Towards Timely, Resource-Efficient Analyses Through
Spatially-Aware Constructs within Spark

Daniel Rammer
rammerd@rams.colostate.edu
Colorado State University
Fort Collins, Colorado

Abstract

Across several domains there has been a substantial growth in data
volumes. A majority of the generated data are geotagged. This data
includes a wealth of information that can inform insights, planning,
and decision-making. The proliferation of open-source analytical en-
gines has democratized access to tools and processing frameworks
to analyze data. However, several of the analytical engines do not
include streamlined support for spatial data wrangling and pro-
cessing. Here, we present our language-agnostic methodology for
effective analyses over voluminous spatiotemporal datasets using
Spark. In particular, we introduce support for spatial data process-
ing within the foundational constructs underpinning development
of Spark programs DataFrames, Datasets, and RDDs. Our empirical
benchmarks demonstrate the suitability of our methodology; in
contrast to alternative distribution spatial analytics frameworks,
we achieve over 2x speed-up for spatial range queries. Our method-
ology also makes effective utilization of resources by reducing disk
I/O by a factor of 18, network I/O by 5 orders of magnitude, and
peak memory utilization by 58% for the same set of analytic tasks.

CCS Concepts

« Information systems — Spatial-temporal systems; - Com-
puting methodologies — Distributed computing methodolo-
gies.

Keywords
Spatial Analytics, Data Wrangling, Analytical Engines

ACM Reference Format:

Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara. 2018. To-
wards Timely, Resource-Efficient Analyses Through Spatially-Aware Con-
structs within Spark. In Woodstock '18: ACM Symposium on Neural Gaze
Detection, June 03—05, 2018, Woodstock, NY. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction

Data volumes have grown exponentially over the last couple of
decades. This growth can be attributed to several factors including
falling hardware costs that have occurred alongside improvements
in the quality and capacity of both networks and disks. The preci-
sions, resolutions, and frequencies at which observations are being

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03—05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Sangmi Lee Pallickara

sangmi@cs.colostate.edu

Colorado State University
Fort Collins, Colorado

Shrideep Pallickara
shrideep@cs.colostate.edu
Colorado State University

Fort Collins, Colorado

recorded have also increased. A majority of the data that are being
generated is geospatial; with each observation also being geotagged
to record the <lat, long>coordinates.

The growth in data volumes has also coincided with the devel-
opment of several open-source libraries for processing the data.
These include libraries for managing data encoding formats, data
preprocessing including operations for cleaning, noise-removal,
and imputations, model fitting libraries that implement statistical
and machine learning algorithms, and frameworks for distributed
orchestration of data processing.

Spark offers a rich ecosystem for data processing and analytic op-
erations. The framework includes libraries for data pre-processing,
model fitting, and a suite of statistical and machine learning algo-
rithms. Spark incorporates support for different types of processing;
in particular, Spark combines batch and stream processing opera-
tions in a single framework. Furthermore, Spark facilitates express-
ing computations in different languages such as Java, Python, and
Scala.

The crux of this paper is effective support for spatiotemporal
data in the Spark ecosystem. There are two key aspects to this:

(1) Providing a sufficiently rich set of capabilities for working with
geospatial data. These capabilities must benefit a broad class of
analyses and applications.

(2) Ensuring the efficiency of these operations. In particular, the
operations must scale, preserve latency requirements, and ensure

high throughput.
1.1 Challenges

There are several challenges in incorporating effective support for
spatial analytics within Spark.

e Data Storage: If data storage and dispersion does not account
for spatiotemporal characteristics it would result in excessive data
movements. However, once staged, data movements are prohibi-
tively expensive since they entail both disk I/O and network I/0O.
e Data movements: Several data wrangling operations including
polygon-based functionality can trigger data movements. A side
effect of such data movement is I/O amplification. Since analytics
is being performed in shared clusters, such I/O amplifications often
induce interference for other operationally unrelated applications.
o Spatial data wrangling: Support for effective selection, filtering,
etc. must account for spatial data characteristics. Naive operator
implementations can result in every observation within the dataset
being inspected.

e Voluminous data: Data volumes exacerbate the aforementioned
challenges. Without support for effective indexing and filtering of
data based on their spatiotemporal characteristics, the effects of
data movement are considerably amplified by data volumes.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03-05, 2018, Woodstock, NY

1.2 Research Questions

The overarching research question that guides our investigation
is the following: How can we effectively incorporate support for
spatiotemporal data analysis in Spark? Specific research questions
within this broader context that we have formulated include:

RQ-1: How can we align data retrieval with spatial access patterns?
This includes disk accesses and minimizing data movements during
spatial data processing.

RQ-2: How can we support effective data wrangling over spatiotem-
poral datasets? These must account for the spatial characteristics
and geometry that are inherent in such operations.

RQ-3: How can we ensure performance characteristics of these op-
erations? Operations that are expressive, but inefficient lead to
prolonged execution times and induce interference that adversely
impacts other collocated applications.

1.3 Approach Summary

Spark supports two broad classes of operators: transformations and
actions. Transformations are the primary mechanism to perform
data wrangling operations prior to launching an action. A key fea-
ture in Spark is that transformations are performed in a distributed
fashion as well. Depending on the operation being performed and
the data dispersion over physical machines these transformations
may result in excessive data movements (network I/O) and are re-
ferred to as wide transformations. Spark leverages lazy evaluations;
transformations are not evaluated till such time that an action is
initiated.

The Spark DataFrame forms the basis for the Structured API
within the Spark ecosystem, and represents data in its most foun-
dational form as a table comprising rows and columns. A typical
DataFrame in Spark spans multiple machines. Code written for the
DataFrame is converted by Spark into a logical plan. The conver-
sion of the logical plan of execution into a physical plan involves
exploring optimizations that ensure locality, minimizing data move-
ments, and leveraging statement reorganization to ensure faster
execution times. The Catalyst Optimizer within Spark is a key com-
ponent that is responsible for generation of the physical plan. A
key component of this is predicate pushdowns, which ensures that
filtering operations are performed prior to any data movements and
computing. Our methodology targets every aspect of this physical
manifestation.

Our methodology includes support for: (1) reducing data move-
ments at the storage level, (2) seamless interoperation with the
Spark ecosystem, (3) support for a rich set of data wrangling oper-
ations, including transformation operators, that are aligned with
spatiotemporal data processing requirements, and (4) incorporat-
ing optimizations into the Spark runtime, especially the Catalyst
Optimizer, so that functionality expressed by users over Spark
DataFrames (Datasets, or RDDs) are performant with fast com-
pletion times and reduced interference for collocated applications.

We leverage our file system, Atlas, for effective integration of
spatial data with Spark. Atlas reduces data movements via effective
collocation of proximate spatiotemporal data. Atlas leverages the
geohash algorithm to convert geotagged (latitude, longitude) coor-
dinates associated with individual observations into 2D bounding
boxes. The Atlas file system is distributed and breaks up large files
into contiguous chunks that are dispersed over multiple machines.

Rammer, et al.

To plug-in to the Spark ecosystem, we leverage its coupling with
HDFS. Spark has mature capabilities that allow it to use HDFS as
the source (input) or destination (for results) of data processing
operations. We have designed Atlas to be HDFS compliant. This
involved making sure that Atlas is able to support all control plane
traffic relating to discovery, replication, check summing, etc. that
may be initiated, but implements them in ways that are optimized
for spatiotemporal data.

