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Abstract. For every b > 1 fixed, we explicitly construct 1-dimensional families of
embedded constrained Willmore tori parametrized by their conformal class (a, b) with
a ∼b 0+ deforming the homogenous torus f b of conformal class (0, b). The variational
vector field at f b is hereby given by a non-trivial zero direction of a penalized Willmore
stability operator which we show to coincide with a double point of the corresponding
spectral curve. Further, we characterize for b ∼ 1, b 6= 1 and a ∼b 0+ the family obtained
by opening the “smallest” double point on the spectral curve which is heuristically the
direction with the smallest increase of Willmore energy at f b. Indeed we show in [HelNdi]
that these candidates minimize the Willmore energy in their respective conformal class
for b ∼ 1, b 6= 1 and a ∼b 0+.

1. Introduction and statement of the results

In the 1960s Willmore [Wil] proposed to study the critical values and critical points of
the bending energy

W(f) =

∫
M
H2dA,

the average value of the squared mean curvature H of an immersion f : M −→ R3

of a closed surface M. In this definition we denote by dA the induced volume form
and H := 1

2 tr(II) with II the second fundamental form of the immersion f. Willmore
showed that the absolute minimum of this functional is attained at round spheres with
Willmore energy W = 4π. He also conjectured that the minimum over surfaces of genus
1 is attained at (a suitable stereographic projection of) the Clifford torus in the 3-sphere
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with W = 2π2. It soon was noticed that the bending energy W (by then also known
as the Willmore energy) is invariant under Möbius transformations of the target space
– in fact, it is invariant under conformal changes of the metric in the target space, see
[Bla, Ch]. Thus, it makes no difference for the study of the Willmore functional which
constant curvature target space is chosen.

Bryant [Bry] characterized all Willmore spheres as Möbius transformations of genus 0
minimal surfaces in R3 with planar ends. The value of the bending energy on Willmore
spheres is thus quantized to be W = 4πk, with k ≥ 1 the number of ends. With the
exception of k = 2, 3, 5, 7 all values occur. For more general target spaces the variational
setup to study this surfaces can be found in [MonRiv]. The first examples of Willmore
surfaces not Möbius equivalent to minimal surfaces were found by Pinkall [Pin]. They
were constructed via lifting elastic curves γ with geodesic curvature κ on the 2-sphere
under the Hopf fibration to Willmore tori in the 3-sphere, where elastic curves are the
critical points for the elastic energy

E(γ) =

∫
γ
(κ2 + 1)ds

and s is the arclength parameter of the curve. Later Ferus and Pedit [FerPed] classified
all Willmore tori equivariant under a Möbius S1-action on the 3-sphere (for the definition
of S1-action see Definition 2.1).

The Euler-Lagrange equation for the Willmore functional

∆H + 2H(H2 −K) = 0,

where K denotes the Gaußian curvature of the surface f : M −→ R3 and ∆ its
Laplace-Beltrami operator, is a 4th order elliptic PDE for f since the mean curvature

vector ~H is the normal part of ∆f. Its analytic properties are prototypical for non-
linear bi-Laplace equations. Existence of a minimizer for the Willmore functional W on
the space of smooth immersions from 2-tori was shown by Simon [Sim]. Bauer and Kuw-
ert [BauKuw] generalized this result to higher genus surfaces. After a number of partial
results, e.g. [LiYau], [MonRos], [Ros], [Top], [FeLePePi], Marques and Neves [MarNev],
using Almgren-Pitts min-max theory, gave a proof of the Willmore conjecture in 3-space
in 2012. An alternate strategy was proposed in [Schm]

A more refined, and also richer, picture emerges when restricting the Willmore functional
to the subspace of smooth immersions f : M −→ R3 inducing a given conformal structure
on M. Thus, M now is a Riemann surface and we study the Willmore energy W on
the space of smooth conformal immersions f : M −→ R3 whose critical points are called
(conformally) constrained Willmore surfaces. The conformal constraint augments the
Euler-Lagrange equation by ω ∈ H0(K2

M ) paired with the trace-free second fundamental

form I̊I of the immersion

(1.1) ∆H + 2H(H2 −K) =< ω, I̊I >,
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where H0(K2
M ) denoting the space of holomorphic quadratic differentials. In the Geo-

metric Analytic literature, the space H0(K2
M ) is also referred to as STT2

(
geuc

)
the space

of symmetric, covariant, transverse and traceless 2-tensors with respect to the euclidean
metric geuc, In the case of tori, the Teichmüller space can be identified with the up-
per halfplane H2. With Π = (Π1,Π2) denoting the projection map from the space of
immersions to H2, the right hand side of the Euler Lagrange equation can be written as

< ω, I̊I >= αδΠ1 + βδΠ1,

for real numbers α and β, which are referred to as the Π-Lagrange multipliers of the
immersion.

Since there are no holomorphic (quadratic) differentials on a genus zero Riemann surface,
constrained Willmore spheres are the same as Willmore spheres. For higher genus surfaces
this is no longer the case: constant mean curvature surfaces (and their Möbius transforms)

are constrained Willmore, as one can see by choosing ω := I̊I as the holomorphic
Hopf differential in the Euler Lagrange equation (1.1), but not Willmore unless they are
minimal in a space form. Bohle [Boh], using techniques developed in [BoLePePi] and
[BoPePi], showed that all constrained Willmore tori have finite genus spectral curves
and are described by linear flows on the Jacobians of those spectral curves1. Thus the
complexity of the map f heavily depends on the genus its spectral curve Σ – the spectral
genus – giving the dimension of the Jacobian of Σ and thus codimension of the linear
flow. The simplest examples of constrained Willmore tori, which have spectral genus zero,
are the tori of revolution in R3 with circular profiles – the homogenous tori. Those are
stereographic images of products of circles of varying radii ratios in the 3-sphere and thus
have constant mean curvature as surfaces in the 3-sphere. Starting at the Clifford torus,
which has mean curvature H = 0 and a square conformal structure, these homogenous
tori in the 3-sphere parametrized by their mean curvature H “converge” to a circle as
H −→ ∞ and thereby sweeping out all rectangular conformal structures. Less trivial
examples of constrained Willmore tori come from the Delaunay tori of various lobe counts
(the n-lobed Delaunay tori) in the 3-sphere whose spectral curves have genus 1, see
Figure 1 and [KiScSc1] for their definition.

Existence and regularity of a W 2,2 ∩W 1,∞ minimizer f : M −→ R3 for a prescribed
Riemann surface structure2 (constrained Willmore minimizer) was shown by [KuwSch2],
[KuwLi], [Riv2] and [Sch] under the assumption that the infimum Willmore energy in the
conformal class is below 8π. The latter assumption ensures that minimizers are embedded
by the Li and Yau inequality [LiYau]. A broader review of analytic results for Willmore
surfaces can be found in the lecture notes [KuwSch2] and [Riv3], see also the references
therein.

Ndiaye and Schätzle [NdiSch1, NdiSch2] identified the first explicit constrained Willmore
minimizers (in every codimension) for rectangular conformal classes in a neighborhood
(with size depending on the codimension) of the square class to be the homogenous tori.
These tori of revolution with circular profiles, whose spectral curves have genus 0, eventu-
ally have to fail to be minimizing in their conformal class for H � 1, since their Willmore

1For the notion of spectral curves and the induced linear flows on the Jacobians see [BoLePePi].
2For the notion of W 2,2 ∩W 1,∞ immersions see [KuwSch2], [Riv] or [KuwLi].
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Figure 1. The vertical stalk represents the family of homogenous tori,
starting with the Clifford torus at the bottom. Along this stalk are bifur-
cation points from which embedded Delaunay tori continue the homoge-
nous family. The rectangles indicate the conformal types. The family of
surfaces starting at the Clifford torus, bifurcating at the first branch point
has Willmore energy below 8π and is conjectured to be the minimizer in
their respective conformal class. Image by Nicholas Schmitt.

energy can be made arbitrarily large and every rectangular torus can be conformally em-
bedded into R3 (or S3) with Willmore energy below 8π, see [KiScSc1, NdiSch2].
Calculating the 2nd variation of the Willmore energy W along homogenous tori Kuwert
and Lorenz [KuwLor] showed that zero eigenvalues only appear at those conformal classes

whose rectangles have side length ratio
√
k2 − 1 for an integer k ≥ 2, at which the index

of the surface increase. These are exactly the rectangular conformal classes from which
the k-lobed Delaunay tori (of spectral genus 1) bifurcate. Any of the families starting
from the Clifford torus, following homogenous tori to the k-th bifurcation point, and con-
tinuing with the k-lobed Delaunay tori sweeping out all rectangular classes (see Figure 1)
“converge” to a neckless of spheres as conformal structure degenerates. The Willmore
energy W of the resulting family3 is strictly monotone and satisfies 2π2 ≤ W < 4πk,
see [KiScSc1, KiScSc2]. Thus for k = 2 the existence of 2-lobed Delaunay tori imply
that the infimum Willmore energy in every rectangular conformal class is always below
8π and hence there exist embedded constrained Willmore minimizers for these conformal
types by [KuwSch2]. It is conjectured that the minimizers for W in rectangular confor-
mal classes are given by the 2-lobed Delaunay tori. For a more detailed discussion of the
2-lobe-conjecture see [HelPed]. Surfaces of revolution with prescribed boundary values
was studied in [DaFrGrSc].

3For simplicity we call this family in the following the k-lobed Delaunay tori.
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In this paper we turn our attention to finding families of constrained Willmore tori de-
forming homogenous tori parametrized by their conformal class. Moreover, we identify a
family of putative constrained Willmore minimizers in non-rectangular conformal classes.
These candidates are shown in [HelNdi] to be actually minimizing when restricting to
ab ∼b 0+ and b ∼ 1, but b 6= 1. Our main theorem is the following.

Theorem 1.1 (Main Theorem). For every b ∼ 1, b 6= 1 fixed, there exist a family
of constrained Willmore tori f(a,b) parametrized by their conformal class (a, b), with

a ∼b 0+ satisfying the following properties:

• f(0,b) = f b is homogenous and parametrized as a (1, 2)-equivariant surface

f b : T 2
b := C/

(
i2πZ⊕ 2π

rs+ i2r2

s2 + 4r2
Z
)
−→ S3

(x, y) 7−→
(
rei(y−2

r
sx), sei(2y+

s
r x)
)(1.2)

• f(a,b) is non degenerate for a 6= 0, and f(a,b) −→ f b smoothly as a −→ 0,

• for every b ∼ 1, b 6= 1 fixed the normal variation
(
∂√a f(a,b)|a=0

)⊥
verifies

< ∂√af(a,b)|a=0, ~n
b
1,2 > = sin

(
s
r + 4 rsx

)
,

where ~nb1,2 is the normal vector of f b in the (1, 2)-parametrization.
• for every b ∼ 1, b 6= 1 fixed and a 6= 0, the corresponding Π-Lagrange multipliers
α(a,b), and β(a,b) satisfy

α(a,b) ↗ α̂b and β(a,b) −→ βb, as a −→ 0

for some α̂b > 0 and βb is the Π2-Lagrange multiplier of f b.

The surfaces constructed are automatically embedded as they converge smoothly to the
homogenous tori f b. In fact we construct multiple families of embedded constrained
Willmore tori deforming f b (In the Hopf tori case, we obtain a family for every b > 1).
The family stated in the Theorem is the one with the smallest energy close to f b among
the families constructed.

