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ABSTRACT

Recent work in recommender systems has emphasized the impor-
tance of fairness, with a particular interest in bias and transparency,
in addition to predictive accuracy. In this paper, we focus on the
state of the art pairwise ranking model, Bayesian Personalized
Ranking (BPR), which has previously been found to outperform
pointwise models in predictive accuracy, while also being able to
handle implicit feedback. Specifically, we address two limitations
of BPR: (1) BPR is a black box model that does not explain its out-
puts, thus limiting the user’s trust in the recommendations, and
the analyst’s ability to scrutinize a model’s outputs; and (2) BPR
is vulnerable to exposure bias due to the data being Missing Not
At Random (MNAR). This exposure bias usually translates into an
unfairness against the least popular items because they risk be-
ing under-exposed by the recommender system. In this work, we
first propose a novel explainable loss function and a corresponding
Matrix Factorization-based model called Explainable Bayesian Per-
sonalized Ranking (EBPR) that generates recommendations along
with item-based explanations. Then, we theoretically quantify ad-
ditional exposure bias resulting from the explainability, and use it
as a basis to propose an unbiased estimator for the ideal EBPR loss.
The result is a ranking model that aptly captures both debiased
and explainable user preferences. Finally, we perform an empirical
study on three real-world datasets that demonstrate the advantages
of our proposed models.
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1 INTRODUCTION

Bayesian Personalized Ranking (BPR) is a state of the art pairwise
ranking approach [36] that has recently received significant praise
in the recommender systems community because of its capacity
to rank implicit feedback data with high accuracy compared to
pointwise models [18]. Aiming to rank relevant items higher than
irrelevant items, pairwise ranking recommender systems often
assume that all non-interacted items as irrelevant. Hence, these
systems rely on the assumption that implicit feedback data is Miss-
ing Completely At Random (MCAR), meaning that the items are
equally likely to be observed by the users [40], consequently any
missing interaction is missing because the user chose not to in-
teract with it. However, given the abundance of items on most
e-commerce, entertainment, and other online platforms, it is safe to
assume the impossibility of any user being exposed to all the items.
Thus, missing interactions should be considered Missing Not At
Random (MNAR). This means that the user may have been exposed
to part of the items, but chose not to interact with them, which can
be a sign of irrelevance; and was not exposed to the rest of the items.
This MNAR property is translated into an exposure bias. This type
of bias is usually characterized by a bias against less popular items
that have a lower propensity of being observed [6].

Moreover, most accurate recommender systems tend to be black
boxes that do not justify why or how an item was recommended to
a user. This might engender unfairness issues if, for example, par-
ticularly inappropriate or offensive content gets recommended to a
user. This kind of unfairness can be better diagnosed and mitigated
with an explanation. In fact, it could be important for the user to
know why or how the inappropriate item was recommended. For
example, an Italian user might think that the movie recommen-
dation “The Godfather" is offensive because of the way it depicts,
in an unfair stereotypical way, a certain Italian community in the
US. However, the explanation “Because you liked the movie “Scar-
face"" can be important in this case, because it clarifies that the
movie recommendation was not tied to a community, but rather
resulted from the user also liking another similar “mafia" sub-genre
movie. Furthermore, explanations have been shown to help users
make more accurate decisions, which translates into an increased
user satisfaction [2, 4]. Bayesian Personalized Ranking [36] treats
comparisons between any positive and negative items the same, re-
gardless of which ones can or cannot be explained. Thus, while BPR
aptly captures and models ranking based preference, it does not yet
capture an explainable preference. It is this explainable preference, in
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addition to an unbiased preference ranking, that we seek to achieve
in this work. We thus propose models that address explainability
and exposure bias in pairwise ranking from implicit feedback and
achieve the following contributions:

e Proposing an explainable loss function based on the state of
the art Bayesian Personalized Ranking (BPR) loss [36] along
with a corresponding Matrix Factorization (MF)-based model
called Explainable Bayesian Personalized Ranking (EBPR).
To the extent of our knowledge, no work has introduced
neighborhood-based explainability to pairwise ranking.

e Conducting a theoretical study of the additional exposure
bias coming from the item-based explanations.

e Proposing an unbiased estimator for the ideal EBPR loss,
called UEBPR, based on the Inverse Propensity Scoring (IPS)
estimator [37]. To our knowledge, no prior work has tried to
address the additional exposure bias that could result from
neighborhood-based explainability.

o Performing an empirical study on three real-world datasets
to compare the effectiveness of the proposed models, in terms
of ranking, explainability, and both exposure and popularity
debiasing.

o Investigating the properties of the proposed neighborhood
based explainable models, revealing and explaining a desir-
able inherent popularity debiasing that is built into these
models. This opens the path to a new family of future debias-
ing strategies, where the debiasing is rooted in an explainable
neighborhood-based rationale.

In addition, we make our implementations of all the models
presented in this paper available for reproducibility!.

2 BACKGROUND

In this section, we start by reviewing previous work on explainabil-
ity and counteracting exposure bias in recommendation. While it is
impossible to do justice to every past contribution with an exhaus-
tive review, we try to focus on the most representative or related
work. Then we review Bayesian Personalized Ranking (BPR).

