings, etc. using skip connections. (3) Cloud removal
from satellite imagery - a relatively new image-to-image translation
using spatial attention in a generative adversarial network.

2.4.1 Average NDVI Prediction Our first use-case uses non-linear
regression to predict the average Normalized Difference Vegetation
Index (NDVI) from the RGB bands of satellite images. NDVI is a
metric quantifying the amount of vegetation in remote-sensing
imagery, and is commonly used to estimate the ecosystem health
[3] or the emissivity [4] (the ability to emit thermal radiation, essen-
tial in climate modeling) for different spatial extents. Additionally,
NDVI is subject to high spatial heterogeneity (neighboring regions
are likely to have similar NDVI, regions far apart are not). Conse-
quently, NDVI-based regression is both a highly relevant potential
use-case for many applications and well-suited to our methodology.
The non-linear regression is done with a neural network consisting
of several cells of convolutional layers and activation functions
followed by two fully-connected layers (see Figure 5). The model is
intended to be representative of a common image analysis network
and has not been specifically optimized for NDVI prediction.

2.4.2 Image-to-Image Translational Models We also trained an
image-to-image translation model to generate Normalized Differ-
ence Moisture Index (NDMI) maps using reflectance values of R, G,
and B bands at 10m spatial resolution. NDMI is calculated using the
refracted radiation in short-wave infrared (SWIR) and near-infrared

Figure 7: The architecture for the SpAGAN generator.

(NIR) bands, and can be used to measure the water-stress level of
crops.

Calculating NDMI can be tricky for satellite sensors such as
NAIP, as they don’t capture the SWIR / NIR reflectance values
that are critical in calculating the amount of water present in the
plants. To overcome this issue, we have trained a convolutional
neural network (CNN) model to estimate NDMI maps using RGB
bands captured by the majority of the satellite sensors. The U-net
architecture of the model is described in Figure 6. This image-to-
image translation model is a representative use case since such
models are often used to translate images from black-and-white to
colored, aerial photos into cartographic maps [5] and so on. The
model comprises blocks of 2D convolutional, batch normalization,
and LeakyReLU layers. Each block sequentially extracts high-level
features and reduces the dimensionality of the inputs. The decoder
part of the network consists of a Conv2DTranspose layer to con-
nect the input feature space with the output feature space at each
block level. This helps in preserving the underlying land and road
structures.

2.4.3 Generating Cloud Free Images with a Spatial Attention GAN
Finally, we use a spatial attention generative adversarial network
(SpAGAN) to remove cloud occlusions from the satellite imagery.
Cloud coverage in satellite imagery canmake collecting information
for NDVI, NDMI, and other geospatial metrics difficult as clouds can
obscure large portions of satellite imagery. About 67% of earth is
typically covered by clouds at any given moment [6]. By removing
cloud coverage and accurately generating the landscape underneath
we are able to improve the quality of these geospatial metrics. The
architecture of the SpAGAN generator can be seen in Figure 7. The
generator comprises of three standard residual blocks, three spatial
attentive blocks, two more standard residual blocks, and a final
convolutional layer. The SpAGAN discriminator comprises of six
convolutional blocks as illustrated in Figure 8.

By querying for satellite images with zero cloud coverage and
pairing them with the most temporally proximate image with cloud
coverage, we are able to create cloudy-cloudless pairings for our
models. After training our SpAGAN models we are able to compare
the quality of their generated cloud-free images using the peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM).
PSNR and SSIM are both metrics commonly used in measuring the

Figure 8: The architecture for the SpAGAN discriminator.

6



Figure 9: The effects of transfer learning on training the NDVI model.

quality of an image after compression, but in our case they are good
measures of the quality of generated cloud-free images. PSNR is
the ratio between the maximum possible power of a signal (255
for pixels) and the power of corrupting noise (mean squared error)
between two images. SSIM measures the similarity in luminance,
contrast, and structure between two images using a sliding window.

2.5 Transfer Learning [RQ-1 / 3]
Transfer learning is a broadly applied paradigm in deep learning. It
involves taking a model trained on one dataset and applying it to
a related task, and it serves to produce more accurate models in a
shorter time, with significantly reduced resource requirements. We
posit that regions with similar textural qualities will benefit from
transfer learning.

