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Abstract

We show that the homogeneous and the 2-lobe Delaunay tori in the 3-sphere provide the
only isothermic constrained Willmore tori in 3-space with Willmore energy below 8z. In
particular, every constrained Willmore torus with Willmore energy below 8z and non-rec-
tangular conformal class is non-degenerated.

Keywords Constrained Willmore tori - Spectral curve - Quaternionic Pliicker estimate -
Isothermic surface

1 Introduction

The Willmore functional of an immersions f : M — S3 from a oriented surface M into the
3-sphere is given by

W) = /(H2 + 1)dA
M

where H is the mean curvature and dA is the induced area form of f. Geometrically speak-
ing, YW measures the roundness of a surface, physically the degree of bending, and in biol-
ogy, WV appears as a special instance of the Helfrich energy for cell membranes. The Will-
more functional is invariant under Mobius transformations (conformal transformations of
the 3-sphere with its standard conformal structure). Critical points of the Willmore func-
tional are Willmore surfaces. Examples are given by minimal surfaces in the Riemannian
subgeometries of constant curvature of the conformal 3-sphere.
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If M is equipped with a Riemann surface structure, it is natural to consider only confor-
mal immersions f : M — S, i.e. the complex structure is given by rotating tangent vectors
by % in the 3-space. Critical points of the Willmore functional restricted to a given confor-
mal class are called constrained Willmore surfaces. The conformal constraint augments the
Euler-Lagrange equation by a holomorphic quadratic differential w € HO(KZ@) paired with
the trace-free second fundamental form A of the immersion

AH+2HH*+1-K)=<w,A >,

see [7, 27]. The first examples of these constrained Willmore tori are given by those of
constant mean curvature (CMC) in a 3-dimensional space form.

It is well known (and obvious by the holomorphicity of the Hopf differential) that CMC
(constant mean curvature) surfaces admit conformal curvature line parametrizations away
from their umbilical points. Surfaces with this property are called isothermic. Isothermic
surfaces play an important role in conformal surface geometry, see [10, 11], since the
notion is independent of the specific metric in the conformal class of the ambient manifold.
For a compact surface M, there is a natural map from the space of immersions into the
3-space to the Teichmiiller space

7 f € Imm(M, S*) = [f*g,pumal € Teich(M),

where g,,,,q i the round metric on 3, and [.] denotes the conformal class in the Teichmiil-
ler space. The map # is a submersion except at isothermic immersions, see [7]. Hence, the
Lagrange multiplier for isothermic constrained Willmore surfaces—the holomorphic quad-
ratic differential—is no longer uniquely determined by the immersion.

In this paper, we restrict to compact Riemann surfaces of genus 1. We classify isother-
mic constrained Willmore tori with Willmore energy below 8z. Our main theorem is the
following one (see also Fig. 1).

Theorem 1 Isothermic constrained Willmore tori in the conformal 3-sphere with Will-
more energy below 8z are CMC surfaces in the round 3-sphere.

1.1 Strategy of proof

Richter [26] shows that isothermic constrained Willmore tori in the conformal 3-sphere are
locally of constant mean curvature in a 3-dimensional space form. The solution of the Law-
son and Pinkall-Sterling conjectures by Brendle [8] and Andrews-Li [2] further gives that
embedded CMC tori in the 3-sphere are rotationally symmetric and thus consist only of the
families of k-lobed Delaunay tori [19]. Moreover, the Willmore energy along every embed-
ded family is monotonically increasing in the conformal class b. Thus, since for k > 3 the
k-lobes bifurcates from the homogenous tori with Willmore energy above 8z, the 2-lobed
family is the CMC-family with minimal Willmore energy in their respective conformal
classes. The aim is to exclude the existence of constrained Willmore surfaces of constant
mean curvature in R or hyperbolic 3-space H° that can be compactified to a torus in S°
with Willmore energy below 8z. By Li and Yau [21] these surfaces must be embedded.
The Alexandrov maximum principle [1] shows that there are no closed CMC tori
with Willmore energy below 8z in R? or 7. The only non-closed CMC surfaces in
R3 that can be compactified to conformal embeddings in S are minimal surfaces with
planar ends (H # 0 is excluded by local analysis [20]), which have quantized energy
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Fig.1 The vertical stalk repre-

sents the family of homogenous

tori, starting with the Clifford O
torus at the bottom. Along this
stalk are bifurcation points at
which the embedded Delaunay
tori appear along the horizontal
lines. The rectangles indicate
the conformal types. Images by Q
Nicholas Schmitt
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4rzk, with k > 2 being the number of ends. Thus, those surfaces have Willmore energy
> 87. Similar arguments work for constant mean curvature surfaces in H°> with mean
curvature H = 1 giving quantized Willmore energy W = 4zk, where k € N denotes the
number of ends see [6] and one-punctured CMC 1 torus in H> does not exist by [23].

To prove Theorem 1, it is thus sufficient to show that isothermic constrained Will-
more tori in S2, whose intersection with H> C S$? is of constant mean curvature, can-
not have Willmore energy below 8. Those surfaces intersect the infinity boundary of
H® ¢ $°—a round 2-sphere—with an angle « satisfying Cos(a) = H. In particular, the
constant mean curvature must satisfy [H| < 1 or the surface is entirely contained in H°,
and therefore cannot be embedded by maximum principle. It hence remains to show
that CMC surfaces in 4> with mean curvature |H| < 1 and Willmore energy below 8z
cannot be embedded, see Theorem 3.

