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We study immersed tori in 3-space minimizing the Willmore 
energy in their respective conformal class. Within the rectan-
gular conformal classes (0, b) with b ∼ 1 the homogeneous tori 
fb are known to be the unique constrained Willmore minimiz-
ers (up to invariance). In this paper we generalize this result 
and show that the candidates constructed in [14] are indeed 
constrained Willmore minimizers in certain non-rectangular 
conformal classes (a, b). Difficulties arise from the fact that 
these minimizers are non-degenerate for a ̸= 0 but smoothly 
converge to the degenerate homogeneous tori fb as a −→ 0. 
As a byproduct of our arguments, we show that the mini-
mal Willmore energy ω(a, b) is real analytic and concave in 
a ∈ (0, ab) for some ab > 0 and fixed b ∼ 1, b ̸= 1.
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1. Introduction and statement of the results

In the 1960s Willmore [38] proposed to study the critical values and critical points of 
the bending energy

W(f) =
∫

M

H2dA,

the average value of the squared mean curvature H of an immersion f : M −→ R3 of 
a closed surface M . In this definition we denote by dA the induced volume form and 
H := 1

2 tr(II) with II the second fundamental form of the immersion f . Willmore showed 
that the absolute minimum of this functional is attained at round spheres with Willmore 
energy W = 4π. He also conjectured that the minimum over surfaces of genus 1 is 
attained at (a suitable stereographic projection of) the Clifford torus in the 3-sphere 
with W = 2π2. It soon was noticed that the bending energy W (by then also known as 
the Willmore energy) is invariant under Möbius transformations of the target space – in 
fact, it is invariant under conformal changes of the metric in the target space, see [3,8]. 
Thus, it makes no difference for the study of the Willmore functional which constant 
curvature target space is chosen.

Bryant [7] characterized all Willmore spheres as Möbius transformations of genus 0
minimal surfaces in R3 with planar ends. The value of the bending energy on Willmore 
spheres is thus quantized to be W = 4πk, with k ≥ 1 the number of ends. With the 
exception of k = 2, 3, 5, 7 all values occur. For more general target spaces the variational 
setup to study these surfaces can be found in [24]. The first examples of Willmore sur-
faces not Möbius equivalent to minimal surfaces were found by Pinkall [28]. They were 
constructed via lifting elastic curves γ with geodesic curvature κ on the 2-sphere under 
the Hopf fibration to Willmore tori in the 3-sphere, where elastic curves are the critical 
points for the elastic energy

E(γ) =
∫

γ

(κ2 + 1)ds
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and s is the arclength parameter of the curve. Later Ferus and Pedit [11] classified all 
Willmore tori equivariant under a Möbius S1-action on the 3-sphere (for the definition 
of S1-action see [12]).

The Euler-Lagrange equation for the Willmore functional

∆H + 2H(H2 − K) = 0,

where K denotes the Gaußian curvature of the surface f : M −→ R3 and ∆ its Laplace-
Beltrami operator, is a 4th order elliptic PDE for f since the mean curvature vector H⃗ is 
the normal part of ∆f . Its analytic properties are prototypical for non-linear bi-Laplace 
equations. Existence of a minimizer for the Willmore functional W on the space of smooth 
immersions from 2-tori was shown by Simon [36]. Bauer and Kuwert [2] generalized this 
result to higher genus surfaces. After a number of partial results, e.g. [22], [25], [33], [37], 
[10], Marques and Neves [23], using Almgren-Pitts min-max theory, gave a proof of the 
Willmore conjecture in 3-space in 2012. An alternate strategy was proposed in [35].

A more refined, and also richer, picture emerges when restricting the Willmore func-
tional to the subspace of smooth immersions f : M −→ R3 inducing a given conformal 
structure on M . Thus, M now is a Riemann surface and we study the Willmore energy 
W on the space of smooth conformal immersions f : M −→ R3 whose critical points 
are called (conformally) constrained Willmore surfaces. The conformal constraint aug-
ments the Euler-Lagrange equation by ω ∈ H0(K2

M ) paired with the trace-free second 
fundamental form I̊I of the immersion

∆H + 2H(H2 − K) =< ω, I̊I > (1.1)

with H0(K2
M ) denoting the space of holomorphic quadratic differentials. In the Geomet-

ric Analytic literature, the space H0(K2
M ) is also referred to as STT

2
(
geuc

)
the space of 

symmetric, covariant, transverse and traceless 2-tensors with respect to the euclidean 
metric geuc. Since there are no holomorphic (quadratic) differentials on a genus zero 
Riemann surface, constrained Willmore spheres are the same as Willmore spheres. For 
higher genus surfaces this is no longer the case: constant mean curvature surfaces (and 
their Möbius transforms) are constrained Willmore, as one can see by choosing ω := I̊I
as the holomorphic Hopf differential in the Euler Lagrange equation (1.1), but not Will-
more unless they are minimal in a space form. Bohle [5], using techniques developed in 
[6] and [4], showed that all constrained Willmore tori have finite genus spectral curves 
and are described by linear flows on the Jacobians of those spectral curves.1 Thus the 
complexity of the map f heavily depends on the genus its spectral curve Σ – the spectral 
genus – giving the dimension of the Jacobian of Σ and thus codimension of the linear 
flow. The simplest examples of constrained Willmore tori, which have spectral genus 
zero, are the tori of revolution in R3 with circular profiles – the homogeneous tori. Those 

1 For the notion of spectral curves and the induced linear flows on the Jacobians see [6].
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Fig. 1. The vertical stalk represents the family of homogeneous tori, starting with the Clifford torus at the 
bottom. Along this stalk are bifurcation points from which embedded Delaunay tori continue the homoge-
neous family. The rectangles indicate the conformal types. The family of surfaces starting at the Clifford 
torus, bifurcating at the first branch point has Willmore energy below 8π and is conjectured to be the 
minimizer in their respective conformal class. Image by Nicholas Schmitt.

are stereographic images of products of circles of varying radii ratios in the 3-sphere and 
thus have constant mean curvature as surfaces in the 3-sphere. Starting at the Clifford 
torus, which has mean curvature H = 0 and a square conformal structure, these homo-
geneous tori in the 3-sphere parametrized by their mean curvature H “converge” to a 
circle as H −→ ∞ and thereby sweeping out all rectangular conformal structures. Less 
trivial examples of constrained Willmore tori come from the Delaunay tori of various lobe 
counts (the n-lobed Delaunay tori) in the 3-sphere whose spectral curves have genus 1, 
see Fig. 1 and [16] for their definition.

Existence and regularity of a W 2,2 ∩ W 1,∞ minimizer f : M −→ R3 for a prescribed 
Riemann surface structure2 (constrained Willmore minimizer) was shown by [21], [18], 
[30], [31] and [34] under the assumption that the infimum Willmore energy in the confor-
mal class is below 8π. The latter assumption ensures that minimizers are embedded by 
the Li and Yau inequality [22]. A broader review of analytic results for Willmore surfaces 
can be found in the lecture notes [21] and [32], see also the references therein.

Ndiaye and Schätzle [26,27] identified the first explicit constrained Willmore minimiz-
ers (in every codimension) for rectangular conformal classes in a neighborhood (with size 
depending on the codimension) of the square class to be the homogeneous tori. These 

2 For the notion of W 2,2 ∩ W 1,∞ immersions see [21], [29] or [18].
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tori of revolution with circular profiles, whose spectral curves have genus 0, eventually 
have to fail to be minimizing in their conformal class for H >> 1, since their Willmore 
energy can be made arbitrarily large and any rectangular torus can be conformally em-
bedded into R3 (or S3) with Willmore energy below 8π, see [16,27]. Calculating the 2nd 
variation of the Willmore energy W along homogeneous tori Kuwert and Lorenz [19]
showed that zero eigenvalues only appear at those conformal classes whose rectangles 
have side length ratio 

√
k2 − 1 for an integer k ≥ 2, at which the index of the surface 

increase. These are exactly the rectangular conformal classes from which the k-lobed De-
launay tori (of spectral genus 1) bifurcate. Any of the families starting from the Clifford 
torus, following homogeneous tori to the k-th bifurcation point, and continuing with the 
k-lobed Delaunay tori sweeping out all rectangular classes (see Fig. 1) “converge” to a 
neckless of spheres as conformal structure degenerates. The Willmore energy W of the 
resulting family3 is strictly monotone and satisfies 2π2 ≤ W < 4πk, see [16,17]. Thus 
for k = 2 the existence of 2-lobed Delaunay tori implies that the infimum Willmore 
energy in every rectangular conformal class is always below 8π and hence there exist 
embedded constrained Willmore minimizers for these conformal types by [21] and [31]. 
It is conjectured that the minimizers for W in rectangular conformal classes are given 
by the 2-lobed Delaunay tori. For a more detailed discussion of the 2-lobe-conjecture see 
[15]. Surfaces of revolution with prescribed boundary values was studied in [9].