2.1 Explainability in Recommendation

The types of explanations in recommendation have varied with
the type of data used [4, 43] Some explanations are content-based,
meaning that they usually come from features. These were used
in works that employed sentiment analysis on user reviews along
with learned latent features to generate explanations in the form of
user or item features [53], textual sentences [53] or word clusters
[52]. Other research efforts used attention mechanisms to explain
recommendations [9, 10, 27, 41]. The generated explanations are
important regions in the textual [41] or image [9, 10, 27] inputs.
Other methods relied on post-hoc approaches that try to extract
explanations for the recommendations after they occur. For in-
stance, [35] and [11] use influence functions to determine the effect
of each input interaction on the recommendation; while [13] pro-
posed an approach that forward-propagates song segments through
the trained recurrent neural network model to determine the most
explanatory segment in a song recommendation. In contrast to the

!https://github.com/KhalilDMK/EBPR

Damak et al.

above methods, some explainable recommender systems rely solely
on feedback data such as ratings or interactions. Hence, they have
the advantage of (1) accommodating collaborative filtering (CF)
models and (2) not requiring any additional content or metadata to
generate explanations for CF. These explanations tend to depend
only on the rating data and they are mainly neighborhood-based,
and can be either user-based or item-based [2, 21]. Explanations can
be obtained by using classical, inherently interpretable, user-based
or item-based collaborative filtering techniques [21, 39] or by using
model-based approaches. The latter are most related to our work.
Among model-based approaches, Explainable Matrix Factorization
(EMF) [2] pre-computes a user or item-based neighborhood style
explainability matrix from the ratings, and then uses this matrix
in a regularization term that is added to obtain an explainable rec-
ommendation reconstruction loss to guide the learning and yield
explainable recommendations. This approach provides a simple
and flexible way to add explainability to latent factor loss-based
models to obtain a single integrated explainable model. It also has
the advantage of not being a post-hoc approach, and hence not
incurring the cost of learning two separate models, nor risking lack
of fidelity from deviations between the explaining model and the
predictive model. For all these reasons, EMF was later adopted in
several works, such as [12] which extended it and tried to improve
the novelty of the recommendations; and in [45] which modified
the calculation of the explainability matrix by integrating the neigh-
bors’ weights to improve performance. Other works used influence
functions to generate neighborhood-based explanations. For in-
stance, [30] proposed a probabilistic factorization model, which
employs an influence mechanism to evaluate the importance of the
users’ historical data and present the most related users and items
as explanations for the predicted rating.

2.2 Exposure Bias in Recommendation

Bias in recommendation can be categorized into seven types [6]
that occur within the various stages of the recommendation feed-
back loop [23, 24, 32, 42] between the user, the data, and the model.
Among these categories, in the user-to-data phase, we find exposure
bias, which is the focus of our work in this paper. Exposure bias
happens when users are only exposed to a portion of the items,
and hence, unobserved interactions do not always represent nega-
tive preferences [6]. The techniques that have been introduced to
mitigate exposure bias, vary in whether they treat bias during the
training or evaluation [6]. The common approach that is used in
the evaluation phase incorporates an Inverse Propensity Scoring
(IPS) modification of the ranking evaluation metrics, where more
popular items are down-weighted and less popular items are up-
weighted [49]. Exposure debiasing in training is usually achieved
by considering the unobserved interactions as negatives with a cer-
tain confidence [6]. These methods differ in the way they define or
approximate the confidence weight. One group of methods [14, 22]
considers a uniform weight for all negative items that is lower than
one; while a second group [33, 34] utilizes the user activity, for
instance the number of interacted items, to weight the negative
interactions; and a third group uses item popularity [20, 50] and
user-item similarity [28] to achieve a similar goal. Recent work,
[38] and [37], proposed IPS-based unbiased estimators for the ideal
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pointwise and pairwise losses, respectively. In their experiments,
they estimated the propensity of an interaction using the relative
item popularity. On the other hand, [25] proposed a regulariza-
tion term that penalizes non-uniform exposure. Departing from
the previously mentioned methods, other work proposed negative
sampling processes in order to mitigate exposure bias. This negative
sampling is usually done by exploiting side information such as
social network information [8] or item-based knowledge graphs
[46]. Another approach is to integrate the capacity to learn the
exposure probability within the model [7, 8, 29], which in turn
requires assumptions on the probability distribution of exposure.
Finally, [3, 31, 47, 51] consider users’ sequential behavior to address
exposure bias with multi-task learning.

2.3 Bayesian Personalized Ranking for
Pairwise Ranking

The Bayesian Personalized Ranking (BPR) loss was introduced in
[36] as the first loss that is “optimized for ranking" in the implicit
feedback pairwise ranking setting. In other words, it learns the
users’ preference of a positive item over a negative item. In this
case, positive and negative items are those that the user has, respec-
tively, interacted with and not interacted with. This is opposed to
pointwise prediction, which can be seen as a predictive classifica-
tion problem of the relevance of an item to a user. Pairwise ranking
has received increasing attention and praise over the years from
the recommender system community due to its high performance
in top-N recommendation compared to pointwise ranking [18]. The
BPR objective function is defined as follows:

Lppr = ﬁ Z

(u,is,i_) €D

—loga(fa(u, iy, i-)), 1

where D = {(u, iy, i-)|ueU, i+€el}, i_el;; } is the training data. I}
is the set of positive (interacted) items by user u and I, is the set of
negative (non-interacted) items by user u such that I, =T\ I}. fo
is a hypothesis with parameters Q that quantifies how much user u
prefers (following the order relation >, defined in [36]) item i, over
item i, and o is the Sigmoid function. When the BPR loss is applied
to Matrix Factorization (MF) with the parameters Q consisting of
the respective user and item latent matrices PeR™K and Qe]RmXK ,
the preference model is given by

foluwiyi)=P,-Qf —P,-Q . @
Applying the Sigmoid function to the output of the preference
model yields the preference probability, which is the probability
of user u preferring item iy over item i—: Pq (iy > i—) = P(is >y
i—|Q) = o(fo(u, iy, i-)). Note that in equation 1, as in the remain-
der of this paper, we omitted any regularization terms from the
equations for simplicity, although we use L2 regularization in our
implementation.