Our solution applies the gray level cooccurrence matrix (GLCM)
algorithm to identify similar regions based on geocode bounds.
GLCM processes gray-scaled image pixels to produce a matrix
capturing neighboring pixel relationships. It is a widely accepted
practice to quantify textural qualities of an image. Subsequent anal-
yses are often facilitated by calculating a variety of features on the
GLCM; these include dissimilarity, homogeneity, contract, energy,
ASM, and correlation.

Given textural features for each geohash we quantify spatial
region similarity using the k-means clustering algorithm. GLCM
feature matrices are quite large, in our application each feature pro-
duces 3 unique 255 x 255 byte structures. To improve the accuracy
of k-means, which typically struggles with large-dimensionality
data, we compute averages over the main matrix axes. The result
is a vector of 18 values, each of which captures qualities of a sin-
gle GLCM feature. Finally, we dissected the elbow in the cluster
silhouette score plot (using multiple distance functions like cosine,
Manhattan, and euclidean) to find the ideal cluster count at 12.

3 System Benchmarks
We profile our methodology under a variety of models (described in
Section 2.4) and architectures (as illustrated in Figure 4). Specifically

Model Distributed Partitioned Containerized
NDVI Prediction 6.8 hrs 59.4 mins 41.7 mins
NDMI Generation 2.0 hrs 1.6 hrs -

SpAGAN 17.35hrs 1.3 hrs -
Table 3: Duration to complete model training comparing architectures. Our
partitioned approach reduces training times by up to 13.9x. Containerizing
the partitions reduces by an additional 29.8%.

0 1 2 3 4 5 6 7
0

20

40

60

NDVI Prediction - Representative CPU Utilization

Distributed
Partitioned
Containerized

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5

10

CP
U 

Ut
iliz

at
io

n 
(%

) NDMI Generation - Representative CPU Utilization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (Hours)

0

5

10

SpAGAN - Representative CPU Utilization

Figure 10: Average representative CPU utilization across cluster hosts
during model training. Our partitioned architecture consistently reduces
utilization compared with distribution. The containerized environment
introduces additional CPU overhead.

we profile model training, reporting overall duration and resource
utilization metrics, and model performance by:
(1) Training a single distributed model across the cluster using
standard methods
(2) Training individual models for each geocode in the dataset, with
models on each machine being trained sequentially
(3) Using a containerization system to schedule training of individ-
ual models across the cluster

3.1 Experimental Setup
Experiments were performed on a cluster of 50 machines (Xeon
E5-2620, 64 GB Memory), each with a single Quadro P2200 GPU
(1280 cores, 5GB of memory). Images captured from Sentinel-2 were
used for each experiment, with varying spatiotemporal ranges.

3.2 Model Training Duration
We present the duration of model training in Table 3. Across models,
our partitioned algorithm is faster than the traditional distributed
approach.Explicitly, there is a 6.9x, 1.25x, and 13.3x reduction
in training durations for theNDVI prediction, NDMI genera-
tion, and SpAGAN models respectively. The difference may be
attributed to the large overhead required in distributing the training
and syncing the model across all nodes in the cluster. We also note
that containerizing the partitioned training further reduces
training times by 29.8% over a non-containerized partitioned
workload and almost 10x over the distributed approach. This
is because Kubernetes leverages composite cluster resource utiliza-
tion to more effectively schedule training tasks.

3.2.1 Transfer Learning In Figure 9 we observe that transfer learn-
ing has a significant effect on NDVI model training. We partitioned
geohash regions into 12 clusters using the approach described in
Section 2.5. Transfer learning from a random cluster (naive transfer

7



0 1 2 3 4 5 6 7
0

50

100
NDVI Prediction - Representative GPU Utilization

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

50

GP
U 

Ut
iliz

at
io

n 
(%

) NDMI Generation - Representative GPU Utilization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (Hours)

0

50

SpAGAN - Representative GPU Utilization

Distributed
Containerized

Partitioned

Figure 11: Average representative GPU utilization across cluster hosts
during model training. Utilization varies among model definitions and
training architectures. Broadly, the complexity of the model has significant
impact on GPU use.

learning) converge twice as fast as without transfer learning, as
well as reaching a lower loss. Transfer learning from the same
cluster resulted in approximately 4 times faster convergence
and even lower loss.