In this paper we turn our attention to finding explicit constrained Willmore minimizer 
in non-rectangular conformal classes. Putative minimizers were constructed in [14]. Our 
main theorem is the following:

Theorem 1.1 (Main Theorem). For every b ∼ 1 and b ̸= 1 there exists ab > 0 such that 
for every a ∈ [0, ab) the (1, 2)-equivariant tori of intrinsic period 1 (see [14], Fig. 2 and 
Fig. 3) with conformal class (a, b) are constrained Willmore minimizers. Moreover, for 
b ∼ 1 and b ̸= 1 fixed, the minimal Willmore energy map

ω(·, b) : [0, ab) −→ R+,

a +−→ ω(a, b)

is concave and for a ̸= 0 it is real analytic.

Definition 1.1. Let Π = (Π1, Π2) denote the projection map from the space of immersions 
to the Teichmüller space. For α, β ∈ R we use the abbreviations

Wα,β(f) := W(f) − αΠ1(f) − βΠ2(f)
Wα(f) := W(f) − αΠ1(f).

(1.2)

A crucial quantity to be investigated is the following

3 For simplicity we call this family in the following the k-lobed Delaunay tori.
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Definition 1.2. Let βb be the Π2-Lagrange multiplier of the homogeneous torus f b. Then 
we define

αb := max {α | δ2Wα,βb ≥ 0}.

With these notations the following Corollary is obtained as a further byproduct of 
the arguments proving the Theorem.

Corollary 1.1. For every b ∼ 1 fixed there exists ab > 0 small such that for all α < αb

the minimization problem

Minb := inf{ Wα(f)| f : T 2
b := C/(2πZ+ 2πbiZ) −→ S3 smooth immersion with

0 ≤ Π1(f) ≤ ab and Π2(f) = b }
(1.3)

is attained at the homogeneous torus f b.

The above Theorem and Corollary extend the results in [26] which states that the 
homogeneous tori minimizes the Willmore energy in their respective rectangular confor-
mal class in a neighborhood of the square one. The main difference between [26] and our 
case here is that homogeneous tori as isothermic surfaces are degenerate w.r.t. to the 
projection to Teichmüller space. Thus by relaxing the minimization problem, Ndiaye and 
Schätzle were able to restrict to a space where isothermic surfaces solve the relaxed Euler-
Lagrange equation and become non-degenerate w.r.t. the associated constraint. Hence 
they could use the existence and regularity result of [21] and the compactness result 
of [26] to obtain a family of abstract minimizers of the constrained Willmore problem 
smoothly close to the Clifford torus. Furthermore, they show that smoothly close to 
the Clifford torus there exist only one unique 1-dimensional family of constrained Will-
more tori which are also critical with respect to the relaxed problem using the implicit 
function theorem. Therefore the abstract minimizers must coincide with the family of 
homogeneous tori.

This is in stark contrast to the case of non-rectangular conformal types. In fact, 
while the unique family of constrained Willmore minimizers obtained in [26] consists of 
isothermic surfaces, candidates surfaces with non-rectangular class are necessarily non-
isothermic, see [14]. Further, it is well known within the integrable systems community 
that there exist various families of constrained Willmore tori deforming4 the Clifford 
torus covering the same conformal types, as also discussed in [14].

These known families consist of tori given by the preimage of (constrained) elastic 
curves on S2 under the Hopf fibration, and are isothermic if and only if they are homo-
geneous [13]. Moreover, in contrast to tori of revolution, every conformal structure on 

4 By deforming a surface f we mean a smooth family of surfaces containing f .
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Fig. 2. Two (1, 2)-equivariant constrained Willmore tori (with intrinsic period 1). The tori lie in a 2-parameter 
family of surfaces deforming the Clifford torus. This family minimizes the Willmore functional in the re-
spective conformal classes for surfaces “close enough” to the Clifford torus. Images by Nick Schmitt.

Fig. 3. Equivariant Willmore tori constructed by Ferus and Pedit [11]. Each of these surfaces lie in a 1-
parameter family deforming a homogeneous torus. Images by Nick Schmitt.

a torus can be realized by a constrained Willmore Hopf torus [13]. It has been conjec-
tured by Franz Pedit, Ulrich Pinkall and Martin U. Schmidt that constrained Willmore 
minimizers should be of Hopf type. Though we disprove this conjecture in this paper, 
the actual minimizers we construct lie in the associated family of constrained Willmore 
Hopf tori, where the Hopf differential of the minimizer is just the one of the associated 
Hopf surface rotated by a phase. It turns out that the various families deforming the 
Clifford torus mentioned before can be analytically distinguished by looking at their limit 
Lagrange multiplier as they converge to the homogeneous tori at rectangular conformal 
classes. This suggests that to determine the non-rectangular constrained Willmore mini-
mizers we need more control on the abstract minimizers than in the Ndiaye-Schätzle case 
[26], namely the identification of the limit Lagrange multiplier to be exactly αb rather 
than just bounded from above by αb.

The paper is organized as follows. In the second section we state the main observations 
leading to a strategy to prove the Main Theorem. It turns out that the degeneracy of 
an isothermic surface with respect to a penalized Willmore functional (i.e., the second 
variation has non-trivial kernel) is crucial for the existence of families deforming it. We 
also observe that the Lagrange multiplier is given by the derivative of Willmore energy 
with respect to the conformal class. These two properties provide sufficient information 
to characterize the possible limit Lagrange multipliers (αb, βb) for a family of constrained 
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Willmore minimizers converging to a homogeneous torus f b, which we compute in the 
third section. In the fourth and fifth section we prove the Main Theorem 1.1. Candidate 
surfaces f(a,b) parametrized by their conformal class (a, b), with b ∼ 1, b ̸= 1 and a ∼b 0+
have been constructed in [14] satisfying

• f(0,b) = f b is homogeneous,
• f(a,b) is non degenerate for a ̸= 0, and f(a,b) −→ f b smoothly as a −→ 0,
• for every b ∼ 1, b ̸= 1 fixed and a ̸= 0, the corresponding Lagrange multipliers α(a,b), 

and β(a,b) satisfy

α(a,b) ↗ αb and β(a,b) −→ βb, as a −→ 0.

This family is in fact real analytic for a > 0 and α(a,b) is shown to be monotonically 
decreasing in a.5

Thus the proof of Theorem 1.1 consists of two steps

(1) Classification:
We classify all solutions f of the constrained Euler-Lagrange equation satisfying
• f is close to a stable6 homogeneous torus f b (b ̸= 1) in W 4,2

• its Lagrange multiplier (α, β) is close to (αb, βb) and α ≤ αb

via implicit function theorem and bifurcation theory. For b ∼ 1, b ̸= 1 fixed we obtain 
a unique branch of such solutions f(a, b) parametrized by its conformal type which 
therefore must coincide with the family of candidate surfaces f(a,b).

(2) Global to Local:
We show the existence of constrained Willmore minimizers f (a,b) with conformal 
structure (a, b) with b ∼ 1, b ̸= 1 and a ∼b 0+ such that their Lagrange multipliers 
α(a,b) converge (up to a zero set) to αb as a −→ 0 (and as the surfaces “converge” 
to f b). Thus for b ∼ 1, b ̸= 1 fixed these abstract minimizers can be identified for 
almost every a ∼b 0+ to coincide with the family f(a, b) = f(a,b). By continuity of 
the minimal Willmore energy ω(a, b) [21] (and by the regularity of the candidates) 
we then obtain that the candidate surfaces f(a,b) minimize for every a ∼b 0+.

Acknowledgments
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attention to the topic of this paper and for helpful discussions. We would also like to thank 
Dr. Nicholas Schmitt for supporting our theoretical work through computer experiments 
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5 We can assume without loss of generality that a ≥ 0. The choice of a sign corresponds to the choice of 
an orientation on the surface and is equivalent to choosing δ2Π1(f(0,b)) > 0.
6 By stability we mean that δ2Wβb > 0 up to invariance.
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2. Strategy and main observations

In this section we state key ideas and the strategy for the proof of the Main Theorem 
(Theorem 1.1). We follow the notations used in [19].