Remark 1.1. Constrained Willmore minimizers in a particular conformal class is only
shown, if the infimum energy in that class is below 8π [KuwSch2]. Therefore, the con-
structed families helps to obtain a quantitative estimate on the size of the neighborhood
of rectangular conformal classes in which constrained Willmore minimizers exist.

We want to give some heuristics why this family should be the constrained Willmore
minimizer in their respective conformal class.

Definition 1.1. For α, β ∈ R we use the abbreviations

Wα,β(f) :=W(f)− αΠ1(f)− βΠ2(f)

Wα(f) :=W(f)− αΠ1(f).
(1.3)

The main observation is the following.
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Lemma 1.1. [HelNdi, Lemma 2.1]

Let f̃ (a,b) be a family of constrained Willmore immersions with conformal type

(a, b) =: (ã2, b) ∈ [0, a2
0)× (1− b0, 1 + b0)

for some positive numbers a0, b0 ∈ R such that the map

(ã, b) 7−→ f̃ (a,b) ∈ C2
(
[0, a0)× (1− b0, 1 + b0),W 4,2

)
,

and δΠ1
(
f̃ (0,b)

)
= 0, but δΠ1

(
f̃ (a,b)

)
6= 0 for a 6= 0. Further, let α̃(a, b) and β̃(a, b)

be the corresponding Lagrange multipliers satisfying

(ã, b) 7−→ α̃(a, b), β̃(a, b) ∈ C2
(
[0, a0)× (1− b0, 1 + b0),W 4,2

)
,

and ω̃(a, b) :=W
(
f̃ (a,b)

)
. Then we obtain

(1)

∂ω̃(a, b)

∂a
= α̃(a, b) for a 6= 0 and lim

ã→0

∂ω̃(a, b)

∂a
= α̃(0, b) =: α̃b ∀b,

(2)

∂ω̃(a, b)

∂b
= β̃(a, b) for a 6= 0 and lim

a→0

∂ω̃(a, b)

∂b
= β̃(0, b) =: β̃b ∀b,

(3) ϕb := ∂ã f
(a,b)|a=0 satisfies

δ2
(
Wα̃b,β̃b

) (
f̃ (0,b)

)
(ϕb, ϕb) = 0 ∀b.

The proof of the Lemma is very straight forward and shows that by fixing b, the variational
vector field of a family of constrained Willmore tori f̃ (a,b), parametrized by its conformal
type, at the homogenous torus f b must be a zero direction of the the second variation of
Wα̃b,βb , where βb is the Lagrange multiplier of f b. Since the Lagrange multipliers are the
derivative of the Willmore energy along the family, the necessary condition to construct a
family of minimizers is that the corresponding Lagrange multipliers converge for a −→ 0
to the smallest possible α > 0 such that Wα,βb has a non-trivial zero direction. Since
Wα=0,βb is strictly stable (invariance), the smallest possible α can be defined as follows.

Definition 1.2. Let βb be the Π2-Lagrange multiplier of the homogenous torus f b.
Then we define

αb := max {α | δ2Wα,βb ≥ 0}.

In [HelNdi, Section 3] we computed αb for b ∼ 1 which is uniquely determined by its
non-trivial kernel element. The identification of the normal variation of f(a,b) at f b in the
main theorem therefore shows that the family of constrained Willmore tori constructed
here has the desired limit Lagrange multiplier α̂b = αb.

In this paper we use integrable system theory to construct the families of constrained
Willmore tori by opening double points on the spectral curve of the homogenous torus
f b. The resulting surfaces are of spectral genus 2 as they lie in the associated family
of constrained Willmore Hopf cylinders [Hel2, Theorem 9]. These double points occurs
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Figure 2. Two (1, 2)-equivariant constrained Willmore tori (with intrin-
sic period 1). The tori lie in a 2-parameter family of surfaces deforming the
Clifford torus. This family minimizes the Willmore functional in the re-
spective conformal classes for surfaces “close enough” to the Clifford torus.
Images by Nick Schmitt.

exactly at those points where δ2Wαb,βb has non-trivial zero directions, indicating that the
genus of the spectral curve is closely related to the Nullity of the constrained Willmore
torus. Due to the different normalization of the Lagrange multipliers in the integrable
systems and analysis approach, we decided to compute the normal variations of f(a,b)

at f b in order to identify of the limit Lagrange multiplier. Moreover, we show that the
Π1-Lagrange multiplier converges from below to αb as a −→ 0. These features of the
family are needed in [HelNdi] to apply bifurcation theory to identify them as constrained
Willmore minimizing tori.

The paper is organized as follows: in the first section basic integrable systems notations for
constrained Willmore surfaces are introduced. We define equivariant immersions and state
the Euler-Lagrange equations in terms of the conformal Hopf differential. The integrable
structure of the equations is hereby encoded in the associated family of solutions. In
Section 3 we construct constrained Willmore Hopf tori deforming homogenous tori f b and
determine their normal variation at f b. The forth section contains the proof of the main
Theorem which is divided into four steps:

(1) construction of a 2-parameter family f(a,b) of (1, 2)-equivariant constrained Will-
more tori associated to constrained Willmore Hopf cylinders.

(2) show that candidates cover an open set close to the Clifford torus in the moduli
space of conformal tori.

(3) computation of the normal variation
(
∂√a f(a,b)|a=0

)⊥
for the constructed family

at the homogenous torus f b for fixed b ∼ 1 and b 6= 1.
(4) show that the corresponding Lagrange multipliers α(a,b) converge to αb from

below as a↘ 0.

The normal variations of the families of constrained Willmore Hopf tori constructed in
Section 3 uniquely identifies the limit Lagrange multiplier by the stability computations
in [HelNdi, Section 3].
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2. Preliminaries

We start with fixing some notations and basic properties of equivariant constrained Will-
more surfaces.

Definition 2.1. A map f : C −→ S3 is called R-equivariant, if there exist group
homomorphisms

M : R −→ Möb(S3), t 7−→Mt,

M̃ : R −→ {conformal transformations of C}, t 7−→ M̃t,

such that

f ◦ M̃t = Mt ◦ f, for all t.

Here Möb(S3) is the group of Möbius transformations of S3.

Remark 2.1. If the map f : C −→ S3 is doubly periodic, then the resulting surface is a
torus. A necessary condition for doubly periodicity of f is that both Mt and M̃t are
periodic in t, see [Hel, Section 5]. The possible periodic 1-parameter subgroups Mt and

M̃t that can appear in the above definition can be easily classified, see for example [Hel,
Section 5]. Thus up to the choice of a holomorphic coordinate z = x+ iy and isometries
of S3 we can assume without loss of generality that an equivariant torus

f : C/Γ −→ S3 ⊂ C2,

for a lattice Γ ⊂ C, is given by

(2.1) f(x, y) =

(
eimx 0

0 eikx

)
f(0, y),

for coprime integers m and k. In this case we call f an (m, k)-equivariant surface and
the curve given by γ(y) = f(0, y) is called the profile curve which has to verify certain
closing conditions for f to be a torus. This notion of equivariant surfaces includes the
well known examples of surfaces of revolution (m = 0, k = 1) and the Hopf cylinders
(m = 1, k = 1), as for example discussed in [Hel1].

Remark 2.2. A R-equivariant immersion f : C −→ S3 such that M(R) is not a
periodic subgroup of Möb(S3) but is smoothly close to a S1-equivariant surface is still of
the form (2.1) (up to conjugacy) with m, k ∈ R. This is due to the fact that whether

a M ∈ SO(4, 1) lie in the conjugacy class of M̃ ∈ SO(4) reduce to a condition on the
trace of M lying in a certain intervall.

In conformal geometry surfaces mapping into the conformal S3 have two invariants which
determine the surface up to Möbius transformations, see [BuPePi, Theorem 3.1]. The
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first one is the conformal Hopf differential q. The second is the Schwarzian derivative
c. In the equivariant case, the conformal Hopf differential q determines the Schwarzian
derivative c up to a complex integration constant by the Gauß-Codazzi equations.Thus
we will only use q in the following. In contrast to [BuPePi] we consider the conformal
Hopf differential as a complex valued function by trivializing the canonical bundle KC/Γ
via dz.

Definition 2.2. Let f : M −→ S3 a conformal immersion. The function

q :=
II
(
∂
∂ z ,

∂
∂ z

)
|df |

is called the conformal Hopf differential of f.

Remark 2.3. For equivariant tori the conformal Hopf differential as well as the Schwarzian
derivative depend only on the profile curve parameter and is periodic, see [Hel1, Proposi-
tion 3].

Example 2.1. By definition the conformal Hopf differential of surfaces of revolution is
real valued and given by 4q = κ where κ is the curvature of the (arclength parametrized)
profile curve γ in the upper half-plane viewed as the hyperbolic plane. In the same way
one can compute for Hopf cylinders that 4q = κ +

√
Gi, where κ is the geodesic

curvature of the corresponding profile curve in a round 2-sphere of curvature G > 0.

2.1. Equivariant constrained Willmore tori and their associated family.
For equivariant constrained Willmore tori we give the Euler-Lagrange equation in terms of
their Schwarzian derivative. This equation has an invariance which defines an associated
family of constrained Willmore surfaces to a given solution. We start by recalling the
Euler Lagrange equation of equivariant constrained Willmore surfaces [BuPePi, Equation
(34) and Equation (33b)] specified to the equivariant case:

Theorem 2.1 ([BuPePi]). Let f : T 2 ∼= C/Γ −→ S3 be a conformally parametrized
equivariant immersion and q its conformal Hopf differential. Then f is constrained
Willmore if and only if there exists a µ+ iλ ∈ C such that q satisfies the equation:

q′′ + 8
(
|q|2+C

)
q − 8ξq = 2Re

(
(−µ+ iλ)q

)
,

2ξ′ = q̄′q − q′q̄,
(2.2)

where ξ is a purely imaginary function, C a real constant and the derivative is taken
with respect to the profile curve parameter.

Remark 2.4. The real part of Equation (2.2) is the actual constrained Willmore Euler-
Lagrange equation. The imaginary part of the equation is the Codazzi equation and the
equation on ξ is the Gauß equation. The Euler-Lagrange equation for general surfaces
can be found in [BuPePi]. For (m, k)-equivariant tori the function ξ is given by

ξ = imk4 H,
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where H is the mean curvature of the immersion into S3 and C = −1
4(m2 + k2), as

computed in [Hel, Theorem 6.1 and Theorem 7.1].

Let f : T 2 −→ S3 be an equivariant constrained Willmore surface with conformal Hopf
differential q. Consider f as a doubly periodic immersion from C into S3. By relaxing
both periodicity conditions, i.e., by allowing general profile curves and real numbers for
the equivariance type m and k, we obtain for eiθ ∈ S1 a circle worth of associated
constrained Willmore surfaces fθ for a given f, the so called constrained Willmore
associated family, see [BuPePi, Equation (35)]. These are obtained as follows:

Let q be a solution of (2.2) and let qθ be the family of complex functions given by

qθ = qe2iθ, eiθ ∈ S1.

Moreover, let

Cθ = C + 1
8Re((e4iθ − 1)(−µ− iλ))

ξθ = ξ + 1
8 Im((e4iθ − 1)(−µ− iλ))

−µθ + iλθ = e−4iθ(−µ+ iλ).