3.3 Training Resource Utilization
3.3.1 CPU Utilization We profile CPU utilization in Figure 10. The
partitioned architecture consistently uses less CPU than distributed.
Alternatively, containerizing the environment required consider-
ably more CPU because it is reading datasets for multiple models
simultaneously. For each model, we see a strong cyclic relationship
on CPU utilization for the distributed architecture. This is due to
periods of centralized model weight synchronization.

3.3.2 GPU Utilization Figure 11 compares GPU use while training.
There is a large variance in utilization across model types. Gen-
erally this is correlated with the complexity of the model, where
complexity increases from NDVI prediction to NDMI generation
to SpAGAN. Within models, containerization makes the best use
of the GPU by training multiple model simultaneously. Overall,
the distributed architecture requires more use than our partitioned
approach. This is because the distributed approach exhibits the
same periodicity as CPU utilization. Again, this is a construct to
model weight synchronization, but results in less efficient use.

3.3.3 Network I/O Total and average network I/O are presented
in Table 5. Total cluster values may be extrapolated by the number
of hosts. Maintaining lower network I/O is important because as
clusters scale out, data transfers may become a performance bot-
tleneck. Fortunately, our partitioned training is significantly
lower thandistributed training for everymodel; consistently

Figure 12: The memory required to train on varied inputs, shown with loga-
rithmic scale. Undivided images are 100 times larger than the largest images
that can fit in memory, making training on undivided images impossible.

resulting in a 5 order of magnitude reduction in total net-
work I/O. Alternatively, containerized training requires each ma-
chine to communicate with the Kubernetes Controller, generating
a modest amount of traffic. This decrease is established by the
colocation of training tasks and data. Our partitioned approach
does not require any data movements beyond initializing training
tasks. In comparison, distributed training suffers from centralized
management and synchronization of model weights.

3.3.4 Memory Scalability GPU memory is often a source of con-
tention when training deep learning models. Within each training
epoch training performance increases with the batch size (ie. num-
ber of concurrently processed images). However, batch sizes are
restricted by the number of images that can be stored on the GPU
simultaneously.

Figure 12 shows the limits of training models on undivided im-
ages, with lines showing the size of undivided Sentinel-2 images for
their native resolutions. Multiple image and batch sizes are tested.
Even with a batch size of two, which is generally inadvisable, the
lowest resolution Sentinel-2 images are more than 10x too large
to fit into memory during training and would require a GPU with
50-500GB of memory or distributing the model across many GPUs.

Alternatively, the raw images could be down-sampled by a factor
of 10-100x. Doing so to this degree requires discarding a large
amount of information. Our methodology reconciles the trade-off
between a large number of expensive GPUs and reduced image
quality by dividing the images into smaller pieces.

3.4 Model Performance
The accuracy of models is presented in Table 4. Figure 13 also
presents sample result images of the NDMI prediction and SpAGAN
models. These visualize image characteristics that are difficult to
quantify, for example using our partitioned approach with the
SpAGAN model is able to more accurately capture details of the
surrounding landscape, like rivers and mountain ridges.

Model Loss Distributed Partitioned
NDVI Prediction MSE 0.121 0.083

NDMI Generation MSE 0.00134 0.000253
MS-SSIM 0.81 0.93

SpAGAN PSNR 30.93409 31.559914
SSIM 0.90471 0.92147

Table 4:Accuracy of models using distributed and partitioned architectures.
Training models using our partitioned approach is statistically similar, or in
some cases outperform, models trained with the distributed approach.

8



Average Network I/O Total Network I/OModel Distributed Partitioned Containerized Distributed Partitioned Containerized
NDVI Prediction 460.1KB/s 1.7KB/s 5.6KB/s 113.0GB 6.1MB 14.0MB
NDMI Generation 102.4MB/s 4KB/s - 737.0GB 23.8MB -

SpAGAN 100.9MB/s 87.5KB/s - 6.48TB 430MB -
Table 5: Network I/O incurred during model training. Average network I/O is reduced by up to 4 orders of magnitude and total network I/O by over 30,000x
when comparing distributed training to our partitioned approach. Containerized environments increase both metrics by 3x compared to our partitions.