We support a rich set of data wrangling operations for Spark that
are aligned with the needs of spatial data processing applications.
In particular, these include support for inspection operations involv-
ing spatial geometry such as Contains, Covers, Crosses, Disjoint,
Equals,

EqualsTollerance, Intersects, IsEmpty, IsSimple, IsValid, Over-
laps, Touches, and Within. We also support calculation over com-
plex polygon defined geometry such as distances, lengths, and area.
Our transformation operators include set and join operations that
result in a new DataFrame comprising the initial, pre-computed,
or resulting geometry. Transformations that we support include:
Buffer, ConvexHull, Difference, Envelope, Intersection,
Normalize, SymDifference, Union, Simplify, and

Densify. Once subsets of the data have been identified using our
data wrangling operations, they are amenable to further filtering
and sifting operations using SQL queries as available within Spark
SQL.

We have incorporated support for spatiotemporal data wrangling
within Spark’s physical plan manifestation system. This includes
support for filtering and predicate pushdown for spatiotemporal
operations. Consider the following exemplifying scenario; we are
working with a dataset with 100,000 observations, 10,000 of which
are located in Fort Collins, CO. If we are interested in analysis of
the Fort Collins observations, canonical HDFS will read the entire
dataset into a DataFrame and evaluate each row individually, filter-
ing out observations which are not in Fort Collins. Alternatively,
since Atlas supports spatial queries over the underlying files, we
can issue a query to retrieve only the requested data. Achieving
the same 10,000 observation DataFrame of Fort Collins data, but
bypassing the unnecessary I/O and filtering computations over the
unwanted 90,000 observations.

1.4 Paper Contributions

This study addresses effective processing of voluminous, geotagged
data using Spark. Both legacy and new Spark applications benefit
from this study. In particular, our contributions include:

(1) Support for feature-rich and performant spatiotemporal con-
structs (DataFrames, Datasets, and RDDs) within Spark.

(2) A rich suite of spatial data wrangling operators that are per-
formant. To ensure effective spatiotemporal data processing, we
leverage space-efficient spatial indexes, controlled data dispersion
that preserves data collocation, leverage predicate pushdowns to
reduce redundant operations, and reduce data movements.

(3) Users can continue to use their preferred Spark libraries for
data processing alongside Atlas.

(4) Our extensions, besides being language-agnostic, could be used
either in batch or stream processing modes.

Towards Timely, Resource-Efficient Analyses Through Spatially-Aware Constructs within Spark

Spatial Index

USER B :
1.Read/ Write File ~ NAMENODE | [a8o] :
.] ;
CEE] B
2. Block Locations : :
] i
4. Block : ;
Response ! | Block ID: 102552740 3
3. Read / Write i | Offset: 38347922 :
Block Request | Length23263621
| H VAR
b ’ b i
.. me B pE pE)

! Temporal Index
DATANODES 7 e

Rearrange blocks along
spatiotemporal bounds increasing

[- shce
[= 8bcc
I - 9dia

Figure 1: Depiction of the Atlas File System architecture. Most importantly,
the framework rearranges observations in the dataspace to be spatially and
temporally contiguous, facilitating concurrent retrieval. Additionally, the
system maintains spatial and temporal indices over the dataspace to enable
efficient dataspace identification.

2 Systems Overview

2.1 Geohash

The geohash algorithm [2] converts geotagged <latitude, longitude
>coordinates into a one-dimensional string that represents a unique
spatial bounding box. The length of the string controls the extent of
the spatial bounding box. The algorithm computes a bit sequence in
iterations of 4 bits (each 4 bit iteration corresponding to an output
character) where alternating bits index the X and Y coordinates
respectively. The bit sequence is computed by iteratively splitting
the current minimum and maximum bounds for each value and
appending a 0 or 1 to the bit string if the value resides in the
lower or upper half respectively. For example, in the Cartesian
coordinate system we begin with X minimum and maximum bounds
[-180, 180]. For a value of -50 we append a 0 as it resides in the
lower half, namely - 180 to 0. The next iteration will be computed
under minimum and maximum bounds of -180 to 0. The algorithm
performs iterations until the desired precision (i.e., the number of
output characters) is reached.

The Atlas File System [27] is a distribution, spatiotemporal file
system. A depiction of the framework’s architecture is provided in
Figure 1. Atlas provides efficient data retrieval for spatiotemporal
access patterns. This is achieved by leveraging a combination of
techniques. (1) Sequential disk access for spatially and temporally
contiguous data. Excessive disk head movements degrades system
performance. The Atlas File System dynamically rearranges data
on disk to provide contiguous and more efficient read / write oper-
ations. (2) Distributed spatiotemporal indices enable targeted data
retrieval. Given that Atlas data is stored spatially and temporally
sequential, indices may be compiled at a low granularity. Mean-
ing they index blocks of data instead of individual observations.
This vastly reduces the overhead incurred in maintaining these
commonly expensive indices. (3) Data is replicated between nodes
based on their spatiotemporal properties. The goal is for each spa-
tiotemporal extent to maintain replicas where one host contains one

Woodstock ’18, June 03-05, 2018, Woodstock, NY

instance of each replica and other replicas are distributed among
other cluster hosts. Therefore, operations may be scheduled with
data locality with either collocated or distributed properties. To
support dispersion, spatial indices, and queries Atlas leverages the
geohash algorithm.

The framework provides an HDFS compliant interface, enabling
seamless integration into existing workflows. Architecturally, as
seen in Figure 1, the system is setup using namenodes and datanodes
to ensure the separation of control and data planes. Namenodes
maintain filesystem metadata including the directory hierarchy,
file ownership, etc. Alternatively datanodes operate entirely on
data blocks, or 128MB (configurable) sequences of file data. The
Atlas File System extends HDFS URL’s to facilitate spatiotemporal
queries using HTTP-like parameters. For example, the query for
“hdfs://noaa/data0.csv+g=8bc&t>1564593384" returns data for the
specified file where the geohash is equal to 8bc and timestamp
is greater than 1564593384. In addition to individual file queries,
the system supports queries over directories, returning blocks cor-
responding to all children files which satisfy the specified query.
Finally, the Atlas File System supports a variety of data formats. It
leverages HDFS’ storage policy construct to inform the system of
data formats, in particular spatial and temporal features within the
dataspace.

2.2 Atlas File System

The Atlas File System datanodes perform indexing by rearranging
block observations into a striped set, the algorithm is outlined at
the bottom of Figure 1. This process begins by computing the geo-
hashes for each observation, a process that handles points, lines,
and polygons. Block data is then rearranged, on a per observation
basis, so that data for each geohash is consecutively stored in the
block, with observations for the same geohash temporally contigu-
ous. These operations are performed in-memory to reduce I/O and
computational costs. Data is then written to disk and replicated to
secondary nodes. Block attributes, including offsets and lengths of
each geohashes data segments and block temporal ranges are then
reported to the namenode for indexing.