The Teichmüller space of tori can be identified with the upper half plane H2. Thus 
let

Π(f) =
(Π1(f),Π2(f)

)

be the projection map of an immersion f : T 2 −→ S3 to H2 such that the Clifford torus

f1 : T 2
1 = C/

(√
2πZ+

√
2πiZ

)
−→ S3 ⊂ C2

parametrized by

f1(x, y) = 1√
2

(
e

ix√
2 , e

iy√
2

)

is mapped to Π(f1) = (0, 1). Then we can write the Euler-Lagrange equation for a 
constrained Willmore torus as

δW =< ω, I̊I >= αδΠ1 + βδΠ2, (2.1)

with Lagrange multipliers α and β. The surface is non-isothermic if and only if the 
Lagrange multipliers are uniquely determined (after choosing a base in H2). At the 
Clifford torus, and more generally, at homogeneous tori we have δΠ1 = 0 and thus the 
α-Lagrange multiplier can be arbitrarily chosen. As already discussed before, it is well 
known that there exist various families of (non-isothermic) constrained Willmore tori 
deforming a homogeneous torus. These families can be distinguished by the limit of 
their α-Lagrange multiplier as they converge smoothly to the homogeneous torus. The 
obstructions for such families to exist and how these limit Lagrange multipliers relate to 
their Willmore energy is summarized in the following Lemma. Though the proof of the 
Lemma 2.1 is trivial, these observations give the main intuition for the dependence of 
the minimum Willmore energy on the conformal classes.

Lemma 2.1 (Main observation). Let f̃ (a,b) be a family of smooth constrained Willmore 
immersions with conformal type

(a, b) =: (ã2, b) ∈ [0, a20) × (1 − b0, 1 + b0)

for some positive numbers a0, b0 ∈ R such that the map
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(ã, b) +−→ f̃ (a,b) ∈ C2 (
[0, a0) × (1 − b0, 1 + b0),W 4,2)

,

and δΠ1(
f̃ (a,b)) = 0, but δΠ2(

f̃ (a,b)) ̸= 0 for a ̸= 0. Further, let α̃(a, b) and β̃(a, b) be 
the corresponding Lagrange multipliers satisfying

(ã, b) +−→ α̃(a, b), β̃(a, b) ∈ C2 (
[0, a0) × (1 − b0, 1 + b0),W 4,2)

,

and ω̃(a, b) := W
(
f̃ (a,b)). Then we obtain

(1)

∂ω̃(a, b)
∂a

= α̃(a, b) for a ̸= 0 and lim
ã→0

∂ω̃(a, b)
∂a

= α̃(0, b) =: α̃b ∀b,

(2) ∂ω̃(a, b)
∂b

= β̃(a, b) for a ̸= 0 and lim
a→0

∂ω̃(a, b)
∂b

= β̃(0, b) =: β̃b ∀b,

(3) ϕb := ∂ã f (a,b)|a=0 satisfies

δ2
(
Wα̃b,β̃b

) (
f̃ (0,b))(ϕb,ϕb) = 0 ∀b.

Proof. The proof only uses the definition of the family, the constrained Euler-Lagrange 
equation and its derivatives. By assumption we have that ∂k

ã ∂l
b f̃

(a,b) exists and is con-
tinuous on

[0, a0) × (1 − b0, 1 + b0) for 0 ≤ k + l ≤ 2.

Since ∂ã = 2√
a ∂a for a ̸= 0 we have that ∂a f̃ (a,b) exist for a ̸= 0 but lim

a→0
∂a f̃ (a,b)

cannot exist due to the degeneracy of f (0,b).

(1) Let ϕ := ∂f̃(a,b)

∂a for a ̸= 0. Then ∂ω̃(a,b)
∂a = δW

(
f̃ (a,b))(ϕ) for a ̸= 0 and hence by the 

constrained Euler-Lagrange equation we have:

∂ω̃(a, b)
∂a

= α̃(a, b)δΠ1(
f̃ (a,b))(ϕ) + β̃(a, b)δΠ2(

f̃ (a,b))(ϕ), for a ̸= 0.

Since Π(f̃ (a,b)) = (a, b), we obtain for a ̸= 0 that

δΠ1(
f̃ (a,b))(ϕ) = 1 and δΠ2(

f̃ (a,b))(ϕ) = 0 (2.2)

and therefore

∂ω̃(a, b)
∂a

= α̃(a, b), a ̸= 0.

Passing to the limit gives the first assertion.
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(2) This follows completely analogously to (1).
(3) In this case we test the Euler-Lagrange equation by ϕ and obtain for a ̸= 0

δW
(
f̃ (a,b))(ϕ) = α̃(a, b)δΠ1(

f̃ (a,b))(ϕ) + β̃(a, b)δΠ2(
f̃ (a,b))(ϕ).

Now differentiating this equation with respect to a yields

δ2W
(
f̃ (a,b))(ϕ,ϕ) = α̃(a, b)δ2Π1(

f̃ (a,b))(ϕ,ϕ) + β̃(a, b)δ2Π2(
f̃ (a,b))(ϕ,ϕ)

+ ∂α̃(a, b)
∂a

δΠ1(
f̃ (a,b))(ϕ) + ∂β̃(a, b)

∂a
δΠ2(

f̃ (a,b))(ϕ) for a ̸= 0.

In order to pass to the limit, it is necessary to replace ϕ by 
√
aϕ. This gives

δ2W
(
f̃ (a,b))(

√
aϕ,

√
aϕ) = α̃(a, b)δ2Π1(

f̃ (a,b))(
√
aϕ,

√
aϕ)

+ β̃(a, b)δ2Π2(
f̃ (a,b))(

√
aϕ,

√
aϕ)

+
√
a

∂α̃(a, b)
∂a

δΠ1(
f̃ (a,b))(

√
aϕ)

+
√
a

∂β̃(a, b)
∂a

δΠ2(
f̃ (a,b))(

√
aϕ).

By assumption we have

lim
ã→0

2
√
a

∂α̃(a, b)
∂a

= lim
ã→0

∂α̃(a, b)
∂ã

and lim
ã→0

2
√
a

∂β̃(a, b)
∂a

= lim
ã→0

∂β̃(a, b)
∂ã

exist and moreover, limã→0 δΠ1(
f̃ (a,b))(√aϕ) = 0 and δΠ2(

f̃ (a,b))(√aϕ) = 0 as in 
(2.2). Therefore we obtain for ã −→ 0

δ2
(
Wα̃b,β̃b

) (
f̃ (0,b))(ϕb,ϕb) = 0. !

Remark 2.1. For any family f̃ (a,b) the quantities used and computed in the above lemma 
only depend the normal part of the variation ϕ and ϕb. We will denote these normal 
variations again by ϕ and ϕb in the following.

The first assertion of the lemma states that for a any family of constrained Willmore 
tori f̃ (a,b), with the properties as in the Lemma, their Lagrange multipliers correspond 
to the derivative of the Willmore energy ω̃(a, b). At a = 0 and for b ∼ 1 fixed we have by 
[26] that the homogeneous torus f b is the unique constrained Willmore minimizer. This 
suggests that the Lagrange multipliers α̃(a, b) of a family f̃ (a,b) of putative constrained 
Willmore minimizers with f̃ (0,b) = f b should have the smallest possible limit α̃b as 
a −→ 0. A necessary (and as we will later see a sufficient) condition for such a family to 
exist is given by the third statement of Lemma 2.1, namely the degeneracy of the second 
variation of the penalized Willmore functional Wα̃b,βb .
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Remark 2.2. The limit Lagrange multiplier βb is uniquely determined as the β-Lagrange 
multiplier of the homogeneous torus f b due to the non-degeneracy of the Π2-direction. 
The discussion above suggests that the first step towards the proof of the main Theorem, 
Theorem 1.1, is to determine

αb = max
{

α | δ2Wα,βb

(
f b

)
≥ 0

}
.

It is well known that the Clifford torus, and thus all homogeneous tori smoothly close to 
the Clifford torus, are strictly stable (up to invariance). Therefore αb is strictly positive 
by fixing an orientation, i.e., Π1(f) ≥ 0. We will compute in the next section that it is 
also finite. Further, since we show in Proposition 3.1 that the kernel of δ2Wαb,βb

(
f b

)
is 

1-dimensional for b ∼ 1 and b ̸= 1 (up to invariance), the third statement of Lemma 2.1
implies that this kernel determines the normal variation of the candidate family f(a,b)
up to reparametrization. Moreover, the normal variation ϕb ∈ δ2Wαb,βb

(
f b

)
for b ̸= 1 is 

computed to have (intrinsic) period one and independent of the y-direction (see Section 3) 
of a reparametrized homogeneous torus. More precisely, for

T 2
b := C/

(
2πZ ⊕ 2π

r2 + 2irs
r2 + 4s2 Z

)

we consider the homogeneous torus f b parametrized as an (1, 2)-equivariant surface7

f b : T 2
b −→ S3,

(x, y) +−→
(
re

i
(
y+2 s

r x
)

, se
i
(
2y− r

s x
) )

.
(2.3)

The independence of ϕb w.r.t. the y-direction means that the corresponding family 
f(a,b) (with the properties of Lemma 2.1) are infinitesimally (1, 2)-equivariant. Further-
more, in our case knowing the limit Lagrange multiplier αb is tantamount to knowing 
the normal variation ϕb, since Wαb,βb is linear in αb.

