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Abstract— The ability to determine whether a robot’s grasp
has a high chance of failing, before it actually does, can save
significant time and avoid failures by planning for re-grasping
or changing the strategy for that special case. Machine Learning
(ML) offers one way to learn to predict grasp failure from
historic data consisting of a robot’s attempted grasps alongside
labels of the success or failure. Unfortunately, most powerful
ML models are black-box models that do not explain the
reasons behind their predictions. In this paper, we investigate
how ML can be used to predict robot grasp failure and study
the tradeoff between accuracy and interpretability by compar-
ing interpretable (white box) ML models that are inherently
explainable with more accurate black box ML models that
are inherently opaque. Our results show that one does not
necessarily have to compromise accuracy for interpretability
if we use an explanation generation method, such as Shapley
Additive explanations (SHAP), to add explainability to the
accurate predictions made by black box models. An explanation
of a predicted fault can lead to an efficient choice of corrective
action in the robot’s design that can be taken to avoid future
failures.

I. INTRODUCTION

With increased automation and use of robotics in ware-

houses and manufacturing environments, the need to effi-

ciently and accurately complete tasks are of utmost impor-

tance. During grasp planning and executing trajectories by a

robotic manipulator, certain situations are encountered where

the robot fails to accurately complete the task at hand. Exam-

ples include unreachable poses and grasp failure. In order to

increase the accuracy of the robotic manipulator operation,

such conditions should be detected and intervention activities

can be performed for course correction of the operation.

Studies in the past have used various model-based or

neural network based algorithms to detect or predict failures

and perform corrective actions to mitigate them [1], [2].

A research study by Riccardo et. al. used a partial least

square (PLS) based approach to monitor any faults that may

occur during robot operation [3]. The PLS-based algorithm
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provided a statistical approach to monitor the robotic manip-

ulator online but offline identification of faults.

The ability to determine whether a robot’s grasp has a high

chance of failing, before it actually does, can save significant

time and avoid failures by planning for re-grasping or chang-

ing the strategy for that special case. Machine Learning (ML)

offers one way to learn to predict grasp failure from historic

data consisting of a robot’s attempted grasps alongside labels

of the success or failure.

Unfortunately, most of the work in evaluating the perfor-

mance of ML predictive models has focused on improving

the accuracy of the model rather than its interpretability.

This led to building more powerful and complex classifiers,

known as black-box models, which make understanding of

the reasons behind predictions challenging.

On its own, the detection or prediction of a failure is not

enough to perform corrective actions to avoid the fault. In

addition, there needs to be an explanation of the fault, so that

an efficient choice of corrective action may be taken. Yuming

et. al. have used self-organized critical theory to explain the

internal mechanism of fault occurrence [4]. The explanation

of the fault allows for a system to decide which mitigation

action would be effective for a given type of fault that will

be encountered. For example, for certain types of faults,

automated mitigation procedures may take longer than a

human-operator based intervention. This allows for a speedy

recovery of the system during a given task. This process

effectively uses a variable autonomy based framework such

as described in the studies conducted by Manolis et. al.[5],

[6].

A. Contributions

In this paper, we investigate how ML can be used to

predict robot grasp failure and study the tradeoff between

accuracy and interpretability by comparing interpretable ML

models that are inherently explainable with black box ML

models that tend to be more accurate but do not come with

ready explanations. Our data-driven approach uses super-

vised machine learning techniques to produce a fault detec-

tion or diagnosis model for modeling a nonlinear robotic

manipulator (arm with several degrees of freedom). The

model learning occurs offline on past observations that were

recorded from previous operations or by a simulation, and the

models are able to map informative features from a dataset of

previous behaviors to the likelihood of failure. Once learned,

the supervised model allows classifying new unseen data,

in particular, data that would be produced in real time by

the robot, and thus determine the likelihood of a fault. Our

experiments show that one does not necessarily have to com-



promise accuracy for interpretability. Specifically, we achieve

this goal by augmenting highly accurate black box model

predictions with an explanation generation method, known

as Shapley Additive explanations (SHAP) [7], [8]. SHAP

assigns to each feature in a predictive model, an importance

value for a particular prediction (local explanation) or for the

overall prediction (global explanation).

Understanding each feature’s contribution and their effects

on robot’s grasp failure would help us to understand the

different types of mechanisms that lead to failure. An expla-

nation of the fault can therefore lead to an efficient choice

of corrective action in the robot’s design that can be taken

to avoid the failure.