To facilitate efficient queries the namenode maintains spatiotem-
poral indices. The spatial index is constructed using a radix tree
over geohashes where each node may contain information on block
IDs, data offsets, and their lengths. This example contains data with

STORAGE

Figure 2: AtlasSpark’s integration into the analytical hierarchy using Atlas
File System as a storage framework and Spark as the base analytics suite.
Built on top of Spark, AtlasSpark integrates into existing workflows; intrfac-
ing with spark-shell, PySpark, and myriad other tools.

Woodstock ’18, June 03-05, 2018, Woodstock, NY

geohashes a, a3f, 8bce, and 8b4. The temporal index is maintained
using a B+-Tree, which is designed for efficient range queries, with
start and end timestamps for each data block. Using the radix tree
based spatial index and B+-Tree based temporal index namenodes
can efficiently evaluate myriad spatiotemporal queries. An example
of the spatial and temporal index structures is depicted on the right
of Figure 1.

3 Methodology
Our AtlasSpark framework is designed as a library built on top of
the Apache Spark framework. We provide a suite of spatial exten-
sions including spatial data types, functions, and an Atlas based
DataFrame. AtlasSpark’s location in the analytics stack is provided
in Figure 2. By implementing functionality as a library, AtlasSpark
may be seamlessly integrated into existing tools and frameworks
including spark-shell, PySpark, and many others.

Our methodology for providing efficient spatiotemporal func-
tionality encompasses the following.

o Aligning data storage and retrieval with spatiotemporal access
patterns: Data reporting and storage in traditional storage systems
tends to be misaligned with spatiotemporal data characteristics
and access patterns. During data retrieval, non-sequential access
patterns adversely impact performance. By integrating the Atlas
File System with Spark we may leverage dynamically reorganized
observations to better align with spatiotemporal access patterns,
providing more efficient data retrieval. [RQ-1]

o Preserving data locality during processing: Efficient distributed
analytics relies on reducing data movements during processing by
collocating data based on their proximity in the spatiotemporal
space. This allows operations to be performed while preserving
locality; within the Spark context these are referred to as narrow
instead of wide transformations. We focus on providing spatiotem-
poral collocality during Spark data processing by leveraging the
spatiotemporally-aligned storage provided within Atlas. [RQ-1]

o Support for spatial data wrangling operations: Lacking functional-
ity designed specifically for spatial operations, Spark suffers from
inconsistent performance in myriad spatiotemporal analytics. We

Listing 1: A Scala example outlining our spatiotemporal Spark extensions.
The listing depicts registration of Atlas components, initialization of a Spark
DataFrame over Atlas, filtering within polygonal bounds, and evaluation of
the DataFrames observation count.

1 import org.apache.spark.sql.atlas.AtlasRegister
s // register atlas spark components
. AtlasRegister.init (spark)

6 // read dataframe from atlas csv file
7 val df = spark.read.format(”atlas”)
8 .load (”hdfs://129.82.208.10/data0/noaa”

1w // evaluate spark sql statement

11 df.createOrReplaceTempView (”"noaa”)

12 var spatialDf = spark.sql(”””

13 SELECT BuildPoint(_c0, _cl) as point, *
14 FROM noaa

15 ‘WHERE Within(point,

16 BuildPolygon ((0.0, 0.0), (0.0, 10.0),
17 (10.0, 10.0), (10.0, 0.0)))”””)

19 spatialDf.count

Rammer, et al.

have integrated a collection of spatial operations including point,
line, and polygon construction and functions to test relationships
within or between these spatial objects. [RQ-2, RQ-3]

o Building optimizations into Spark: Ensuring performance during
many analytical operations requires efficient identification of data
subspaces. We have designed extensions to the Spark Catalyst ex-
ecution optimizer to ensure performant data filtering operations.
[RQ-2]

A Spark Scala example of the aforementioned spatiotemporal
functionality is provided in Listing 1. When executed; data is read
from the Atlas File System, filtered based on the specified polygonal
bounds, and the resulting rows are counted. Various components
of the code will be referenced in this Section as necessary to clarify
and elaborate explanations.

3.1 Aligning Data Storage and Retrieval with
Spatiotemporal Access Patterns [RQ-1]

Spatiotemporal analytic challenges are exacerbated by dataset re-
porting and storage, where observations reporting is seldom aligned
spatially or temporally. Instead, collection points tend to intertwine
observation streams from multiple locations within the same data
file. Therefore, identification and retrieval of data from a particular
spatial or temporal extent is difficult. This issue is compounded by
the exponential increase in spatiotemporal dataset sizes, datasets
may approach petascales.

Distributed spatial analytic frameworks rely on a number of
techniques to retrieve spatiotemporal extents. (1) Iterating over the
dataspace observationally and dynamically filtering the dataspace.
Such schemes result in poor evaluation performance with unac-
ceptable times where indexed, in-memory data retrieval speeds are
the norm. Additionally, queries which focus on a small subset of
the dataspace require an unnecessary amount of computational
overhead including CPU, disk and network I/O. (2) Maintenance of
expensive distributed indices. This technique is an anti-pattern for
iterative, ad-hoc analytics given the unavoidable startup cost in it-
erating over existing data to compile indices. Additionally, datasets
too large to fit in cluster memory cannot be processed using this
technique.

The AtlasSpark framework leverages a combination of attributes
to provide efficient spatiotemporal dataset accesses. Atlas File Sys-
tem rearranges block observations before writing to disk so that
data is spatially and temporally contiguous. Therefore, analytics
over data may be performed using sequential disk access, mitigat-
ing expensive overhead of excessive disk-head movements. Addi-
tionally, by consulting Atlas File System spatiotemporal indices
AtlasSpark may quickly identify dataspace subset locations.

Integrating the Atlas File System framework with Spark requires
careful consideration of two key aspects. (1) Spatiotemporal ex-
tents are often distributed between multiple blocks making custom
data reading / parsing tools necessary. (2) Traditionally Spark /
HDFS data transfer functionality relies heavily on Google’s Protobuf
framework. However, serialization and deserialization of messages
may result in unavoidable overhead, especially in metadata heavy
workloads such as spatiotemporal queries. Therefore, we have de-
veloped an efficient data transfer protocol deliberately avoiding
message serialization / deserialization and specialized for the spa-
tiotemporal dataspace.

Towards Timely, Resource-Efficient Analyses Through Spatially-Aware Constructs within Spark

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Table 1: Our spatial extensions to Spark have been implemented as a collection of UserDefinedFunctions. Functionality encompasses a variety of data return types

and includes both binary and unary operations.

Data Type | Operand Count Function Name Description
IsEmpty Check if the geometry contains data.
Unary IsSimple Check if the geometry is simple.
IsValid Check if the geometry is topologically valid.
Boolean -
Contains, Covers, Crosses,
Binary Equ al?(l)i{eogrt;cz?ﬁ:;sects, Tests whether the geometry satisfies the relationship with the argument geometry.
Overlaps, Touches, Within
Dimension Returns the dimension of the geometry.
Unary NumPoints Returns the number of data points in the geometry.
Numeric Area Returns the area of the geometry.
Length Returns the length of the geometry.
Binary Distance Returns the distance between the two closest points in the provided geometries.
Buffer Computes a buffer area around the geometry with the specified width.
ConvexHull Computes the smallest convex polygon which contains all points in the geometry.
Unary X .
Geometry EnveloPe Creates a geometry repr_esentmg the bqundmg box of_ the geometry.
Normalize Creates a geometry with the normalized form of this geometry.
Binary Déf}f:le)r;:fee,rler;tceer’sgrﬁgzs, Creates a geometry with the point-set of data as the geometrys relationship.