(2.3)

Then qθ satisfies Equation (2.2) with parameters Cθ, µθ, λθ and function ξθ. In
particular, the function qθ and ξθ satisfies the Gauß-Codazzi equations for surfaces
in S3. Thus there exist a family of surfaces fθ with conformal Hopf differential qθ
and mean curvature given by ξθ. The so constructed surfaces fθ are automatically
constrained Willmore for every θ ∈ R.

Definition 2.3 (Constrained Willmore Associated Family).
Let f be a constrained Willmore surface and q its conformal Hopf differential. The
family of surfaces fθ, θ ∈ R determined by the conformal Hopf differential qθ = qe2iθ

is called the constrained Willmore associated family of f.

Surfaces with the same conformal Hopf differential and the same Schwarzian derivative
(which is determined by the function ξ and the real constant C ) differ only by
a Möbius transformation, see [BuPePi, Theorem 3.1]. As a consequence, since for an
equivariant initial surface both invariants depend only on one parameter, all surfaces in
the associated family of an equivariant constrained Willmore surface are also equivariant
(and constrained Willmore). In general, these surfaces are not closed, i.e., fθ : C −→ S3

is not doubly periodic, even if the initial surface is. Moreover, since a non-isothermic (or
non-degenerate) surface f is already determined up to Möbius transformations by its
conformal Hopf differential, the map θ 7−→ fθ ∈ C∞(T 2, S3) is (in this case) smooth, see
[BuPePi, Theorem 3.3].

2.1.1. The associated family of homogenous tori f b.
The homogenous tori are given by the direct product of two circles with different radii.
They can be parametrized by
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f b : C/(2πrZ + i2πsZ), f(x, y) =
(
rei

x
r , sei

y
s

)
,

for r, s ∈ R satisfying r2 + s2 = 1 with rectangular conformal class given by b = s
r .

The conformal Hopf differential (in this particular parametrization) is given by

(2.4) q = 1
2rs and µ =

s2 − r2

rs
.

Since homogenous tori are isothermic, the Lagrange multiplier λ in (2.2) can be chosen
arbitrarily and q does not determine the surface uniquely. Thus the associated family
f bθ is also not uniquely determined and is only smooth in θ for appropriate ξ and C

depending on both µ and λ. In fact, the following choice of associated family of f b

seen as a map from C to S3 is smooth in θ:

(2.5) f bθ (x, y) =

(
rλθ e

i

(
1
rλθ

cos(θ)x− 1
rλθ

sin(θ)y

)
, sλθe

i

(
1
sλθ

sin(θ)x+
1
sλθ

cos(θ)y

))
.

Here rλθ , s
λ
θ are determined by the Lagrange multiplier µ̃θ via equation (2.4), where

µ̃θ , λ̃θ satisfies

−µ̃θ + iλ̃θ = e−2iθ(−µ+ iλ).

Our choice of the associated family ensures that for a smooth family f t of non-degenerate
surfaces converging to f b which is degenerate as t −→ 0 , i.e., the map

(0, t0) −→ C∞Imm, t 7−→ f t

is smooth and t −→ 0 = f b in C∞Imm, also the associated family f tθ has the same

regularity in t for every fixed θ and lim
t→0

f tθ = f bθ . In particular, the corresponding

Lagrange multipliers µtθ and λtθ are continuous for t ∈ [0, t0) for every fixed θ. The

equivariance type of the “rotated” surface f bθ is given by

(2.6)
m

k
=
∣∣∣ cos(θ)sλθ

sin(θ)rλθ

∣∣∣ ∈ [0, 1].

Note that the derivative of the equivariance type by θ at θ0 ∈ (0, π/4) vanishes if and
only if λ0

θ = 0.

3. Constrained Willmore Hopf cylinders.

Since tori of revolution are isothermic, they cannot cover an open set of the Teichmüller
space. In contrast, all conformal types can be realized as (constrained Willmore) Hopf tori
(i.e., m = n = 1), see [Pin, Hel2]. The Willmore energy of the Hopf cylinder reduces to
the (generalized) energy of the curve in S2 and the conformal type of the torus translates
into invariants of the curve, namely length and oriented enclosed area. Thus a Hopf torus
is constrained Willmore if and only if there exist Lagrange multipliers λ and µ ∈ R
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such that the geodesic curvature κ of its profile curve γ in S2 (of constant curvature
G) satisfies

(3.1) κ′′ + 1
2κ

3 + (µ+ G
2 )κ+ λ = 0.

This equation can also be deduced from Equation (2.2) for 4q = κ+ i
√
G. The Lagrange

multiplier µ is the length constraint and λ is the enclosed area constraint. We call
curves (not necessarily closed) into the round S2 (with constant curvature G) satisfying
equation (3.1) constrained elastic.

Since we are interested in periodic solutions of (3.1), we can restrict ourselves to the initial
values

(3.2) κ′(0) = 0 and κ(0) = κ0

for the Euler-Lagrange equation.

Remark 3.1. The unique solution κ(x, κ0, λ, µ) of the initial value problem given by
(3.1) and (3.2) depends in a real analytic way on the parameters λ, µ and the initial
value κ0.

Let γ : R −→ S2 be a curve and κ its geodesic curvature. We use an integrated version
of the Euler-Lagrange equation for constrained elastic curves obtained by multiplying (3.1)
with κ′ and integrate. The curve γ is therefore constrained elastic if and only if there
exist real numbers µ , λ and ν such that κ satisfies

(3.3) (κ′)2 + 1
4κ

4 + (µ+ G
2 )κ2 + 2λκ+ ν = 0.

The freedom of the integration constant ν corresponds to the initial value κ0, which
must be a root of the polynomial P4 = 1

4κ
4 + (µ+ G

2 )κ+ 2λκ+ ν.

Remark 3.2. The conformal Hopf differential of the Clifford torus in (1, 1)-parametrization
q(1,1) is the conformal Hopf differential of the Clifford torus considered as a torus of rev-
olution q(1,0) multiplied by the imaginary unit i, see Example 2.1. Thus the role of the
Lagrange multipliers λ and µ switch compared to Section 2.1.1.

All constrained elastic curves in S2 can be parametrized in terms of the Weierstrass
elliptic functions and limits of these. Elliptic functions are defined on a torus C/Γ,
where the lattice Γ is determined by its (in general complex) lattice invariants g2 and
g3. For constrained elastic curves these invariants are computed in [Hel2, Lemma 1] to be

g2 =
(µ+ G

2 )2

12
+
ν

4
(3.4)

g3 =
1

216
(µ+ G

2 )3 +
1

16
λ2 − 1

24
ν(µ+ G

2 ).(3.5)
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The lattice Γ is non degenerated, i.e., has two real linear independent generators, if and
only if its discriminant D := g3

2 − 27g2
3 6= 0. In this case we denote the generators of the

lattice by 2ω1, 2ω2 ∈ C. Since by construction g2, g3 ∈ R, the resulting lattice Γ is
either rectangular or rhombic. Thus we can fix 2ω1 ∈ R and there exits a smallest lattice
point on the imaginary axis, which we denote by 2ω3 ∈ iR. For details on elliptic func-
tions see [KoeKri]. Now we can parametrize all solutions of (3.3) with periodic curvature
κ such that D = g3

2 − 27g2
3 6= 0 according to the following theorem [Hel2, Theorem 2].

Theorem 3.1 ([Hel2]). For g2, g3 and κ0 ∈ R with D = g3
2 − 27g2

3 6= 0, the curve

γ = [γ1 : γ2] : R −→ CP1

with γi : R −→ C given by

γ1 =
σ(x+ x0 − ρ)

σ(x+ x0)
eζ(ρ)(x+x0)

γ2 =
σ(x+ x0 + ρ)

σ(x+ x0)
eζ(−ρ)(x+x0)

(3.6)

is constrained elastic in the round S2 ∼= CP 1 with curvature G(> 0). Hereby σ and ζ
denote the Weierstrass σ- and ζ-function respectively. The parameters x0, ρ ∈ i

(
0, |ω3|

)
satisfy

2℘(x0) + ℘(ρ) + 1
4κ

2
0 = −1

4G < 0,

and ω3 is the lattice point of Γ with smallest length lying on the imaginary axis and the
upper half plane. Moreover, all constrained elastic curves in S2 with D = g3

2−27g2
3 6= 0

and periodic curvature can be obtained this way.

Remark 3.3. For given lattice invariants g2 and g3 we obtain thus a 2-parameter
(x0 and ρ) family of (not necessarily closed) constrained elastic curves into a 2-sphere of
constant curvature G(> 0). It is shown in [Hel2, Corollary 5] that there exists an unique
x̂0 ∈ i

(
0, |ω3|

)
such that the corresponding curve becomes elastic, i.e., λ = 0. In this

case we obtain
℘(ρ) = ℘(ω3)− 1

4G.

Moreover, by [Hel2] we have
℘(ρ) = 1

6(µ−G)

for all λ. If not otherwise stated we will fix G = 1 in the following.

A straightforward computation, see [Hel2, Proposition 4], shows that the curve γ, given
by Theorem 3.1, closes if and only if there exist m,n ∈ N such that

(3.7) M(g2, g3, ρ) := ρη1 − ζ(ρ)ω1 = im2nπ,

where ζ is again the Weierstrass ζ-function and η1 = ζ(ω1). M is called the mon-
odromy of the curve. Geometrically speaking, m is the winding number of the curve
and n is the lobe number, i.e., the number of (intrinsic) periods of the curvature till the
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curve closes in space.

For the Clifford torus the profile curve is (a piece of a) geodesic in S2 and can be described
using trigonometric functions. In this case we have D = 0 and the curve is given as the
limit curve as ω3, the smallest lattice point lying on the imaginary axis, goes to infinity.
In other words, the imaginary part of τ := ω1+ω3

2ω1
goes to infinity (while the real part is

constantly 1
2). In this case the corresponding limits of the Weierstraß elliptic functions

and invariants are given by, see [ErMaOb, Chapter 13.15.]:

℘∞(z) = −a+ 3a
1

sin2(
√

3az)
(3.8)

ζ∞(z) = az +
√

3a
cos(
√

3az)

sin(
√

3az)
(3.9)

ω1 = 1√
12a
π(3.10)

η1 = a√
12a
π(3.11)

for a real number a with

(3.12) g∞2 = 12a2 and g∞3 = 8a3.

Since for the Clifford torus we have ν∞ = 0 (and thus 144a2 = 12g∞2 = (µ∞ + 1
2)2) we

obtain by (3.4) that

(3.13) ℘∞(ρ∞) = 1
6(µ∞ − 1) = 2a− 1

4 ,

from which we can compute

(3.14) ρ∞ =
1√
3a

arsin

(√
12a

12a−1

)
.

Remark 3.4. The ρ ∈ i
(
0, |ω3|

)
we use in Theorem 3.1 is unbounded for D −→ 0. But

there is another representative

ρ̃ = ρ− (ω3 − ω1) = ρ mod Γ

that is actually bounded and the corresponding monodromy equations (3.7) are equivalent.
Since the meaning of the parameter remains the same, we will still denote ρ̃ by ρ in
the following.