For α ∈ [0, αb) the second variation δ2Wα,βb(f b) is strictly positive (up to invariance), 
thus 2-dimensional families deforming the homogeneous tori smoothly with

lim
a→0

α(a, b) = α

cannot exist. Indeed, the following Lemma shows that this is even true in W 4,2-topology. 
It can be proven by using the same arguments as in the classification part of [26, Theorem 
3.1, pp. 304–307].

Lemma 2.2. For b ∼ 1 fixed and αb defined as in Definition 1.2 let α ∈ R with α < αb. 
Then the homogeneous tori f b is the unique solution (up to invariance) of the equation

7 Equivariant surfaces are those with a 1-parameter family of isometric symmetries, we discuss these 
surfaces in [12,14]. The T 2

b used in the definition is biholomorphic to T 2
b = C/ (2πr Z ⊕ 2πsiZ). We state 

the immersion here with this lattice to emphasize that it is (1, 2)-parametrized.
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δW(f) = αfδΠ1(f) + βbδΠ2(f)

with αf ∼ α and f ∼ f b in W 4,2, Π1(f) ≥ 0 and Π2(f) = b.

At α = αb (and b ∼ 1, b ̸= 1) the situation is very different. Using Integrable Systems 
Theory we can construct a family of (1, 2)-equivariant constrained Willmore tori f(a,b)
parametrized by their conformal type (a, b) ∼ (0, b) deforming smoothly the homoge-
neous torus f b = f(0,b) such that the corresponding Lagrange multipliers α(a,b) ↗ αb

converge from below as a −→ 0. In fact, we prove even more in [14].

Theorem 2.1 ([14]). For b = s
r ∼ 1, with r2 + s2 = 1 and b ̸= 1 fixed there exists for 

a ∼b 0+ a family of (1, 2)-equivariant constrained Willmore immersions

f(a,b) : T 2
(a,b) := C/2πr

(
Z ⊕ (a+ ib)Z

)
−→ S3

such that

(
√
a, b) +−→ f(a,b) ∈ Cω

(
(0, a0) × [1, 1 + b0), C∞

Imm

)
∩ C2

(
[0, a0] × [1, 1 + b0), C∞

Imm

)
,

where C∞
Imm is the space of smooth immersions from a torus into S3 and Cω denote the 

space of real analytic maps. Moreover,

(a, b) +−→ W
(
f(a,b)

)
∈ C2

(
[0, a0] × [1, 1 + b0)

)

satisfy the following

(1) For all b ∼ 1, b ̸= 1 fixed, f(a,b) converge smoothly to the homogeneous torus f b as 
a −→ 0 given by

f b : T 2
b = T 2

(0,b) −→ S3, (x, y) +−→
(
re

i
(
2y+ s

r x
)

, se
i
(
y−2 rs x

) )
.

(2) The immersions f(a,b) are non-degenerate for a ̸= 0 and satisfy

δW(f(a,b)) = α(a,b)δΠ1 + β(a,b)δΠ2 for a ̸= 0

with Lagrange multipliers 
(
α(a,b), β(a,b)

)
such that α(a,b) ↗ αb monotonically and 

β(a,b) −→ βb as a −→ 0.

Remark 2.3. The candidates are constructed as conformal immersions from T 2
(a,b) to S3. 

Since T 2
(a,b) is C∞-diffeomorphic to T 2

b , the space C∞
Imm

(
T 2
(a,b)

)
is canonically isomorphic 

to C∞
Imm

(
T 2
b

)
, i.e., it does not depend on the conformal type of the domain. By the 

convergence of f(a,b) to f b we mean the convergence of the maps under this identification 
C∞

Imm

(
T 2
(a,b)

) ∼= C∞
Imm

(
T 2
b

)
.
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Remark 2.4. By Lemma 2.1 we obtain that
(
∂√

af(a,b)|a=0
)⊥ =: ϕb ∈ Ker

(
δ2Wαb,βb

) (
f b

)
.

Moreover Lemma 2.1 also implies that for b ∼ 1, b ̸= 1 fixed, the map a +−→ W
(
f(a,b)

)

is monotonically increasing and concave in a ∼ 0+. Hence there exist ab > 0 and small 
such that for all a ∈ [0, ab)

Wαb

(
f(a,b)

)
< Wαb

(
f b

)
. (2.4)

This means that the homogeneous tori f b cannot be the minimizer of Wαb among 
immersions f with 0 ≤ Π1(f) ≤ ab and Π2(f) = b.

At f b the second variation of Wαb,βb is degenerate. Thus a simple application of the 
implicit function theorem as in [26,27] to classify all solutions close to f b in W 4,2 is not 
possible. Instead, we use bifurcation theory from simple eigenvalues for the classification. 
For this we first show in Proposition 3.1 that the kernel of δ2Wαb,βb(f b), for b ̸= 1, 
is only 1-dimensional up to invariance. Then together with Lemma 4.1 the following 
classification result is proven:

Theorem 2.2. For b ∼ 1, b ̸= 1 fixed and up to taking ab of Remark 2.4 smaller, there 
exists (up to invariance) a unique family of non-degenerate solutions f(a, b) for a ̸= 0
to the constrained Euler-Lagrange equation (2.1) parametrized by their conformal type 
(a, b) with a ∈ [0, ab), f(a, b) ∼ f b in W 4,2 as a ∼ 0+ and f(0, b) = f b

with its Lagrange multipliers α(a, b) and β(a, b) satisfying

α(a, b) ↗ αb and β(a, b) −→ βb as a −→ 0.

In particular, the only solution f of the constrained Willmore equation with conformal 
type Π(f) = (0, b), α = αb and β = βb is the homogeneous torus f b.

Since our candidate surfaces from Theorem 2.1 have Lagrange multiplier α(a,b) ↗ αb

and smoothly converge to f b as a −→ 0 we can conclude that f(a,b) = f(a, b) for all 
a ∈ [0, ab) and b ∼ 1, b ̸= 1.

To prove the main Theorem (Theorem 1.1) it remains to show that there are abstract 
minimizers f (a,b) of the constrained Willmore problem for the conformal class (a, b) with 
b ∼ 1 and a ∈ [0, ab), which clearly exist by [21] and [31], satisfying the additional 
property that their Lagrange multipliers α(a,b) −→ αb, β(a,b) −→ βb and f (a,b) ∼ f b in 
W 4,2 as a −→ 0. Then these abstract minimizers would be covered by the classification 
result given by Theorem 2.2, and must therefore coincide with f(a, b) and the candidate 
surfaces f(a,b).

Remark 2.5. Due to technicalities we actually only show the convergence of the Lagrange 
multipliers α(a,b) −→ αb for a −→ 0 almost everywhere (and b ∼ 1 fixed). More precisely, 
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we show that α(a, b) −→ αb for a −→ 0 and a ∈ [0, ab) \ A for a suitable zero set A of 
measure zero. From this we can conclude that the abstract minimizers f (a,b) coincide for 
almost every a ∈ [0, ab) with the candidates surfaces f(a,b). Then by the continuity of 
the minimal energy ω(a, b) as shown in [21] (and real analyticity of f(a,b) for a ̸= 0) we 
obtain that f(a,b) are constrained Willmore minimizers for every a ∈ [0, ab).

The properties of the abstract minimizers are shown by considering a relaxed mini-
mization problem for a penalized Willmore functional as in the following theorem.

Theorem 2.3. For b ∼ 1 fixed and up to taking ab smaller we have that for all a ∈ [0, ab)
the minimization problem

Min(a,b) := inf
{
Wαb(f)| f : T 2

b −→ S3 smooth immersion with
0 ≤ Π1(f) ≤ a and Π2(f) = b

} (2.5)

is attained by a smooth and non-degenerate (for a ̸= 0) constrained Willmore immersion

f (a,b) : T 2
b −→ S3

of conformal type (a, b) with Lagrange multipliers α(a,b) ↗ αb, β(a,b) −→ βb for almost 
every a −→ 0 and f (a,b) −→ f b in W 4,2 for almost every a ∈ [0, ab).