3.2 Preserving Data Locality During Processing
[RQ-1]

The Spark framework relies on data partitioning algorithms to
effectively distribute and orchestrate analytics workloads. These
algorithms split source datasets into many smaller chunks that are
then distributed. Data partitioning and distribution allows Spark
to process the data in parallel. Data partitioning does not have a
one-size-fits-all solution, because each scheme has its own inher-
ent advantages and disadvantages for various analytics tasks — no
scheme performs well in all scenarios.

Spark’s default partitioning scheme for HDFS data is not suited
for spatiotemporal data. By default, Spark partitions HDFS data
along block boundaries. However, this scheme is inefficient for
spatiotemporal access patterns that are triggered during data wran-
gling and analytics. The default scheme would entail large amounts
of data transfers between nodes for many operations (i.e., wide
transformations).

We have extended Spark’s DataSourceV2 framework to partition
datasets aligned with the spatiotemporal storage policies provided
by Atlas. The DataSourceV2 implementation presents many abstrac-
tion improvements, including support for reads / writes with data
streams and executing data filtering operations at the data source.
Atlas storages policies are designed to address the competing pulls
of data locality and dispersion. In Atlas, data within a particular
spatiotemporal space is dispersed over a small subset of machines,
facilitating parallel processing while minimizing data movements.
By aligning our partitions with Atlas we ensure (1) there is little
data movement during analytics, because processing is scheduled
on data resident nodes and (2) many analytic operations may be
performed with data locality; favoring narrow, rather than wide,
Spark transformations during evaluation.

Micro-Benchmark: In this experiment we deployed Atlas and
Spark on a 50 node cluster, where one machine houses the Atlas
namenode and Spark master and the other 49 are Atlas datanodes
and Spark workers. We dispersed over 1TB of data from our NOAA
dataset over this cluster to profile its distribution effectiveness.
Figure 3 plots the combined size of data partitions scheduled at each
of the Spark worker hosts during analytics over the entire dataset.
We see that even though Atlas preserves spatiotemporal proximity
during data distribution, the data partitions are not skewed, but

Spark Host Data Partition Sizes

Data Size (GB)
N w S (% o
o o o o o

—
15}

0 10 20 30 40 5‘0
Hosts
Figure 3: Data partitions for Atlas analytics using Spark over 1TB of NOAA

data preserve spatiotemporal proximity, but storage loads are not skewed.
This results in load-balanced analytics.

are rather evenly distributed over the cluster. This results in load-
balanced processing, reducing hot-spots during analytics.

3.3 Support for Spatial Data Wrangling
Operations [RQ-2, RQ-3]

Apache Spark provides robust analytics operations, but is lacking

in functionality relating to spatial data processing. This is becoming

increasingly important as spatial data collection increases. Further-

more, applying non-performant operations results in significantly

degraded analytics performance.

To support effective spatial data wrangling operations over volu-
minous datasets within Spark, we include three key features. First,
we support a variety of spatial objects. We allow datasets to con-
tain points, lines, polygons, or collections of objects. Second, we
include extensive for support computing relationships within or
between spatial objects. For example, computing the distance be-
tween a point and a polygon, or testing whether a line crosses a
polygon. Third, we support datasets encoded in diverse formats.
Spatial wrangling operations that we support and designed to be
performant and operate over distributed, voluminous datasets. We
have extended the JTS library [4] to provide the basis for spatial
functionality introduced in this work.

Our AtlasGeometryUDT is an extension of Spark’s UserDefined-
Type abstraction. Instances of the AtlasGeometryUDT are initial-
ized by parsing Spark field(s). We currently support four different
geometry initialization functions, namely BuildPoint, BuildLine,
BuildPolygon, and ParseWkt. We have also incorporated support
for extensions by simplifying steps needed to process additional
data sources.

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Rammer, et al.

Table 2: Comparison of binary spatial operations over every combination of supported spatial object. Unsupported operations are represented with a -. Each
operation was performed 1 million times over real data. Results show general variance between operation return types and spatial objects.

Operation Line(Line) | Line(Point) | Line(Poly) | Point(Line) | Point(Point) | Point(Poly) | Poly(Line) | Poly(Point) | Poly(Poly)
Contains 1891.6 1548.8 - - 1348.8 - 1835.4 1688.2 1876.4
Convers 1680.4 1525.0 - - 1388.2 - 1886.8 1668.4 1935.0
Crosses - - 1727.0 - - - 1838.0 - -
Disjoint 2300.2 1497.4 1809.0 1607.2 1412.2 1751.4 1938.4 1744.6 2003.2

Equals 1589.4 1460.2 1635.4 1508.0 1365.0 1571.2 1764.4 1598.8 1818.8
EqualsTollerance 1585.4 1465.2 1687.2 1631.8 1395.8 1661.6 1894.8 1691.4 1945.2

Intersects 3165.0 1530.0 1797.2 1640.4 1428.0 1697.2 1924.8 1728.0 2028.0
Overlaps 3090.0 - - - - - - - 23184
Touches 3664.4 1546.6 1793.6 1622.0 1426.6 1712.6 2044.4 1690.4 2042.4

Within 1848.2 = = = = 1736.2 = = 2019.0
Distance 2069.8 1728.4 24514 1825.8 1523.2 2016.2 2748.0 2015.4 2950.2
Difference 10857.0 6651.2 10539.6 7618.0 2759.0 6542.8 12451.8 7027.8 11717.6
Intersection 11647.4 6304.6 10336.6 5848.6 2793.8 6621.0 9098.4 6559.2 10809.8
SymDifference 12228.4 6765.2 11808.6 6218.0 3002.2 7322.6 10805.6 7336.8 11763.0
Union 13795.0 7317.8 12123.0 9347.2 3100.2 7444.4 13011.4 7259.8 11151.6

In Table 1 we outline the diverse collection of spatial operations.
We have implemented these as extensions of Spark’s UserDefined-
Function construct, enabling use during data transformations, filter-
ing, and more. Our suite of data wrangling operations contains both
binary and unary operators with numerous return types including
booleans, numeric values, and diverse spatial objects.

Micro-Benchmark: We have benchmarked our spatial func-
tionality by executing each operation 1 million times over various
subsets of our NOAA and EPA datasets. Each experiment has been
performed in isolation; detached from the Apache Spark application,
but maintaining all Apache Spark field serialization / deserializa-
tion operations. The results in a measurement over the operation,
excluding as much application overhead as possible.

All reported values are in milliseconds. Tables 2 and 3 provide
information on binary and unary operators respectively. Each col-
umn represents operations performed on a specific spatial object
type(s). The binary information provided in Table 2 is labeled as
“operand1(operand2)” where the operation is performed in that
order. For example, performing the operation “Within” operation
under “Point(Poly)” means that a point is within a polygon. The
columns for unary operations in Table 3 are labeled as a single
spatial object. In both tables, empty cells denote operations which
do not apply to the corresponding spatial object(s).