3 EXPLAINABLE BAYESIAN PERSONALIZED
RANKING
To the extent of our knowledge, no work has introduced neighbor-

hood based explainability to pairwise ranking. More importantly,
although neighborhood-based explainability can be expected to be
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vulnerable to exposure bias, there is a need to mitigate any addi-
tional exposure bias coming from the explainability. The BPR model
learns to rank positive (interacted) items by a user higher than any
negative (non-interacted) item. This objective treats comparisons
between any positive and negative items the same, regardless of
which ones can or cannot be explained based on any given style
of explanation, for instance based on neighborhoods. Thus, while
BPR aptly captures and models a ranking based preference, it does
not yet capture an explainable preference. In fact, as demonstrated
in [2], it is important to consider the interpretability of the items to
the users, often referred to as explainability, when learning a rec-
ommendation objective, and this can be computed based on readily
available rating data, for instance from similar items. Hence, given
a definition for a measure of explainability Ey;, of an item i to a
user u, our aim is to condition the BPR objective function to capture
what we call explainable preference. This means giving more im-
portance to the explainable items that it is learning to rank higher,
and less importance to the explainable items that it is learning to
rank lower. In other words, if the objective function is learning
to rank, for a user u, an item i; higher than an item i_, then we
would additionally want to give an even higher importance to this
preference if it is also accompanied by a higher explainability Ey,;,
of item iy to user u and a lower explainability E,; of item i_ to
user u. We formulate this explainable preference desiderata into
a modified objective to obtain Explainable Bayesian Personalized
Ranking (EBPR) as follows:

DEFINITION 1 (EXPLAINABLE BAYESIAN PERSONALIZED RANK-
ING (EBPR) OBJECTIVE FUNCTION). Given an explainability matrix
E = (Eui)y=1.|U}i=1..1] € [0, 1WWIXEL vyhere Ey; is a measure of
explainability of item i to useru, the EBPR objective function is defined
as

1
Lggpr =
|D| (u,iJ;)eD

—Eui, (1= Eyi )logo(fo(u,iv,i-)).  (3)

The intuition is to weight the contribution of an instance (u, i, i)
into the loss by Ey;, (1 — Ey;_), in proportion to the degree that
the positive item is considered to be more explainable and the neg-
ative item is considered less explainable. Hence, the higher the
explainability Ey;, and the lower the explainability Ey;_, the more
the instance (u, i4,i—) will contribute to the learning. This also
means that, when generating a recommendation list to a user u,
the items ranked at the top of the list would be expected to have
higher explainability than the items ranked lower in the list. Thus
the multiplicative explainability term can be seen as one way to
formulate an explainable preference function, that is furthermore
flexible, since any explainability score can be incorporated.

The latter objective function may seem counter-intuitive due to
the fact that the loss increases when the explainability weighting
term Ey;, (1 — Ey;_) increases. However, the model learns with
the update equations regardless of the value of the loss. Hence,
instead of trying to reduce the loss further when the explainability
weighting term Ey;, (1 — Ey;_) increases, we aim to increase the
contribution of the instance (u, i, i) to the learning objective. To
gain a better insight, we derive the gradient used in the update
equations of EBPR, with respect to the model parameters Q:
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efalwini)  of (u iy, i )

OLggpr _ -1
oQ  |D| Z

(t,is,i_) €D

Eyi, (1-Ey;
u1+( wi_) 1 4 e—fo(uini) 20

©

From (2), we have

Qik —Qik if Q=Py,

fo(wini) _ | Puk if Q=01
o0 —Puk if Q=0 g
0 otherwise.

The amplitude of the gradient with respect to parameter Q is
thus an increasing function of the explainability weighting fac-
tor Ey;, (1 — Ey;_) in a way that confirms the desired explainable
preference aim. For instance, in the extreme case where either
the positive item is not explainable at all or the negative item is
completely explainable, the update equation is zeroed out. Hence,
no contribution will come from the corresponding instance to the
learning. This is reasonable and desirable since the aforementioned
case depicts a non explainable preference, where either the positive
item is not explainable or the negative item is explainable. Either
case undermines the explainability of the preference.

3.1 Explainability Matrix

Various measures of explainability can be defined given the charac-
terized order relation of an item i being “more explainable" than
an item j to a user u. The notion of explainability may depend on
user or item metadata if using a content-based or hybrid approach.
But in a purely collaborative filtering approach, such as in our
case, it should be neighborhood-based as proposed in [2], which
further categorized the explanations as user-based or item-based.
User-based explanations are based on user similarities and generate
explanations in the form of “this item was recommended because
certain similar users liked it". Item-based explanations use item-
similarities and generate explanations in the form “the item was
recommended because you liked similar items". We extend the idea
of neighborhood-based explainability from [2] because it has shown
success as an intuitive method for modifying loss-based recommen-
dation models [12, 45]. Both item-based and user-based measures
of explainability can be defined by relying solely on the interac-
tion matrix (or rating matrix, depending on the type of feedback).
However, in this work, we focus only on item-based explanations
which are expected to be more intuitive and informative to the
user than user-based explanations. This is because the user knows
the items that they interacted with but does not necessarily know
their neighbors who have similar interactions with items. That
said, a user-based explainability matrix can be similarly defined by
applying the same strategy, described below, on the transpose of
the interaction matrix. We define the measure of explainability E,;
as the probability of user u interacting with item i’s neighbors, as
shown below.

DEFINITION 2 (ITEM-BASED EXPLAINABILITY FOR IMPLICIT FEED-
BACK).