We will call isothermic constrained Willmore tori into $° which are CMC in H°
with |H| < 1 on the intersection with the two hyperbolic balls Babich—Bobenko tori
in the following. The first examples have been constructed by Babich and Bobenko
[3] in the case of H = 0. The main idea of the proof is now to use the quaternionic
Pliicker estimate [13], which links lower bounds of the Willmore energy to the dimen-
sion of holomorphic sections of a certain quaternionic holomorphic vector bundle.
This dimension is then related to the (necessarily odd) genus g of the spectral curve for
Babich—-Bobenko tori.

The paper is organized as follows: In Sect. 2, we study the spectral curve of
Babich-Bobenko tori in detail. In Sect. 3, we use the special structure of the spectral
curve to apply the Pliicker estimate which yields a proof of Theorem 3.
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2 The constrained Willmore spectral curves of Babich-Bobenko tori

We consider two different approaches to the spectral curve theory of Babich-Bobenko tori.
The aim of this section is to show that these two approaches towards the spectral curve
are in fact equivalent. The lightcone model one is used to show that the spectral curve
of a Babich-Bobenko torus—the Riemann surface parametrizing the eigenlines of d*—is
hyper-elliptic, while the Pliicker estimate uses the multiplier spectral curve, which by [4]
corresponds to the spectral curve of V¥ from the quaternionic approach. Subtleties arise
from the non-uniqueness of the Lagrange multipliers.

2.1 Quaternionic geometry

The spectral curve theory for conformal immersions f from a 2-torus 72 into the conformal
4-sphere has been developed in [9], where S* is considered as the quaternionic projective
space HP'. To every conformal immersion f, the quaternionic line bundle

L=f"TcT?xH?

given by the pull-back of the tautological bundle 7 of HP' is associated. Another quater-
nionic line bundle associated to fis V/L, where V = T? x H?. On V/L there exists a natural
quaternionic holomorphic structure D (see [4, 9] for a detailed definition and discussion)
by demanding the projections of the constant sections (0, 1) and (1, 0) of V to be holomor-
phic. The immersion f'is then recovered (up to conformal transformations) by

[0, 1] = —[1, O]f.

The (multiplier) spectral curve X of a conformally immersed torus fis the normalization of
the Riemann surface parametrizing all holomorphic sections of V/L with (complex) mono-
dromy, i.e. every point of the spectral curve corresponds to a holomorphic section with
monodromy [5]. Therefore, we can define maps from X to C—so-called monodromy maps
v—by assigning to every point in X the monodromy of the underlying holomorphic section
along generators , of the fundamental group z;(72).

Bohle [4] gives an alternative approach to the spectral curve for constrained Willmore
tori. For constrained Willmore surfaces f : M — S® C S%, Bohle defined the following
C,-family of flat SL(4, C)-connections

VA =d+ (u— DAgire"® + (u=' = DAgirc®". 1)
Here, d is the trivial connection on the trivial H?-bundle considered as a C*-bundle,
Acirc =A+ %1

where A is the Hopf field of the conformal immersion and ¢ is the Lagrange multiplier
of the constrained Willmore Euler-Lagrange equation (which is not unique for isothermic
surfaces). He showed that the flatness of an associated C*-family V# of SL(4, C)-connec-
tions defined on the trivial bundle V, considered as a C*-bundle, is equivalent to f being
constrained Willmore. The (holonomy) spectral curve is then given by the Riemann surface
parametrizing the eigenlines of the holonomy of V#. Bohle [4] showed that the (holonomy)
spectral curve is always of finite genus and that both approaches to the spectral curve coin-
cide. To be more precise, Bohle showed that V#-parallel sections with monodromy are the
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unique prolongations of the holomorphic sections with monodromy of the quaternionic
holomorphic line bundle (V/L, D) to V. The genus g of the associated spectral curve is
called the spectral genus of the immersion f.

Remark 1 In the case of f mapping into the 3-sphere S C §*, the spectral curve ¥ admits
an additional involution o, see [16, Lemma 1]. Another involution p on ¢ arises from the
quaternionic construction, i.e. by an appropriate multiplication by j. If the quotient £ /¢ is
biholomorphic to CP!, there are two cases to distinguish depending on whether the real
involution pCirco has fix points or not. In the first case the surface is of constant mean cur-
vature in R3, $3 or H* (with mean curvature |H| > 1). If pCirco has no fixed points, then the
corresponding immersion is of Babich-Bobenko type. We want to show the converse, i.e.
that £/cCongCP! for Babich-Bobenko tori.

2.2 The light cone model

CMC surfaces in 3-dimensional space forms can also be described by associated families of
flat SL(2, C)-connections V*, A € C,, on a rank 2 bundle V = M [3, 18]. In the case of tori,
these families of flat connections can be described by (algebraic—geometric) spectral data con-
sisting of a (compact) hyper-elliptic curve £ (the spectral curve), two meromorphic differen-
tials and a holomorphic line bundle. In the case of Babich—-Bobenko tori [3] 3 is the spectral
curve of a finite gap solution of the Cosh—Gordon equation and admits a real involution cov-
ering A — —A~!. Therefore, £ hyper-elliptic and of odd genus. In this alternate approach the
light cone model as developed in [10, 11] is used. Its relation to quaternionic holomorphic
geometry can be found in [12, §5], details of the computations is also included in the thesis of
Quintino [24] and in [25]. We only recall the main constructions here. The Pliicker estimate
cannot be applied to this approach directly, since V* have singularities on M, corresponding to
the intersection of the surface with the infinity boundary of H3, see [17].