By Equation (3.13) and because

℘(ρ) = ℘(ω3)− 1
4

for elastic curves

lim
τ→∞

℘(ω3) −→ 2a.
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Thus the invariants for any family of constrained Willmore Hopf tori converging (smoothly)
to the Clifford torus satisfy ω3 = ω1 mod Γ, i.e., these are wavelike solutions with
D ↗ 0, see [ErMaOb, Chapter 13.15.]. The closing condition (3.7) converges to

(3.15) ρ∞
a√
12a
π −

(
aρ∞ +

√
3a

cos(
√

3aρ∞)

sin(
√

3aρ∞)

)
1√
12a
π = m

2nπi.

For the simply wrapped Clifford torus, i.e., m = 1, the Equations (3.13), (3.14) and
(3.15) yields

a = n2

12 (and n > 1) or equivalently µn∞ = n2 − 1
2 .

Since the ratio of winding number and lobe number is rational for closed solutions, it
remains constant throughout the deformation induced by a continuous deformation of the
parameters g2, g3 and ρ. Suppose there exists a family ft of embedded constrained
Willmore Hopf tori given by Theorem 3.1 converging smoothly to the Clifford torus as
t −→ 0, then its Lagrange multiplier µt necessarily converges to n2 − 1

2 , for an inte-
ger n, and λt, νt −→ 0. The following theorem shows that this condition is also sufficient.

Remark 3.5. For D 6= 0 the spectral curve of the corresponding constrained Willmore
surface is given by (a covering) of the torus C/(2ω1Z ⊕ 2ω2Z) on which ℘ is defined,
see [Hel2, Section 3.5 and Remark 11]. For D −→ 0 this torus degenerates to a sphere,
corresponding to the spectral curve of a homogenous torus. To deform a homogenous
torus in direction of constrained Willmore Hopf tori with D 6= 0 we have to open the
double point on the sphere corresponding to µ = n2 − 1

2 .

Theorem 3.2. Let the Clifford torus be parametrized by the formulas in Theorem 3.1
obtained by letting (g2, g3, κ0, ρ) −→ (g∞2 , g

∞
3 , 0, ρ

∞) given by (3.12) and (3.14). Then
for every integer n > 1 there is a 2-parameter family of n-lobed and embedded constrained
Willmore Hopf tori fng2,g3 continuously deforming the Clifford torus. Moreover, the limit

Lagrange multiplier of the family at the Clifford torus is µn∞ = n2 − 1
2 (and λn∞ = 0).

Proof. For given real g2, g3 with D < 0 we can define constrained elastic curves and
their corresponding monodromy. The Weierstrass elliptic functions converge for D ↗ 0
(and real g2, g3) uniformly on every compact set, see [KoeKri]. Thus the monodromy
function M(g2, g3, ρ), see (3.7), remains differentiable in ρ and is continuous in g2 and
g3 as D ↗ 0.

We are interested in the singular case (i.e., D = 0) of the Clifford torus. In this case it is
computed above that

g∞2 = n4

12 and g∞3 = n6

216 .

We denote by ρn∞ the unique solution of

℘∞(ρn∞) = n2

6 −
1
4 ∈ i

(
0, |ω3|

)
.
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From this we obtain

(3.16) ∂
∂ρM

(
n4

12, ,
n6

216 , ρ
)
|ρ=ρn∞ = η∞1 + ℘∞(ρn∞)ω1 = (n4 −

1
4n)π

which is non zero for n 6= 1.

Then we obtain by the implicit function theorem that for every (g2, g3) ∼
(
n4

12 ,
n6

216

)
with D ≤ 0 an uniquely determined ρ(g2, g3) (continuously depending on g2 and

g3) such that M
(
g2, g3, ρ(g2, g3)

)
= const, and ρ

(
n4

12 ,
n6

216

)
= ρn∞ Therefore, we obtain a

2-parameter family fng2,g3 of curves depending continuously on g2 and g3 given by
Theorem 3.1 satisfying the closing condition.

�

Remark 3.6. Using the same arguments as in the theorem it is possible to show the
existence of a 2-parameter family of constrained Willmore Hopf cylinders bifurcating at
homogenous tori for every a 6= 1

12 . For G = 1 the value of a = 1
12 corresponds to

Möbius variations, i.e., n = 1.

Remark 3.7. For D 6= 0 the dependence of the curves on the parameters g2, g3 is
real analytic and thus ρ

(
g2, g3

)
is then also real analytic. In the limit (for D −→ 0)

the family fng2,g3 converge smoothly to homogenous tori but at D = 0 the regularity

is more subtle. The parameters
(
g2, g3, ρ

)
is real analytic in µ, λ, and κ0. Recall

that κ
(
x, µ, λ, κ0

)
depends real analytically on

(
µ, λ, κ0

)
. Thus also the monodromy

M is real analytic in the parameters
(
µ, λ, κ0

)
. Further, since ℘(ρ) = 1

6(µ − 1), we

have that ℘ is for ρ ∈ i
(
0, |ω3|

)
(and for fixed g2 and g3) a local diffeomorphism

from the ρ -line to the µ -line. Thus in a first step we can change the parameters to(
g2, g3, ρ(g2, g3)

)
−→

(
g2, g3, µ(g2, g3)

)
.

For D ≤ 0 the “map” Ψ that associate to

(
g2, g3, µ

)
7−→

(
µ, λ, κ0

)
is multi-valued in λ and κ0 and behaves rather like a square/fourth order root, see
(3.4). But Ψ becomes a local diffeomorphism for D 6= 0 and λ 6= 0 by choosing an
appropriate branch of the parameters λ and κ0. We first observe that

(3.17) κ
(
µ, λ, κ0

)
= −κ

(
µ,−λ,−κ0

)
.

Therefore, we can choose without loss of generality to λ ∈ R− and thereby fixing an
orientation of the curves, where constant solutions have positive curvature. Moreover,
recall that a necessary condition for the smooth convergence of the family fng2,g3 to the
Clifford torus is that the discriminant D −→ 0 from below, i.e., the family consists of
wavelike solutions. In this case the 4-th order polynomial

P4 = 1
4κ

4 +
(
µ+ G

2

)
κ2 + 2λκ+ ν
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has only two real roots for D < 0 (or 1 root with multiplicity 2 for D = 0), both leading to
the same solution of the differential equation (up to translation of the curve parameter),
see also [Hel2]. Thus we can choose without loss of generality κ0 to be the bigger root of P4.

The vector field ∂
∂ µ on the parameter space (g2, g3, µ) is mapped via Ψ to a vector

field ∂
∂ µ̃ in (µ, λ, κ0) . Because of Equations (3.4) defining g2 and g3, there exist

unique (and smooth) functions λ(µ) and κ0(µ) such that

g2

(
µ, λ(µ), κ0(µ)

)
= const and g3

(
µ, λ(µ), κ0(µ)

)
= const.

Therefore we obtain
∂M

∂ µ

(
µ, λ(µ), κ0(µ)

)
=
∂M

∂ µ̃
.

Thus by changing the parameters

(µ, λ, κ0) −→ (µ̃, λ̃, κ̃0) =
(
µ, λ+ λ(µ), κ0 + κ0(µ)

)
we obtain that there exists a smooth function µ̃(λ̃, κ̃0) such that

M
(
µ̃(λ̃, κ̃0), λ̃, κ̃0

)
= const.

This new smooth family parametrized by (λ̃, κ̃0) multiply covers the old family fng2,g3 . Note
that by [Hel2, Corollary 3] there are no solutions with D > 0 with parameters (λ, κ0, µ)
close to

(
0, 0, n2 − 1

2

)
.

Definition 3.1. In the following we rename the parameters (µ̃, λ̃, κ̃0) by (µ, λ, κ0) for
simplicity. Thus we will denote the above introduced real analytic 2-parameter family of
constrained Willmore tori obtained by fnλ,κ0 .

Remark 3.8. The surfaces fnλ,κ0 is homogenous if and only if D = g3
2 − 27g2

3 = 0.

These surfaces can be identified within fnλ,κ0 by varying a ∼ n2 − G
2 (and still prescribe

M
(
12a2, 8a3, ρn∞(a)

)
= 1

nπi). Thus for a given κ0(> 0) there exists a unique λ = λ0

such that the resulting surface fnλ0,κ0 is homogenous (and κ0 is the constant curvature

of its profile curve).

Remark 3.9. For (g2, g3) ∼
(
g∞2 , g

∞
3

)
∈ R2 such that

(
g∞2
)3 − 27

(
g∞3
)2

= 0, and

discriminant D
(
g2, g3

)
=
(
g2)3 − 27

(
g3

)2
< 0 let c

(
g2, g3

)
= c

(
D(g2, g3)

)
be an

arbitrary strictly positive and smooth function depending only on the discriminant. Then
by the same computations as above and the implicit function theorem there exist a unique
function ρc(D)(g2, g3) satisfying

M
(
g2, g3, ρ

c(D)(g2, g3)
)

= c
(
D(g2, g3)

)
πi.

for all (g2, g3) ∼
(
g∞2 , g

∞
3

)
close enough with D(g2, g3) < 0. Therefore we obtain a

2-parameter family f
c(D)
g2,g3 of constrained Willmore Hopf cylinders. The family of surfaces



18 LYNN HELLER AND CHEIKH BIRAHIM NDIAYE

is continuous in g2 and g3 and real analytic in the corresponding parameters λ and
κ0 . The limit Lagrange multiplier µ∞ can be computed from g∞2 , g

∞
3 and the limit

monodromy c(0).

The conformal type of a Hopf torus is given by the lattice generated by the vector 2π ∈ C
and the vector 1

2(A+ iL) ∈ C, where L is the length of the corresponding profile curve

in S2 and

A =

∫
I
κ(s)ds

the oriented enclosed volume, see [Pin, Proposition 1]. These quantities can be explicitly
computed, see [Hel2, Theorem 5].

Proposition 3.1. For every lobe number n ≥ 2 the map Π̃ which assigns to (λ, κ0) the
conformal class of the immersions fnλ,κ0 , see Definition 3.1, covers an open neighborhood

of the rectangular conformal class (0, b) for all b ∈ R>1.

Proof. By construction we have

Π̃(λ, κ0) = 1
2A
(
λ, κ0

)
+ i1

2L
(
λ, κ0

)
,

where L is the length and A the oriented enclosed area of the profile curve of fnλ,κ0 in
the 2-sphere with constant curvature G = 1.

We first slightly reparametrize the family fnλ, κ0 . For given κ0 there exists a unique λ(κ0)

such that the resulting surface fnλ(κ0), κ0
is homogenous. Let f̃n

λ̃,κ0
:= fn

λ̃+λ(κ0), κ0
. Then

we obtain

∂κ0A
(
λ̃+ λ(κ0), κ0

)
|(λ̃, κ0)=(0,κ0) 6= 0 for κ0 6= 0.