Eui = P(Yyj = 1]j € N}), )

where Nl.'7 is the neighborhood of item i which is a set of item i’s

n most similar items given a similarity measure. Yy,; is a Bernoulli
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random variable that takes value 1 if user u interacted with item i
and 0 otherwise:

Y._{ 1 ifiell,
Y7l 0 otherwise.
L INTNILE|

The explainability E;,; can also be reformulated as E,;; = ———*.
This means that for a specific item, the more neighboring items
a given user has interacted with, the higher the explainability of
that item will be to this user. In our experiments, we use the Cosine
similarity between items to generate the neighborhoods.

3.1.1 Justifications for the Choice of Explainability. In contrast to
post-hoc explainability approaches, which generate explanations
after the predictions have been made, our approach pre-computes
explanation scores, then uses them to learn an explainable model.
This leads to two advantages: (1) better transparency since there
is no post-hoc model and (2) avoiding the heavy cost of post-hoc
model training and explanation generation at prediction time.

Aiming toward transparency is also why we chose to use neigh-
borhood-based explainability. More specifically, our aim is to explain
recommendations using only the input data used by the recommen-
dation algorithm, and not any additional data that is not used to
generate predictions. Consequently and because BPR uses no meta-
data, the explanations must be sourced from only the interaction
data.

3.2 Training Complexity of EBPR

The complexity of learning the BPR model is O(|D|K), where |D|
is the size of the training data, and K is the number of latent factors.
This is because the complexity of forward and backward propagat-
ing an instance stems from computing two dot products, which is
O(K). Considering that generating the explainability matrix can
be done offline in the data pre-processing phase, no additional time
complexity needs to be added to the training process of EBPR com-
pared to BPR. That said, the explainability matrix is computed only
once, and the most significant part of the computation is computing
the similarity values initially, which can be done very efficiently,
owing to the sparsity of the interactions and the power law in the
data distribution, allowing the use of sparse structures and locality
sensitive hashing [15].

4 EXPOSURE BIAS IN EBPR

As proved in [37], the estimator optimized in BPR is biased against
the ideal pairwise loss. This is because the choice of the positive
and negative items depends on the interaction random variable Yy,;
instead of the relevance. In fact, there is a discrepancy between in-
teraction and relevance. Assuming that a relevant item is interacted
implies that all non-interacted items are irrelevant, even if they
were not exposed. This biases the BPR loss. Explainability too relies
on the interaction random variable, hence amplifying this bias. To
model exposure and relevance, we consider two Bernoulli random
variables: Oy, ; ~ Ber(6y;), where 6,; = P(Oy; = 1), represents the
exposure propensity of item i relative to user u; and Ry, ; ~ Ber(yui),
where yy,; = P(Ry; = 1), represents the probability of item i being
relevant to user u. Oy ; and R, ; represent, respectively, whether
item i is exposed or relevant to user u. We only know if user u
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interacted with item i when the item is both observed and relevant.
In other words, Yy;; = OyiRy; [37]. However, there could be relevant
unobserved items that the user did not get a chance to observe in
order to interact with. To handle this issue, [37] proposed an Inverse
Propensity Scoring (IPS) based estimator, as was done earlier for
explicit feedback ratings in [40], that is unbiased with respect to
the ideal pairwise estimator. The latter is defined as follows.

DEFINITION 3 (UNBIASED ESTIMATOR FOR THE IDEAL BPR 10ss).

unbiased _

BPR - |U||I|2

(u,iy,i-) eUXIXI

(6)

Given that the explainability scores Ey; also rely on the inter-
action random variable Yy;, it is reasonable to suspect that the
explainability weighting of the loss could introduce some addi-
tional exposure bias. In fact, it would be ideal to use the relevance
to define a more ideal explainability matrix as follows.

DEFINITION 4 (IDEAL EXPLAINABILITY MATRIX).

ideal
Ele = P(Ryj = 1]j € N]). (7

This being done, we use the ideal explainability matrix to define

the ideal EBPR loss as follows.

DEFINITION 5 (IDEAL EBPR 10SS).

ideal ___1
FBPR U2

~Yui, (1= yui )ELge (1 Eleel)

(w,i4,i_) eUXIXI
x logo(fo(u, iy, i-)).
®
To quantify the additional bias, we compare the ideal EBPR loss
to an IPS-based estimator similar to the one defined in Definition
3, but with explainability weighting. We call the latter estimator
PUEBPR loss, where the “pU" stands for partially unbiased, and
formulate it as follows.

DEFINITION 6 (PARTIALLY UNBIASED EXPLAINABLE BPR (PUEBPR)
LOSS).

1 R Yui_
W Z s (1 - u )Eul+(1 Eul )
(i i) CUXIXT Wi

X logo(fo(u, iy, i-)).

LyuEBPR =

©

The pUEBPR loss eliminates the initial exposure bias of BPR
without taking into account the impact of adding explainability.
Thus it is not a complete debiasing. However, as we will show below,
this partial debiasing loss will allow us to quantify the additional
bias coming from adding the explainability weighting to BPR. Next,
we prove that the explainability weighting in the EBPR loss intro-
duces additional exposure bias. Then we proceed to eliminate this
additional bias in the next section.

PROPOSITION 1 (ADDITIONAL EXPOSURE BIAS FROM EXPLAINABIL-
ITY WEIGHTING IN EBPR). (proof is omitted) The explainability
weighting in the EBPR loss introduces additional non-zero exposure
bias, given by

Lideal 4, (10)

Add_BiaS_EBPR = E[LpUEBPR] EBPR

Y - logafolain i)
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5 UNBIASED EBPR ESTIMATOR
We follow the same IPS-based methodology on the explainability
weighting to propose an unbiased estimator for the ideal EBPR loss:

DEFINITION 7 (UNBIASED EBPR (UEBPR) ESTIMATOR).