As in [12] we start with C* equipped with a quaternionic structure, i.e. a complex anti-
linear map

j:ct-ct
with j2 = —1 and identify C*CongH?. Moreover, we choose a determinant det € A*(C*)*
with

j* det = det
and

det(e,, e,,je;,je;) =1

for {e,,e,,e; := je,,e, :=je,} being the standard basis of C*. The quaternionic structure
induces a real structure on A>C* (also denoted by j by abuse of notation) via

VAW VAW,
and the determinant induces an inner product (., .) on A>C* by
(a, p) = det(a A §).

The 6-dimensional real subspace V is spanned by
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V) =e; Aes,

V) =€, A ey,

vy =e; Aey + ey Aey,
vy =iep Aey —ies Aey,
vy =e; ANey+ e, Aes,

Ve =ie; Aeyg —ie, Aes.

Restricted to V the inner product (., .) is of signature (5, 1).
For a general (n + 2)-dimensional real vector space V with inner product of signature
(n + 1, 1), the n-sphere can be naturally identified with projectivation L of the light cone

L={veV]|{vv)=0}

Moreover, PL is equipped with a natural conformal structure: For a lift [ of 7 : £L —» PL
the Riemannian metric g, is defined as

gi(X.Y) := (dI(X). dI(Y)). )

The space of orientation preserving conformal transformations—the Mobius group—can
be identified with

SO(n+ 1,0t :={ge S0+ 1,1) | {g(v),v) <0if {v,v) <0}.

For V being the real subspace of A2C?, a real nonzero lightlike vector of V is given by a
complex 2-plane in C* (nullity) invariant under j (reality), i.e. it gives rise to a quaternionic
line in (C%,j). This identifies the 4-sphere with the quaternionic projective line HP!, and
relates the quaternionic holomorphic geometry to the lightcone model, see [12, §4].

Constant curvature subgeometries of the Mbius geometry (PL, SO(5, 1)) are specified
by a choice v, € V' \ {0}. Such a choice provides a natural lift / of PL onto the subset

Se = {X] EPL| (x,v,) = =1}, ®)

and the induced Riemannian metric g, defined in (2) is of constant sectional curvature
—(Vos Voo - The corresponding group of orientation preserving isometries of the subgeom-
etry is then given by

SO, D, = {8 €S0G5, D" | 8(veo) = Vo ),

and is isomorphic to SO(5) if (v, v,,) < 0 and isomorphic to SO(4, 1) if (v, v, ) > 0.

To define the associated family of connections, we need the mean curvature sphere con-
gruence S for the immersion f : M — S* This is a map S from M into the space of oriented
2-spheres in S*, such that at every p € M the corresponding 2-sphere S(p), touches the immer-
sion at f{p) and has the same oriented tangent plane, and the same mean curvature. An ori-
ented 2-sphere S C PL is determined by an oriented (real) 4-dimensional vector space Vg C V
of signature (3, 1) via S = PV nPL. This space is uniquely determined by its orthogonal
complement, V, := Vsl, which is a oriented real 2-plane with positive definite inner product,
and therefore admits a unique compatible complex structure

Iy Vy=Vy, Ji=-—id

A conformal immersion f : M — PL is naturally equipped with the real rank 4 subbundle
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V¢ — M
of the trivial rank 6 bundle V, with complexification locally given by
VS ®C= Span{f’ﬁ,fz,fz,z}

for some local lift f :UCM — L (and where f, = Z—Z, etc.), see [10-12]. The bundle Vg

has induced signature (3, 1) and a natural orientation. Therefore, V gives rise to a sphere
congruence, i.e. to a smooth map into the space of oriented 2-spheres in S*. It can be com-
puted (see [10, 11]) that the sphere congruence V is the mean curvature sphere congru-
ence, i.e. (Vy), is the unique oriented 2-sphere in S* which touches (with orientation) the
surface at f{p) to second order. Analogous to the classical case of surface geometry in
Euclidean 3-space R3, we consider the induced splitting of the trivial connection d with
respect to

V=V®Vy,
where V), := V¢ given by
d=D+N

into diagonal part D and off-diagonal part . While D is a connection, N is tensorial.
Another related vector bundle Z is the bundle of skew-symmetric maps of (V,(.,.))
which map Rf to span{f,fz,fz} and vice versa vanishing on other components.
With these notations, we list a few further important properties of the mean curvature
sphere congruence:

e (see [10]) fis isothermic if and only if there exists # € 2'(M, Z) with
dn=d"n+INAnl=0;

e (see [11]) the Willmore energy of fis given by
W) = —1/ tr(x NAN)
4 Jm

where * dz = idz, * d7 = —idz;
e (see[7, 10, 11]) a surface is Willmore if and only if

dP « N'=0,

and constrained Willmore if and only if there exists a ¢ € 2'(M, Z) satisfying dq = 0
and

dP « N'=2[gA = NT;

q is called the Lagrange multiplier of f;
e (see [10] or [12, §3.3]) a surface f has parallel mean curvature vector H in the con-
stant sectional curvature subgeometry S of PL defined by v, in (3) if and only if

Dyt =0,
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where vjo is the projection to Vy, = V; in particular, f is minimal in S, if and only if
vjo =0;
e a surface with parallel mean curvature vector H in S, is constrained Willmore with
Lagrange multiplier ¢ which is determined by

10, L . 0/ L
q’vm.=—./\f1 )",

where vi = (v2)™ + (v1) is with respect to the decomposition of the normal bundle
Vy®C =V V,,see[24,§7.2.2].
In particular, the Lagrange multiplier g of a constrained Willmore surface fis unique if and
only if fis non-isothermic, as for two Lagrange multipliers ¢,, g, the 1-form

n=xq,—*q, € Q'M,2Z)

solves dn = 0.

