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Analysis of the Rigid Motion of a
Conical Developable Mechanism

We demonstrate analytically that it is possible to construct a developable mechanism on a
cone that has rigid motion. We solve for the paths of rigid motion and analyze the properties
of this motion. In particular, we provide an analytical method for predicting the behavior of

the mechanism with respect to the conical surface. Moreover, we observe that the conical
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1 Introduction

The basic question that we begin to address in this article is,
“Given a developable surface, what types of mechanisms can be
constructed on the surface which conform to the surface and have
rigid motion?” Rigid motion for such a mechanism means motion
without deforming the surface or the links.

Developable surfaces are of interest in design because they can be
obtained by bending a flat surface [1], without stretching, tearing, or
creasing. In particular, a developable surface is represented mathe-
matically as the image of a smooth path isometry defined on a flat
surface. For developable surfaces, the Gaussian curvature, or the
product of the two principle curvatures, is necessarily zero [2—4].
Basic families of developable surfaces include planar, cylindrical,
conical, and tangent surfaces [2]. Developable surfaces can be
represented as the union of a one parameter family of lines in R,
called ruling lines. The existence of ruling lines allows the
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possibility of creating the mechanisms described in this article by
introducing hinges along the ruling lines of the surface.

Engineers can take advantage of the lower production costs and
complexity associated with using developable surfaces in their
designs. Developable surfaces designed utilizing flexible materials
can be manufactured in a flat state and later transformed into their
desired curved forms. In addition, developable surfaces can be
often manufactured without the heat treatment required for the pro-
duction of other types of surfaces [5]. Some applications of devel-
opable surfaces include steel ship hulls, cartography, architecture,
aerostructures, and texture mapping in computer graphics [5-9].

Because developable surfaces are commonly used in design, it is
of interest to discover innovative ways to create functionality on
these surfaces. One way to increase functionality is to create mech-
anisms that conform to the surface and are able to achieve motion
off of the static surface.

Developable mechanisms are mechanisms that “conform to
developable surfaces when both are modeled with zero thickness”
[10]. This zero-thickness surface is called the developable mecha-
nism’s reference surface [11]. The links of a developable mecha-
nism should not be required to deform for the mechanism to have
motion. This can be achieved by aligning hinge lines with the
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reference surface’s ruling lines [10]. In at least one position, the
conformed position, the mechanism’s links must conform to the
developable reference surface. This requires the rigid links to be
shaped to the surface when in their conformed position [11]. Cylin-
drical developable mechanisms have been discussed in Ref. [11]
and have inspired the creation of surgical devices [12]. Since the
beginning of this study, additional work has been done on conical
developable mechanisms, which are presented in Ref. [13].

The motivation of this article is the demonstration of the mathe-
matical modeling and analysis of developable mechanisms that can
be constructed using kirigami techniques, similar to designs for
planar surfaces. Kirigami is a variation of origami that includes
cutting in addition to folding [14]. Kirigami has inspired the crea-
tion of lamina emergent mechanisms, or mechanisms that can be
fabricated in a plane, and then emerge from the surface [15].
Although mechanisms on cones are the subject of this article, the
planar counterpart can provide an analogy that is helpful for under-
standing some of the work that follows. The lamina emergent
mechanism shown in Fig. 1 is a developable mechanism that is con-
structed from a planar surface using kirigami and consists of panels
linked at hinge joints. As the hinge lines are all parallel, this mech-
anism will have planar motion. Figure 1(a) shows the mechanism in
its as-fabricated state, conforming to a plane. The planar state also
represents a bifurcation point (change-point), where the mechanism
can change between two different paths depending how it begins to
move from this point. These two paths are illustrated in Figs. 1(b)

(@)

Fig.1 A lamina emergent mechanism is cut from a single plane
of paper and is analogous to the conical developable mecha-
nisms described in this article. (@) The mechanism in its
as-fabricated state, which also represents a bifurcation point
(change point) where the mechanism can switch between two dif-
ferent motion paths, which are illustrated in (b) and (c).