1 Z _ Yui+ (1 Yul_) Eul+ (1 _ Eui_ )
[U]? Oui 6 n 0, nm
(wiy,is) €UXIXI " ui- uN uN;

x logo(fa(u, iy, i-)),

LuEBpr =

(11)
where euNi” =P(Oyj =1|j € Nl”) is the probability of user u

being exposed to the neighbors of item i. euNi” can also be considered

as the item’s neighborhood propensity relative to user u.

Now, we prove that this new UEPBR estimator is unbiased for
the ideal EBPR loss in the following proposition.

PrRoOPOSITION 2. The UEBPR estimator is unbiased for the ideal
EBPR loss, meaning that

E[Lygppr] = Lidedt. (12)
Proor.
1 E[Yyi E[Yyi
E[Luespr] = TIE - [9%] (1- [elfl_])
(w,i4,i-) EUXIXI Uty ul-
E .
X 9““ (1 9”’* Yogo(fo(u, iy, i-))
uNZ_ uNi'i
1 Eyi Eyui_
T Y e (mm) g )
(yig,i-) €UXIXI uN; uN;
x logo(fa(u, iy, i-))
B Z a ')P(Ouj=1,Ruj=1|jeNi’i)
= |U||I|2 N Yui, Yui_ 0 N
(t,iy,i-) EUXIXI uN;,
P(Oyj=1,Ryj=1|j €N])
x (1~ N Yoga(fa(u, i, i-))
uN;_
ideal ideal
1 e G E
= ~Yui, (1 — Yui_ -
2 +
G (yig,i-) €UXIXI GuNi'i QHNZ
x logo(fo (u, iy, i-)) = Lideal O

To get the last line, we assume conditional independence be-
tween exposure and relevance given the neighborhood, a much
less restrictive (and thus more realistic) assumption than global
independence.

6 EXPERIMENTAL EVALUATION

We evaluate the impact of introducing explainability and counter-
acting exposure bias by tuning and then comparing the models
described in Sections 2.3 - 5 in terms of ranking performance, ex-
plainability, and debiasing capabilities.

6.1 Data Used

We use three datasets: The Movielens 100K [16] (ml-100k), The
Yahoo! R3 [48] (yahoo-r3) and the Last.FM 2K [5, 26] (lastfm-2k)
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Table 1: Datasets used for evaluation.

Dataset Task Users Items Interactions Sparsity
ml-100k  Movie rec. 943 1,682 100,000 93.6%
yahoo-r3 Song rec. 15,400 1,000 311,704 97.9%
lastfm-2k  Artistrec. 1,874 17,612 92,780 99.7%

datasets. These datasets consist of, respectively, 100K movie interac-
tions, over 311K song interactions, and over 92K artist interactions.
The interactions consist of either ratings or play counts, which were
converted into binary interactions, regardless of their values. In fact,
any rating or play count over the threshold of zero is considered a
positive interaction. Then we filtered out users with less than 10
interactions in the lastfm-2k dataset to ensure enough training and
evaluation samples for every user and reduce the data sparsity. The
other two datasets similarly have at least 10 interactions per user.
The datasets’ properties are summarized in Table 1.

6.2 Experimental Setting

We follow the standard Leave-One-Out (LOO) procedure [19, 36]
that consists of considering the latest interaction of each user as a
test item and comparing it to 100 randomly sampled negative items.
In the training, we sample, at every epoch, one negative item for
every positive user-item interaction. We implement “BPR", “UBPR",
“EBPR", “pUEBPR" and “UEBPR" and tune their hyperparameters
on every dataset by comparing the averages over two replicates
of 15 random hyperparameter configurations. We further split the
training data into training and validation sets for the hyperparame-
ter tuning. We consider the last interaction of every user from the
training data along with 100 sampled negatives (disjoint from those
in the test set) as a validation set. For each random hyperparameter
configuration, we choose a value for the number of latent features,
batch size and L2 regularization within the respective sets {5, 10,
20, 50, 100}, {50, 100, 500} and {0, 0.00001, 0.001}. We initially fixed
the neighborhood size to 20 to ensure a fair comparison in terms of
explainability metrics. However we will investigate the impact of
neighborhood size later in Section 7.6. This being done, we then
re-train every model on the merged train and validation sets with
its best hyperparameter configuration for five replicates and report
the average results on the test set. We also perform Tukey tests for
pairwise comparison [17] to check the significance of the results.
Note that, in our implementation of the unbiased models, namely
UBPR, pUEBPR, and UEBPR, we only use positive and negative in-
teraction pairs in the training to ensure that all models are trained
on the exact same datasets, and truly assess the impact of every
component in the loss. Also note that the goal of the experiments
is to assess the impact of the added explainability and debiasing
components on BPR. For this reason, we leave for future work, the
task of comparing our algorithms to additional baselines.

6.3 Evaluation Metrics

We use Normalized Discounted Cumulative Gain (NDCG@K) and
Hit Ratio (HR@K) for the ranking evaluation, and Mean Explain-
ability Precision (MEP@XK) [1] and Weighted MEP (WMEP@%K)
for the explainability evaluation. MEP@Y measures the proportion
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of explainable items within the list of Top K recommendations, as
follows

MEP@¥K (TopK) = (13)

1 'zU:' [{i € TopK ()} N {Eui > 0}
|U| u=1 K )
where TopK is the top K recommendation matrix in which every
row represents the Top K recommendations of a user. We further
extend MEP@X to be able to weight the items’ contributions to the
numerator by their explainability values, since MEP@K rewards
items that are considered to be explainable (i.e., with explainabil-
ity score above a given threshold) in the same way, regardless of
how different their explainability values are. Hence, we propose a
weighted version of MEP that weights items’ contributions by their
explainability values. The Weighted MEP (WMEP) is given by

WMEP@XK (TopK) =

U .