The following theorem reduces the constrained Willmore property of a given immersion
fto the flatness of an associated family of flat connections in the language of the light cone
model.

Proposition 1 [10, 11] The surface f : M — PL is constrained Willmore with Lagrange
multiplier g € Q' (M, Z) if and only if
d: =D+ 2N 4 INOD 1+ 72— g0 + (02 = 1))

is flat for all . € C*, where (1, 0) and (0, 1) are the complex linear and complex anti-linear
parts of a 1-form.

2.3 Compatibility of the quaternionic and the lightcone theory

The two approaches, the quaternionic and the lightcone one, towards the associated family
of flat connections are in fact equivalent, as both associated families are gauge equivalent,
when choosing suitable parameters. In order to provide a link between these families, we
need to relate the two different ways to obtain the mean curvature sphere congruence S.

Oriented 2-spheres in quaternionic geometry are given by complex structures S of
V = M x H?. To be more precise, a 2-sphere is a map

SeSL4,C) satisfying 8% = —id.

On the other hand, an oriented 2-sphere S C PL is determined by an oriented 4-dimen-
sional vector space Vg C V of signature (3, 1) via S = PVg N PL. Moreover, Vy 1= VSl isa
oriented real 2-plane with positive definite inner product, and therefore admits a compat-
ible complex structure

Iy Vy = Vy, Jy=-id
We therefore obtain a decomposition

204 —
AC'=VRC=V;®COV; ®Vj

such that
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Vi ={vEVy®C|Jyv = =xiv}
are complex null lines that are complex conjugated to each other, i.e.
vy =Vy.
In particular, V3 gives rise to complex planes W* in C* satisfying
Ct=wrew.
Hence, there exists a unique S € SL(4, C) with
§* =—id, Sy.==i and §j =8, @)

which is a 2-sphere in HP! in the quaternionic sense.

Conversely, every quaternionic 2-sphere S determines its +i eigenspaces Wg—’ which are
interchanged via j. They define complex null-lines V; satisfying jVi = V7, and therefore
define a real oriented 2-plane of signature (2, 0). Its orthogonal complement in V is a real
oriented vector space V of signature (3, 1), hence a 2-sphere in PL.

In the quaternionic description of f : M — S* ¢ HP!, we consider the quaternionic line
bundle L = f*7, the pull-back of the tautological bundle 7 of HP!, which can be viewed
as a M-family of j-invariant complex 2-planes in C* determined by f : M — PL. Its mean
curvature sphere congruence

S, : M — {§€SL@4,C) | § satisfies (4)}
is determined by the above identifications. We consider the bundle decomposition
C'=wrew"
into the +i-eigenbundles of S’f, and the decomposition of the trivial connection d as
d = Dy + N5

into Sf commuting and anti-commuting parts, i.e. Dgsf =0 and Ngsf = —Sf./\fg. Again
Dy is a connection and A is tensorial. Moreover, Dy induces D on A2C*, and N acts
as N € Q'(M, 80(A>C*, det)). Note that reality of N is equivalent to anti-commutation
with Sy, For details, see [12, § 4.5]. The Lagrange multiplier ¢ € QY(M,Z) is then given by
n € Q1(M, 81(4, C)) satisfying

image(n) C L C ker(n) dPsn =0
and the Euler-Lagrange equation of a CW surface with Lagrange multiplier # is
dPs % Ny = 2[nA * N3l

Consequently, a surface is constrained Willmore in the 4-sphere if and only if the
connections

dzj :=Ds+ 7\—1./\/;0 + }\N(S),l + 02— D0 4 02 = D! s

are flat for all A € C*. Moreover, the induced family of flat connections on A2C*? satisfies
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2 _ g
A d”j—dq (6)

for n corresponding to g under the above identifications.
The following Proposition is proven in [24, § 9], and is used below to determine the
structure of the spectral curves of the Babich—-Bobenko tori:

Proposition 2 The family of SL(4, C)-connections V* as in (1) is gauge equivalent to d;‘ S
for u = A2 ’

2.4 The structure of the spectral curve of a Babich-Bobenko torus

The aim of this section is to show the holonomy spectral curve of a Babich—Bobenko torus
defined by the rank 4 family V¥ has the same properties as the Cosh—Gordon spectral curve
by taking the Lagrange multiplier # corresponding to ¢, as defined in [24, page 130]. Note
that we consider the immersions maps into S* C S*CongHP' (to make the relation to qua-
ternionic holomorphic surface geometry transparent). We first study the structure of the
spectral curve for the case of H = 0, which is equivalent to the vanishing of the Lagrange
multiplier = ¢ = 0. The case 0 < |H| < 1 is morally the same, though the details are
slightly different, see Sect. 2.5. The application of the Pliicker estimate in Sect. 3 works
totally analogous in both cases.

