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Abstract— The ability to determine whether a robot’s grasp
has a high chance of failing, before it actually does, can save
significant time and avoid failures by planning for re-grasping
or changing the strategy for that special case. Machine Learning
(ML) offers one way to learn to predict grasp failure from
historic data consisting of a robot’s attempted grasps alongside
labels of the success or failure. Unfortunately, most powerful
ML models are black-box models that do not explain the
reasons behind their predictions. In this paper, we investigate
how ML can be used to predict robot grasp failure and study
the tradeoff between accuracy and interpretability by compar-
ing interpretable (white box) ML models that are inherently
explainable with more accurate black box ML models that
are inherently opaque. Our results show that one does not
necessarily have to compromise accuracy for interpretability
if we use an explanation generation method, such as Shapley
Additive explanations (SHAP), to add explainability to the
accurate predictions made by black box models. An explanation
of a predicted fault can lead to an efficient choice of corrective
action in the robot’s design that can be taken to avoid future
failures.

I. INTRODUCTION

With increased automation and use of robotics in ware-
houses and manufacturing environments, the need to effi-
ciently and accurately complete tasks are of utmost impor-
tance. During grasp planning and executing trajectories by a
robotic manipulator, certain situations are encountered where
the robot fails to accurately complete the task at hand. Exam-
ples include unreachable poses and grasp failure. In order to
increase the accuracy of the robotic manipulator operation,
such conditions should be detected and intervention activities
can be performed for course correction of the operation.

Studies in the past have used various model-based or
neural network based algorithms to detect or predict failures
and perform corrective actions to mitigate them [1], [2].
A research study by Riccardo et. al. used a partial least
square (PLS) based approach to monitor any faults that may
occur during robot operation [3]. The PLS-based algorithm
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provided a statistical approach to monitor the robotic manip-
ulator online but offline identification of faults.

The ability to determine whether a robot’s grasp has a high
chance of failing, before it actually does, can save significant
time and avoid failures by planning for re-grasping or chang-
ing the strategy for that special case. Machine Learning (ML)
offers one way to learn to predict grasp failure from historic
data consisting of a robot’s attempted grasps alongside labels
of the success or failure.

Unfortunately, most of the work in evaluating the perfor-
mance of ML predictive models has focused on improving
the accuracy of the model rather than its interpretability.
This led to building more powerful and complex classifiers,
known as black-box models, which make understanding of
the reasons behind predictions challenging.

On its own, the detection or prediction of a failure is not
enough to perform corrective actions to avoid the fault. In
addition, there needs to be an explanation of the fault, so that
an efficient choice of corrective action may be taken. Yuming
et. al. have used self-organized critical theory to explain the
internal mechanism of fault occurrence [4]. The explanation
of the fault allows for a system to decide which mitigation
action would be effective for a given type of fault that will
be encountered. For example, for certain types of faults,
automated mitigation procedures may take longer than a
human-operator based intervention. This allows for a speedy
recovery of the system during a given task. This process
effectively uses a variable autonomy based framework such
as described in the studies conducted by Manolis et. al.[5],

[6].

A. Contributions

In this paper, we investigate how ML can be used to
predict robot grasp failure and study the tradeoff between
accuracy and interpretability by comparing interpretable ML
models that are inherently explainable with black box ML
models that tend to be more accurate but do not come with
ready explanations. Our data-driven approach uses super-
vised machine learning techniques to produce a fault detec-
tion or diagnosis model for modeling a nonlinear robotic
manipulator (arm with several degrees of freedom). The
model learning occurs offline on past observations that were
recorded from previous operations or by a simulation, and the
models are able to map informative features from a dataset of
previous behaviors to the likelihood of failure. Once learned,
the supervised model allows classifying new unseen data,
in particular, data that would be produced in real time by
the robot, and thus determine the likelihood of a fault. Our
experiments show that one does not necessarily have to com-



promise accuracy for interpretability. Specifically, we achieve
this goal by augmenting highly accurate black box model
predictions with an explanation generation method, known
as Shapley Additive explanations (SHAP) [7], [8]. SHAP
assigns to each feature in a predictive model, an importance
value for a particular prediction (local explanation) or for the
overall prediction (global explanation).