i € TopK(@) 0 {Eus > 0)]
T Z Eyi .
UI & K

u=1

(14)
Note that when training a model, we hide all test interactions
when generating the explainability matrix to avoid any data leakage
from the test set. Then, when evaluating the model on the test set,
we generate an explainability matrix that considers all interactions
to ensure an evaluation of the actual explainability of the test items
to users. Furthermore, we evaluate the popularity debiasing of the
models in three aspects, namely Novelty, Popularity and Diversity.
To evaluate the novelty of a model, we use Expected Free Discov-
ery (EFD) [44], which is a measure of the ability of a system to

recommend relevant long-tail items [44]. EFD is defined as

EI«“D@?((TopK):——Zl Z logabui.  (15)

u=1 K i€TopK (u)

Note that we use an estimator of the propensity 6,i to compute
the popularity as we will see later in Section 6.4. Next, to evaluate
the popularity of the recommendations, we compute the average
popularity at K, using

U]
1 1 A
Avg_Pop@%K (TopK) = ] MZ; % iero;((u) Oui.  (16)

Finally, to evaluate recommendation diversity, we compute the
Average Pairwise Similarity between the items in a top K recom-
mendation list, which is given by [44]

1]
) 1 1 o
Div@K(TopkK) = 17 ; TH—T i,jeToZpK(u) sim(i, j), (17)
i<j

where sim(i, j) is a measure of similarity between item i and
item j’s interaction vectors. In our experiments, we use the Cosine
similarity. All ranking and explainability metrics are computed at a
cutoff K = 10 for Top 10 recommendation.
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6.4 Propensity Estimation

Following [37], we estimate the propensity of an item to a user by
the relative item popularity of the item such that:

(18)

The total propensity of item i within its neighborhood can be
defined as the average propensity of the items in the neighborhood?;

i ) =1
ie, euNi" =5 ZleNi” 0,1

7 RESULTS AND DISCUSSION
7.1 Overall Ranking and Explainability Results

Table 2 lists the results of all the models in terms of ranking per-
formance and explainability. Overall, for both the ml-100k and
yahoo-r3 datasets, the explainable models EBPR and pUEBPR out-
performed all the other models in terms of ranking performance
and explainability for almost all the metrics. Moreover, whenever
EBPR was not the best performer, it was still second to best. On
the lastfm-2k dataset, the non-explainable models (BPR and UBPR)
reached better ranking performance than the explainable models
(EBPR, pUEBPR and UEBPR). However, the explainable models
were still the winners in terms of explainability (MEP and WMEP).
Our interpretation of the exception in the lastfm-2k dataset, is that
it is likely due to the extremely high sparsity of this dataset (99.7%),
which in turn impacts the similarity based computations to de-
termine the neighborhoods used in computing the explainability
values. This in turn degrades the learning of the explainable models
due to the vanishing gradient problem. We will investigate this
issue further in Section 7.5, where we will investigate the effect of
the data sparsity on the learning of the explainable models.

7.2 Advantages of using Explainability
Weighting in the Learning Objective

In order to demonstrate the advantages of the proposed explainabil-
ity weighting in (3), we compare EBPR to BPR and pUEBPR to UBPR
because these models only differ by the explainability weighting
of the loss. In both the ml-100k and yahoo-r3 datasets, going from
BPR to EBPR almost always improves both the ranking and ex-
plainability performances. However, going from UBPR to pUEBPR
improves the explainability but does not always improve the rank-
ing performance. In fact, the ranking performance improves on the
yahoo-r3 dataset but not on the ml-100k dataset. Nevertheless, we
will see later, in Section 7.6, that pUEBPR outperforms UBPR on the
ml-100k dataset when further tuning the neighborhood size. These
results are somewhat surprising since while our initial aim was
to improve the explainability of the recommended list, we ended
up also gaining in ranking accuracy. In other words, explainability
does not necessarily require sacrificing accuracy.

7.3 Impact of Debiasing on Performance

Contrary to what we noticed from the overall improved perfor-
mance when adding explainability to any of the models, we notice

In our implementation, we ended up omitting the constant denominator in the sum
as this yielded better results.
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a different trend in the accuracy when debiasing both models. In
fact, on all three datasets, all the evaluation metrics decreased over-
all every time that debiasing was added: from EBPR to pUEBPR to
UEBPR, and from BPR to UBPR. Hence, although the explainable
models still perform better overall than the non-explainable models,
debiasing explainable models seems to be degrading the ranking
performance. However, as the IPS weighting aimed to mitigate the
exposure bias in the training phase, the evaluation sets still suffer
from exposure bias. And given that the ranking metrics are based
on the interaction, rather than relevance, they cannot properly
quantify the benefits of the debiasing. To truly evaluate the impact
of the exposure debiasing, we evaluate the models in terms of their
capacity to capture the true relevance which is only available in the
yahoo-r3 dataset as described in the following subsection.

7.4 Impact of Debiasing on Relevance
Modeling

The yahoo-r3 dataset provides an unbiased test set, in which a
subset of 5,400 users were provided 10 random songs to rate. The
fact that the songs were chosen at random ensures that the test
set is free of exposure bias, because all the rated songs have the
same propensity of exposure. Thus, the ratings in the unbiased test
set represent the true relevance of the items to the users. Hence,
evaluating a model in terms of ranking performance on this test set
reflects its capacity to capture the true relevance. We re-train all
the tuned models on the yahoo-r3 dataset, and evaluate it on the
test set in terms of Mean Average Precision at cutoff 5 (MAP@5),
and NDCG@5, where for both metrics, we assess the relevance
of the top K predicted items for each user, given by their true
rating-based ranking. We chose a cutoff of 5 because there are 10
test items per user. We summarize the results in Table 3. Almost all
the unbiased models performed better than their biased versions,
except for pUEBPR which performed slightly better than UEBPR.
This is probably due to the nature of the neighborhood propensity
estimation. However, overall, the explainable and unbiased models,
pUEBPR and UEBPR, were the best performers in terms of ranking
performance in an unbiased evaluation setting. This demonstrates
the impact of the loss debiasing in better accounting for the true
relevance.