This implies that for κ0 6= 0, there exists a real analytic map

κ0 : (−εκ0 , εκ0) −→ (κ0 − ε1
κ0 , κ0 + ε1

κ0)

such that

A
(
λ̃+ λ(κ0(λ̃)), κ0(λ̃)

)
= A

(
λ(κ0), κ0

)
, ∀ λ̃ ∈ (−εk0 , εk0),

with εκ0 and ε1
κ0 positive numbers and κ(0) = κ0. Since the function

(−εκ0 , εκ0) 3 λ̃ 7−→ L
(
λ̃+ λ(κ0(λ̃)), κ0(λ̃)

)
is real analytic, we have that either there exists m ≥ 1 such that
(3.18)

dmL
(
λ̃+ λ(κ0(λ̃)), κ0(λ̃)

)
dλ̃m

|λ̃=0 6= 0, and
diL
(
λ̃+ λ(κ0(λ̃)), κ0(λ̃)

)
dλ̃i

|λ̃=0 = 0 for 1 ≤ i ≤ m−1.

or

(3.19) L
(
λ̃+ λ(κ0(λ̃)), κ0(λ̃)

)
= L

(
λ(κ0), κ0

)
∀ λ̃ ∈ (−εκ0 , εκ0).
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Consider the normal variation ϕ̂ of the family f̃n
λ̃,κ0(λ̃)

with respect to λ̃ at a

homogenous torus. Since the profile curve of a homogenous torus in S2 is a circle and
the enclosed area of f̃n

λ̃,κ0(λ̃)
is constant, we have by the isoperimetric problem that ϕ̂

satisfies δL
(
f b
)
(ϕ̂) = 0 and δ2L

(
f b
)
(ϕ̂, ϕ̂) > 0 which implies (3.18).

This gives for κ0 6= 0 the existence of a right-neighborhood [0, ε2
κ0) of 0 such that the

image of [0, ε2
κ0) under the map

λ̃ ∈ (−εκ0 , εκ0) −→ L
(
λ̃+ λ(κ0(λ̃)), κ0(λ̃)

)
is a right -neighborhood of Lκ0 := L

(
λ(κ0), κ0

)
denoted by [Lκ0 , Lκ0 + ε3

κ0) with 0 <

ε2
κ0 < εκ0 and ε3

κ0 > 0 some small real numbers. Finally, by setting

Aκ0 := A
(
λ(κ0), κ0

)
, and O :=

⋃
κ0 6=0

Aκ0 × [Lκ0 , Lκ0 + ε3
κ0),

we have that O is an open neighborhood of the rectangular class Π̃(λ(κ0), κ0) for every
κ0 6= 0 in the moduli space of conformal tori, as the rectangular classes lies on the
boundary of the moduli space. �

Remark 3.10. The Taylor series of L(λ̃) := L
(
f̃n
λ̃,κ0(λ̃)

)
gives:

L(λ̃) = L(0) +
1

2
δ2L

(
f b
)
(ϕ̂, ϕ̂)λ̃2 + higher order terms,

i.e., Therefore, we obtain λ̃ ∼
√
L(λ̃)− L(0).

For integers n the so constructed family f̃n
λ̃,κ0(λ̃)

does not give appropriate candidates

for constrained Willmore minimizers. By Lemma 1.1 the limit Lagrange multiplier gives
the derivative of the Willmore energy at the homogeneous torus. It turns out that this
limit Lagrange multiplier can be further decreased when considering the associated family
of constrained Willmore Hopf cylinders. For the surfaces in the associated family it is
harder to compute the limit Lagrange multiplier than in the Hopf case, but the normal
variation at a homogenous torus (parametrized as a (m, k)-equivariant surface) turns out
to be closely related, as we show in Proposition 4.1. The limit Lagrange multiplier is
the value for which the stability operator of a penalized Willmore stability operator has
a non-trivial kernel. As computed in [HelNdi, Section 3] the normal variation uniquely

determines the limit Lagrange multiplier. For the constrained Willmore Hopf tori f̃nλ,κ̃0
the normal variation at homogenous tori is specified in the following proposition.

Proposition 3.2. The normal variation of the (1-parameter) sub family ft, smooth in
t ∼ 0, of fnλ,κ0 satisfying Π2

(
ft
)

= const. with f0 = fnλ(κ0),κ0
is given by

ϕb = sin
(
n x
rs

)
~nb,

(up to invariance) where fnλ(κ0),κ0
is f b, b = s

r and κ0 = s2−r2
rs , parametrized as a (1, 1)-

torus

f b : C/
(
2πiZ + 2π(ir2 + rs)Z

)
−→ S3, f b(x, y) =

(
rei
(
y+

rx
s

)
, sei

(
y− sxr

))
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and x is the profile curve parameter and ~nb is the normal vector of f b.

Remark 3.11. For the Clifford torus f1 parametrized as Hopf torus, the conformal type
is 1

2(A,L) = (π, π). This is equivalent to (a, b) = (0, 1) after a SL(2,Z)-transformation

T of the upper half plane. We adjust the projection Π : Imm (T 2) −→ H such that

Π(f1) = (0, 1). The condition that ḃ = 0 corresponds to Ȧ = 0 at (π, π) under this
transformation.

Proof. At fn0,0 which is the Clifford torus (with intrinsic period n), we obtain that

µ = n2 − 1
2 = α̃ is the limit Lagrange multiplier. Since the map Π̃, defined in Theorem

3.1, covers an open neighborhood, we can take a lift of 1
2(A,L) ∼ (π, π) under this

covering and obtain a family of surfaces parametrized by its conformal class and verifying
the regularity assumptions needed for Lemma 1.1, see Remark 3.10. Thus the normal
variation of ft at t = 0 lies in the kernel of δ2Wα

(
f1
)
, with α = 4π2α̃ , and

depends only on the curve parameter. The relevant kernel elements of δ2Wα

(
f1
)

can be
computed analogously to the proof of [HelNdi, Lemma 3.1] (the c = 1 case) and lie in the
span of the vectors ϕ1 = sin(2nx)~n1 and ϕ̃1 = cos(2nx)~n1 . Thus up to invariance, we
can choose, without loss of generality, ϕ1 to be the normal variation of the family ft at
f0 = fn0,0 the Clifford torus, proving the statement in this case.

For the homogenous tori f b the statement holds, since fnλ,κ0 is a smooth 2-dimensional
family of surfaces and the normal variation only depends on the curve parameter: consider
the Fourier decomposition of the space of normal variations at f b. The stability computa-
tions in [HelNdi, Section 3] and [KuwLor] shows that normal variations to different Fourier
modes are perpendicular with respect to δ2Wα,βb . Therefore, there exist for every b (and

uniquely determined βb ∼ 0) a unique αb ∼ (n2 − 1
2)4π2 such that δ2Wαb,βb

(
f b
)

has
a kernel, and subspace of the kernel which depends only on the curve parameter is given
by ϕb1 = sin(n x

sr )~nb up to invariance, where ~nb is the normal vector of the homogenous

torus f b.

�

Proposition 3.3. Let f
c(b)
(a,b) be a family of constrained Willmore Hopf cylinders with

conformal type (a, b) with the same regularity assumptions as in Lemma 1.1 such that

f
c(b)
(0,b) is the homogenous torus f b with limit monodromy M = 1

2c(b)πi as a −→ 0. Let

ft := f
c(b(t))
(a(t),b(t)) be a smooth sub family with a(0) = 0, b(0) = b such that a0 := limt→0

ȧ(t)√
a(t)

exists. Then for b = s
r there exist d, e ∈ R such that the normal variation ḟ :=

(
∂t ft|t=0

)⊥
is given by

Φ = db sin
(
c(b) xrs

)
~nb + eb.

Proof. By the conformal type (a, b) of a cylinder we mean the lattice Γ generated by the
the vectors 2π and 1

2A + 1
2Li with length L = 1

c(b(t)) l, where l is the length of the arc

length parametrized curve after one period of the curvature, and the “enclosed” oriented

area A = 1
c(b(t))

∫ l
0 κds mod 4π via Gauß-Bonnet. Moreover, we denote by (̇) the derivative

w.r.t. the parameter t at t = 0.
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With the same computation as in the previous proposition it can be shown that for a family
of n-lobed constrained Willmore Hopf tori converge to the k-times covered homogenous
torus with ḃ = 0 the corresponding normal variation at t = 0 is given by

Φ = sin
(
nx
krs

)
~nb.

Thus by the continuous dependence of the family on the monodromy c(b(t)) we obtain that
any family of (not necessarily compact) constrained Willmore Hopf cylinders deforming

the homogenous torus with monodromy M = 1
2c(b)πi and ḃ = 0 has normal variation at

the a = 0 given by

Φ = sin
(
c(b) xrs

)
~nb

for a real number c(b) ∈ R. If ḃ 6= 0 and a(t) 6= 0 we can split the normal variation into
two components:

ḟt = 1
2

ȧ(t)√
a(t)

∂√a f
c(b)
(a,b) + ḃ(t) ∂b f

c(b)
(a,b).

Because the surfaces f
c(b)
0,b are homogenous, we can compute that

(
∂b f

c(b)
(0,b)

)⊥
= ẽb~nb is

constant hence we obtain for t −→ 0

(
ḟ
)⊥

=
(
a0 sin(c(b)x) + ḃẽb

)
~nb

proving the statement with db = a0 and eb = ḃẽb. �

4. (1, 2)-Equivariant surfaces associated to constrained Willmore Hopf
cylinders.

The stability computations leading to [HelNdi, Lemma 3.1] indicates that the candidates
for constrained Willmore minimizers should have (1, 2)-symmetry. Thus we construct in
the following 2-parameter families of (1, 2)-equivariant tori deforming the Clifford torus
whose projection into the space of conformal tori cover an open neighborhood. The crucial
property of these candidates is that the limit Lagrange multiplier (as the surfaces con-
verge to the Clifford torus) is α1, i.e., the maximum α > 0 for which Wα is stable at f1.

For our candidates we use the Ansatz that they lie in the associated family of constrained
Willmore Hopf cylinders, i.e., the conformal Hopf differential of the (1, 2)-surface is given
by

4q(1,2) =
(
κ+
√
Gi
)
e2iθ,

for G, θ ∈ R+ and κ : R −→ R satisfying

(4.1) κ′′ + 1
2κ

3 + (µ+ G
2 )κ+ λ = 0,
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which is exactly the (constrained) elastic curve equation for curves on a round S2 consid-
ered before. The real constants µ, λ ∈ R are the Lagrange multipliers of the constrained
Willmore Hopf surface. The corresponding Lagrange multipliers for the (1, 2)-equivariant
surface are given by (2.3) and are depending on λ, µ and θ.

4.1. Seifert fiber space.
We want to restrict to the (1, 2)-equivariant case in the following, although the construc-
tions below can be used to construct general (m,n)-tori (lying in the associated family of
Hopf cylinders). We consider S3 ⊂ C2 with the equivalence relation

(z, w) ∼ (z̃, w̃)⇔ ∃ φ : (z̃, w̃) =
(
eiφz, e2iφw

)
.

We can always choose a unique representative of [(z, w)] of the form
(
|z|, w̃

)
∈ S3, since

for z = |z|eiφ we have
(
|z|eiφ, w

)
∼ (|z|, e−2iφw). The orbit space S3/∼ is a topological

2-sphere and the fibers of a point (z, w) ∈ S3 ⊂ C2 is given by the curve

ϕ 7−→
(
eiφz, e2iφw

)
.

The trippel F =
(
S3, S3/∼, π

)
defines a Seifert fiber space with one exceptional fiber over

[(0, 1)], where π : S3 −→ S3/∼ is the projection map. In the following we parametrize
the regular set of S3/∼ (which is a sphere S2 \ {one point} ) using polar coordinates:

[0, 1]× [0, 1) −→ S3/∼ (R,φ) 7−→
(
R,
√

1−R2eiφ
)
.