We notice variance in operation execution durations. Generally,
durations increase as the operation return type moves from boolean,
to numeric, to geometric. Additionally, operations performed on
polygons tend to be more expensive than lines, with a similar rela-
tionship between lines and points. Intuitively, these relationships
are reasonable. As testing equality between polygons is compara-
tively simpler than computing the distance between two polygons,
or computing an intersection.

3.4 Building Optimizations into Spark [RQ-2]

To reduce duplicate operations, during DataFrame/RDD source
reads and subsequent data manipulations Spark performs lazy eval-
uations. To support lazy evaluations, Spark creates and consults
an abstract syntax tree (AST) of operations. These operations may
include field projections, dataset filtering, and data reads from a
variety of sources. Spark dynamically performs a sequence of AST
optimizations before evaluation to facilitate more efficient analytics.
Catalyst is the AST optimizer distributed with Spark. Catalyst main-
tains a registry of predefined rules, which may be applied iteratively

when evaluating the AST. Catalyst rules include boolean simplifi-
cation, constant folding, column pruning, operation propagation
over data joins and field aggregations, and many more.

A key Catalyst optimization that we target is predicate push-
downs. The predicate pushdown in Spark attempts to push dataset
filtering operations to data sources by propagating filters down to
data sources in the AST. The pushdown feature provides two broad
advantages. First, data source implementations are often optimized
to perform filtering by employing various data indexing structures
and techniques. In some cases, this entails Spark iterating over each
row and evaluating the filter individually. Second, it reduces data
movements and network I/0. By performing filtering earlier in the
AST evaluation, unnecessary data (i.e., data that does not satisfy
the filter predicated) movement between stages is reduced.

We addressed a number of challenges to incorporate support for
spatiotemporal predicate pushdowns within the Catalyst Optimizer.
Currently, Spark lacks support for “pushdown” of UserDefined-
Functions. Furthermore, the diversity of UserDefinedFunctions in-
troduces additional complexities when converting to filters that are
aligned with Atlas.

To enable spatiotemporal query definitions using our UserDe-
finedFunctions we register a series of Catalyst optimization rules.
These rules inject filters into the AST allowing them to be prop-
agated using Catalyst Optimizer’s predicate pushdown rules. For
example, in Listing 1 lines 11-16 we use a Spark SQL query for
filtering the NOAA dataset on data “Within” the defined polygon,
with vertices identified by <latitude, longitude >pairs of <0,0 >,
<0,10 >, <10, 0 >and <10, 10 >. We created and registered a Cata-
lyst optimization rule to identify the “Within” functions where the
Table 3: Comparison of unary spatial operations over each spatial object. Un-
supported operations are represented with a -. Each operation 1 million times

using real data. Results show performance differences between spatial objects
and operation return types.

Operation Line Point | Polygon
IsEmpty 847.8 | 8328 | 11236
IsSimple 1823.6 803.4 2613.6
IsValid 1232.0 807.2 5125.8
BuildLine 1998.6 - -
BuildPoint - 980.8 -
BuildPolygon = = 2761.4
Area - - 1427.0
Dimension 916.8 851.8 1391.8
Length 917.0 - -
NumPoints 924.2 880.2 1569.2
Buffer 48318.0 | 9534.0 10856.0
ConvexHull 1584.4 974.4 1885.0
Envelope 1010.8 872.0 1367.8
Normalize 946.4 863.2 1448.8

Towards Timely, Resource-Efficient Analyses Through Spatially-Aware Constructs within Spark

Range Query Duration
190.0 9 v

AtlasSpark
I GeoSpark
1M Magellan

187.5 1
185.0
182.5 1
180.0~ -

Duration (Minutes)

10.0 1
7.5
5.0 1
2.5

0.0

164.3GB 347GB 523.7GB
Dataset

Figure 4: Duration of spatially bounded range queries over 3 subsets of the

NOAA dataset. AtlasSpark consistently out-performs, providing 1.2x, 2.6x,

and 62.1x and 1.2x, 2x, and 2.7x reductions in duration when compared to

GeoSpark and Magellan respectively for each of the datasets.

Atlas spatial index field(s) are bounded by another geometry, in
this case the aforementioned coordinates. We then compute the
smallest bounding geohash for these coordinates, for example dac,
and inject a filter into the AST for data within that bound, namely
“atlasGeohash = ’dac’. Temporal filtering and bracketing is evalu-
ated similarity. This new equality filter satisfies the requirements
for Catalyst’s predicate pushdown rules, and can therefore be prop-
agated to the Atlas data source and evaluated accordingly. A list
containing the bounding polygon defining the geohash for each of
our supported spatial operations is provided below.

(1) Contains: The bounding polygon by which “Contains” is pro-
cessed.

(2) Covers: The polygon which “Covers” other spatial objects.

(3) Distance LessThan / LessThanOrEqual: A buffer computed with
the provided distance from the source spatial object.

(4) Equals / EqualsTollerance: An outer bounding polygon for
which equality is tested.

(5) Within: The polygon which other spatial objects are tested
“Within”.

Additionally, we have implemented two classes of filter combi-
nation rules over our spatiotemporal bounds. The first is the aggre-
gation of spatial or temporal bounds. For example, consider a data
source that requires filtering for “atlasTimestamp >1564701343”
and “atlasTimestamp >1064701343”. Instead of executing two sep-
arate queries, we aggregate the filter to the less restrictive filter,
namely “atlasTimestamp >1064701343”. The second is pruning AST
branches when filter aggregations will result in no data. For ex-
ample, combining the two filters “atlasGeohash = 8bce” and “at-
lasGeohash = a97”. There are no valid data that satisfy both filters,
therefore evaluation is unnecessary.

4 Empirical Benchmarks and Evaluation

4.1 Experimental Setup

For our experiments we deployed both the storage (i.e., Atlas and
HDFS) and analytics (i.e., Spark) frameworks on a cluster of 25 HP-
DL60-G9-E-2620v4 machines. Each machine runs Fedora 29 and
is outfitted with an Intel Xeon E5-2620 (8 cores / 16 hyperthreads
@ 2.10GHz) and 64GB RAM. Our empirical setup provisions one
machine for the Atlas / HDFS namenode and Spark master, the
other 24 machines run Atlas / HDFS datanodes and Spark workers.
We have allocated 12GB of RAM for each Spark workers and driver,
resulting in allocation of 300GB of system memory within the
cluster.

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Peak Memory Utilization

350 1 AtlasSpark
| I GeoSpark
T Magellan

Memory Utilization (GB)
= - N N
o w o v
o o o o

w
o

164.3GB 347GB 523.7G
Dataset

Figure 5: Graph showing peak cluster memory utilization during range query

experiment. AtlasSpark requires up to 57.5% and 48.1% less memory when

compared to GeoSpark and Magellan. This is important as dataset sizes in-

crease and may no longer fit into main memory.

We have contrasted the performance of AtlasSpark, our novel
Spark spatial extension, with two popular spatial Spark frameworks.
GeoSpark [38] and Magellan [31] facilitate efficient spatial retrievals
by computing spatial indices over RDD’s using R-Trees and Z-
Order curves respectively. Table 4 provides additional details of the
software versions of the analytics stack for each framework.