The minimizers with respect to the penalized functional Wαb automatically minimize 
the plain constrained Willmore problem. We briefly discuss the main ingredients for the 
proof of Theorem 2.3: By the work of Kuwert-Schätzle [20] and Ndiaye-Schätzle [26]
we obtain the existence of the minimizers f (a,b). Because of Equation (2.4) and the 
classification (Theorem 2.2), these minimizers are always attained at the boundary, i.e., 
Π1(

f (a,b)) = a. This together with the relaxation of our constraint imply that Min(a,b)
is monotonic. Due to this monotonicity of Min(a,b) we obtain that the minimal Willmore 
energy ω(a, b) is almost everywhere differentiable with respect to a. In a second step 
we show that ∂a ω(a, b), where it exists, corresponds to α(a,b) by constructing a smooth 
family of surfaces f̄ (a,b) whose Willmore energy approximates ω(a, b) at a0 up to second 
order. By the monotonicity of Min(a,b) and Lemma 2.2 we show

αsup := lim sup
a→0,a.e.

α(a,b) = αb.

For

αinf := lim inf
a→0,a.e.

α(a,b)

we use again the family f̄ (a,b) to show that

αinf ≥ 0.
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Then by Lemma 2.2 we show

αinf ≥ αb.

The remaining convergence of β(a,b) −→ βb and f (a,b) −→ f b in W 4,2 for almost every 
a −→ 0 follows from the Ndiaye-Schätzle compactness theorem ([26, Theorem 2.1]) and 
the same arguments as in the convergence part of [26, Proposition 3.3].

3. Stability properties of a penalized Willmore energy

In the computations below we mostly follow [19] and thus we refer to that paper for 
details. To fix the notations, we consider immersions

f : T 2 = C/Γ −→ (S3, gS3),

where Γ is a lattice and gS3 is the round metric on S3. Let Imm(C/Γ) denote the space 
of all such immersions and Met(C/Γ) the space of all metrics on the torus T 2. Moreover, 
let

G : Imm (T 2) −→ Met (T 2)
f +−→ f∗gS3

be the map which assigns to every immersion its induced metric. We denote by π the 
projection from the space of metrics to the Teichmülller space, which we model by the 
upper half plane H2 and with the notations above we can define Π to be:

Π = π ◦ G : Imm (T 2) −→ H2.

As in [19] we parametrize the homogeneous torus with conformal class b = s
r , and 

r2 + s2 = 1 as

f b : T 2
b −→ S3,

(x, y) +−→
(
rei

x
r , sei

y
s

)
.

(3.1)

We want to compute the value of αb which we recall to be

αb = max
{

α | δ2Wα,βb

(
f b

)
≥ 0

}
.

From [19] we can derive that αb is characterized by the fact that δ2Wαb,βb |fb ≥ 0 and 
there exists a non-trivial normal variation ϕb of f b such that

δ2Wαb,βb

(
f b

)(
ϕb,ϕb

)
= 0, and δ2Wα,βb

(
f b

)(
ϕb,ϕb

)
< 0, for α > αb.
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We will show that for b ̸= 1 the variation ϕb is unique up to scaling, isometry of 
the ambient space and reparametrization of the surface f b. We will also choose the 
orientation of f b and the variation ϕb such that δ2Π1(

f b
)

≥ 0.
While for b = 1 the exact value of α1 and the associated normal variations can be 

computed, αb for b ̸= 1 does not have a nice explicit form. Nevertheless, we will show 
that the unique normal variation ϕb characterizing αb remains the same (in a appropriate 
sense) for all b ∼ 1. In fact, the normal variation lim

a→0

(
∂a f(a,b)

)⊥ is the information we 
use to show that the Lagrange multipliers of the candidates f(a,b) converge to the αb as 
a −→ 0, see Theorem 2.1.

We first restrict to the case b = 1 – the Clifford torus. Since β1 = 0 we investigate 
for which α the Clifford torus f1 is stable for the penalized Willmore functional Wα =
W − αΠ1.

The second variation of the Willmore functional is well known. Thus we first con-
centrate on the computation of the second variation of Π1. Another well known fact is 
δΠ1(f1) = 0. Moreover, we have

D2Π1(
f1)(

ϕ,ϕ
)
=D2π1

(
G

(
f1))(

DG
(
f1)

ϕ, DG
(
f1)

ϕ
)

+Dπ1
(
G

(
f1))(

D2G
(
f1)(

ϕ,ϕ
))

The first term is computed in Lemma 4 of [19] to be

Dπ1
(
G

(
f1))(

D2G
(
f1)(

ϕ,ϕ
))

= − 1
π2

∫

T 2
1

< ∇2
12ϕ,ϕ > dµgeuc ,

for normal variations ϕ. It remains to compute the second term

D2π1
(
G

(
f1))(

DG
(
f1)

ϕ, DG
(
f1)

ϕ
)
.

By a straightforward computation (or by Lemma 2 of [19]) we have

DG
(
f1)

ϕ = −2
∫

T 2
1

< II,ϕ > dµgeuc ,

where II is the second fundamental form of the Clifford torus, which is trace free.
Let u and v ∈ S2(T 2

1 ) be symmetric 2-forms satisfying

treuc u = treuc v = 0 and v ⊥euc S
TT
2 (geuc),

where STT
2 (geuc) is the space of symmetric, covariant, transverse traceless 2-tensors with 

standard basis q1 and q2. Let g(t) = geuc + tu and qi(t) := qi
(
g(t)

)
the corresponding 

basis with respect to g(t) be as in [19, Lemma 6] (see p. 10, l. 1). Then by [19, Lemma 6]
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(p. 10, l. 2), we have that 
(
qi(t) − qi

)
⊥euc STT

2 (geuc). On the other hand we can expand 
v by

v = vi(t)qi(t) + v⊥(t), where v⊥(t) ⊥g(t) S
TT
2 (g(t)).

By assumption we have vi(0) = 0 and thus

D2π1(geuc)(u, v) =
d

dt
Dπ1(

g(t)
)
· v|t=0 = v′

1(0)Dπ1(geuc) · q1,

where

v′
1(0) = 1

4π2 < v, (q1)′(0) >L2(geuc),

as computed in [19].
Let η :=

(
q1

)′(0) and η◦ = η1q1 + η2q2 be its traceless part, then by the consequence 
of Lemma 6 of [19] given by the formula in page 11, line -12 in [19] (applied with µ = 1), 
and the formula in page 5, line 8 still in [19], we have

(diveucη◦)1 = (diveucu)2
(diveucη◦)2 = (diveucu)1.

(3.2)

For u = u1q1 + u2q2 we obtain,

(diveucu)1 = ∂2u1 − ∂1u2, (diveucu)2 = ∂1u1 + ∂2u2,

and therefore the Equations (3.2) become

∂2η1 − ∂1η2 = ∂1u1 + ∂2u2

∂1η1 + ∂2η2 = ∂2u1 − ∂1u2.
(3.3)

If we specialize to the relevant case u = u2q2 and v = v2q2 this yields
(
D2π(geuc)(u, v)

)
1 = 1

4π2 < v2q
2, η◦ >L2(geuc),

and we only need to concentrate on η2. Differentiating the Equations (3.3) and subtract-
ing these from each other gives (with u1 = 0)

∆η2 = −2∂1∂2u2. (3.4)

In order to compute η2 we restrict to normal variations ϕ = Φn⃗ for doubly periodic 
functions Φ in a Fourier space, i.e., Φ is a doubly periodic function on C with respect 
to the lattice 

√
2πZ +

√
2πiZ. The Fourier space F

(
T 2
1

)
of doubly periodic functions 
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is the disjoint union of the constant functions and the 4-dimensional spaces Akl

(
T 2
1

)
, 

(k, l) ∈ N \ {(0, 0)} with basis

sin
(√

2kx
)
cos

(√
2ly

)
, cos

(√
2kx

)
sin

(√
2ly

)
,

cos
(√

2kx
)
cos

(√
2ly

)
, sin

(√
2kx

)
sin

(√
2ly

)
.

(3.5)

We restrict to the case where Φ = Φkl ∈ Akl, (k, l) ∈ N2 \ (0, 0) in the following. Then 
for u = v = Φkln⃗ we obtain that

η2 = 1
k2+l2 ∂1∂2Φkl

solves equation (3.4). The integration constant is hereby chosen such that < η0,

q1 >L2(geuc)= 0.
Thus

D2π1(
G

(
f1))

(u, v) = 1
2π2(k2+l2)

∫

T 2
1

(
∂2
12Φkl

)
Φkl.

Put all calculations together we obtain

D2Π1(
f1)(

ϕ,ϕ
)
= − 1

π2

∫

T 2
1

(
∂2
12Φkl

)
Φkl

+ 2
π2(k2+l2)

∫

T 2
1

(
∂2
12Φkl

)
Φkl.