The round metric ground on S3 induces a unique metric on (regular set of) the base
space, such that π becomes a Riemannian submersion. We denote this metric also by
ground. To be more specific, let X, Y be local vector fields on S3/∼ and X̂, Ŷ be
their lifts to TS3 w.r.t. π. Then we define the metric on the base space to be

ground(X,Y ) = ground
(
(X̂)⊥, (Ŷ )⊥

)
,

where ()⊥ is the projection orthogonal to the fiber direction. In terms of the coordinates
(R,φ) the metric on the base space is given by

ground =
(
1−R2

)
dr2 +

R2(1−R2)

4− 3R2
dφ2.

With respect to the round metric the length of the fibers of F at (z, w) ∈ S3 ⊂ C2 is
given by L = 2πl, where

l(z,w) =
√
|z2|+ 4|w2| =

√
4− 3R2.

Dividing the metrics ground point wise by l2, which is constant along every fiber, yield
new metrics g(1,2) on S3 and on the base space S3/∼, respectively, given by

g(1,2) = 1
4−3R2 ground.
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With respect to g(1,2) all fibers have same length 2π. Let B be the unit fiber direction
with respect to g(1,2), then a bundle connection on F is given by ω = g(1,2)(B, .)

and its curvature function be straightforwardly computed to be Ω = 4√
4−3R2

, see [Hel1,

Proposition 3].

Any closed curve

γ : S1 −→ S3/∼ \
{

[(1, 0)], [(0, 1)]
}
, x 7−→

(
R(x), φ(x)

)
gives rise to an immersed equivariant torus by

f(x, y) =
(
eiyR(x), e2iy

√
1−R2(x)eiφ(x)

)
.

The torus is embedded, if and only if the curve is. To obtain a conformal parametrization
of the surface, we need the profile curve to be arc length parametrized with respect to
g(1,2) and take its horizontal lift

γ̃(t) =
(
eiy(x)R(x), e2iy(x)

(
1−R(x)2

)
eiφ(x)

)
to S3 (i.e, γ̃ satisfy ω(γ̃′) = 0 and γ̃ is not necessarily closed). The conformal Hopf
differential of the immersion is given by

4q(1,2) = κ(1,2) + iΩ.

where κ(1,2) is the geodesic curvature of γ w.r.t g(1,2), see [Hel1, Proposition 3].

4.2. Construction of candidate surfaces.
For given conformal Hopf differential q = e2iθ

(
κ+ i

√
G
)

lying in the associated family of
constrained Willmore Hopf solutions, we want to show how to obtain a constrained Will-
more and (1, 2)-equivariant cylinder and determine the closing conditions. Without loss of
generality we always choose the G > 0 in (3.1) possibly depending on (θ, µ, λ, κ0) such
that the resulting (1, 2)-surface is arc length parametrized with respect to g(1,2). The cur-
vature κ of constrained Willmore Hopf cylinders depends on three parameters λ, µ and
κ0. It can be easily computed that the derivative of the equivariance type w.r.t. θ at the
(1, 2)-parametrized Clifford torus lying in the associated family of a (1, 1)-parametrized
homogenous torus (for θ = arctan(2) − arctan(bHopf ) and λθ 6= 0 and µθ 6= 0) is
non zero, thus there exist by implicit function theorem a function θ(λ, µ, κ0) such that
fθ(λ,µ,κ0) is (1, 2)-symmetric.

Recall that the surfaces we are interested in lie in the associated family of constrained
Willmore Hopf cylinders, i.e., the conformal Hopf differential of the (1, 2)-equivariant
surface is given by

4q1,2 = 4qθ =
(
κ+ i

√
G
)
e2iθ.

To construct the profile curve γ of the (1, 2)-equivariant surface in S3/∼, we first show
that γ is already uniquely determined up to isometries by
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Ω = 4Im(q1,2) =
(

cos(2θ)κ+ sin(2θ)
√
G
)
.

On the other hand, recall that

Ω = 4√
4−3R2

,

thus

R2 = 4
3 −

16
3

1
Ω2 .

Further, we normalized our profile curve to be arclength parametrized. The round metric
on S3 induce a metric on S3/∼ given by

ground = (1− r2)(dR)2 +
R2
(
1−R2

)
4− 3R2

(
dφ
)2
.

Thus the arc length condition gives rise to a condition on φ′ for γ =
(
R(s), φ(s)

)
:

(
1−R2

)(
R′
)2

+
R2
(
1−R2

)
4− 3R2

(
φ′
)2

=
(
4− 3R2

)
.

Therefore

(4.2) φ = ±

∫ t

0

1
R

√(
4−3R2

)2
1−R2 − (R′)2(4− 3R2)dt.

The choice of initial value for φ corresponds to an isometry of the ambient space S3/∼
and the choice of the sign corresponds to the orientation of the curve. Hence without loss
of generality we choose φ(0) = 0 and the “+” sign.

4.2.1. Step 1: Existence of a 2-parameter family of candidates.

In order to get closed curves, the necessary condition is that R =
√

4
3 −

16
3

1
Ω2 is periodic.

This holds automatically for Ω = cos(2θ)κ+ sin(2θ)
√
G, where κ is a wavelike solution

of the elastic curve equation (D = g2
3 − 27g3

2 < 0, see [Hel2, Lemma 2]). Moreover, in
this case the closeness of the curve is equivalent to the angle function φ, defined in (4.2),
satisfying

Φ(g2, g3, µ) := φ(g2,g3,µ)(L)− φ(g2,g3,µ)(0) = l
n2π, for intergers l, n.

We want to show that there exists a two parameter family of closed curves deforming the
Clifford torus using implicit function theorem. Recall that constrained elastic curves in
S2 can be obtained using Weierstrass elliptic functions, see Theorem 3.1. By Lemma 2
of [Hel2] we have that

(4.3) κ = ±
√
−8Re

(
℘(x+ x0)

)
− 2

3

(
µ+ G

2

)
,
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solves the elastic curve equation for the parameters given by g2, g3 and
(
µ+ G

2

)
, and

with x0 chosen such that P4

(
κ(0)

)
= 0.

Again the homogenous tori appear in this description as limits of the generic solutions
where the lattice Γ (on which the ℘ function is defined) degenerates, i.e., when
the discriminant given by D = g3

2 − 27g2
3 ↗ 0. Moreover, the limit solution κ for

D −→ 0 is constant. For a smooth family ft, t ∈ [0, ε) of (1, 2)-equivariant constrained
Willmore tori deforming the Clifford torus (i.e., f0 = f1 in (1, 2)-parametrization) we
have R′t −→ 0 and Rt −→ 1√

2
, as t −→ 0. Therefore, we aim at solving

φ(L∞)− φ(0) = 5L∞ =
l

n
π,

where L∞ is the limit period of Rt as t −→ 0, or equivalently the (1, 2)-profile curve
length of f1 in g(1,2) metric. Therefore, we can compute the parameters ĝ2 and ĝ3

giving the parametrization of the Clifford torus f1 (or piece of it) from L∞ and l
n .

Proposition 4.1. For g2 ∼ ĝ2 and g2 ∼ ĝ3 there exist a continuous function µθ(g2, g3)
such that

Φ
(
g2, g3, µθ(g2, g3)

)
≡ 2π.

Remark 4.1. This implies the existence of a smooth 2-dimensional family of (1, 2)-
equivariant constrained Willmore tori with extrinsic period 1 by changing the parameters
g2, g3 and µθ to λ̃, κ0 and µ(λ̃, κ̃0) as in Remark 3.7. The same arguments yield
2-parameter families of n-lobed constrained Willmore tori with (1, 2)-symmetry.

Proof. The map Φ is differentialble in µθ and continuous in g2 and g3. We want to show
that ∂

∂ µθ
Φ(g2, g3, µθ) 6= 0 at the simply wrapped Clifford torus. Then the assertion follows

by a version of the implicit function theorem as in the proof of Theorem 3.2. At the Clifford
torus we have R = 1√

2
and R′ = 0, therefore

∂

∂ µθ
Φ(g2, g3, µθ)|R≡ 1√

2

=

∫ L∞

0

∂ R

∂ µθ

4− 5R2

R2(1−R2)3/2
|
R≡ 1√

2
ds = 6

√
2

∫ L∞

0

∂ R

∂ µθ
ds(4.4)

Further, we have

∂ R

∂ µθ
=

5
√

5

6

∂ Ω

∂ µθ
.

Thus it remain to show that ∂ Ω
∂ µθ
6= 0. Since

µθ = µθ(g2, g3, θ) = cos
(
4θ(g2, g3, µ)

)
µ+ sin

(
4θ(g2, g3, µ)

)
λ,

we have
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∂ Ω

∂ µ
=

∂ Ω

∂ µθ

∂ µθ
∂ µ

=
∂ Ω

∂ µθ

(
cos
(
4θ(g2, g3, µ)

)
+ 4

∂ θ(g2, g3, µ)

∂ µ

(
− sin(4θ)µ+ cos(4θ)λ

))
.

At the Clifford torus we have ∂
∂ µθ(g2, g3, µ) > 0, λθ > 0 and cos(4θ) > 0. Therefore,

∂ Ω

∂ µ
= const

∂ Ω

∂ µθ
.

Now because

Ω = sin(2θ)κ+ cos(2θ)
√
G

we obtain

∂ Ω

∂ µ
= sin(2θ)

∂ κ

∂ µ

(
g2, g3, µ

)
+ cos(2θ)

∂

∂ µ

√
G(θ, g2, g3, µ) +

∂ θ

∂ µ

(
g2, g3, µ

)
κ1,2.

At the (1, 2)-parametrized Clifford torus, we have ∂
∂ µG(θ, g2, g3, µ) = 0,4 and θ(µ) =

arctan(2)− arctan
(
bHopf (µ)

)
, where bHopf is the conformal type of the associated Hopf

cylinder Moreover, λ 6= 0, hence we can choose the sign of κ , i.e., κ(0) > 0 as before
and obtain

∂ κ

∂ µ
= − 2

3κ(0)
< 0.

A computation shows that the geodesic curvature of f1 w.r.t. the (1, 2)-metric is negative,
further it can be computed that ∂ θ

∂ µ > 0. We thus obtain

∂ Ω

∂ µ
= − sin(2θ)

2

3κ(0)
+
∂ θ

∂ µ
κ1,2 < 0.

�

4.2.2. Step 2: Candidates cover an open neighborhood of the moduli space of
conformal tori.
We want to show that the family of surfaces constructed in the previous section cover an
open neighborhood of rectangular conformal classes which are near but different from the
square conformal class. Recall that the candidate family is parametrized by the parame-
ters (κ0, λ). and denoted fnλ,κ0 . Analogously to Proposition 3.1 we have for every κ0 an

unique λ(κ0) ∈ R− such that
(
κ0, λ(κ0)

)
corresponds to a homogenous torus denoted

fnλ(κ0),κ0
. Moreover, as in Proposition 3.1, we change the parameter λ to λ̃ = λ− λ(κ0)

in the following.