Fig. 2 The conical developable mechanism. Panels P;, hinges
H;, and motion parameters ¢; are indicated.
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and 1(c). The existence of bifurcation points occurs if the mecha-
nism is a special-case Grashof mechanism [16]. For planar
four-bar mechanisms, this depends on link lengths. In the planar
case presented in Fig. 1, the opposite links are the same length,
making it planar parallelogram linkage, which is a special-case
Grashof mechanism. For spherical mechanisms, the Grashof condi-
tion is based on link angles [17].

In this article, we construct an analogous mechanism cut out of
a cone as shown in Fig. 2. This mechanism will be referred to as
a conical developable mechanism because it is constructed from a
cone. This particular conical developable mechanism is constructed
to be a spherical parallelogram linkage, where the link angles of
opposite links are equal. This means it is a special-case Grashof
mechanism and, if a rigid motion exits, it will necessarily have
bifurcation points (change points) [17]. We will proceed by provid-
ing a model of the motion of the mechanism and then prove analyt-
ically that a rigid motion does exist. We will then provide a detailed
description of its motion, with special attention to the initial motion
from its conformed position at bifurcation points in the motion path.

2 Construction and Setup

In this section, we detail the construction of the conical develop-
able mechanism and begin to setup the mathematical model utilized
in determining the rigid motion of the panels on the mechanism.

2.1 TheMechanism. LetC C R?beacone centered on the pos-
itive z-axis, with its cone point at the origin, and having cone angle ¢,
i.e. ¢ is the angle between the cone axis and the cone surface. The
conical developable mechanism is constructed by cutting out a
section of the cone and folding along hinge lines to form three
panels (links) with the remainder of the cone forming a panel (a
ground link), as shown in Fig. 2. The panel Py is the main body of
the cone. The panels P; and P, are joined to the body of the cone
along hinge lines, which we will call H; and H,, respectively.
Panel P; emerges out of the cone and is connected to panels P,
and P, along hinge lines, which we will call H3 and Hy, respectively.

To define P; and P, and their separation, choose angles &, £ € (0,
2m), so that 6+ & <2x. The angle & will be used to determine the
length of the panels and the angle 6 will be used to determine
their separation. Also choose positive numbers z;, zp, and zz with
71 <22 <z3, which will determine the heights of the panels on the
cone. Considering R* with cylindrical coordinates (see Fig. 3),
the panels P, and P, are defined by

Pi={(r,0,2)€Cz1<z<z, 0<O<6}
Py={(r,0,2) €Cizp<z<73, E<O<S+E)

To provide a tab to connect P to P,, choose an 17 >0, so that § + & +
n < 2z. The third panel, panel P3, which joins P, and P, is given by

Py={(r,0,2) €Cz1 <2<2,6<0<5+&+n)
U{(r,0,2)€Cza<z<z3, 6+EE<O<S5+E+n)

Note that the edges of P, and P, in the z =2z, plane are congruent.
Likewise, the edges of Py and P; in the z =z, plane are congruent.
Viewing the main body of the cone Py as fixed, the panels P; and
P, will rotate rigidly about their respective hinge lines H; and H,. The
angle from which the panel P, rotates about hinge line H, is denoted
ai, with a1 =0 corresponding to P; being in the conformed position
(i.e., being flush with the body of the cone). Similarly, the angle from
which the panel P, rotates about the hinge line H, is denoted as a5,
with a, =0 corresponding to P, being in the conformed position.
We define the positive direction of the angle to correspond to an
initial outward movement. Thus, «; is the angle between the
normal vectors to the panel P, and the rotated panel P; at any point
of the intersection of Py and P;. We desire to find a relationship
between a; and a,, so that we can ensure that the rigid motion of
panels P; and P, will admit a rigid motion for P3, so that P3
remains joined to P, and P, along the hinge lines H; and H,.
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Fig. 3 The design of the conical developable mechanism in the
conformed position for 6>¢&. The angle between the z-axis and
the cone surface is ¢.