Understanding each feature’s contribution and their effects
on robot’s grasp failure would help us to understand the
different types of mechanisms that lead to failure. An expla-
nation of the fault can therefore lead to an efficient choice
of corrective action in the robot’s design that can be taken
to avoid the failure.

II. BACKGROUND

The increasing need for reliability and safety in many
fields such as medicine, aerospace, robotics, self-driving
vehicles and other safety-critical industries, has motivated
work on detecting and identifying potential faults in a system
as early as possible and planning to avoid them [9].

Optimal performance and safety can be supported by
the ability to check if there is a fault in the system and
determining its time (fault detection), finding which part
of the system could lead to a failure (fault isolation), and
identifying details about the fault such as type, shape and
size (fault identification) [9].

According to [10], fault diagnosis approaches can be cate-
gorized into two techniques: hardware redundancy-based and
analytical redundancy-based. Analytical redundancy-based
methods include model-based, signal-based, knowledge-
based, data-driven, hybrid fault diagnosis, and active fault
diagnosis methods. Data-driven approaches, which our paper
adopts, rely on algorithms and artificial intelligence tech-
niques to extract information from historic data of machine
performance. Their advantage stems from their versatile
ability to adapt to different systems and failures without
relying on explicit, possibly complex system models or
knowledge. Machine learning algorithms have been applied
to help robots learn how to work and make decisions based
on information received from sensors. Information could be
in the form of image features from cameras or positions or
velocity of gripper joints [11]. Despite advances in robot
control, imprecision in sensing and actuation still challenge
the stability of a robot’s grasp [12].

Despite the versatility of ML algorithms, the need to
use best performing (most accurate) black box ML models
remains challenged by their inability to explain their predic-
tions limits their potential to guide the design of more robust
systems.

One way to categorize interpretable methods in ML is
to determine if the interpretability is achieved by limiting
the complexity of the ML model (intrinsic interpretable
methods) or by applying methods that analyze the model
after training (post hoc interpretable methods) [13]. Algo-
rithms with simple structure such as decision trees [14], and
linear models like logistic regression [15] are intrinsically

interpretable. Providing global explanation based on coeffi-
cient estimates by logistic regression and visualizing decision
paths or extracting if-then rules from decision tree algorithms
make them naturally interpretable for the users and help to
understand the relationship between predictors (features) and
the model’s prediction. Post-hoc explanation methods extract
information from learned black-box models such as ensemble
methods [16] or neural networks and help us to figure out
“what else the model can tell us’[17]. These explanations
are achieved by learning an interpretable model on the
predictions of the black box model [18], [19], perturbing
inputs and analyzing the black box model reactions [20],
or applying both methods [21]. Since post-hoc methods are
model-agnostic and explanations are independent of ML
models, they can interpret any black box model without
sacrificing their accuracy power [13], [17]. Also, they can be
applied to intrinsically interpretable models. Among recent
post hoc approaches such as Permutation feature importance
[22] and Local interpretable model-agnostic explanations
(LIME) [21], SHapley Additive exPlanations (SHAP) [7],
[8] are now considered leading approach in explaining black
box models.

SHAP provides explanations for individual predictions by
calculating the contribution of each feature to the prediction
based on Shapley values from game theory. Shapley values
tell us how fairly the prediction (model output) is distributed
among predictors (features of the historic data) [13], [23].
Moreover, the Shapley value explanations by SHAP is an
additive feature attribution method which means the expla-
nation model is linear and easy to understand.

In this paper, we use Tree SHAP which is a variant of
SHAP for tree based machine learning models such as the
LightGBM Classifier [24]. Tree SHAP is fast, calculates
exact Shapley values, and correctly computes the Shapley
values when features are dependent [13].

A. SHAP

Since SHAP is an additive feature attribution method, the
explanation is represented as a linear function which makes
it more understandable for the users[13]. Shapley values
explain the model’s output of a function f as a sum of the
effect ¢; that each feature has contributed to the output.
Based on the additive feature attribution, the explanation
model of g is defined as:

M
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Where M is the number of features, z ' € {0,1}*, and
¢; € R.