The conformal class of a (1, 2)-equivariant surface is given by the length L1,2 of its profile
curve γ w.r.t. the g(1,2) metric and

4Since the torus remains a segment of the Clifford torus.
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A1,2 =

∫
C

Ω1,2vol1,2,

where C is a 2-chain with ∂C = γ1,2. For every κ0 6= 0, at the corresponding homogenous

tori fnλ(κ0),κ0
, we have by definition of L1,2

(
γ1,2(λ̃, κ0)

)
that

∂L1,2

(
γ1,2(λ̃, κ0)

)
∂κ0

|(λ̃,κ0)=(0,κ0) 6= 0,

where γ1,2(λ̃, κ0) is the profile curve of fn
λ̃+λ(k0), κ0

. Thus there exists a real analytic
map

κ̃0 : (−ε̃κ0 , ε̃κ0) −→ (κ0 − ε̃1
κ0 , κ0 + ε̃1

κ0)

such that

L1,2

(
γ1,2(λ̃, κ0(λ̃)

)
= L1,2

(
γ1,2(0, κ0(0)

)
, ∀ λ̃ ∈ (−ε̃κ0 , ε̃κ0)

with ε̃k0 and ε̃1
k0

positive numbers and κ(0) = κ0. Following the proof of Proposition

3.1, since the function λ̃ ∈ (−ε̃κ0 , ε̃κ0) −→ A1,2

(
γ1,2(λ̃, κ̃0(λ̃))

)
is real analytic, there

exists k ≥ 1 such that
(4.5)

dkA1,2

(
γ1,2(λ̃, κ̃0(λ̃))

)
dλ̃k

|λ̃=0 6= 0, and
diA1,2

(
γ1,2(λ̃, κ̃0(λ̃))

)
dλ̃i

|λ̃=0 = 0 for 1 ≤ i ≤ k− 1.

or

(4.6) A1,2

(
γ1,2(λ̃, κ̃0(λ̃))

)
= A1,2

(
γ1,2(0, κ0)

)
∀ λ̃ ∈ (−εκ0 , εκ0),

where γ1,2(λ̃, κ0(λ̃)) is the profile curve of fn
λ̃+λ(k0(λ̃)), κ0

. Let us show that (4.6) can

not happen. Suppose that A1,2

(
γ1,2

(
λ̃, κ0(λ̃)

))
is constant for λ̃ ∼ 0 where λ̃ =

0 corresponds to the (1, 2)-parametrized homogenous torus fnλ(κ0), κ0
, namely

A1,2

(
γ1,2(λ̃, κ̃0(λ̃))

)
= A1,2

(
γ1,2(0, κ0)

)
∀ λ̃ ∈ (−εκ0 , εκ0).

Then the family γ1,2

(
λ̃, κ̃0(λ̃)

)
would give rise to a family of constrained Willmore sur-

faces in the conformal class of the homogeneous tori fnλ(κ0), κ0
deforming the homogenous

tori fnλ(κ0),κ0
but different up to invariance to them. Thus we obtain a non Moebius

equivalent family of constrained Willmore surfaces with the same conformal class and
same Willmore energy as the homogenous torus corresponding to the parameter κ0. So
for κ0 6= 0 and κ0 ∼ 0, we get a contradiction to the fact that homogenous tori are the
unique constrained Willmore minimizers up to Moebius invariance, see [NdiSch1]. Hence,
we have (4.5) must hold implying the existence of a right-neighborhood [0, ε̃2

κ0) of 0 such

that the image of [0, ε2
κ0) under the map λ̃ ∈ (−εκ0 , εκ0) −→ A1,2

(
γ1,2(λ̃, κ0(λ̃))

)
is a

right -neighborhood of Aκ01,2 := A1,2

(
γ1,2(0, κ0)

)
that we denote by [Aκ01,2, A

κ0
1,2 + ε̃3

κ0)

with 0 < ε̃2
κ0 < ε̃κ0 and ε̃3

κ0 > 0 some small real numbers. Finally, setting

Lκ01,2 = L1,2

(
γ1,2(0, κ0)

)
, and O :=

⋃
κ0 6=0, κ0∼0

[Aκ01,2, A
κ0
1,2 + ε̃3

κ0)× Lκ01,2,
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we have that O is an open neighborhood of the rectangular class (Aκ01,2, L
κ0
1,2) in the

moduli space of tori.

Remark 4.2. Since the above constructed family of candidates cover an open neighbor-
hood of

(0, b0) ∈
{

(a, b) ∈ R2 |a ≥ 0, b ≥
√

1− a2
}

b0 ∼ 1, b0 6= 1

we can parametrize it by its conformal type (a, b) , b ' 1, b 6= 1, and a ∼b 0+ instead and
denote it by f(a,b) in the following. As before in the Hopf case, due to the degeneracy of

the homogenous, the family f(a,b) is not smooth in a but rather in
√
a, see Remark

3.7.

4.2.3. Step 3: Identification of the normal variation at f b.
The family of constrained Willmore tori f(a,b) constructed here lie in the associated
family of constrained Willmore Hopf cylinders. Proposition 3.3 gives that the normal part

of the variation ḟHopf :=
(
∂λ̃ f̃

Hopf(
λ̃,κ0(λ̃)

))⊥ is given by sin(cx)~nb̃1,1 for some real constant

c. The following Lemma relate the normal variation of f(a,b) to the normal variation of

fHopf
(λ̃,κ0(λ̃))

at f b.

Lemma 4.1. For b ∼ 1 fixed and a ∼b 0+, let f(a,b) be the family of (1, 2)-equivariant
constrained Willmore tori of conformal type (a, b) lying in the associated family of certain

constrained Willmore Hopf cylinders fHopf(λ,κ0). Then there ist a c̃ ∈ R≥0 with

< ∂√af(a,b)|a=0, ~n
b
1,2 > = const · sin(c̃x)~nb1,2,

where ~nb1,2 is the normal vector of the homogenous torus with conformal class (0, b)

parametrized as a (1, 2)-equivariant surface as in (1.2) with conformal Hopf differential

q1,2 = q1,1e
2iθ.

Remark 4.3. Note that both families of surfaces are homogenous for a = 0 , i.e., a = 0
implies λ̃ = 0 or equivalently λ = λ(κ0).

Proof. Since we are considering equivariant tori and variations of these preserving the
equivariance type, we can restrict ourselves without loss of generality to the variation of
the the underlying profile curves. Recall that the conformal type of the surfaces are given
by

A1,2 =

∫
C

Ω1,2vol1,2 and L1,2 =

∫
γ1,2

ds1,2.

Let 4qt1,1 = κt + i be the conformal Hopf differential of the Hopf cylinders fHopfλ(t),κ0(t).

Then the conformal Hopf differential of the associated (1, 2)-tori are given by
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4q1,2 =
(

cos(2θt)κt − sin(2θt)
)

+ i
(

sin(2θt)κt + cos(θt)
)
.

Note that the formula for the associated family given in Section 2.1.1 is the same one as
given in (1.2) up to scaling T 2

b by a constant factor (constant in x and y).

Since b = const and the homogenous tori are degenerate, we have

Ȧ1,2 = 0 = L̇1,2.

at a = 0. This gives rise to the following

(4.7) Ȧ1,2 =

∫
γ1,2

Ω1,2vol1,2
(
γ̇1,2, γ

′) =

∫
γ1,2

Ω1,2g(1,2)

(
γ̇1,2, ~n

b
1,2

)
= 0,

and

(4.8) L̇1,2 =

∫
γ1,2

g1,2

(
γ̇′1,2, γ

′)ds = −
∫
γ1,2

κ̂1,2g1,2

(
γ̇1,2, ~n

b
1,2

)
= 0.

Since for a = 0 the family f(0,b) are homogenous, the corresponding Hopf cylinders are
homogenous too. Thus there exist a real numbers c and d such that normal variation

ḟHopf :=
(
∂λ f

Hopf
λ,κ0

)⊥
of the Hopf cylinders fHopfλ,κ0

are given by Proposition 3.3 to be

< ḟHopf , ~nb̃1,1 > = d+ sin(cx).

From this we obtain that

< ḟHopf , ~nb̃1,1 >
′′ = < γ̇1,1, ~n

b̃
1,1 >

′′ = −c2 < ḟHopf , ~nb̃1,1 > +c2d.

Since all Hopf tori are arclength parametrized, another computation shows that

< γ̇1,1, ~n
b̃
1,1 >

′′ = κ̇+ (−1− κ2
0) < γ̇1,1, ~n

b̃
1,1 >,

hence

(4.9) κ̇ =
(
− c2 + κ2

0 + 1
)

sin(cx) +
(
κ2

0 + 1
)
d.

For c2 = κ2
0 + 1 we obtain that the variation has extrinsic period 1 and the resulting

surfaces (including the associated (1, 2)-equivariant ones) are all homogenous. At the
(1, 2)-parametrized homogenous torus, we have further that

~nb1,2|a=0 = ∂
∂ R

and thus

g1,2

(
γ̇1,2, ~n

b
1,2

)
= Ṙ = const · Ω̇ = const ·

(
sin(2θ)κ̇+ 2θ̇κ̂1,2

)
,

where
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κ̂1,2 := cos(2θ)κ0 − sin(2θ)

for λ̃ = 0. Since Ȧ1,2 = 0 we obtain that

∫
γ1,2

g(1,2)

(
γ̇1,2, ~n

b
1,2

)
= 0

and therefore

sin(2θ)
(
κ2

0 + 1
)
d = −2θ̇κ̂1,2

and

Ṙ = const · sin(2θ)
(
c2 − κ2

0 − 1
)

sin(cx).

(4.10)

This proves the Lemma.

�

The normal variation of f(a,b) at f b depends only on the profile curve parameter. Moreover,
the intrinsic period of the normal variation is at most the intrinsic period of profile curve
of f(a,b). When f b is parametrized as a (1, 2)-equivariant torus (1.2) we therefore obtain

Proposition 4.2. A family of n-lobed (1, 2)-equivariant constrained Willmore tori f̂nλ(t),κ0(t)

deforming the homogenous torus given by (1.2) with Ȧ1,2 = L̇1,2 = 0 has normal variation
given by

< ∂√af(a,b)|a=0, ~n
b
1,2 > = sin

(
r2 + 4s2

2rs
nx

)
,

up to invariance.

4.2.4. Step 4: The Lagrange multiplier converge from below.
We have so far constructed a 2-parameter family f(a,b) of constrained Willmore tori cov-
ering an open set of the moduli space of conformal tori. Now we want to show that their
Π1-Lagrange multiplier is converging from below as the conformal class (a, b) −→ (0, b)
for a fixed b ∼ 1, b 6= 1. To do so, we show that Lagrange multiplier function α(t) of the
subfamily f t of the candidates with conformal class (t2, b) has a maximum at t = 0.
Thus in a first step we show that α(t) has a critical point at t = 0.

Lemma 4.2. For b ∼ 1 fixed let f t = f(t2,b) be a sub family of candidate surfaces with

f(0,b) = f b. Then the corresponding Lagrange multipliers satisfy

α̇ = β̇ = 0.

Proof. We first observe that β̇ = 0 since

β̇ = ∂t ∂b |t=0W
(
f t
)

= ∂b ∂t |t=0W
(
f t
)

=
(
2t ∂b α

b
)
|a=0 = 0.
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Therefore, α̇ = 0 is equivalent to µ̇θ = λ̇θ = 0. Since the candidate surfaces lie in the
associated family of constrained Willmore Hopf surfaces, the conformal Hopf differential
of f t is given by

qt =
(
κt(x) + i

)
e2iθt .

The candidates surfaces are all constrained Willmore and thus satisfies the Euler Lagrange
equation for all t we have by (2.2):

(4.11) (qt)′′ + 8
(
|qt|2 + Ct

)
qt − 8ξtqt = 2 Re

(
qt(−µtθt + iλtθt)

)
,

with µtθt , λ
t
θt , C

t and ξt being the parameters of the (1, 2)-equivariant surfaces given
by (2.3) and µt, λt, Ct0 and ξt0 being the parameters of the associated Hopf surfaces.
To abbreviate the notations we omit t whenever t = 0 , e.g., µθ = µ0

θ0 , λθ = λ0
θ0 .