Our partitioned architecture performed better, on aver-
age, than the distributed approach on the NDVI prediction
model. Essentially, some regions had a very low loss and others
had a very high loss. Comparatively, training with the distributed
architecture results in a moderately higher loss for the single model,
caused by its inability to specialize for certain regions. It should
be noted that containerized training is functionally identical to
partitioned training, it is merely scheduled differently. Therefore,
accuracy measures are directly transferable.

NDMI prediction accuracy is reported using both the MSE and
MS-SIM metrics. Using MSE, we can measure how much the pre-
dicted pixel value differs from the target pixel value, reflecting the
water content of that spatial region. To compare the quality of the
generated map, we have used multi-scale SSIM metrics that apply
a low-pass filter followed by iterative down-sampling of the image,
comparing the luminance, contrast, and structure at multiple scales.
This helps in capturing the quality of the image at different resolu-
tions.We see that the our partitioned solution results in higher
accuracy when compared to the distributed approach.

We see the average PSNR and SSIM for our partitioned training
with the SpAGAN model was slightly higher than the distributed
training, demonstrating that the partitioned models generated
images more similar to the ground truth image than the dis-
tributed model. Additionally, in Figure 13 we see the partitioned
models more precisely capture landscape details, such as rivers and
mountain ridges, than the distributed model. This is because our
partitioned models are able to specialize on a particular region in
contrast to the distributed model.

4 Related Work
Distributed deep learning practices aim to train a single model on
multiple machines, where the increased parallelism reduces train-
ing times [7]. The two competing approaches are data parallelism
[8] and model parallelism [9]. Data parallelism trains a copy of the
entire model on each machine and synchronizes model weights
after each epoch. This is the primary technique used in Tensorflow
[10] and PyTorch [11] distributed packages. It introduces signifi-
cant network overheads, which may transform network I/O into
a bottleneck for large models. The Ring AllReduce algorithm [12]
combats this by promising optimal bandwidth usage as long as
network buffers are large enough. Alternatively, model parallelism
distributed parts of the model across the cluster. The necessary
training consensus among hosts mean this solution often suffers
from concurrency-related training issues [13]. Consequently, it’s
only applied on very large models [14]. Our system is an alternative
to data and model parallelism. Rather than partitioning the data
or model, we partition the problem. This approach is similar to
modular reinforcement learning [15–17] where a complicated task
is decomposed into isolated sub-tasks.

Partitioning satellite imagery for efficient analysis has been pro-
posed in a variety of domains. Recent efforts in Geographic Object-
based Image Analysis (GEOBIA) [18, 19] accent the importance of
resolutions in rectifying inclusion of multi-source imagery. Simi-
larly, extraction of image features for farmland [20], building [21],
and irrigation [22] show accuracy variances depending on spa-
tial bound definitions. Georganos et. al. [23] process non-uniform
spatial partitions to improve land-cover / land-use maps. Draw-
ing from these previous works, our system facilitates partitioning
satellite imagery; rectifying formats, spatial reference systems, and
resolutions. Additionally, we provide verbose metadata filtering,
such as image cloud coverage, which may be applied in any the
aforementioned domains.

The normalized difference moisture index (NDMI) is used to
quantify moisture, often absorbed by plants, and is essential in
many agricultural remote-sensing applications. The issue is that hy-
perspectral imagery typically observed NDMI as lower resolutions
than other correlated bands. Yang et. al. [24] leverages the green
and NIR bands to overcome low resolution (20m) SWIR bands and
generate pan-sharped water maps at 10m resolution. Similarly, Du
et. al. [25] applied the ATWT method to combine high-resolution
bands with interpolated SWIR bands using wavelet transformations.
Rokni et. al. [26] applies PCA over a multi-temporal NDMI index to
achieve comparable results. Our approach achieves similar results
by employing neural network that learns the relationships between
correlated bands (ex. RGB and NIR/SWIR) over spatial regions.

A number of modern methods of cloud removal are based on con-
ditional GANs. These include multispectral conditional GANs (MC-
GAN) [27], Pix2Pix GANs [5], and spatiotemporal GANs (STGAN)
[28]. Because of the success of these multi-band models, other
geospatial data are now being incorporated into cloud removal
GANs. One example of this is the Simulation-Fusion GAN [29]
which uses synthetic-aperture radar (SAR), combined with satellite

Figure 13: Examples of NDMI and SpAGAN predictions visualizing the
accuracy of our partition-based training approach.