The panel Py, and therefore the hinge lines H; and H,, are held
fixed. Because the position of panel P; in R® depends on a;, we
refer to the image of P; in R? resulting from a rotation of a; as
Pi[a;]. The image of P, resulting from a rotation of a, is denoted
as Play]. Similarly, the image of the hinge lines H3 and H,4 in
R3, with respect to the angles on which they depend, will be
denoted Hj[a;] and Hy[a,], respectively. The dependence of a pos-
sible position for P; on a; and a, is what is in question.

We can now clearly see that the conical developable mechanism
(termed for the type of surface from which it is constructed) behaves
kinematically like a spherical mechanism (termed for the existence
of a point of concurrence of the hinge lines). A spherical mecha-
nism consists of bars linked at hinge joints whose hinge lines all
intersect at a point. The conical reference surface has ruling lines
that meet at the cone point (or apex of the cone). A necessary,
although not sufficient, condition for a conical developable mecha-
nism to have rigid motion is that the hinges are constructed along
straight lines. Thus, the hinges must be constructed along ruling
lines. Since Py is fixed, any rigid motion of panels P, and P, main-
tain that all four hinge lines meet at the cone point throughout the
motion. Thus, the mechanism must be a spherical mechanism cen-
tered about the cone point (see also Ref. [13]). Methods traditionally
used for analyzing spherical mechanisms [18] could also be used in
the analysis that follows, but the mathematical approach used here
is helpful for the particular analysis and the resulting theorems.

2.2 Defining Points. Consider the following two points on the
undeflected mechanism given in cylindrical coordinates:

a=|[zgtang, J, 22]

b=[ztang, 6+ ¢, z2]
Note that these two points lie on the hinge lines H3[0] and H4[0].
Indeed, we will be interested in the points a and b as they rotate
with the panels P[a;] and P;[a,]. We denote these rotated points
by ala;] and b[a,], respectively.
Converting to Cartesian coordinates, the points a[0] and b[0] are
represented as follows:

a=<22tan(/)cosé, Zp tan ¢ sin 4, 22> @))]
b= <zZ tan ¢ cos(d + &), zp tan ¢ sin(S + &), 12> 2)
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2.3 Motion via Linear Transformation. The motion of a
panel about a hinge line H;, for i=1, 2, can be described
through a series of linear transformations. The composition of
the following transformations will provide the transformations
that describe the motion of panel P;, so that we can determine
Pila]:

(1) The first transformation moves hinge line H; to the xz-plane

by a clockwise rotation by an angle @ about the z-axis:

cosw sinw O
Agw)=| —sinw cosw O 3)
0 0 1

(2) Next, we move the image of hinge line H; to the z-axis by a
clockwise rotation of the cone angle ¢ about the y-axis:

cos¢p 0 —sing
Ap=( 0 1 0 “
sing 0 cos¢

(3) This next rotation about the z-axis by an angle ¢; is the key
transformation. Having applied the transformations Ay(w)
and A;(¢), the image of the hinge line H; now lies on the
z-axis. Hence, the rotation of panel P; about the hinge line
H; at this step is realized by

cosa; sina; O
Ay(a))=| —sina; cosa; O (®)]
0 0 1

(4) The transformation A(—¢) reverses the action of A;(¢):

cos¢p 0O sing
Ai(—¢) = 0 10 ©)
—singg 0 cos¢p
(5) Finally, the transformation Ag(—w) reverses the action of
Ao(w):
cosw —sinw 0
Ag(—w)=| sinw cosw O (@)
0 0 1

We assume that the cone is initially positioned so that @ =0 for
H; and w = ¢ for H, (i.e., the mechanism is in its conformed posi-
tion). Composing the above transformations, we define

Ti(a1) = Ao(0)A1(=)A2(a1)A1($)Ao(0) (6))

Tr(a2) = Ao( = HA1(=P)Az(a2)A1(h)Ao(E) ©)