Remark 3.1. The second variation for general normal variation ϕ =
(∑

k,l∈N2 ak,lΦk,l

)
n⃗

is obtained by linearity. Terms obtain by pairing Φk,l and Φm,n, where (k, l) ̸= (m, n)
vanishes. To determine stability of Wα we can thus restrict ourselves without loss of 
generality to the case ϕ = Φk,ln⃗.

Clearly, if for a normal variation ϕ we have

D2Π1(
f1)(

ϕ,ϕ
)

≤ 0,

then by the stability of the Clifford torus

D2Wα

(
f1)(

ϕ,ϕ
)

≥ 0

for all α ≥ 0. Moreover, for

Φkl = a sin
(√

2kx
)
cos

(√
2ly

)
+ b cos

(√
2kx

)
sin

(√
2ly

)

+ c cos
(√

2kx
)
cos

(√
2ly

)
+ d sin

(√
2kx

)
sin

(√
2ly

)
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with k, l ∈ N \ {0} and a, b, c, d ∈ R we have:

D2Π1(
f1)(

ϕ,ϕ) = 1
π2

(
2kl − 4kl

k2+l2

) 2ab−2cd
a2+b2+c2+d2 < ϕ,ϕ >L2

≤ 1
π2

(
2kl − 4kl

k2+l2

)
< ϕ,ϕ >L2 ,

(3.6)

with equality if and only if

a = b and c = −d. (3.7)

The second variation of the Willmore functional at the Clifford torus (Lemma 3 [19]) is 
given by:

D2W
(
f1)

(ϕ,ϕ) =<
( 1
2∆2 + 3∆ + 4

)
ϕ,ϕ >L2

=
(
2(k2 + l2)2 − 6(k2 + l2) + 4

)
< ϕ,ϕ >L2 .

(3.8)

Therefore we have

D2W
(
f1)

(ϕ,ϕ) = 0,

if and only if k = ±1 and l = ±1, or k = 0 and l = ±1, or k = ±1 and l = 0.
Let c := k

l and we assume without loss of generality that c ≥ 1, then the second variation 
formulas (3.6) and (3.8) simplifies to:

D2W
(
f1)

(ϕ,ϕ) =
(
2(c2 + 1)2l4 − 6(c2 + 1)l2 + 4

)
< ϕ,ϕ >L2

D2Π1(
f1)

(ϕ,ϕ) ≤ 1
π2

(
2cl2 − 4 c

c2+1
)
< ϕ,ϕ >L2 .

Hence we obtain for α̃ = 1
4π2 α

D2Wα(f1)(ϕ,ϕ) ≥
(
2(c2 + 1)2l4 −

(
6(c2 + 1) + 8α̃c

)
l2 + 4 + 16α̃ c

c2+1

)
< ϕ,ϕ >L2 ,

with equality if and only if Φ satisfies (3.7). We still want to determine the range of α
for which Wα is stable. At α = αb the second variation of Wα has zero directions in the 
normal part which are not Möbius variations. Thus we need to determine the roots of 
the polynomial

gα̃,c(l) :=
(
2(c2 + 1)2l4 −

(
6(c2 + 1) + 8α̃c

)
l2 + 4 + 16α̃ c

c2+1

)

The polynomial gα̃,c is even, its leading coefficient is positive and its roots satisfy:

l2 = 2
c2+1 , or l2 = 1

c2+1 + 4α̃ c
(c2+1)2 . (3.9)

The values of l ∈ N for which gα̃,c is negative lie exactly between the positive roots 
of gα̃,c. So we want to determine α̃ such that this region of negativity for gα̃,c, i.e., 
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the interval between the two positive solutions l1(α̃, c) and l2(α̃, c) of (3.9) contains 
no positive integer for all c = k

l (other than those combinations leading to a Möbius 
variation). We consider two different cases:

c = 1 and c > 1.

For c = 1 the four roots of gα̃,1 are determined by:

l2 = 1, l2 = 1
2 + α̃.

Since the case of l2 = 1, i.e., l = k = ±1 corresponds to Möbius variations, we can 
rule out the existence of negative values of gα̃,1 if and only if the second root satisfies

|l| ≤ 2, or equivalently, l2 = 1
2 + α̃ ≤ 4.

From which we obtain α̃ ≤ 7
2 .

For c > 1, the first equation l2 = 2
c2+1 < 1 is never satisfied for an integer l. Thus we 

only need to consider the equation

l2 = 1
c2+1 + 4α̃ c

(c2+1)2 .

To rule out negative directions for D2W4π2α̃ it is necessary and sufficient to have

l2 = 1
c2+1 + 4α̃ c

(c2+1)2 ≤ 1

for appropriate c = k
l . For l2 = 1 we obtain that c = k

l ∈ N>1 and α̃ satisfies:

α̃ = 1
4(c

3 + c).

The right hand side is monotonic in c and therefore the minimum for c ∈ N>1 is 
attained at c = 2 which is equivalent to α̃ = 5

2 . Since 52 < 7
2 which was the maximum 

α̃ in the c = 1 case, we get that δ2W10π2
(
f1)

≥ 0. Further, at α̃ = 5
2 the (non-Möbius) 

normal variations in the kernel of δ2W10π2
(
f1)

are given by

Φ1 = sin(2
√
2y) cos(

√
2x) + cos(2

√
2y) sin(

√
2x) = sin

(√
2(x+ 2y)

)

Φ̃1 = sin(2
√
2y) sin(

√
2x) − cos(2

√
2y) cos(

√
2x) = cos

(√
2(x+ 2y)

) (3.10)

and by symmetry of k and l (we have assumed c ≥ 1):

Φ2 = sin(2
√
2x) cos(

√
2y) + cos(2

√
2x) sin(

√
2y) = sin

(√
2(2x+ y)

)

Φ̃2 = sin(2
√
2x) sin(

√
2y) − cos(2

√
2x) cos(

√
2y) = cos

(√
2(2x+ y)

)
,

(3.11)

where Φ̃i(x, y) = Φi(x, y+ π
2 ), i.e., Φi and Φ̃i differ only by a translation. We have shown 

the following Lemma.
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Lemma 3.1. At b = 1 we have that

α1 = max
{

α > 0 | δ2Wα

(
f1)

≥ 0
}

is computed to be 10π2.

The problem at b = 1 is that the kernel dimension of δ2Wα1
(
f1)

is too high. Even using 
the invariance of the equation it is not possible to reduce it to 1, which is needed for the 
bifurcation theory from simple eigenvalues. The main reason is that linear combinations 
of the two Φi cannot be reduced to a translation and scaling of Φ1 only. This situation is 
different for b ̸= 1, see Proposition 3.1, because for homogeneous tori (3.1) the immersion 
is not symmetric w.r.t. parameter directions x and y. For b ̸= 1 we have that βb ̸= 0 and 
thus the second variation of Π2 enters the calculation of

αb = max
{

α > 0|δ2Wα,βb ≥ 0
}
.

Moreover, Ak,l

(
T 2
1

)
is canonically isomorphic to Ak,l

(
T 2
b

)
via

sin
(
k
√
2x

)
cos

(
l
√
2y

)
+−→ sin

(
kx
r

)
cos

( ly
s

)
,

sin
(
k
√
2x

)
sin

(
l
√
2y

)
+−→ sin

(
kx
r

)
sin

( ly
s

)
,

cos
(
k
√
2x

)
sin

(
l
√
2y

)
+−→ cos

(
kx
r

)
sin

( ly
s

)
,

cos
(
k
√
2x

)
cos

(
l
√
2y

)
+−→ cos

(
kx
r

)
cos

( ly
s

)
.

(3.12)

To emphasis this isomorphism, we denote in the following normal variations at the 
Clifford torus by ϕ1 = Φ1n⃗1, with Φ1 a well defined function on T 2

1 , and the corresponding 
normal variations at homogeneous tori f b under the above isomorphism by ϕb = Φbn⃗b. 
Since δ2W ≥ 0 and δ2Π1 ≥ 0 we obtain the following Lemma using Lemma 4 and 7 of 
[19].

Lemma 3.2. With the notations as above let α0 ∈ R+ be fixed and Φ1 ∈ Ak,l(T 2
1 ) such 

that

δ2Wα0

(
f1)(

ϕ1,ϕ1)
> 0.

Then for b ∼ 1 close enough we also have

δ2Wα,βb

(
f b

)(
ϕb,ϕb

)
> 0,

for all α ≤ α0.
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Kuwert and Lorenz [19] computed the second derivative of Π2 for ϕb = Φb
k,ln⃗

b to be

D2Π2(
f b

)(
ϕb,ϕb

)
= 1

4π2r2

∫

T 2
b

< ∂2
11 Φb − ∂2

22 ϕb,ϕb > dA

+ r2−s2

4π2r4s2

∫

T 2
b

|ϕb|2dA

− 2(r2−s2)+cr(k,l)
4π2r4s2

∫

T 2
b

|ϕb|2dA,

(3.13)

where cr(k, l) := k2s2−l2r2

k2s2+l2r2 and ϕb ∈ Ak,l

(
T 2
b

)
n⃗b.