9



imagery, to produce cloud-free images. Although these models per-
form well, in practice they require large amounts of data, long train-
ing times, and therefore must be distributed. Our system focuses on
combating these issues to improve the utility of the aforementioned
techniques.

5 Conclusions and Future Work
In this study, we presented our methodology to build effective deep
learning models over satellite image collections. Our empirical
benchmarks demonstrate the suitability of our methodology in en-
suring significantly faster completion times without compromising
on accuracy, while using resources frugally.

RQ-1: Partitioning hyperspectral satellite imagery allow us to ap-
portion not just the storage load, but subsequent processing work-
loads as well. Leveraging geocodes allows us to deterministically
and hierarchically partition the imagery. Collocating all data from
a given extent on the same machine precludes data movements
during model training.
RQ-2: Reconciling spatial reference systems, encoding formats,
and image types allows modelers to reconcile heterogeneity across
satellite data collections. Targeted retrievals of data based on query
predicates specified over spatial, temporal, and other attributes is
faster because of search space reductions and data structures used
for query evaluations. Creation of synthetic imagery, identification
of occlusions due to clouds and available data allows us to construct
effective training datasets. Rather than build an all-encompassing
model, building an ensemble of models, each for a particular spatial
extent, allows each constituent model to tune itself to feature space
characteristics at that scope. Given that this has the added benefit
of reduced resource utilizations and overall completion times we
expect greater experimentation as well.
RQ-3: Our methodology is particularly amenable to horizontal
scaling. This is made possible by a mix of partitioning imagery,
leveraging geocodes to do so hierarchically and deterministically,
and multi-token DHTs for decentralized and dynamic load balanc-
ing. Reducing data movements during model training is key to
ensuring that network I/O is not amplified during training. By en-
suring data collocation during model construction we substantially
reduce data movements. Furthermore, our methodology of training
models for spatial extents ensures that there is no network I/O
due to synchronization barriers over large collections of machines.
Cumulatively, this allows our methodology to scale with increases
in DVs and the number of available machines. As our benchmarks
demonstrate, not only is our methodology agnostic of the deep
learning libraries, we are able to leverage these libraries to outper-
form their own native distributed implementations. Finally, our
methodology demonstrates excellent performance in containerized
environments as well.

As part of future work, we will be exploring issues relating to
object tracking across spatiotemporal scopes. The objects here also
represent phenomena where features derived from hyperspectral
imagery take on values within a specified range.

Acknowledgments
This research was supported by the National Science Foundation
[OAC-1931363, ACI-1553685], the National Institute of Food & Agri-
culture [COL0-FACT-2019], and a Cochran Family Professorship.

References
[1] Dirk Merkel. Docker: Lightweight linux containers for consistent development

and deployment. Linux J., 2014(239), March 2014.
[2] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: Up and Running

Dive into the Future of Infrastructure. O’Reilly Media, Inc., 1st edition, 2017.
[3] DM Stoms and WW Hargrove. Potential ndvi as a baseline for monitoring

ecosystem functioning. International Journal of Remote Sensing, 21(2):401–407.
[4] Juan C Jiménez-Muñoz, José A Sobrino, Alan Gillespie, Donald Sabol, and

William T Gustafson. Improved land surface emissivities over agricultural areas
using aster ndvi. Remote Sensing of Environment, 103(4):474–487, 2006.

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks. CoRR, 2016.

[6] Jesse Allen, Kevin Ward, Adam Voiland, et al. Cloudy earth.
[7] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep

learning: An in-depth concurrency analysis. ACM Computing Surveys (CSUR),
52(4):1–43, 2019.

[8] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour, 2017.

[9] Jeffrey Dean, Greg Corrado, Rajat Monga, et al. Large scale distributed deep
networks. In Advances in neural information processing systems, pages 1223–1231.

[10] Martín Abadi, Paul Barham, Jianmin Chen, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), pages 265–283, 2016.

[11] Adam Paszke, Sam Gross, Soumith Chintala, et al. Automatic differentiation in
pytorch. 2017.