Notice that in the definitions of T';(«;) and T,(a,), we chose the
arguments of Ay to coincide with the azimuth angle of the hinge
lines H; and H, in cylindrical coordinates. Therefore, Tia;)
applied to any point has the effect of rotating that point about the
hinge line H; for i=1, 2. Thus, it is simple to define the motion
of the panels P; and P, about their hinge lines:

Piloy] =T, (a;)P[0]
Prlas] = To(a2)P2[0]

Since a[a;] is a point of P;[a;] and b[a,] is a point of P,[a,], we
can write:

alay] =Ti(a1)al0] (10)

blaz] = T>(a2)b[0] (11)
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3 Rigid Motion

For the conical developable mechanism to have rigid motion,
panels P; and P, must move by a rotation about their hinge lines
H, and H,, respectively. Our goal is to find an open interval U of
the real line containing 0 and a function f:U — R, so that the
rigid motion of panels P; and P, given by Pi[a;] and P[f(a1)]
admits a rigid motion for P; as well.

Supposing that such a function f exists, a necessary condition for
a rigid motion on panel Pj; is that the distance between points a[a; ]
and b[f(a;)] remains constant as @, varies. In fact, as we shall see
from the rigidity theorem in the next section, this condition is both
necessary and sufficient.

Our strategy, therefore, will be to examine the level sets of the
function D:R” — R defined by

D(ay, @) = |lala;] = blas]|I? 12)

where a[a,] and b[a,] are given by Egs. (10) and (11), which refer-
ence Egs. (1), (2), (8), (9), and then Eqgs. (1)—(7). Then, D represents
the square of the standard Euclidean norm between a[a;] and b[a].

Note that D(a;, a,) is dependent on the design parameters ¢, J, &,
and z,. However, it is sufficient for our analysis to set z; = 1. This is
the case because although z, modifies the magnitude of the function
D, it does not affect the D(0, 0)-level set, which determines possible
motion paths. In other words, the movement of two mechanisms
with the same design parameters, except the z; values (i=1, 2, 3),
are exactly the same.

We will find that variations of the design parameters ¢, §, and &
do change the D(0, 0)-level set and may significantly modify the
general behavior of the mechanism. When needed to facilitate the
discussion of the analysis of the function, we extend the notation
of D(a;, ay) to

Di¢, 6, {l(ar, a2)

When we use the notation D(a, @,), we assume the values for ¢, &,
and ¢ are given.

The reader may note that the explicit formulas for Eqs. (8)—(12)
become quite lengthy and challenging to analyze. Thus, we first
verify the existence of a rigid motion by a theoretical analysis.
We then demonstrate how to evaluate a rigid motion path
computationally.

3.1 Existence of a Rigid Motion. First, we will prove that
there exists an open interval U of the real line containing 0 and a
function f:U — R, so that f(0)=0 and D(a;, f(a;)) is constant.
The reasoning here is quite easy, as we will appeal to the implicit
function theorem. The explicit form of D(a;, @) is lengthy, but
the gradient at the origin is given by

2

4z§ sin%sind)tand)(cos (6+§) — COos (g))

To apply the implicit function theorem, we must guarantee that
VD(0, 0) # (0, 0). Both components of VD(0, 0) are a product of
several factors. We will simply show that all factors are
nonzero. Note that:

1) 1)
8Z§ singsin ¢tang sini sin (ﬁ)
VD(0, 0) =

e 7, #0 because we chose it to be positive.
e Since 0<&<2x, we have sin g #0.
e Since 0< ¢ <a/2, we have sin ¢ #0 and tan ¢ #0.

e Showing that
cos<6+ g) - cosg #0

requires some work. We will prove by contradiction. Suppos-
ing that equality holds and applying the angle addition formula

031106-4 / Vol. 13, JUNE 2021

for cosine gives us

cosécosg— sinésing —cosg =0

Rearranging terms gives us

cosd— 1 —tané
sing 2

Applying the half angle identity for tangent, we are left with

o &
t —_— _t =
an( 2) = an2

1)
This means that 5 + g = nzx for some integer n, or
E+6=2nr

But we have chosen £ and §, so that 0 <&+ 6<2x. So this is a
contradiction. Thus,

(54 .
cos(6+ 5) —cosZ;éO

Since none of the factors in the second component of VD(0, 0)
are equal to zero,

VD(0, 0) # (0, 0)

The implicit function theorem tells us that there is an open interval
U C R containing 0 and a function f:U — R, so that f(0) =0, and
D(ay, f(ay)) is constant for all a; € U. We can now conclude that
there exists some rigid motion of the mechanism.