The National Oceanic and Atmospheric Administration’s (NOAA)
climate dataset serves as the basis for our evaluation. The NOAA
NAM dataset records 56 features (represented as floating point val-
ues) including temperature, wind speed, pressure, and precipitation
at 6 hour intervals from 1.3 million vantage points geographically
dispersed within North America. Our analysis is performed on 1.67
TB of data from 2013.

4.2 Range Queries
In this experiment we performed spatially constrained range queries
over the NOAA dataset. Since the NOAA data comprises U.S.-based
vantage points, we restricted our spatial queries within a latitude/-
longitude envelope governing the continental US. Query predicates
were formulated using geohash precisions of length four, giving
each query a +/- 0.087 and +/- 0.18 latitude and longitude error
respectively. For each platform evaluation we performed 200 ran-
domly defined spatial queries. Since the aforementioned continental
US envelope contains 1722 unique geohashes, each platform evalu-
ation provides 12% coverage of the dataspaces spatial scope.
Spatial range queries are a popular metric for evaluation and
comparison of spatial analytics frameworks. Current surveys, such
as [24], effectively employ them to contrast framework performance
statistics. We evaluated spatial range queries under three distinct
temporal ranges of the NOAA dataset; namely 1 month, 2 months,
and 3 months - these queries effectively represent data subsets
of sizes 164.3 GB, 347 GB, and 523.7 GB respectively. These larger
dataset sizes seek to profile AtlasSpark’s ability to maintain perfor-
mant analytics for datasets that are too large to fit into memory.
In Figure 4 we display range query duration for the three plat-
forms for each NOAA temporal range dataset. We see that At-
lasSpark consistently outperforms both GeoSpark and Magellan.

Table 4: Experimental evaluation storage and analytics framework names and
versions.

Analytics Storage
Spatial Extension | Spark &
AtlasSpark v0.2.1 | v2.4.4 Atlas v0.1.1
GeoSpark v1.2.0 | v2.3.4
Magellan v1.0.6 | v2.2.3 Hadoop v2.9.5

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Rammer, et al.

Representative Disk I/O - 164.3GB Dataset

21 R e N\ Total Disk 1/0
14 : ‘. AtlasSpark 1400
- *
: . I GeoSpark | 1200
0 : b : : Ve - : : IIITO Magellan
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 r 1000 e
Representative Disk I/O - 347GB Dataset 8
%‘ 5] :., > ~ae »'-—:».. ..."‘:. - 800 é
. ’ LAY &
[©) : PO 600 &
Q1 . ."'"‘) a
@ 5 . . LG R k400
0 0 : . g : = : o e ansmmennes v
0 1 2 3 4 5 6 7 L 200
Representative Disk 1/0 - 523.7GB Dataset
5] AtlasSpark = see+ GeoSpark Magellan 164.3GB 347GB 523.7GB
Dataset
l E
(b) Total disk I/O refers to the aggregated disk
04 = UL PPN SECNPROTPRI PORTPRP SRS PO I PP IO S 1/0 over cluster nodes during the analytics

100 125

Time (Minutes)

50 75

150

175 duration. AtlasSpark reduces disk I/0 by 18x

and 14x over GeoSpark and Magellan respec-

(a) Representative disk I/O shows the clusters collective disk I/O at any given moment. Whereas GeoSpark and tively.

Magellan require iteration over the entire dataspace to dynamically compile distribu
tains a small disk I/O footprint by leveraging Atlas File System indices.

ted indices, AtlasSpark main-

Figure 6: Disk I/O metrics for a sequence of spatially bounded range queries comparing AtlasSpark, GeoSpark, and Magellan.

In particular, these benchmarks show that Atlas outperforms
Geospark by a factor 1.2x, 2.6x, and 62.1x; AltasSpark also
outperforms Magellan by a factor 1.2x, 2x, and 2.7x for these
datasets. These performance improvements are attributable to At-
lasSpark’s targeted data retrieval, where the system leverages the
underlying spatiotemporal indices to perform efficient data re-
trievals unlike GeoSpark and Magellan which rely on dynamically
indexing underlying datasets for queries.

We also profiled peak memory utilization metrics for each ex-
periment; these are depicted in Figure 5. As dataset sizes increase,
peak memory utilization for the frameworks increases as well. At
the largest dataset the GeoSpark framework breaches the cluster’s
available memory threshold at 300GB. The corresponding analytics
durations increases steeply in GeoSpark as a result (see Figure 4)
since expensive operations need to be performed to determine data
memory residency. Furthermore, AtlasSpark consistently maintains
a lower memory footprint — up to a 57.5% and 48.1% reduction
in peak memory utilization compared to GeoSpark and Mag-
ellan respectively.

In Figures 6a and 6b we depict both the representative, and to-
tal, disk I/O incurred during analytics respectively. AtlasSpark
reduces disk I/O by a factor of 18x over GeoSpark and by a
factor of 14x over Magellan respectively. Computation of in-
dexing structures in GeoSpark and Magellan entail reading the
entire dataset. This spike in disk I/O is easily seen in the beginnings
of evaluation in each tier for the representative graphs. Alterna-
tively, AtlasSpark requires significantly less disk I/O by leveraging
the underlying spatiotemporal indices. It is also important to note
that both representative and total network I/O for each experiment
is similar to the aforementioned disk I/O metrics.

Finally, we present representative and total network I/O in Fig-
ures 7b and 7a respectively. Figure 7a presents the total cluster net-
work I/O for the experiment with each dataset, whereas Figure 7b

only provides a representative look at a single dataset. The represen-
tative network I/O data shows strong similarity with representative
disk I/O for the provided 347GB dataset in Figure 6a, this charac-
teristic carries for all datasets. We see that Atlas Spark incurs
just 500MB of total network I/0, reducing network I/O by 4
and 5 orders of magnitude when compared with Magellan
and Geospark respectively. Again, this reduction is a construct
of AtlasSpark’s ability to leverage existing spatial indices instead
of dynamically constructing the necessary data structures.

5 Related Work

Data structures specifically designed for spatial indices commonly
employ minimum bounding rectangles to group nearby data. Quad
Trees [14] employ a tree-based lookup structure where each level
partitions the previous level into quadrant buckets. In this algorithm,
buckets have a maximum capacity that when reached, adds another
level to the tree by splitting the bucket. Alternatively, the R-Tree
[16] and its many variants [10, 18, 29] allow for non-uniform bucket
sizes and are designed as a self-balancing tree, facilitating more
efficient queries. The spatial index in Atlas (and leveraged by our
system) builds a radix tree over geohashes. The fine granularity of
the former solutions is not suited for two reasons (1) it is much
more computationally expensive to construct a distributed index
and (2) the limitations imposed by HDFS compliance only support
data filtering at a much higher granularity.