Moreover, let (̇) and (̈) denote the derivatives w.r.t. t evaluated at t = 0.

Differentiating equation 4.11 by t at t = 0 once the real and imaginary parts yields the
following two equations

q̇′′1 + 24q̇1q
2
1 + 8q̇1q

2
2 + 16q̇2q1q2 + 8Cq̇1 + 8Ċq1 + 8ξq̇2 + 8ξ̇q2 + 2µ̇θq1 + 2µθ q̇1 + 2λ̇θq2 + 2λθ q̇2 = 0,

q̇′′2 + 24q̇2q
2
2 + 8q̇2q

2
1 + 16q̇1q1q2 + 8Cq̇2 + 8Ċq2 − 8ξq̇1 − 8ξ̇q1 = 0,

(4.12)

with q1 := Re(q0), q2 := Im(q0), q̇1 := d
dt |t=0 Re(qt) and q̇2 := d

dt |t=0 Im(qt).
Proposition 4.2.3 gives

(4.13) q̇2 = c1 sin(c2x) and q̇1 = c1 sin(c2x) + c4θ̇

with non zero real constants c1, c2 and c4 < 0. For the associated family of constrained
Willmore Hopf surfaces we can compute (together with (2.3)) that

C = C0 + 1
8 Re

(
(e4iθ − 1)(−µ− iλ)

)
, and ξt = c6κ+ 1

8 Im
(
(e4iθ − 1)(−µ− iλ)

)
where we have used, that ξ0 = c6κ at Hopf cylinders with c6 > 0. Hence,

8Ċ = −µ̇θ + µ̇, 8ξ̇ = c6κ̇− λ̇θ + λ̇ and ξ0 = const.

Therefore, we can split (4.13) into sin(c2x) and a constant part. And since 1 ⊥ sin(c2x) ,
both needs to vanish for (4.13) to hold. The constant part of (4.13) gives rise to the
following equations

c4θ̇
(

24q2
1 + 8q2

2 + 8C + 2µθ + c6
1

2 sin(2θ)q1q2

)
+ µ̇θq1 + µ̇q1 + λ̇θq2 + λ̇q2 = 0

c4θ̇
(

16q1q2 − 8ξ0 − c6
1

2 sin(2θ)q
2
1

)
− µ̇θq2 + µ̇q2 + λ̇θq1 − λ̇q1 = 0.

(4.14)
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It can be computed that

cβ = −µθq1 − λθq2 and cβ̇ = −µ̇θq1 − λ̇θq2 = 0.

Therefore if θ̇ = 0 we would obtain

µ̇q1 + λ̇q2 = 0

µ̇θq1 + λ̇θq2 = 0

−µ̇θq2 + µ̇q2 + λ̇θq1 − λ̇q1 = 0,

(4.15)

from which we can immediately deduce that µ̇θ = µ̇ and λ̇θ = λ̇. Moreover, with

µ̇ = cos(4θ)µ̇θ + sin(4θ)λ̇θ + 4θ̇λθ

λ̇ = − sin(4θ)µ̇θ + cos(4θ)λ̇θ − 4θ̇µθ
(4.16)

and θ ∈ (0, π2 ) this is equivalent to µ̇θ = λ̇θ = 0. It thus remains to show θ̇ = 0.

Inserting (4.16) into (4.14) we obtain together with β̇ = 0 that

θ̇
[
24c4q

2
1 + 8c4q

2
2 + 8Cc4 + 2c4µθ + c6

1
2 sin(2θ)q1q2

]
+ sin(4θ)λ̇θq1 − sin(4θ)µ̇θq2 = 0

θ̇
[
16c4q1q2 − 8c4ξ

0 + 4µθq1 + 4λθq2 − c6
1

2 sin(2θ)q
2
1

]
− 2 sin2(2θ)µ̇θq2 + 2 sin2(2θ)λ̇θq1 = 0.

(4.17)

Multiplying the second equation by sin(4θ)

2 sin2(2θ)
= cos(2θ)

sin(2θ) and then subtracting both equa-

tions yields either

24c4q
2
1 + 8c4q

2
2 + 8Cc4 + 2c4µθ + c6

1

sin2(2θ)
κ̂0q1

−cos(2θ)

sin(2θ)

(
16c4q1q2 − 8c4ξ

0 + 4µθq1 + 4λθq2

)
= 0,

(4.18)

or

θ̇ = 0.

Thus in order to show θ̇ = 0 we need to show that (4.18) does not hold. We show this for
f0 being the Clifford torus. Then (4.18) cannot hold by continuity of the candidates for
all homogenous tori close to the Clifford torus. Due to the Clifford torus being Willmore
we have

−2 Re
(
q(−µθ + iλθ)

)
= 2λθq2 + 2µθq1 = 0
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and since the Clifford torus is minimal in S3 we have moreover

ξ0 = const ·H = 0.

Thus (4.18) reduces to

24c4q
2
1 + 8c4q

2
2 + 8Cc4 + 2c4µθ + c6

1

sin2(2θ)
κ̂0q1 −

cos(2θ)

sin(2θ)
16c4q1q2 = 0,

The Euler-Lagrange equation (4.11) for the Clifford torus gives

q2
1 + q2

2 + C = 0

and together with

q1 −
cos(2θ)

sin(2θ)
and q2 = − 1

sin(2θ)

we obtain

−16c4q1
1

sin(2θ) + 2c4µθ + c6
1

sin2(2θ)
κ̂0q1 = 0

Now since an easy computation shows that c4 < 0, c6 > 0 and µθ, λθ > 0, q1 < 0,
q2 > 0 and κ̂0 > 0 we obtain that all summands are actually strictly negative leading
to a contradiction.

�

Now we show that α(t) indeed has a maximum at t = 0.

Proposition 4.3. For b ∼ 1 fixed let f t = f(t2,b) be a sub family of candidate surfaces

with f(0,b) = f b. Further, let α(t) and β(t) be the corresponding Lagrange multipliers.
Then we have

β̈ < 0 and α̈ < 0.

Proof. Using similar computations as in Lemma 4.2 can show that

β̈ = ∂b α
b.

Since

α
1
b = αb,

we obtain that β̈ = 0 at b = 1. On the other hand, the stability computations in
[HelNdi, Section 3] shows that αb is decreasing in b for b > 1. Therefore,

β̈ < 0

for b > 1 due to the real analyticity of the candidate surfaces. As in the proof of Lemma
4.2 it is easy to compute that there exists a positive constant c with
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(4.19) cβ̈ = −µ̈θq1 − λ̈θq2 ≤ 0.

Similar computations show that there is a other positive constant c̃ such that

c̃α̈ = λ̈θq1 − µ̈θq2.

Therefore (4.19) implies,

c̃α̈ ≤ − 1
q2
µ̈θ(q

2
1 + q2

2).

It thus remains to show µ̈θ > 0. The candidate surfaces constructed in the previous
sections are associated to constrained Willmore Hopf cylinders, i.e., constrained elastic
curves in S2, with geodesic curvature κ being wavelike. Therefore the discriminant
D(t) = g3

2(t)− 27g2
3(t) of the corresponding Weierstrass ℘-functions is non-positive and

has a maximum at homogenous solutions, i.e.,

Ḋ = 0 and D̈ < 0

The candidate surfaces all satisfy the closing condition:

Φ
(
µθ(t), g2(t), g3(t)

)
≡ 2π.

Replacing the parameters g2, g3 by
√
−D and L1,2 we obtain

Φ
(
µθ(t),

√
−D(t), L1,2(t)

)
≡ 2π.

Note that for candidate surfaces Φ is continuous in µθ,
√
−D and L1,2 is real analytic

in its parameters, since at D = 0 we have that
√
−D. has the correct singularity. By

Lemma 4.2

θ̇ = µ̇θ = λ̇θ = 0.

Moreover

L̇1,2 = 0,

and thus Φ̇ = 0 is equivalent to ∂√−D Φ|√−D=0 = 0. Therefore, the second derivative of
Φ is computed to be:

Φ̈ = µ̈θ ∂µθ Φ +
( ˙√−D∂2√

−D
√
−D Φ

)
|√−D=0 + L̈1,2 ∂L1,2 Φ = 0,

with ˙√−D > 0. The conformal class of the candidate surfaces is given by

(a, b) = c
(
q1A1,2 + q2L1,2, q2A1,2 − q1L1,2

)
since b ≡ const, and a ≥ 0 for f t we obtain
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q2Ä1,2 − q1L̈1,2 = 0, and q1Ä1,2 + q2L̈1,2 > 0.

From this we can conclude L̈1,2 > 0 and hence

∫
γ1,2

R̈ ds > 0 and also

∫
γ1,2

(
∂2√
−D
√
−DR

)
|√−D=0 ds > 0.

Now, a straight forward computation shows

(
∂2√
−D
√
−D Φ

)
|√−D=0.

For b ∼ 1 we have already computed

∂µθ Φ|µθ=µθ(fb) < 0 and ∂L1,2 Φ|L1,2=L1,2(fb) > 0,

see Proposition 4.1. Therefore, we obtain

µ̈θ > 0.

�

References

[AmbPro] A. Ambrosetti, G. Prodi. A Primer of Nonlinear Analysis, Textbook, Cambridge University
Press, Cambridge, 1995.

[BauKuw] M. Bauer, E. Kuwert. Existence of minimizing Willmore surfaces of prescribed genus, Int.
Math. Res. Not., (2003), pp 553–576.

[BerRiv] Y. Bernard, T. Rivi‘ere. Energy quantization for Willmore surfaces and application Annals
of Math., 180 (2014), no. 1, pp 87–136.

[Bla] W. Blaschke. Vorlesungen über Differentialgeometrie. Vol. 3, Springer-Verlag, Berlin, 1929.
[Bob] A. I.Bobenko. All constant mean curvature tori in R3, §3, H3 in terms of theta-functions,

Math. Ann., 290 (1991), no. 2, pp 209–245.
[BoPePi] C. Bohle, F. Pedit, U. Pinkall. The spectral curve of a quaternionic holomorphic line bundle

over a 2-torus, Manuscripta Math., 130 (2009), pp 311–352.
[Boh] C. Bohle. Constrained Willmore tori in the 4-sphere, Journal of Differential Geometry, 86

(2010), pp 71–131.
[BoLePePi] C. Bohle, K. Leschke, F. Pedit, U. Pinkall. Conformal maps of a 2-torus into the 4-sphere,

J. Reine Angew. Math., 671 (2012), pp 1–30.
[Bre] S. Brendle. Embedded minimal tori in S3 and the Lawson conjecture, Acta Math., 211 (2013),

no. 2, 177–190.
[Bry] R. Bryant. A duality theorem for Willmore surfaces, Journal of Differential Geometry, 20

(1984), pp 23–53.
[BuPePi] F. Burstall, F. Pedit and U. Pinkall. Schwarzian Derivatives and Flows of Surfaces, Contemp.

Math., 308 (2002), pp 39–61.
[Ch] B. Y. Chen. Some conformal invariants of submanifolds and their applications, Bollettino

dell Unione Matematica Italiana, 10 (1974), no. 4, pp. 380–385.
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