Proposition 3 For a Babich—-Bobenko torus f : M — S° with H = 0, the associated
constrained Willmore family of flat connections V* is gauge equivalent to a C ~family of flat
SL(4, C)-connections V* of the form

w=d+<“’(” 0 )
0 ol

with u = A2 through a \-dependent family of complex gauge transformations, where

o) =2 'o_| + o, + o, € Q' (M, 31(2,0)) @)

with* @, = ti®
Moreover,

+1*

d+w(-2) and d+ o))

are gauge equivalent for all h € C*, and the monodromies of d + w(—M\) along non-trivial
elements of the first fundamental group have neither unimodular nor real eigenvalues for
generic A € S'.

Proof Let f : M — S> Cc PL be a Babich-Bobenko torus with mean curvature H = 0.
Then, the family of connections

A _ gk
Vi =dj¢

as defined in (5) with Lagrange multiplier # = O is flat for all A € C,..
Because the Babich-Bobenko surface is minimal in the intersection with the hyperbolic
space S, the parallel vector v, is space-like and is contained in the mean curvature sphere
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bundle V for all p € M. In particular, we have M(v_) = 0. Hence, by Proposition 1 and
(6) together with g = 0 v__ is parallel with respect to A2V* for all A € C*. Recall that the
3-sphere S° C $*is determined by a space-like vector v via

$* = {[x] e PL| (x,v) = 0}.

Thus, v is contained in V,, for all p € M and hence v is also parallel with respect to A2V*
for all A € C*. Note also that v and v, are perpendicular. There exists a conformal trans-
formation of S* given by a real element of SO(A%C*, det) which transforms the (real and
space-like) 2-vectors v and v, (which are perpendicular to each other as they define per-

pendicular 3-spheres in the 4-sphere) as follows.
vieVi=e AeytesAey, vV i=leg ANe, —ies Aey.

[Se] [se]

Hence, we can assume without loss of generality that v = ¥ and v, = ¥, are parallel for all
A € C*.For a connection d + A with A € Q'(M, 81(4, C)), the 2-vectors v, w € I'(M, A>C*)
are parallel if and only if it e; A e, and e; A e, are parallel. This is equivalent to A being of

the form
_ (A O
A= (% )

for A;,A, € 21(M, 81(2, C)) as can be seen as follows: for A = (a;;) we get
Aley Aey) = (Aey) Aey + ey A(Aey) = (a3 163 +ay1e4) Aey + e Aazpe; + ayney)
which vanishes if and only if
a3 = a3y = a4y = a4y =0,

and similarly for A(e; A e,). Moreover, if A commutes with j or equivalently A*(d+A)is
real, then A, = A, :in fact,

Jd+A)ey) =jA(e)) = jlay e, +ay e;) =ayjje, +ay, je, = ay €3 +a; ey
and
(d+A)(e)) = a3 35 + ayz¢3,

and similarly for e,.
Hence, with g=5 = 0 we see that V* has the form

(0 2
0 o)

where w()) is as stated in (7). By [24, Lemma 9.14] and [4, Equation (2.11)], Vs gauge
equivalent to V* as defined in (1) (with g = A?).

If the monodromies of d + w(—\) along non-trivial elements y; of z,(M) would have
either unimodular or real eigenvalues for generic A € S', then [4, Proposition 3.2] shows
that the eigenvalues of V¥ must be all equal to 1 for all 4 € C, and therefore this case can
be excluded by [4, Theorem 5.1].

It remains to prove that d + w(—A) and d + w(A~!) are gauge equivalent for all A € C*.
We make use of the fact that V? and V" are gauge equivalent (as both are gauge equivalent
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to V#=*), and want to determine the gauge as explicit as possible. Consider first the case
that at some point p € M

w={(e;Ae3—e, ANey)
is (twice) the oriented normal of fat p. Then, S; is the 2-plane determined by
wHive, =(e; —ey) Ales —ey)
and S; is the 2-plane determined by
w—ivy = (e; +e,) A(e, +e3),
ie.
S, = span(e; — ey, 3 — €)
and
S; = span(e; + ¢4, e, + e3).
By [12,§3.2 ] or [24, Lemma 9.14],
V*=VtH,
where H : C* — C*is determined by
H(s,) = +is, for s, €8*.

Using the standard basis of C*, H, is given by

00 0 —i
0 0 —-i O
h, = 0 -i 0 O
-i 0 0 O

Now, let (twice) the normal of fat the point g € M be arbitrary, i.e. N, is in the real part of
A?C* perpendicular to ¥ and 7, and of length 2. There is a conformal transformation ¥, of
S* which fixes the 3-sphere and the sphere at infinity, and maps N, to w. It must be (consid-
ered as a SL(4, C)-matrix commuting with j) of the form

P, 0
— q _
“= (i)

where P, is a 2 by 2 matrix of unimodular determinant. Denote

K= (0 —ir 0).

—1 -1 p
H - P, _0 0K\ (P, 0 _( 0 P KP, '
4 0 P;‘ K0 0P, P;‘KPq 0

Because the space of SL(4, C) matrices commuting with j and fixing

Then,
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P,V and e Ae3 —eyAey
is given by
aa ab 0 0
abaa 0 0
0 0 a'aa'b|
0 0 a'bala

where where a,b € C, a € S! with

P, is unique up to

Note that

As P can be locally chosen to be smooth on M we find a well-defined global gauge
transformation

¢ : M — GL(2,C)

with unimodular determinant which is locally given by

_ p—1
g, =P 'KP,

and satisfies

d + o\).g =d+ o).