A number of efforts have focused on distributing spatial indices
in a peer-to-peer application. Some efforts [33] and [22] have pro-
posed algorithms for distributing quad-tree and r-tree implementa-
tions respectively. Vbi-tree [17] aims to build a multi-dimensional
distributed index, which could be used for spatiotemporal filtering.
Spatial P2P [19] introduces modern improvements for more effi-
cient spatial indexing in p2p environments. These systems provide
distributed spatial indices over spatiotemporal data, but are unable
to interface with modern popular analytics tools. HDFS-compliance

Towards Timely, Resource-Efficient Analyses Through Spatially-Aware Constructs within Spark

Total Network 1/0

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Representative Network 1/0 - 347GB Dataset

18400 1 AtlasSpark 2.5 AtlasSpark
18200 - I GeoSpark Q e W s (mmees GeoSpark
J 2yt TS e - -

18000 {- B Magellan E 2.0 4 BN, LI e Lo Magellan

= Q15+ 5

[} - X < -

© 600 5 1.0 . 1 E

O 400 £ . ‘

¥ 2001 = %31 f E ! 3

S < ‘ . P veevernatnn

E 0'0 < s Y 2. v e

2 164.3GB 347GB 523.7GB 0 2 3 4 5 6 7
Dataset Time (Minutes)

(a) Total network I/O for 3 different datasets. AtlasSpark

requires 500MB - a 4 and 5 order of magnitude reduction (b) Representative network I/O for the 347GB dataset. GeoSpark and Magellan require significant

compared to Magellan and GeoSpark respectively.

data movements when constructing distributed spatial indices, whereas AtlasSpark does not.

Figure 7: Network I/0 incurred during 200 random spatial range queries using AtlasSpark, Magellan, and GeoSpark.

and our Spark extensions within Atlas provide the basis to seam-
lessly interface with myriad tools, including stream processing and
machine learning libraries.

Distributed file systems have emerged as a viable data source
in distributed analytics. Hadoop Distributed File System [30] is
the open-sourced version of Google File System [15]. This system
partitions files into blocks and distributes them over a cluster of
machines, enabling parallel processing and fault tolerance. HBase
[35] and Hive [34] are projects built over Hadoop’s MapReduce
paradigm to provide a relational DB interface. Lustre [28] and Glus-
ter File System [3] aim to provide highly scalable solutions. These
projects provide the basis for efficient, distributed analytics but lack
spatial support.

Spatial functionality has been integrated with HDFS in individual
projects targeting specifically distributed spatial indices or MapRe-
duce spatial query support. R-Tree and HQ-Tree spatial indices
have been added by [11] and [13] respectively. Additionally, range
queries [21], K-nearest neighbor [42] and variants [6, 36], and spa-
tial join [20, 40] algorithms have been implemented. A drawback
in these efforts is that they are piecemeal efforts; each tool is useful
individually, but integration between tools is exceedingly difficult.
In this work, we have provide a suite of spatiotemporal tools that
may seamlessly integrate with additional libraries as well.

Hadoop has been extended by many projects to provide a suite
of spatial operations. SpatialHadoop [12] modifies the HDFS source-
code to support a two layer spatial index using Grid and R-Tree im-
plementations. GISQF [7] exploits SpatialHadoop indices to provide
efficient MapReduce queries. Alternatively, MD-HBase [23], Dart
[41], and HadoopGiIS [5] provide spatial functionality by extending
HBase and Hive without modifying any source code. Support for
spatiotemporal sketches within Hadoop is implemented in [26] and
[25] These systems provide spatial integration with HDFS, but are
limited to Hadoop’s MapReduce paradigm but not for Spark. Ad-
ditionally, they lack an in-memory analytical platform facilitating
fast iterative, ad-hoc analytics.

The Apache Spark [1] framework provides efficient distributed,
in-memory analytics [39]. It has been extended to provide support
for relational data processing [8]. This simplifies the Spark interface,
easing adoption into workflows. The Spark project has emerged
as the standard for in-memory based analytics, but it lacks native
spatiotemporal data support.

A variety of efforts provide spatial functionality to the Apache
Spark framework. SparkGIS [9], GeoSpark [38], LocationSpark [32],

and Simba [37] all provide a multitude of functionality. These sys-
tems all rely on building a spatial index over the datasets during
data source reads. This results in two limitations (1) the source
dataset needs to fit in-memory and (2) dynamic indexing of input
data reduces the viability of ad-hoc queries on variable datasets. At-
las provides spatiotemporal indexing of data within the underlying
file source. By leveraging the provided indices our system reduces
1/0O for analytics requiring a filtered dataset. Additionally, analytics
tasks encounter fewer memory restrictions because only data of
interest is memory resident.

6 Conclusions and Future Work

This study describes our methodology for supporting effective spa-
tiotemporal analyses within the Spark ecosystem. Our methodology
facilitates support for expressive data wrangling operations, and
ensures that these operations are performant. Data wrangling oper-
ations that we support can be incorporate into canonical HDFS (as
we have done) and also any HDFS-compliant system. Our method-
ology allows these operations to be performant by preserving data
locality, minimizing data movements and I/O amplifications. Our
methodology is agnostic of the language used to express data pro-
cessing operations.

RQ-1: Minimizing data movements is predicated on data colloca-
tion. By staging such that data from proximate geographical regions
are collocated on the same machine, we ensure significantly reduced
data movements during analytics. Our benchmarks in Section 4
demonstrate this.

RQ-2: Supporting effective data wrangling over spatiotemporal
datasets involves plugging into Spark APIs and ensuring that these
capabilities are available within the core constructs underpinning
Spark. Our set of inspection and transformation operations work
with DataFrames, Datasets, and RDDs that are used to express
analytics functionality in Spark. Data wrangling support include
customizing behavior of certain popular and powerful operations,
such as set operations and joins, so that they are better aligned with
the spatial characteristics of the data.

RQ-3: To preserve performance, we manage the competing pulls
of data dispersion and collocation. We leverage spatial indices
to reduce search space during complex geometry and polygon-
constrained operations. Interoperating with the Catalyst Optimizer
in Spark allows us to leverage code inspection features that facilitate
reorganization via predicate pushdowns to prioritize spatiotempo-
ral filtering operations. This reduces not just the amount of data

Woodstock ’18, June 03-05, 2018, Woodstock, NY

that needs to be loaded into memory, but also the amount of I/O
that needs to be performed. Our benchmarks demonstrate the suit-
ability of our methodology: not only do the operations we perform
complete faster (1.2-62.1x faster than GeoSpark and 1.2-2.7x faster
than Magellan), but we also utilized memory more frugally (57.5%
and 48.1% less than GeoSpark and Magellan respectively) and with
significantly less disk and network I/O (18x / 5 orders of magni-
tude improvement over GeoSpark and 14x / 4 orders of magnitude
over Magellan). We posit that these benchmarks demonstrate that
AtlasSpark is also less likely to induce interference (and degrade
performance) of collocated applications.

As part of future work, we will explore building support for
specialized spatiotemporal operations such as construction of digi-
tal elevation models, information fusion, and anomaly detection.
Another avenue that this research leads to is exploring support for
spatiotemporal wrangling and analytics in deep learning systems
such as TensorFlow and PyTorch.

Acknowledgments

This research was supported by grants the US National Science
Foundation [OAC-1931363, ACI-1553685], the Advanced Research
Projects Agency-Energy(ARPA-E), and a Cochran Family Profes-
sorship.

References

[1] 2020. Apache Spark Project. http://spark.apache.org

[2] 2020. Geohash Project. https://www.geohash.org/

[3] 2020. Glustre File System Project. https://www.gluster.org/

[4] 2020. Location Tech JTS Project. https://locationtech.github.io/jts/

[5] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,
and Joel Saltz. 2013. Hadoop gis: a high performance spatial data warehous-
ing system over mapreduce. Proceedings of the VLDB Endowment 6, 11 (2013),
1009-1020.