3.2 Solving for the Motion Path. Because of its nonconstruc-
tive nature, the implicit function theorem does not specify the rigid
motion. However, the rigid motion can be described by a level set
that is determined explicitly as the solution to a differential equa-
tion. For the purposes of setting up and solving this differential
equation, we will write both @; and a, as functions of another
parameter ¢ and use the function r:R — R? defined by

(1) = (a1 (1), aa(1))

The differential equation whose solution traces out the level curve is
the so-called gradient equation. It is given by

VD(ay, @) - ¥(1)=0
with the initial value
r(0)=(0, 0)

This is a nonlinear ordinary differential equation, which is underde-
termined because we have just one equation with two unknown
functions, a;(¢) and a,(t). We can remedy this by setting:

ai(t)=t
Thus, we are left to solve
Dy, (t, a2(1)) + Da, (1, aa(1)ay(£) = 0
or

_ D(t; (t, aZ(t))
D, (8, ap(1))

Equation (13) can be expanded by referencing Eq. (12), substituting
in the explicit forms of Egs. (10) and (11) and taking the appropriate
partial derivatives. However, the expanded form is quite lengthy, so
we leave it in a symbolic form.

(1) = (13)

Transactions of the ASME
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Fig.4 Plots of the function D(a4, ao) for ¢ = z/3 and differing 6 and £ values. The level curves D(a4, a,) = D(0, 0) are also indicated.
@) o6=nl3,5E=nl4,p=nl3,(b) 6=nl3,5=nl6, p =n/3,(C) 6=nl4,E=7l6, p =73, (d) 6 = /3, E=nl3, p = /3, (€) 6 =nl4, & =nld, p = nl3,
(f) 6=rl6, &E=nl6, p =nl3, (9) 6 =nl4, {E=nl3, ¢ =l3, (h) 6 =rl6, &E=nl3, p = /3, and (i) 6 = /6, {=nl4, ¢ = nl3.

We illustrate graphs of the D(a;, @) for several variations of the
design parameters J, £, and y in Fig. 4. Note that D(0, 0) is the func-
tional value of D when the conical developable mechanism is in its
conformed position. The curves indicated within the graphs are the
D(0, 0)-level curves (i.e., the set of points for which D(a;, a;) =
D(0, 0)) and are obtained by numerically solving the differential
equation Eq. (13) for a,(r) and then plotting the collection of
points (#, ax(?)).

As illustrated in Fig. 5, there are multiple possible paths that are
connected to the origin. In Sec. 3.3, we verify that these parameter
functions are sufficient to define a rigid motion. It is clear that the
relationship between the parameter functions a; and a, is necessary.
An animation of how panels move on these paths is given online."

"https:/www.youtube.com/watch?v=pydiO4PRjDw

Journal of Mechanisms and Robotics

3.3 The Rigid Transformation. In this section, we define the
rigid motion that acts on the developable conical four-bar mecha-
nism. The rigid motion T:R* xR — R? is piecewise defined as
follows:

Recall that T'(¢), T»(t), a, and b are defined in Sec. 2 by Egs. (1),
(2), (8), and (9). We define T to be

X, if x € Py

_ ) T{@x, ifxepP
TOX=1 7xox, ifxe P, a4

T;(x, ifxePs3

where
T{(t) = Ti(t) and T5 (t) = Ta(a(?)).