The z / is equal to one if a feature being observed and
equal to zero for unknown ones and the ¢;’s are the attri-
bution of features. f(h,(z ’)) is the mapping function that
evaluate the effect of feature observation. Variable S is the set
of non-zero indexes in z, f,(S) = f(h.(z ")) = E[f(x)|zs].
E[f(x)|xs]is the expected value of the function conditioned
on a subset S of the input features. SHAP values combine



these conditional expectations with the classic Shapley values
from game theory to attribute ¢; values to each feature:
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where N is the set of all input features [8].

III. METHODOLOGY

To conduct our research, we train different models on
grasp failure simulation data, then compare the white-
box models which are inherently interpretable to black-box
models which come with no explanations but have higher
accuracy. Then we bridge the black box model’s accuracy
and the white box model’s explainability by extracting local
and global explanations for the black box model using the
SHAP method (see Fig. 1).

Building ML Models

White Box { Evaluate:
Classification & e Predicted results

) Model : e Local & Global
/s 7 Explanations
(" Black Box
Classification L \

Data

Model o Explanations |

Better understanding of
failure reasons

Fig. 1. Methodology flow diagram

IV. EXPERIMENTS

We used a simulated robot grasp data [25] which recorded
performance of a robot’s arm with three fingers, including
information about joints’ position, velocity, effort (torque)
of each finger and stability of the grasp for an object. The
dataset has 992,641 records and 28 features with 448,046
records (45% of data) labeled as Stable and 544,595 records
(55% of data) labeled as Unstable grasp.

As recommended in [25], we excluded the joint position
from the features since the hands’ shape is object-specific
and we wanted to find the quality of the grasp while being
object agnostic. Thus, we built our model by considering
only velocity (9 features including H1-F1J1-vel, H1-F1J2-
vel, H1-F1J3-vel, H1-F2J1-vel, H1-F2J2-vel, H1-F2J3-vel,
HI1-F3J1-vel, H1-F3J2-vel, and H1-F3J3-vel), effort (torque:
(9 features including H1-F1J1-eff, H1-F1J2-eff, H1-F1J3-eff,
H1-F2J1-eff, H1-F2J2-eff, H1-F2J3-eff, H1-F3J1-eff, H1-
F3J2-eff, and H1-F3J3-effl) and grasp quality (one feature
which is the output or target label, taking the value of Success
or Failure). In total, this amounts to 18 input features and
one output feature (to be predicted).

Then, we split the data randomly into training set to
learn the model (794,112 records), validation set for model
hyperparameter tuning (99,265 records), and test sets for as-
sessing and reporting the generalization of the model (99,265
records). We chose the logistic regression and decision tree

(DT) classifiers as white box models and the LightGBM
(gradient boosting classifier) and the Multi-Layer Perceptron
classifier as black box models to conduct our experiments.
We then built the models using the training set and validated
the results on the test set. Table 1 compares these four
models based on the prediction metrics obtained by cross-
validation. To avoid overfitting in the LightGBM and Multi-
Layer Perceptron classifier, we tuned the hyperparameters of
the algorithm using randomized search, while evaluating the
model accuracy on the validation set. In the following, we
report the 5-fold cross-validation results of our experiments
in terms of the standard ML model’s performance metrics
of prediction accuracy (proportion of correct classifications),
area under the ROC curve (AUC), precision (proportion of
true positives out of the predicted positives), recall (pro-
portion of true positives predicted relative to all the true
positives), and F1 score (harmonic mean of precision and
recall). All the metrics range in [0, 1] with higher values
indicating better performance.

TABLE I
ML MODEL EVALUATION METRICS

Decision | Logistic z;rfnebin- Neural
Metric Tree Regres— kLigh t— Net

(DT) sion GBM) (MLP)
Accuracy | 0.79 0.74 0.83 0.82
AUC 0.84 0.81 0.91 0.90
F1 0.78 0.74 0.83 0.81
Precision | 0.93 0.83 0.93 0.86
Recall 0.66 0.66 0.76 0.75

1) Model Accuracy: As we can see in Table 1, LightGBM
and MLP surpassed the DT and Logistic regression classifiers
in all evaluation metrics.