[6] Afsin Akdogan, Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi.
2010. Voronoi-based geospatial query processing with mapreduce. In 2010 IEEE
Second International Conference on Cloud Computing Technology and Science. IEEE,
9-16.

[7] Khaled Mohammed Al Naami, Sadi Seker, and Latifur Khan. 2014. GISQF: An
efficient spatial query processing system. In 2014 IEEE 7th International Conference
on Cloud Computing. IEEE, 681-688.

[8] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. 2015.

Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM

SIGMOD international conference on management of data. ACM, 1383-1394.

Furqan Baig, Hoang Vo, Tahsin Kurc, Joel Saltz, and Fusheng Wang. 2017.

Sparkgis: Resource aware efficient in-memory spatial query processing. In Pro-

ceedings of the 25th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems. ACM, 28.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-tree: an efficient and robust access method for points and rectangles.

In Acm Sigmod Record, Vol. 19. Acm, 322-331.

Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe. 2009. Experi-

ences on processing spatial data with mapreduce. In International Conference on

Scientific and Statistical Database Management. Springer, 302-319.

Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce

framework for spatial data. In 2015 IEEE 31st international conference on Data

Engineering. IEEE, 1352-1363.

Jun Feng, Zhixian Tang, Mian Wei, and Liming Xu. 2014. HQ-Tree: A distributed

spatial index based on Hadoop. China communications 11, 7 (2014), 128-141.

[14] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for

retrieval on composite keys. Acta informatica 4, 1 (1974), 1-9.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file

system. (2003).

[16] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

Vol. 14. ACM.

Hosagrahar V Jagadish, Beng Chin Ooi, Quang Hieu Vu, Rong Zhang, and Aoying

Zhou. 2006. Vbi-tree: A peer-to-peer framework for supporting multi-dimensional

indexing schemes. In 22nd International Conference on Data Engineering (ICDE’06).

IEEE, 34-34.

=
20

[10

[11

[12

[13

=
i)

[17

(18

[19

[20]

[21

~
&,

[23

[24

[25

Iy
S

[27

[28

[29

[30

[31

@
&,

[33

[34

[35

'S
S

[37

(38]

[39

[40

[41

[42

Rammer, et al.

Ibrahim Kamel and Christos Faloutsos. 1993. Hilbert R-tree: An improved R-tree
using fractals. Technical Report.

Verena Kantere, Spiros Skiadopoulos, and Timos Sellis. 2008. Storing and indexing
spatial data in p2p systems. IEEE Transactions on Knowledge and Data Engineering
21, 2 (2008), 287-300.

Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. 2012. Efficient processing of
k nearest neighbor joins using mapreduce. Proceedings of the VLDB Endowment
5,10 (2012), 1016-1027.

Qiang Ma, Bin Yang, Weining Qian, and Aoying Zhou. 2009. Query process-
ing of massive trajectory data based on mapreduce. In Proceedings of the first
international workshop on Cloud data management. ACM, 9-16.

Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa. 2004. P2pr-tree: An r-tree-
based spatial index for peer-to-peer environments. In International Conference on
Extending Database Technology. Springer, 516-525.

Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
Md-hbase: A scalable multi-dimensional data infrastructure for location aware
services. In 2011 IEEE 12th International Conference on Mobile Data Management,
Vol. 1. IEEE, 7-16.

Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
good are modern spatial analytics systems? Proceedings of the VLDB Endowment
11, 11 (2018), 1661-1673.

Daniel Rammer, Thilina Buddhika, Matthew Malensek, Shrideep Pallickara, and
Sangmi Pallickara. 2019. Enabling Fast Exploratory Analyses Over Voluminous
Spatiotemporal Data Using Analytical Engines. IEEE Transactions on Big Data
(2019).

Daniel Rammer, Walid Budgaga, Thilina Buddhika, Shrideep Pallickara, and
Sangmi Lee Pallickara. 2018. Alleviating I/O inefficiencies to enable effective
model training over voluminous, high-dimensional datasets. In 2018 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, 468—477.

Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara. 2019. ATLAS:
A Distributed File System for Spatiotemporal Data. In Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing. 11-20.
Philip Schwan et al. 2003. Lustre: Building a file system for 1000-node clusters.
In Proceedings of the 2003 Linux symposium, Vol. 2003. 380-386.

Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. Technical Report.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. 2010.
The hadoop distributed file system.. In MSST, Vol. 10. 1-10.

Ram Sriharsha. [n.d.]. Geospatial analytics using spark. https://github.com/
harsha2010/magellan

Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani, and Walid G
Aref. 2016. Locationspark: A distributed in-memory data management system
for big spatial data. Proceedings of the VLDB Endowment 9, 13 (2016), 1565-1568.
Egemen Tanin, Aaron Harwood, and Hanan Samet. 2007. Using a distributed
quadtree index in peer-to-peer networks. The VLDB Journal—The International
Journal on Very Large Data Bases 16, 2 (2007), 165-178.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626-1629.

Mehul Nalin Vora. 2011. Hadoop-HBase for large-scale data. In Proceedings of
2011 International Conference on Computer Science and Network Technology, Vol. 1.
IEEE, 601-605.

Kai Wang, Jizhong Han, Bibo Tu, Jiao Dai, Wei Zhou, and Xuan Song. 2010. Accel-
erating spatial data processing with mapreduce. In 2010 IEEE 16th International
Conference on Parallel and Distributed Systems. IEEE, 229-236.

Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:
Efficient in-memory spatial analytics. In Proceedings of the 2016 International
Conference on Management of Data. ACM, 1071-1085.

Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. Geospark: A cluster computing
framework for processing large-scale spatial data. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 70.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2-2.

Chi Zhang, Feifei Li, and Jeffrey Jestes. 2012. Efficient parallel kNN joins for
large data in MapReduce. In Proceedings of the 15th international conference on
extending database technology. ACM, 38-49.

Hong Zhang, Zhibo Sun, Zixia Liu, Chen Xu, and Ligiang Wang. 2015. Dart:
A geographic information system on hadoop. In 2015 IEEE 8th International
Conference on Cloud Computing. IEEE, 90-97.

Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong Feng.
2009. Spatial queries evaluation with mapreduce. In 2009 Eighth International
Conference on Grid and Cooperative Computing. IEEE, 287-292.

http://spark.apache.org
https://www.geohash.org/
https://www.gluster.org/
https://locationtech.github.io/jts/
https://github.com/harsha2010/magellan
https://github.com/harsha2010/magellan

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Research Questions
	1.3 Approach Summary
	1.4 Paper Contributions

	2 Systems Overview
	2.1 Geohash
	2.2 Atlas File System

	3 Methodology
	3.1 Aligning Data Storage and Retrieval with Spatiotemporal Access Patterns [RQ-1]
	3.2 Preserving Data Locality During Processing [RQ-1]
	3.3 Support for Spatial Data Wrangling Operations [RQ-2, RQ-3]
	3.4 Building Optimizations into Spark [RQ-2]

	4 Empirical Benchmarks and Evaluation
	4.1 Experimental Setup
	4.2 Range Queries

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