To define T5(t), let ¢ =axb. Note that {a, b, ¢} form a basis for R3.
Then, each point x € R* can be written as follows:

JUNE 2021, Vol. 13 / 031106-5
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Fig. 5 The characteristics of the paths of motion depending on
the relative sizes of £ and 6: (a) 6<¢, (b) 6=¢, and (c) 6>&

x =k,a + kyb + k.c

where k,, k,, and k. are a unique set of constants. We define
Ti():R* — R by

T (Ox =k, Ty (Oa + ky T3 (b + k [T} (Ha X T3 (1)b]
THEOREM 1. T(t) defines a rigid motion.
Proof. To see that T(t) is well defined, first note that by construc-
tion, 71(¢) and T5(t) are the identity on hinge lines H; and H,,
respectively. Thus, the mapping 7(¢) is well defined on the points

031106-6 / Vol. 13, JUNE 2021

of Py intersecting P, or P,. Next, we need to verify that T5(t) is con-
sistent with T}(¢) and T5(f) on hinge lines H3 and H,, respectively.
Note that:

(1) If X € Hs, then x=k,a. Thus, T5()x =k, Ti(t)a=
T (0)(k,a) = T1(H)x. Hence,

Ti(Ox = T} ()X

(2) If XE€ H,, then x=Fkb. Thus, T5(t)x =k, T>()b=
T5(1)(kyb) = T5(r)x. Hence,

T;(x =T;()x

Thus, we have the desired result. Therefore, 7(¢) is well defined.
It is now clear from the definition of T5(r) and using the substitu-
tions

Ti(ta=T;(Ha
T;(Hb = Tx(t)b
T; (e =T (Ha x T, ()b

that for x = k,a + kyb + k.c € R®

T ()x = k,T5(0)a + kp T (Ob + k. T3 (1)e (15)

Using the identity given in Eq. (15), the fact that T5 is a linear trans-
formation is a straightforward verification. In particular, for con-
stants A; and A, and vectors,

X1 =kga+ky b+ ke C
Xy = kg,a + kp,b + ke, c

we can immediately verify that
T (O(AiX1 + AxXa) = L T5 (DX + L T5 (0%

By construction, T, (t) and T5(¢) are orthogonal transformations. To
see that T4(¢) is an orthogonal transformation, note that by design,
the distance between Tj(H)a and T5(f)b remains constant as f
varies. Thus, for all ¢, the triangle with vertices 0, a, and b is con-
gruent to the triangle with vertices 7(¢)0, 7(¢)a, and T(¢)b. Hence,
T5(t)e = T1(r)a x To(r)b has constant magnitude and is perpendicular
to both 7} (f)a and T5(t)b throughout the motion. This means the
tetrahedron with vertices 0, a, b, and ¢ is congruent to the tetrahe-
dron with vertices T5(1)0, T5(t)a, T5()b, and T5(t)e. Thus, it must be
the case that T§(r) is an orthogonal transformation. Therefore, 7(¢)
defines a rigid motion. n

Note that the aforementioned argument does not depend on C
being a circular cone, nor that a and b have the same z-coordinate.
It is only required that Ti(t) and T5() are orthogonal transforms and
that the distance between T;(f)a and T5()b is constant throughout
the motion. Thus, we can summarize these results by the following
theorem.

THEOREM 2. Suppose C is a generalized cone in R® with cone
point at 0 and a conical developable mechanism is constructed
on C, similarly as in Fig. 2, with hinge lines H,, H,, H3, and H,
passing through the origin. Let a and b be points distinct from
the origin on the hinge lines Hz and H,, respectively. If there are
linear transformation paths Ti(t) and T5() acting on panels P,
and P, respectively, so that the distance between T;(0)a and Tx(r)
b are constant as t varies, then the motion defined by (14) is a
rigid motion.