Moreover, due to the quadratic factor a2, one can deduce that g can actually be chosen to be
SL(2, C)-valued. O

As an immediate corollary, the spectral curve X has the same properties as a
Cosh—Gordon spectral curve.

Corollary 1 The spectral curve X of a Babich-Bobenko torus (with H = 0) considered as
a Willmore torus, i.e. as the Riemann surface parametrizing the eigenlines of V¥, is given
by a double covering of A : £ — CP' with \* = yu satisfying:

® LAis branched over A =0 and A = o
® there exist two holomorphic functions—the monodromy maps—

Vi,V 2 2\ {0,00} — C*

such that the hyper-elliptic involution o satisfies
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o'y, = l fori=1,2

Vi
e X has an anti-holomorphic involution p covering A — —\~! with
pv,=v, fori=1,2

e u: X —> CPlis afourfold covering, i.e. for generic u € C, the connection V* has 4
distinct eigenvalues along the generators y, k = 1,2 of m(T?) given by the four ele-
ments of the set

@1 cex:u=mey).

Proof By the previous proposition, the spectral curve X is given by the holonomy spectral
curve of the family of flat connections V* = d + (). Since V* is SL(2, C), the hyper-ellip-
tic involution o maps an eigenvalue of the monodromy to its inverse. The other involution
p is induced by the quaternionic multiplication j, which covers A — —A~! and (complex)
conjugates the eigenvalues of the monodromy. Moreover, the parameter covering y = A2 is
unbranched over C*. Thus, the quotient £ /o is biholomorphic to CP!. a

2.5 Non-minimal Babich-Bobenko tori

We show a modified version of Corollary 1 for Babich—Bobenko surfaces
f:M—S

with mean curvature H # 0 (and |[H| < 1) in the hyperbolic space H> C S°. Again we use
the notations as introduced in Sect. 2.3 (or [24] for more details) and consider the C*-asso-
ciated family of flat connections

A
dy g

on the trivial C*-bundle for the Lagrange multiplier # given by
n=H Neo»

where 7, is defined in [24, Theorem 8.16]. For further references, see [11, 12, 25]. The
connections d’?  induce the family of flat connections

& =D+ 1N L NOD £ 072 = DO+ (2 = DD,

on the A2C* with Lagrange multiplier 5. By [24, Lemma 9.14] and [4, Equation (2.11)]
the connections d;,s and the constrained Willmore associated family of flat connections V#
defined in (1) are gauge equivalent for g = A%

The surface fis an isothermic constrained Willmore torus by assumption and admits
a conserved quantity [24, Proposition 8.20]. Since we are considering surfaces in
S3 C 8%, there is for every A € C* a complex 2-dimensional subspace of A>2C* on which
df; acts trivially, see (6). Applying a suitable SL(4, C)-transformation (depending on A
and p € M), we can assume without loss of generality that the invariant subspace is
spanned by
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v=e Ae,y, ez Ae,.

A short computation as in Sect. 2.4 shows that dz s is of the form

AQ) 0
d+< 0 B(k)) ®)

for A(A), BO\) € 2'(M, 81(2,C)) (with respect to the chosen A-dependent frame). Recall
that the reality condition implies that d;‘ reduces to a SO(3, 1)-connection for every A € S'.
This implies

AQ) =BQ) forresS'.

Remark 2 For CMC surfaces in S, the connection d; reduces to a SO(4)-connection with
reality condition —A” = A and -B” = B.

Proposition 4 The spectral curve of a Babich-Bobenko torus f : T> — S? (corre-
sponding to the Lagrange multiplier n defined in [24, Theorem 8.16]) is a hyper-elliptic
surface

A Y — CP!

with an anti-holomorphic involution p covering \ — —A~'. Moreover, T is endowed with
two meromorphic differentials 0,, 0, of the second kind satisfying

G*Gk = _gk’ p*gk = ék’

where o is the hyper-elliptic involution and two holomorphic  functions
Vi, vy ¢ Z\ A0, 00} with dlog v, = 6,.

The functions v; parametrizes the eigenvalues of V* along the generator y,, of the first
fundamental group of T*. The (generically) four eigenvalues of V* are given by

i@I1k=12 and £€X:pu=M&r).

Proof Let £ be the constrained Willmore spectral curve given as the parametrization of
the (generically 4 distinct) eigenvalues of V¥. Since V*# is gauge equivalent to (8), it is the
direct sum of two flat SL(2, C)-connections

d+AM) andd+ B(A)

for A2 = u. Let h be an eigenvalue of the monodromy of V¥. We assume without loss of
generality that it is an eigenvalue of d + A(M). Since d + A()) is a SL(2, C)-connection, 4~!
is also an eigenvalue of d + A(A). Thus we can define an involution

6:X—3% hr—h!

(note that ¢ holomorphically extends to 4 = 0, oo and therefore is well defined on X). Since
the decomposition into blocks is valid for all 4 € C*, the quotient £/ is CP'. The remain-
ing properties can be easily proved using [4, Proposition 3.1] together with the reality con-
dition A = B. O
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Remark 3 Note that for H # 0, the connections d)‘ and the connections given by (8) are
gauge equivalent by a A-dependent gauge transformatlon Thus, the map A : £ — X/c is
not necessarily branched over 0 and oo as in the H = 0 case.