7.5 Impact of Data Sparsity on Learning

In order to study the effect of the data sparsity on the performance
of the explainable models, following our discussion in Section 7.1,
we decided to explore the relationship between sparsity and explain-
ability for the one data set (lastfm-2k) for which the performance
trends differed. We do this by assessing the evolution of the ex-
plainability values from the explainability matrix, while gradually
decreasing the sparsity of the dataset. To reduce the data sparsity,
we gradually, filtered out items with fewer than a certain threshold
of interactions, namely 5, 10, 15, 20, 25, 30, 35 and 40 user interac-
tions. For each generated dataset, we compute the explainability
matrix and calculate the average explainability value Ey; in (5). We
show the evolution of the average explainability with respect to the
sparsity of the lastfm-2k dataset in Fig. 1. We also show the aver-
age explainability values obtained from the ml-100k and yahoo-r3
datasets for comparison purposes. The original lastfm-2k dataset
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Table 2: Model comparison in terms of ranking performance and explainability on the three real interaction datasets that
were described in Table 1. All evaluation metrics are computed at a cutoff =10 (Top 10) and reported as the averages over 5
replicates. The best results are in bold and second to best results are underlined. A value with * is significantly higher than

the next best value (p-value < 0.05).

Dataset ml-100k yahoo-r3 lastfm-2k

Model NDCG HR MEP WMEP | NDCG HR MEP WMEP | NDCG HR MEP WMEP
BPR 0.3807" 0.6625 0.9182* 0.3467* | 0.3315" 0.5466  0.8910°  0.1594" | 0.7260" 0.9086"  0.2142 0.0452
UBPR 0.3676"  0.6401  0.9063*  0.3342 0.3203  0.5422 0.8815 0.1562 | 0.6613*  0.8340°  0.2338  0.0468"
EBPR 0.3821" 0.6568" 0.9314 0.3645" | 0.3521 0.5674 0.9461° 0.1808" | 0.6309* 0.7876 0.2629" 0.0485"
pUEBPR | 0.3648* 0.6356" 0.9282* 0.3595" | 0.3494* 0.5662* 0.9394*  0.1778* | 0.5938*  0.7556"  0.2456*  0.0471*
UEBPR 0.3542 0.6204  0.8986 0.3332 | 0.3421* 0.5565* 0.9234*  0.1710* | 0.5567 0.7284  0.2349"  0.0461

Table 3: Model comparison in terms of ranking performance
on the unbiased yahoo-r3 test set: Average results over 5
replicates. The best results are in bold and second to best
are underlined. A value with * is significantly higher than
the next best value (p-value <0.05).

| BPR UBPR | EBPR pUEBPR UEBPR
NDCG@5 | 0.6140 0.6152 | 0.6178"  0.6187 0.6180
MAP@5 0.4710 0.4727 | 0.4752" 0.4764  0.4756
012 —eo— lastfm-2k with different sparsities
% ml-100k

s

X yahoo-r3
X original lastfm-2k

o
e

Average explainability
g B

5

2
8

93.62 9424 94.82 95.46 9%.21 96.92 97.70 96.62 99.70
Data sparsity

Figure 1: Evolution of the average explainability with in-
creasing sparsity of the lastfm-2k dataset. The average ex-
plainability values from the ml-100k and yahoo-r3 datasets
are also shown for comparison.

has an average explainability of 0.0041 which is at least one order
of magnitude lower than the average explainability values of 0.1043
and 0.0497 on the ml-100k and yahoo-r3 datasets, respectively. In
the explainable models (EBPR, pUEBPR and UEBPR), the explain-
ability values are multiplication factors in the update equations (4).
Hence, having explainability values that are close to 0 will cause
the gradients to vanish and the learning to stall. Fig. 1 shows a de-
creasing linear relationship between the explainability values and
the data sparsity. Moreover, when reducing the lastfm-2k data spar-
sity to values near the respective sparsities of the ml-100k (93.6%)
and yahoo-13 (97.9%) datasets, we obtained average explainability
values near those obtained from these two datasets. Thus, the data
sparsity directly affects the scale of the explainability values. Higher
data sparsity leads to lower explainability values and, consequently,
a higher risk of vanishing gradients. This confirms our suspicion,

in Section 7.1, that the explainable models struggle with extremely
sparse data due to the vanishing gradients problem.