4 Observational Analysis

These results can be helpful in analyzing the behaviors of conical
developable mechanisms that are particularly relevant for the use of
these mechanisms in future applications. Identifying the location of

Transactions of the ASME



bifurcation points is important, so that the motion can be adequately
known and controlled. Determining whether a mechanism’s motion
is exclusively inside or outside of the reference cone is valuable for
understanding which geometry is appropriate for use on solid sur-
faces (such as a rocket nose cone) to ensure that the mechanism’s
motion does not penetrate the surface. These concepts are discussed
in this section.

Considering Fig. 5, note that in all cases there is a class of upward
slanting curves, which represent motion in which a; and a, are
increasing at nearly the same rate. We will refer to these curves
as the &-curves. The other curves we will refer to as the
D-curves. Note that the origin is contained in a D-curve in each
case.

The points where two motion curves intersect are called bifurca-
tion points, and correspond to the change points of the mechanism.
A bifurcation point represents a point in the motion in which there
is more than one possible continuation of the motion, other than
reversing the motion. For planar lamina emergent mechanisms,
there must be a bifurcation point corresponding to when the mech-
anism is in its conformed position [15]. However, for this conical
developable mechanism, the conformed position corresponds to the
origin in the aa,-plane (i.e., (a;, ax) = (0, 0)), which is not a bifur-
cation point as illustrated in each case in Fig. 5. Indeed, bifurcation
points occur at positions where the hinge lines lie in a single plane
(see Ref. [4]). When § #¢, in the conformed position, no three of
the axes are coplanar. When §=¢, in the conformed position, the
axes for H, and Hj coincide (consider Fig. 3 when §=¢&), but
the four axes together are not coplanar. Further note that when
6=¢, if [ is the axis containing H, and H; in the conformed
position, then P, and P;, moving together, can rotate freely
about / while holding [ fixed, and hence holding P, fixed. Likewise,
when the axes of H; and H, coincide, then P; and Pz, moving
together, can rotate freely about the axis containing H, and Hy
while holding P, fixed.

Consider again Fig. 5. When § # £, the bifurcation points arise
only from the intersection of &-curves with D-curves. How-
ever, when 6 =¢£, bifurcation points may also arise from the inter-
section of D-curves. We will refer to a bifurcation point that is
the intersection of an E-curve with a D-curve as an ordinary
bifurcation point and a bifurcation point that is the intersection
of two D-curves as an extraordinary bifurcation point. In
particular, an extraordinary bifurcation point is the intersection
of a horizontal and a vertical line in the motion path. Along a
vertical line in the motion path, P; is fixed as P, moves
freely. Along a horizontal line in the motion path, P, is fixed
as P; moves freely.

To understand the transition of the shapes of the D-curves as
6 changes size in comparison to &, i.e., the transitions from
Figs. 5(a) through 5(c), note that at 6 =&, the D-curves have a stair-
step pattern that, when pieced together differently, can be repre-
sented as a set of vertical and horizontal lines. Thus, the region of
space near an extraordinary bifurcation point is divided into four
quadrants. When & decreases away from &, the D-curves break
into two continuous curves: one in the first quadrant and one in
the third quadrant. Likewise, when & increases away from &, the
D-curves break into two continuous curves: one in the second quad-
rant and one in the fourth quadrant.

4.1 Initial Motion. The compact nature of the conical devel-
opable mechanism is achieved when the mechanism is in its con-
formed position. As such, it is important to consider the initial
motion as the mechanism moves from the conformed position.
Greenwood described three behaviors (intramobility, extra-
mobility, and transmobility) that characterize the motion of devel-
opable mechanisms as they move from their conformed position.
For regular cylindrical [11] and conical [13] developable mecha-
nisms, these behaviors can be predicted using graphical
methods. We also note that as a change point mechanism, there
are two possible configurations, open and crossed, and that the
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conformed position represents a crossed configuration (see
Ref. [15]).