II. BACKGROUND

The increasing need for reliability and safety in many

fields such as medicine, aerospace, robotics, self-driving

vehicles and other safety-critical industries, has motivated

work on detecting and identifying potential faults in a system

as early as possible and planning to avoid them [9].

Optimal performance and safety can be supported by

the ability to check if there is a fault in the system and

determining its time (fault detection), finding which part

of the system could lead to a failure (fault isolation), and

identifying details about the fault such as type, shape and

size (fault identification) [9].

According to [10], fault diagnosis approaches can be cate-

gorized into two techniques: hardware redundancy-based and

analytical redundancy-based. Analytical redundancy-based

methods include model-based, signal-based, knowledge-

based, data-driven, hybrid fault diagnosis, and active fault

diagnosis methods. Data-driven approaches, which our paper

adopts, rely on algorithms and artificial intelligence tech-

niques to extract information from historic data of machine

performance. Their advantage stems from their versatile

ability to adapt to different systems and failures without

relying on explicit, possibly complex system models or

knowledge. Machine learning algorithms have been applied

to help robots learn how to work and make decisions based

on information received from sensors. Information could be

in the form of image features from cameras or positions or

velocity of gripper joints [11]. Despite advances in robot

control, imprecision in sensing and actuation still challenge

the stability of a robot’s grasp [12].

Despite the versatility of ML algorithms, the need to

use best performing (most accurate) black box ML models

remains challenged by their inability to explain their predic-

tions limits their potential to guide the design of more robust

systems.

One way to categorize interpretable methods in ML is

to determine if the interpretability is achieved by limiting

the complexity of the ML model (intrinsic interpretable

methods) or by applying methods that analyze the model

after training (post hoc interpretable methods) [13]. Algo-

rithms with simple structure such as decision trees [14], and

linear models like logistic regression [15] are intrinsically

interpretable. Providing global explanation based on coeffi-

cient estimates by logistic regression and visualizing decision

paths or extracting if-then rules from decision tree algorithms

make them naturally interpretable for the users and help to

understand the relationship between predictors (features) and

the model’s prediction. Post-hoc explanation methods extract

information from learned black-box models such as ensemble

methods [16] or neural networks and help us to figure out

“what else the model can tell us”[17]. These explanations

are achieved by learning an interpretable model on the

predictions of the black box model [18], [19], perturbing

inputs and analyzing the black box model reactions [20],

or applying both methods [21]. Since post-hoc methods are

model-agnostic and explanations are independent of ML

models, they can interpret any black box model without

sacrificing their accuracy power [13], [17]. Also, they can be

applied to intrinsically interpretable models. Among recent

post hoc approaches such as Permutation feature importance

[22] and Local interpretable model-agnostic explanations

(LIME) [21], SHapley Additive exPlanations (SHAP) [7],

[8] are now considered leading approach in explaining black

box models.

SHAP provides explanations for individual predictions by

calculating the contribution of each feature to the prediction

based on Shapley values from game theory. Shapley values

tell us how fairly the prediction (model output) is distributed

among predictors (features of the historic data) [13], [23].

Moreover, the Shapley value explanations by SHAP is an

additive feature attribution method which means the expla-

nation model is linear and easy to understand.

In this paper, we use Tree SHAP which is a variant of

SHAP for tree based machine learning models such as the

LightGBM Classifier [24]. Tree SHAP is fast, calculates

exact Shapley values, and correctly computes the Shapley

values when features are dependent [13].

A. SHAP

Since SHAP is an additive feature attribution method, the

explanation is represented as a linear function which makes

it more understandable for the users[13]. Shapley values

explain the model’s output of a function f as a sum of the

effect φi that each feature has contributed to the output.

Based on the additive feature attribution, the explanation

model of g is defined as:

g(z ′) = φ0 +
M∑

i=1

φiz
′

i
(1)

Where M is the number of features, z ′ ∈ {0, 1}M , and

φi ∈ R.

The z ′

i
is equal to one if a feature being observed and

equal to zero for unknown ones and the φi’s are the attri-

bution of features. f(hx(z
′)) is the mapping function that

evaluate the effect of feature observation. Variable S is the set

of non-zero indexes in z, fx(S) = f(hx(z
′)) = E[f(x)|xs].

E[f(x)|xs]is the expected value of the function conditioned

on a subset S of the input features. SHAP values combine