In the following, we chose LightGBM for further pre-
diction and explainability analysis, since it was the top
performer in most metrics.

Fig. 2 shows LightGBM’s prediction results on the test
set. 41,674 of the records with the true success label were
predicted correctly in the success class (True Negatives) and
41,028 of the true failures were predicted correctly to be a
failure (True Positive).
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Fig. 2. LightGBM Confusion matrix

2) Model Interpretability:



a) Interpretability of the white box model, Global ex-
planation: Important features in building a logistic regres-
sion model are achieved by calculating the coefficients of
the features in the decision function. As shown in Fig. 3,
joint 1’s effort (torque) in finger 2 and finger 3 and its
velocity in finger 3 have positive contributions in predicting
the likelihood of robot’s grasp failure, whereas joint 1 and
joint 3 effort (torque) in finger 1 have negative coefficients
contributing most negatively. This means that joint 1’s effort
in finger 2 and finger 3 and its velocity in finger 3 make the
failure more likely and joint 1 and joint 3’s efforts in finger 1
make failure less likely. Based on the estimated coefficients,
the effect of the rest of features on the prediction output is
very small or zero.
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Fig. 3. Global interpretability of the entire training data by the white-box
Logistic Regression

Fig. 4 also shows the features, sorted according to their
importance in making decisions in the DT model. It reveals
that joint 1’s effort (torque) in all fingers is more important
than velocity in predicting grasp stability.
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Fig. 4. Global interpretability of the entire training data by the white-box
DT classifier, joint 1 effort (torque) in all fingers is more important than
velocity in predicting grab stability

b) Interpretability of the white box model, Local expla-
nation: Logistic regression does not provide local explana-
tions for the individual data records while decision paths in
the DT model show how the decisions were made. Fig. 5,
displays part of these decision paths for correct classifications
and incorrect classification (misclassifications). For example,
following nodes 0, 32, 48, 56, 57, 59, and paying attention
to the feature values that led to the final decision, we can
see that all 14 records were classified correctly in the class

“Stable grasp”; while the path including nodes 0, 32, 48,
56, 57, 58 resulted in 4 incorrectly classified records and 2
correctly classified records.

gini = 0.348
samples = 116
value = [26, 90]
class = Unstable Grasp

Fig. 5. The DT classifier’s decision paths for correct and incorrect
classifications.

c) Interpretability of the the LightGBM black box model
using standard feature importance: LightGBM classifier is
a tree ensemble learning method. The output of the model is
considered a black box because the model consists of many
individual decision trees, which are built using randomly
chosen variables, thus making it difficult for users and even
experts to understand the decision process.

Although global “feature importance” has been used to
interpret a LightGBM model, it only gives an overview of
the contribution of the features in the prediction results for
the entire training data (global interpretation) and not for in-
dividual samples. Also, feature importance is not considered
to be a “consistent” approach, meaning that changing the
model may decrease the importance of a feature even though
the feature might still have a high impact on the model’s
output [8].In contrast, another global interpretation method
provided by SHAP has solved the consistency problem by
using additive feature attribution methods and considering
the attribution of the features in the output of the model.
Moreover, SHAP provides global and local explanations for
both training and test data sets.

According to Fig. 6, Joint 1’s and 2’s effort (torque) in
all fingers is more important than its velocity in predicting
grasp stability (failure risk in the grasp).
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Fig. 6. Global interpretability for the entire training data by the LightGBM
black-box classifier based on feature importance.

d) Interpretability of the the LightGBM black box model
using SHAP values: In the following, we use the SHAP
Tree explainer [8] on the prediction output of the Light-



GBM model to see what information we can extract about
the robot’s grasp failure cases. As we mentioned, SHAP
computes two types of explanations: Local and global ex-
planations, as we will illustrate below.

o Global Interpretability

To get a general view of which features are most important
in failure prediction, we can check the global explanation plot
for either training or test data set. This explanation ranks each
feature based on its mean absolute Shapley value (global
importance).