We provide an analytical perspective for regular conical develop-
able mechanisms. Note that if all panels start in the conformed posi-
tion, the initial motion must be defined by a path that moves along a
D-curve. The initial direction of the D-curve depends on the relative
sizes of § and & as follows:

o If 6<¢&, we observe that when «; is initially increasing,
then a, is initially decreasing (see Fig. 5(a)). Hence, if
panel P; is initially moving outward, then panel P, must be
initially moving inward, and vice versa. Greenwood et al.
[11] refer to this type of behavior as transmobile (also see
Ref. [19].)

e If 6=¢, recall that this is the case where H, and H; are colinear
in the conformed position. Thus, panel P; must initially be
kept fixed, while panel P, moves in either direction (see
Fig. 5(b)).

o If 5> ¢, we observe that both panels initially move in the same
direction, but P; moves at a slower rate than P, (see Fig. 5(c)).
This behavior is called intramobile if the motion is toward the
interior of the surface and extramobile if the motion is toward
the exterior of the surface [11].

4.2 Bifurcation Points. The characteristics of the possible
continued motions at a bifurcation point also depends on the relative
sizes of ¢ and &. The existence of the bifurcation points lead to
unbounded motion paths in the aja,-plane.

o If < ¢, at a bifurcation point, we observe that it is possible to
move panels P; and P, in the same direction by continuing the
motion along an E-curve or in a different direction by contin-
uing the motion along a D-curve. Each £-curve intersects each
D-curve at precisely one point and all bifurcation points
connect to the origin. They form an array that is periodic in
two directions.

e If §=¢, we observe that at an ordinary bifurcation point there
is a choice to keep one panel, P, or P,, fixed while moving
the other or to keep both panels in motion at nearly the
same rate. At an extraordinary bifurcation point, only one
panel can be put in motion while fixing the other, but
either panel can be selected to be put in motion. In this
case, all bifurcation points are connected to the origin. Both
the set of ordinary bifurcation points and the set of extraordi-
nary bifurcation points each form an array that is periodic in
two direction.

o If 6>¢&, we observe that both panels P, and P, must con-
tinue to move in the same direction. However, there are
two possible rates at which this occurs. In this case, all bifur-
cation points are ordinary. There is a one-to-one correspon-
dence between the &-curves and D-curves that intersect.
The set of bifurcation points connected to the origin is peri-
odic in one direction. There are an infinite number of parallel
sets.

Figure 6 illustrates positions of the conical developable mecha-
nism corresponding to various points in the motion path when
6 < £ Recall that when § <&, we observe transmobile behavior. In
particular, starting from the conformed position, the panels P,
and P, must move in opposite directions, inward and outward, rela-
tive to the surface of the cone. Only in the case that 6> £ is there a
rigid motion that allows both of the panels to move in the same
direction initially.

Note that, by design, our conical developable mechanism is a
spherical parallelogram linkage, where the link angles of opposite
links are equal. For modifications of our design that are not
parallelogram linkages, see Ref. [13]. For these more generally
designed mechanisms, the existence and types of bifurcation
points in the motion will depend on whether they are Grashof
mechanisms.
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Fig.6 Deflection at points of the motion path when é <¢&: (@) con-
formed position at (a4, a2)=(0, 0), (b) coplanar hinge lines at
bifurcation point, (c) along D-curve below bifurcation point,
(d) along D-curve above bifurcation point, (e) along E-curve
below bifurcation point, and (f) along E-curve above bifurcation
point

5 Conclusion

In this article, we have demonstrated that conical developable
mechanisms, as designed here, have rigid motion. We have also
demonstrated how to analytically determine the motion and have
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provided a general description of the motion. The relationship
between variables 6 and £ determines the motion of the mechanism
with respect to the conical reference surface and predicts the behav-
iors (intramobile, extramobile, and transmobile) the mechanism can
exhibit. The relative sizes of § and ¢ also determine the variety of
bifurcation points that arise in the motion path. We have described
how these bifurcation points arise and the behavior of the mecha-
nism around the various types of bifurcation points. Furthermore,
we proved that a conical four-bar mechanism constructed on a gen-
eralized cone has rigid motion provided that a motion can be found
that preserves the distance between any two distinct points, one on
each of the hinge lines H3 and Hjy.
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