3 Pliicker estimates

We show that all isothermic constrained Willmore tori of Babich—-Bobenko type have Will-
more energy above 8z. The following Pliicker estimate is relating the dimension of the
holomorphic sections of V/L (without monodromy) to the Willmore energy of the corre-
sponding immersion.

Theorem 2 [13, Theorem 4.12] Let f : T?> — S® be a conformal immersion and
(VIL, D) be the quaternionic holomorphic line bundle associated to it. Let k € N be the
dimension of H*(T?,V /L) (with trivial monodromy). Then, a lower bound for the Willmore

energy of fis given by

7k? k even

W = { #(k> — 1) k odd.

Remark 4 For every immersion into S, the sections [1, 0] and [0, 1] are holomorphic sec-
tions without monodromy. Thus, H°(V/L) is at least 2-dimensional. The most relevant
cases in the following are: if there exists a third quaternionic linearly independent holo-
morphic section, then the Willmore energy of fis at least 8z, if there exists a fourth quater-
nionic linearly independent holomorphic section, the lower bound is 16x.

Remark 5 We have shown in Sects. 2.4 and 2.5 that the associated family of flat connec-
tions V¥ of a Babich-Bobenko torus has four distinct eigenvalues for generic u € C,. Thus,
by Bohle [4] L =KerAirc is a non-constant quaternionic line subbundle of V.

Lemma 1 Let f : T?> — S° be a Babich-Bobenko torus with Willmore energy below
87. Then every branch point of the spectral curve ) : £ —> %/cCongCP' except those
over A =0 and \ = oo corresponds to a non-constant holomorphic section of VIL with Z,
-monodromy.

Proof The spectral curve X is the surface parametrizing the eigenlines of V#—the con-
strained Willmore associated family of flat connections. It admits two involutions: ¢ and p.
While the involution p corresponds to the quaternionic multiplication by j and is fixpoint
free, the involution ¢ maps a holomorphic section y with monodromy # to a holomorphic
section with monodromy A~!. Therefore, the branch points of T correspond to those V#-par-
allel sections y of V with Z,-monodromy, i.e. prolongations of holomorphic sections of
VIL with Z,-monodromy. It is thus crucial to show that these y are non-constant sections
of V, which clearly holds whenever the monodromy of the section y is non-trivial. Thus,
we restrict to the case where y has trivial monodromy.

Let A, be a branch point of X and y, be the V#o-parallel section of V without monodromy
associated to A, where y, = k If p, # 1then y must be non-constant, since y being con-
stant would imply that y € I (KerAfzrc) and then L =KerAirc would be constant in con-
tradiction to [4, Theorem 5.3].
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It remains to show that also for the case y, = }% = | there exists a non-constant sec-
tion y, given by a prolongation of a holomorphic section of V/L, with trivial monodromy.
Let V# be the CW associated family, and p, = 1 be a branch point of the spectral curve
2. Because of the p-symmetry (interchanging the two points over y, = 1) X is not totally
branched at y, i.e. we can use a local coordinate £ on ¥ with &2 = y — 1. Assume that
the Willmore energy is below 8z. By [5, Theorem 4.3 (iii)], there is a smooth family of
V#©_parallel sections ¢ parametrized on an open subset of T around & = 0 depending
smoothly on &, i.e. we have

Vﬂ(é)wi =0.

Differentiating this equation with respect to & (denoted by ()’) at & = 0 (and therefore u = 1)
gives

d du™!
0= (V¥OWYy +dy' = <ﬂ Acire™ + dw” &) ACirc(M)y/ +dy’ =dy’,
dé |e=o dé  je=o
where y = w*="is constant in z € T*(as V*=! = d). Differentiating once more and evaluat-

ing at & = 0 thus gives
0 = (VFOYhy 4 2(VFOYy! + dy" = (=2Acirc'® + 24circ™ Yy + dy”.

Since (—ZACircl*O + ZACirco’l)y/ is contained in L = f*7 = Im (Acirc), dy" is contained
in L as well showing that w" is the prolongation of a (locally) holomorphic section of V/L.
Since the monodromy takes the value 1 with at least second order (because the monodromy
is trivial at the branch point g = 1), " has also trivial monodromy. If w" would be con-
stant then

0 = (=2Acirc'® + 2Acirc" Yy,
which yields that KerAirc is constant giving a contradiction. a

Lemma 2 Two holomorphic sections of VIL with non-trivial Z,-monodromy correspond-
ing to different branch points of . : £ — X /o = CP! not lying over 0 or oo, which are not
interchanged by the involution p, are quaternionic linear independent.

Proof Let {, and @, be two holomorphic sections of V/L with Z,-monodromy. If these sec-
tions have different Z,-monodromies, then they are clearly quaternionic linear independent.
Thus, let the y; have the same non-trivial Z,-monodromy in the following.

Due to [4, Section 2.5] and the fact that their monodromy is non-trivial on T2, it is
enough to prove that their prolongations y,; and y,, which are parallel sections with respect
to V#1 and V#2 (corresponding to the branch points A, and A, of £ — X /0), are linear inde-
pendent. If u; = p,, it follows from Proposition 3 that y; and y, are (quaternionic) linear
independent since &; # &, and &, # p(&,).

If 4, # u,, we obtain that §; and ¥, are complex linear independent. Assume that they
are not independent as quaternionic sections, then we would have w.l.0.g.