Fig. 7 shows that based on the Shapley values among test
samples, joint 2’s effort in finger 2 is the most important
feature in predicting grasp failure. Joint 1’s effort in the other
fingers is also important as shown in Fig. 6.
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Fig. 7. Global interpretability of the entire test set for the LightGBM
model based on SHAP explanations

To know how joint 2’s finger 2 impacts the prediction of
failure, we can examine Fig. 8 which shows the distribution
and value impact of the features in detail.

To display the explanation information in Fig. 8§, SHAP
first sorts the features based on their global importance. Then
dots, representing the SHAP values, are plotted horizontally.
Each dot is colored by the value of that feature, from low
(blue) to high (fuchsia).

As we can see, lower values (blue dots towards the right)
of joint 2’s effort in finger 2 have higher impact on the
model’s output, whereas higher values (fuchsia dots), have
lower impact. The next important feature is joint 1’s effort
in finger 3 which increases the risk of failures in the robot’s
grasp.

o Local Interpretability

SHAP also provides explanations for any given data record
(local explanation). To do that, SHAP decomposes the pre-
diction in a graph and visualizes the feature’s contribution to
the prediction result. We chose one instance of true positive
records from the test set and show its explanation in Fig. 9.
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the LightGBM model, explained by SHAP Global interpretability

Each feature value is a force that either increases (positive
values in fuchsia ) or decreases (negative values in blue) the
prediction of the failure.

Our model has predicted that the robot will fail in grasping
this sample of data with probability almost 1 (output value
in Fig. 9). Also, the average of all predicted probabilities
for the failure class in the test data (base value) is equal to
0.9038, which is the output value while ignoring all the input
features.

According to Fig. 9, features in fuchsia such as joint 2’s
effort in finger 2 (the most important features from global
explanations) and joint 1’s effort in finger 1 and 3 contributed
to push the model’s output from the base value that ignores
all features (0.9038) toward the model’s actual output that
takes into account the features (probability of failure for this
specific record which is equal to 1).
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Fig. 9. Local explanations for a true positive case predicted to be in the
Failure class by the LightGBM model

Fig. 10 shows how the effort in joints’ 1 finger 1 and
joints’ 2 finger 2 led the model to misclassify this sample of
data as a success.
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Fig. 10. Local explanations for a false negative case among the prediction
results of the LightGBM model

Fig. 11 shows that while features in blue, such as joint 2’s



effort in finger 2 help the prediction to be correct (decreasing
the probability of failure), the effects of the fuchsia features
such as joint 1’s and 3’s effort in finger 2 led to incorrectly
classify this sample.
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Fig. 11. Local explanations for a false positive case for the LightGBM
model prediction

With these predictions and explanations, an alternative
planning of the task can be achieved through checking
the reliability of other intervention methods. For example,
this can be done by utilizing a variable autonomy based
framework, where the level of autonomy can be chosen
for specific sub tasks such that the overall performance
is optimized. In case of a prediction of a failure during
a task, by observing the explanation, either the level of
autonomy can be changed to manual for human intervention
or an alternate path planning process can be initiated for
autonomous intervention for the fault.

Our experimental results and their analysis above, illus-
trate the need for an accurate explanation of a predicted fault
in order to be able to think about and choose an effective
corrective measure.

V. CONCLUSIONS

The work presented in this paper aims at predicting and
explaining the predicted fault during a robot’s grasping
operation. This work will be the foundation for our future
work in designing a variable autonomy based architecture.
The explanation of the failures, on its own, will also provide
an easier avenue for the human-operator to intervene and
debug the system.

Our research promises to enable a better understanding
of algorithmic decision systems in robotics and to pave the
way toward more trustable interactions between robots and
humans.

One main limitation of our work stems from the challenges
of collecting sufficient representative data, whether from real
experiments or from simulations. We have used an existing
benchmark simulation dataset in this paper to allow us to
demonstrate, as a proof of concept, that this methodology
offers a reasonable way to study “explainable” failure de-
tection using highly accurate black box machine learning
models. However future work needs to enrich the features in
the data to capture more helpful contextual information about
the task. Another limitation of this work is the difficulty to
decipher the meaning of the SHAP visualization diagrams
which require a good level of training for an expert before
being able to understand and use them for decision making.
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