[12] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[13] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism
for deep neural networks. arXiv preprint arXiv:1807.05358, 2018.

[14] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language
models using model parallelism, 2019.

[15] D. Jacob, D. Polani, and C. L. Nehaniv. Legs that can walk: embodiment-based
modular reinforcement learning applied. In 2005 International Symposium on
Computational Intelligence in Robotics and Automation, pages 365–372, 2005.

[16] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement
learning with policy sketches. In International Conference on Machine Learning,
pages 166–175, 2017.

[17] Sooraj Bhat, Charles L Isbell, and Michael Mateas. On the difficulty of modular
reinforcement learning for real-world partial programming. In Proceedings of the
National Conference on Artificial Intelligence, volume 21, page 318. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

[18] Stefan Lang, Geoffrey J Hay, et al. Geobia achievements and spatial opportunities
in the era of big earth observation data. ISPRS International Journal of Geo-
Information, 8(11):474, 2019.

[19] Nicholus Mboga, Stefanos Georganos, et al. Fully convolutional networks and
geographic object-based image analysis for the classification of vhr imagery.
Remote Sensing, 11(5):597, 2019.

[20] Lu Xu, Dongping Ming, Wen Zhou, Hanqing Bao, Yangyang Chen, and Xiao Ling.
Farmland extraction from high spatial resolution remote sensing images based
on stratified scale pre-estimation. Remote Sensing, 11(2):108, 2019.

[21] Gunho Sohn and Ian Dowman. Data fusion of high-resolution satellite imagery
and lidar data for automatic building extraction. ISPRS Journal of Photogrammetry
and Remote Sensing, 62(1):43–63, 2007.

[22] Hassan Bazzi, Nicolas Baghdadi, Dino Ienco, et al. Mapping irrigated areas using
sentinel-1 time series in catalonia, spain. Remote Sensing, 11(15):1836, 2019.

[23] Stefanos Georganos, Tais Grippa, Moritz Lennert, et al. Scale matters: Spatially
partitioned unsupervised segmentation parameter optimization for large and
heterogeneous satellite images. Remote Sensing, 10(9):1440, 2018.

[24] Xiucheng Yang, Shanshan Zhao, Xuebin Qin, Na Zhao, and Ligang Liang. Map-
ping of urban surface water bodies from sentinel-2 msi imagery at 10 m resolution
via ndwi-based image sharpening. Remote Sensing, 9(6):596, 2017.

[25] Yun Du, Yihang Zhang, Feng Ling, Qunming Wang, Wenbo Li, and Xiaodong
Li. Water bodies’ mapping from sentinel-2 imagery with modified normalized
difference water index at 10-m spatial resolution produced by sharpening the
swir band. Remote Sensing, 8(4):354, 2016.

[26] Komeil Rokni, Anuar Ahmad, Ali Selamat, and Sharifeh Hazini. Water feature
extraction and change detection using multitemporal landsat imagery. Remote
sensing, 6(5):4173–4189, 2014.

[27] Kenji Enomoto, Ken Sakurada, Weimin Wang, et al. Filmy cloud removal on
satellite imagery with multispectral conditional generative adversarial nets. CoRR.

[28] Vishnu Sarukkai, Anirudh Jain, Burak Uzkent, and Stefano Ermon. Cloud removal
in satellite images using spatiotemporal generative networks. 2019.

[29] Jianhao Gao, Qiangqiang Yuan, Jie Li, Hai Zhang, and Xin Su. Cloud removal
with fusion of high resolution optical and sar images using generative adversarial
networks. Remote Sensing, 12:191, 01 2020.

10


	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Research Questions
	1.3 Approach Summary
	1.4 Paper Contributions
	1.5 Paper Organization

	2 Methodology
	2.1 Partitioning and Staging Within a Cluster [RQ-1 / 3]
	2.2 Support for Queries [RQ-1 / 2]
	2.3 Orchestration of Workloads [RQ-1 / 2 / 3]
	2.4 Leveraging our Methodology in Different Analyses [RQ-2]
	2.5 Transfer Learning [RQ-1 / 3]

	3 System Benchmarks
	3.1 Experimental Setup
	3.2 Model Training Duration
	3.3 Training Resource Utilization
	3.4 Model Performance

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