For b ∼ 1, i.e., r ∼ 1√
2 this yields

D2Π2(
f b

)(
ϕb
1,ϕ

b
1
)
> D2Π2(

f b
)(

ϕb
2,ϕ

b
2
)
,

for ϕb
i are the images of ϕ1

i ∈ Ker δ2Wα1
(
f1)

under the canonical isomorphism and since 
for b > 1, i.e., r < s and βb > 0 we obtain

δ2Wα1,βb

(
f b

)(
ϕb
1,ϕ

b
1
)
< δ2Wα1,βb

(
f b

)(
ϕb
2,ϕ

b
2
)
< 0.

Thus αb < α1 and we obtain that for b ∼ 1 and b ̸= 1 the kernel of δ2Wαb,βb

(
f b

)
is 

2-dimensional and consists of either ϕb
1 and ϕ̃b

1 for b > 1 or ϕb
2 and ϕb

2 for b < 1. Both 
choices of b lead to Möbius invariant surfaces. We summarize the results in the following 
Lemma:

Lemma 3.3. For b ∼ 1, b > 1 we have that αb is uniquely determined by the kernel 
of δ2Wαb,βb

(
f b

)
which is 2 dimensional and spanned (up to invariance) by the normal 

variations

ϕb
1 = sin

(√
2(xr + 2y

s )
)
n⃗b and ϕ̃b

1 = cos
(√

2(xr + 2y
s )

)
n⃗b.

Now, for b ∼ 1 consider the reparametrization of the homogeneous torus as a (2, −1)-
equivariant surface

f̃ b : C/
(
2πZ+ 2π 2r2+isr

4r2+s2 Z
)

−→ S3 ⊂ C2,

(x̃, ỹ) +−→
(
rei2ỹ+

isx̃
r , se−iỹ+ i2rx̃

s

)
.

Using these new coordinates the kernel of δ2Wαb,βb

(
f b

)
for b = s

r > 1 is given by

Φb = sin
(
( sr + 4 r

s )x̃
)
, Φ̃b = cos

(
( sr + 4 r

s )x̃
)
.
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Thus infinitesimally the ỹ-direction of the surface is not affected by a deformation with 
normal variation Φbn⃗b, i.e., the (2, −1)-equivariance is infinitesimally preserved. Since 
the space of (2, −1)-equivariant surfaces and (1, 2)-equivariant surfaces is isomorphic 
and differs only by the orientation of the surface and an isometry of S3, we will consider 
(1, 2)-equivariant surfaces for convenience. Moreover, it is important to note that for all 
real numbers c1, c2 there exist d1, d2 ∈ R such that

c1Φb
1 + c2Φ̃b

1 = c1 sin
(
( sr + 4 r

s )x̃
)
+ c2 cos

(
( sr + 4 r

s )x̃
)

= d1 sin
(
( sr + 4 r

s )x̃+ d2
)
= d1Φb

1
(
( sr + 4 r

s )x̃+ d2
)
.

(3.14)

Since homogeneous tori f̃ b satisfy f̃ b(x̃+d2, ỹ) = Mf̃ b(x̃, ỹ), where M is a isometry of 
S3, we obtain the following proposition reducing the kernel dimension of δ2Wαb,βb

(
f b

)

to 1 (up to invariance).

Proposition 3.1. For a family of f b
(s,t) = expfb

(
tϕb

1 + sϕ̃b
1
)
be a family of immersions 

from T 2
b −→ S3. Then there exist Möbius transformations M(s, t), reparametrizations 

σ(s, t), and a function c(s, t) such that

M(s, t) ◦ f b
(s,t) ◦ σ(s, t) = expfb

(
d1(s, t)ϕb

)

Proof. Let ϕb =
(
sΦb

1 + tΦ̃b
1
)
n⃗b(x̃, ỹ). Then by Equation (3.14) we obtain real functions 

d1(s, t) and d2(s, t) satisfying

ϕb =
(
d1(s, t)Φb

1
(
x̃+ d2(s, t)

))
n⃗b(x̃, ỹ).

By definition of the homogeneous tori there exists a isometry M(s, t) of S3 such that 
M(s, t) ◦ f b = f b(x̃+ d2(s, t), ỹ). Thus M induces a map, which we again denote by M , 
on the normal vector n⃗b given by

M ◦
(
n⃗b(x, y)

)
= n⃗b(x̃+ d2(s, t), ỹ).

Therefore, M ◦ ϕb =
(
d1Φb

1(x̃+ d2)
)
n⃗b(x̃+ d2, ỹ) and with

σ(s, t) : T 2
b −→ T 2

b , (x̃, ỹ) +−→ (x̃ − d2, ỹ)

we hence obtain the desired property. !

4. A classification of constrained Willmore tori

Before classifying all solutions to the Euler-Lagrange equation (2.1) with control on 
the Lagrange multiplier, we first show a technical lemma that allow us to use Bifurcation 
Theory.
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Lemma 4.1. For b ∼ 1 we obtain with the notations introduced in Section 2 and 3

δ3Wαb,βb

(
f b

)(
ϕb,ϕb,ϕb

)
= 0.

Moreover, the fourth variation of the Willmore functional satisfies8

δ4Wαb,βb

(
f b

)(
ϕb, · · · ,ϕb

)
+ δ3Wαb,βb

(
f b

)(
∂ã ϕ(a)|ã=0,ϕ

b,ϕb
)

̸= 0.

Proof. For fixed b ∼ 1 and candidate surfaces f(a,b) in Theorem 2.1 and let ϕ(a) :=
(

∂√
a f(a,b)

)⊥. This implies

δΠ2(
f(a,b)

)
ϕ(a) = 0 and δΠ1(

f(a,b)
)(

ϕ(a)
)
= 2

√
a. (4.1)

Further, recall that ϕb = lim
a→0

ϕ(a) and α(a,b) and β(a,b) are the Lagrange multipliers 
of the candidate surfaces with

αb = lim
a→0

α(a,b) and βb = lim
a→0

β(a,b). (4.2)

The surfaces f(a,b) all satisfy the Euler Lagrange equation (2.1). Therefore, testing 
(2.1) with ϕ(a) gives

δW
(
f(a,b)

)(
ϕ(a)

)
= α(a,b)δΠ1(

f(a,b)
)(

ϕ(a)
)
+ β(a,b)δΠ2(

f(a,b)
)(

ϕ(a)
)
. (4.3)

Differentiate the above equation with respect to 
√
a together with the Euler-Lagrange 

equation yields

δ2W
(
f(a,b)

)(
ϕ,ϕ

)
= α(a,b)δ

2Π1(
f(a,b)

)(
ϕ,ϕ

)
+ β(a,b)δ

2Π2(
f(a,b)

)(
ϕ,ϕ

)

+ ∂√
a α(a,b)δΠ1(

f(a,b)
)(

ϕ
)
+ ∂√

a β(a,b)δΠ2(
f(a,b)

)(
ϕ

)
.

(4.4)

Differentiating once again and evaluating at a = 0 combined with (4.1) and (4.2)
results in the following equation for the third derivative:

δ3W
(
f b

)(
ϕb,ϕb,ϕb

)
= αbδ3Π1(

f b
)(

ϕb,ϕb,ϕb
)
+ βbδ3Π2(

f b
)(

ϕb,ϕb,ϕb
)

+ 2 lim
a→0

∂√
a α(a,b)δ

2Π1(
f b

)(
ϕb,ϕb

)

+ 2 lim
a→0

∂√
a β(a,b)δ

2Π2(
f b

)(
ϕb,ϕb

)
.

(4.5)

By (4.1) we have δ2Π1(
f b

)(
ϕb, ϕb

)
= 2 and by [14, Lemma 2.2] the candidates satisfy

lim
a→0

∂√
a α(a,b) = 0 and lim

a→0
∂√

a β(a,b) = 0.

8 Recall that ϕ(a) = (
∂ã f̃(a,b))⊥ for a family f̃(a,b) deforming fb.
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Therefore, we obtain

δ3Wαb,βb

(
f b

)(
ϕb,ϕb,ϕb

)
= 0.

Differentiating the equation (4.3) three times and taking the limit for ã := √
a −→ 0

gives the following formula:

δ4Wαb,βb

(
f b

)(
ϕb, · · · ,ϕb

)
+ δ3Wαb,βb

(
f b

)(
∂ã ϕ|ã=0,ϕ

b,ϕb
)
=

lim
ã→0

∂2
ãã α(a,b)δ

2Π1(
f b

)(
ϕb,ϕb

)
+ lim

ã→0
∂2
ãã β(a,b)δ

2Π2(
f b

)(
ϕb,ϕb

)
.