W = ay, + byyj

for some a, b € C. Moreover, from
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Vi, =0; VR, =0 VA =0
we obtain
0= (uy" = u3HAcirc"aip,
+ (uy" = fp)Acirc"Va,j
+ (= ﬂz)AcirCO'lall?z
+ (p; — ﬁz_l)ACircl’Oatilzj.

©

By type decomposition (see [13, Section 2.1]), we obtain Acircy, = 0. Since y, is V#2-par-
allel this implies y, being constant, which is a contradiction by [4, Theorem 5.3] O

Lemma3 Let f : T> — S3 be a constrained Willmore torus of Babich—Bobenko type with
spectral genus g > 3. Then, either one of the branch points of the spectral curve over the
unit disc D C C corresponds to the trivial monodromy or at least two of the branch points
of the spectral curve on the punctured unit disc D, correspond to the same (non-trivial) Z,
-monodromy.

Proof For g > 3, we have at least 5 branch points over the punctured unit disc
D:={LeC|O0<|\ <1}

The claim follows from the fact that there exist only 3 different non-trivial spin structures
of the torus.

It remains to show the lemma in the case of g = 3, where we have 4 branch points over
the unit disc (that are not interchanged by p). Assume that none of the 4 branch points on
the unit disc corresponds to the trivial spin structure and moreover, for u # 0 the other 3
branch points correspond to different spin structures. Then, the spin structure at 4 = 0 must
coincide with the one at P, for a k € {1,2,3}, since there exist only 3 different non-trivial
spin structures of a torus. Without loss of generality we can assume k = 1. We want to
show that the spin structures corresponding to P, and P; must then coincide.

In this case, the closed non-trivial curve, the green curve in Fig. 2, through the branch
points P, and P denoted by y,;, is homologous to the difference of the closed (red) curve
v through the Sym-points S, and S, and the closed (blue) curve y,, connecting 0 and P,.

Fig.2 A spectral curve of genus 3, with branch points and certain cycles
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Let 8; = dlogv; (i = 1,2) be the logarithmic differentials of the monodromy maps v; and
consider integrals of §; along these curves. Using the hyper-elliptic symmetry, we want to

show that
P3
2/ 9,:/ 0, € 4rniZ.
2 723

Since 0 and P, correspond to the same spin structure by assumption, we first show that

/ 0, € 4riZ
Y01

for k = 1,2. As 6, has trivial residue, we can interpret the above integral as the integral of
0, along any curve homotopic to y,; which does not pass through 0 € X.

In order to analyse the integral, we apply a renormalization: For k = 1,2, there exists
a closed 1-form 7, on X\ {0} with support in a small neighbourhood of 0 which satisfies
o*n, = —n, and such that

9k + Ny
extends smoothly through 0, compare with the limiting analysis of [18, Proposition 3.10].

Note that fy o = 0. Using an analogous computation as in [18, Proposition 3.10] again,

we can associate to 0 € X renormalized eigenvalues ¥, and ¥, which take values in {+1} and
encode the spin structure of the surface. The sign is encoded in the parity of the constant
part of the expansion in [18, Proposition 3.10]. Then, we obtain

/ 9k=/ 0k+’7k=2/ 0, + 1, € 4niZ,
Yo1 Yo1 o1

where ygl is given by a part of y,; which goes from O to P, and the last equality follows
from the fact that the values v,(0) and v (P,) coincide as 0 and P, correspond to the same
spin structure.

Thus it remains to prove that the integral of 6; along the red curve y satisfies

/ 0, € 4riZ.
Ys

This follows from the p-symmetry of the spectral data: the integral of 8, along the red curve
75 is twice the integral along the curve 7 which is defined to be the part of y¢ from the point
S, lying over the Sym point y, to the point S, lying over — ﬁl‘l, ie.

/9k=/9k+/ 9k=/9k—/0_k=2/9k,
7s 7 oCircp(¥) 7 7 7

where the last equality uses the fact that the integral takes imaginary values. The well-
definedness of f then gives /y 0, € 2r7iZ proving the claim. O

Theorem 3 The Willmore energy of a constrained Willmore torus f : T> — S° of
Babich—Bobenko type is at least 8.
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Proof Since the spectral curve X admits an involution p covering A — —A~, it must be of
odd genus g, or A is unbranched. For g € {0, 1} the surface f is equivariant, see [15]. For
g = 0 the surface must be homogenous. This case cannot appear, since it would be a sur-
face entirely contained in hyperbolic 3-space. For g = 1, the surface is rotational symmetric
and obtained by rotating a closed wavelike elastic curve in the hyperbolic plane 7 around
the infinity boundary of . The only periodic solution in this class is the family of elastic
figure-8 curves in 2. These surfaces are non-embedded, see for example [14] or [28], and
therefore they have Willmore energy above 8z by [21].

Let g > 3. By Lemma 1, we can associate to every branch point of X a holomorphic sec-
tion y with Z,-monodromy of V/L. There exist exactly 4 possible Z,-monodromies for y
arising from the 4 different spin structures of 72. To be more concrete, the two monodromy
maps v, of y satisfies:

i), v,(w)) € {(1, D, (1, =1, (=1, D, (=1, =D}.

Every y with +1 monodromy gives rise to a proper holomorphic section of V/L considered
as a bundle over a suitable double cover 72 of 72. Thus the theorem follows from the previ-
ous Lemma by applying the Pliicker estimate (Theorem 2). If the trivial monodromy arises
over A = 0, the immersion f has trivial spin structure and by [22] the surface cannot be
embedded and hence its Willmore energy is at least 8. a
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