7.6 Impact of Neighborhood Size on
Performance

The impact of the neighborhood size is two fold: First, the neigh-
borhood size directly impacts the explainability values of items to
users, which in turn impact the values of MEP and WMEP. For that
reason, we used the same neighborhood size of 20 for all models
in the hyperparameter tuning. Second, the explainability values,
which depend on the neighbohood size, also impact the training
of the explainable models EBPR, pUEBPR and UEBPR. Thus, to
compare all models fairly in terms of ranking performance, the
neighborhood size must be tuned for these explainable models. In
this section, we study the impact of the neighborhood size on the
ranking accuracy and explainability. We vary the neighborhood
size and re-train all the models in their optimal hyperparameter
configurations. We show the results on the ml-100k dataset in Fig. 2.
We only show the results on the ml-100k dataset to avoid clut-
ter and because we reached similar conclusions for the other two
datasets. As expected, the ranking accuracy (NDCG and HR) did
not vary for the non-explainable models (BPR and UBPR) for the
varying neighborhood sizes, contrarily to the explainable models
(EBPR, pUEBPR and UEBPR), whose ranking prediction metrics
showed different trends. EBPR and pUEBPR reached their highest
ranking at a neighborhood size of 25, while UEBPR reached its
maximum performance at 20. It is interesting to note that after tun-
ing the neighborhood size, EBPR outperformed BPR and pUEBPR
outperformed UBPR in both HR and NDCG which confirms our
conclusions in Section 7.2, regarding the impact of the explain-
ability weighting on the performance. The explainability metrics
show opposite trends with MEP increasing and WMEP decreasing
when increasing the neighborhood size. This is due to the fact that
larger neighborhood sizes lead to sparser neighborhoods and thus
smaller explainability values, and the latter are used as a scale in the
WMEP metric. Taking aside the trends, we see that the comparative
performance of the models is somewhat consistent for different
neighborhood sizes: Overall, EBPR yields the best explainability
performance for all neighborhood sizes, followed by pUEBPR.
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Figure 2: Evolution of NDCG @10, HR @10, MEP@ 10 and WMEP @ 10 with increasing neighborhood size on the ml-100k dataset.

Table 4: Model comparison in terms of Novelty (EFD), Popularity (Avg_Pop) and Diversity (Div) on the three datasets. All
evaluation metrics are computed at a cutoff %'=10 (Top 10) and reported as the averages over 5 replicates. The best results are
in bold and second to best results are underlined. HB means the higher the better and LB means the lower the better. Any
value with * is significantly higher than the next best value (p-value < 0.05).

Dataset ml-100k yahoo-r3 lastfm-2k

Model | EFD (HB) Avg Pop (LB) Div (LB) | EFD (HB) Avg Pop (LB) Div (LB) | EFD (HB) Avg Pop (LB) Div (LB)
BPR 1.2029 0.4739 0.2675 1.7681 0.3460 0.0811% 2.7714 0.2000 0.0184

UBPR 1.3445" 0.4397* 0.2497* 1.8157 0.3348" 0.0789* 3.1049" 0.1714* 0.0163"
EBPR 1.2160 0.4677* 0.2650" 1.7682 0.3442 0.0844 3.4056" 0.1521% 0.0146"
pUEBPR 1.2939* 0.4491* 0.2587* 1.8148* 0.3341 0.0822* 3.3446 0.1531* 0.0137*
UEBPR 1.4699* 0.4127* 0.2414* 1.8716"* 0.3222" 0.0800* 3.3843" 0.1478 0.0130*

7.7 Explainability as Debiasing or Explainable
Debiasing

EBPR’s superior accuracy with no apparent tradeoff with explain-
ability suggests an inherent popularity debiasing mechanism that
is a byproduct of adding explainability. This is certainly possible
because the explainability term Ey;, (1 — Ey;_), when multiplied
into the ranking accuracy loss, captures finer detail about an item’s
rating from the item’s neighbors in addition to the item’s own
rating. This term has therefore ended up counteracting the bias
of very popular items by relying on their neighborhoods. In fact,
the explainability weighting term is expected to pull very popular
items down, similarly to propensity debiasing. However what the
proposed explainability term, ends up doing, in contrast to propen-
sity debiasing, is succeeding in the estimation of propensity, more
accurately and in a local way, namely by using the neighborhood
around each item, and not solely the item itself. The advantage of
the explainability term is also that it takes into account the local
neighborhood to provide a rationale for both positive and negative
interactions. Indeed the explainability score is not only providing
intuitive quantitative explanation scores for output predictions, but
also providing a rationale for debiasing, effectively providing what
can be considered an explainable local debiasing strategy for each
item. Next, we investigate this powerful idea for local explainable
propensity estimation by evaluating and comparing the models in
terms of Novelty (EFD), Popularity (Avg_Pop) and Diversity (Div).
We summarize our results in Table 4. For all datasets and for almost

all evaluation metrics, the explainable model EBPR outperformed
the vanilla BPR, thus supporting our aforementioned claims of pop-
ularity debiaing with explainability weighting. Moreover, adding
the exposure debiasing (moving from BPR to UBPR or moving from
EBPR to pUEBPR then UEBPR) almost always improves the popular-
ity bias metrics. This demonstrates a relationship between exposure
bias and popularity bias where mitigating the former consequently
mitigates the latter. Finally, UEBPR showed the best popularity de-
biasing overall on all the datasets. The considerably high debiasing
performance of UEBPR is likely due to its down-weighting of the
items with popular neighborhoods, in addition to the popular items,
hence allowing the less popular items to be discovered. We plan to
investigate this further in future work.

8 CONCLUSION

We proposed a novel explainable pairwise ranking loss with a corre-
sponding MF-based model called Explainable Bayesian Personalized
Ranking. We theoretically quantified the additional exposure bias
resulting from the explainability, and proposed an IPS-based unbi-
ased estimator for the ideal loss. We tested our proposed approaches
on three recommendation tasks and presented an extensive discus-
sion about the advantages of the proposed explainability extension;
as well as the impact of the debiasing, for varying data sparsities
and varying neighborhood sizes. Finally, we studied the popularity-
debiasing properties of the proposed methods in terms of Novelty,
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Popularity, and Diversity; and unveiled an inherent popularity debi-
asing stemming from the neighborhood interactions. Our findings
are informative and motivate further research because our pro-
posed EBPR model yielded the best performance overall with no
significant trade-off between explainability and accuracy. Moreover,
we showed how combining explainability and exposure debiaing
yields powerful popularity debiasing through the proposed UEBPR
loss. Finally, our results point towards EBPR and pUEBPR being
the top performers that offer the best tradeoff between accuracy,
explainability and debiasing capacity. However, despite their com-
petitive performance, our proposed approaches may suffer from
the vanishing gradient problem in extremely sparse settings.
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