(4.6)

We have computed for the candidates that

lim
ã→0

∂2
ãã β(a,b) = ∂b αb ≤ 0 and lim

ã→
∂2
ãã |ã=0α(a,b) = 2 ∂a |a=0α(a,b) < 0.

Together with

δ2Π1(
f b

)
(ϕb,ϕb) > 0 and ∂b αb|b=1 = 0

we conclude that the second formula of the Proposition holds for b ∼ 1. !

Now we can turn to the main theorem of the section.

Theorem 4.1. For b ∼ 1 and b ̸= 1 fixed there exists a ab > 0 such that there exists a 
unique branch of solution (up to invariance) to the Euler-Lagrange equation

δWα,β(f) = 0, with α ∼ αb,α ≤ αb,β ∼ βb, f ∼ f b smoothly
and Π1(f) = a,Π2(f) = b with b ∼ 1 fixed and a ∈ [0, ab).

(4.7)

In particular, for α = αb and Π2(f) = b the only solution of (4.7) is the homogeneous 
torus.

Proof. We prove the above theorem using Bifurcation Theory from Non Linear Analysis, 
more precisely bifurcation from simple eigenvalues, see [1].

We subdivide the proof into the following four steps:

(1) the splitting of the Euler-Lagrange equation (4.7) into an auxiliary and a bifurcation 
part,

(2) classification of all solutions to the auxiliary equation,
(3) classification of all solutions to the bifurcation equation,
(4) identification of the Teichmüller class of the previously obtained solutions.

We first fix some further notations: we will work on the following Sobolev space given 
by
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W 4,2(
T 2
b , S

3)
:=

{
V : T 2

b −→ S3 ⊂ R4| each V i ∈ W 4,2(
T 2
b ,R

)}
,

where W 4,2(
T 2
b , R

)
is the usual Sobolev space, namely

W 4,2(
T 2
b ,R

)
:=

{
V : T 2

b −→ R|V and its derivatives up to order 4 are all
L2 integrable with respect to gb = (f b)∗(

gS3
)}

.

Since tangential variations only lead to a reparametrization of the surface preserving 
W and Π we can restrict ourselves to the space

W 4,2,⊥(
T 2
b , S

3)
:=

{
V ∈ W 4,2(

T 2
b , S

3)|V ⊥ df b on T 2
b

}
.

Further, for an appropriate neighborhood U(0) of

0 ∈< ϕb, ϕ̃b >⊥,W 4,2,⊥ :=
{
orthogonal complement of < ϕb, ϕ̃b > in W 4,2,⊥

with W 4,2-topology
}

we consider the map

Φ : U(0) × R2 × R × R −→ L2,⊥(
T 2
b , S

3)
:=

{
V ∈ L2(

T 2
b , S

3)|V ⊥ df b on T 2
b

}

given by

Φ(V,α,β, t, s) = δWα,β

(
expfb

(
V + tϕb + sϕ̃b

))

= δW
(
expfb

(
V + tϕb + sϕ̃b

))

− αδΠ1(
expfb

(
V + tϕb + sϕ̃b

))

− βδΠ2(
expfb

(
V + tϕb + sϕ̃b

))
,

where L2(
T 2
b , S

3)
:=

{
f : T 2

b −→ S3|f i ∈ L2(
T 2
b , R

)}
and L2(

T 2
b , R

)
is the usual L2-

Lebesgue space. By the same reasons as in [26, p 305, l. 6–10], the map Φ is smooth in 
W 4,2-topology and the solutions of (4.7) are exactly the zero locus of Φ.

4.1. Step (1)

We first observe that

Φ
(
0,αb,βb, 0, 0

)
= δWαb,βb

(
f b

)
= 0.

Moreover, αb is chosen such that the homogeneous tori are stable with respect to the 
functional Wαb.βb , see Section 3, and we have

∂V Φ
(
0,αb,βb, 0, 0

)
· Z = δ2Wαb,βb

(
f b

)(
Z, .

)
. (4.8)
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Moreover, the same argument as in [26, p. 305, l. 14–16] gives that ∂V Φ
(
0, αb, βb, 0, 0

)

is a Fredholm operator of index 0. The stability computations in Section 3, in particular 
Lemma 3.3, further show

δ2Wαb,βb

(
f b

)(
Z,Z

)
≥ 0,

and moreover δ2Wαb,βb

(
f b

)(
Z,Z

)
= 0

⇔ Z ∈< ϕb, ϕ̃b > ⊕ MoebfbT 2
b ⊕ TfbT 2

b .

(4.9)

Thus we obtain with the same arguments as in [26, Equation (3.20), p 305, l. 16–20]
that

Ker
(
∂V Φ(0,αb,βb, 0, 0)

)
=< ϕb, ϕ̃b > ⊕ MoebfbT 2

b ⊕ TfbT 2
b . (4.10)

On the other hand, using the symmetry of δ2Wαb,βb

(
f b

)
and similarly to [26, p. 305, 

l. 21–24] we get

< ϕb, ϕ̃b > ⊕ MoebfbT 2
b ⊥ Im

(
∂V Φ(0,αb,βb, 0)

)
in L2,⊥(

T 2
b , S

3)
. (4.11)

However, since ∂V Φ
(
0, αb, βb, 0, 0

)
is Fredholm with index 0 we obtain by (4.10)

dim
(
L2,⊥(

T 2
b , S

3) /
Im

(
∂V Φ

(
0,αb,βb, 0, 0

)))
= dim

(
MoebfbT 2

b ⊕ < ϕb, ϕ̃b >
)

= dim
(
L2,⊥(

T 2
b , S

3) /(
MoebfbT 2

b ⊕ < ϕb, ϕ̃b >
)⊥,L2,⊥(

T 2
b ,S

3) )
.

(4.12)

Together with Property (4.11) this yields

Im
(

∂V Φ
(
0,αb,βb, 0, 0

))
=

(
MoebfbT 2

b ⊕ < ϕb, ϕ̃b >
)⊥,L2,⊥(

T 2
b ,S

3)
.

Let

Y :=
(
MoebfbT 2

b ⊕ < ϕb, ϕ̃b >
)⊥,L2,⊥(

T 2
b ,S

3)
.

Since MoebfbT 2
b ⊕ < ϕb, ϕ̃b > is finite dimensional we obtain

L2(
T 2
b , S

3)⊥ = Y ⊕ MoebfbT 2
b ⊕ < ϕb, ϕ̃b >,

and thus

L2(
T 2
b , S

3)
= Y ⊕ MoebfbT 2

b ⊕ < ϕb, ϕ̃b > ⊕TfbT 2
b .

Thus as in [26], the above splitting still holds (though not as orthogonal decomposi-
tion) for
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V ∈ U(0) ⊂ W 4,2,⊥(
T 2
b , S

3)
⊂ C1(

T 2
b , S

3)

and t, s small (see of [26, Proposition B.3]).

L2(
T 2
b , S

3)
= Y ⊕ Moebexpfb

(
V+tϕb+sϕ̃b

)T 2
b ⊕ < ϕb, ϕ̃b > ⊕Texpfb

(
V+tϕb+sϕ̃b

)T 2
b .

(4.13)
On the other hand, since Moebexpfb

(
V+tϕb+sϕ̃b

)T 2
b ⊕ < ϕb, ϕ̃b > is finite dimensional 

we obtain for

X :=
(
MoebfbT 2

b ⊕ < ϕb, ϕ̃b >
)⊥,W 4,2,⊥(

T 2
b ,S

3)
⊂ W 4,2,⊥(

T 2
b , S

3)

an analogous splitting for W 4,2, i.e.,

X ⊕ MoebfbT 2
b ⊕ < ϕb, ϕ̃b >= W 4,2,⊥(T 2

b , S
3).

To continue we define the following projection maps:

ΠY : L2(
T 2
b , S

3)⊥ −→ Y,

ΠMoebfbT
2
b ⊕<ϕb,ϕ̃b> : W 4,2,⊥(

T 2
b , S

3)
−→ MoebfbT 2

b ⊕ < ϕb, ϕ̃b >,

and ΠX : W 4,2,⊥(
T 2
b , S

3)
−→ X.

(4.14)

This splitting (4.13) ensures that we can decompose the equation Φ = 0 close to (
0, αb, βb, 0, 0

)
into two equations which we solve successively in the following:

⎧
⎨

⎩
ΠY Φ = 0
ΠMoebfbT

2
b ⊕<ϕb,ϕ̃b>Φ = 0.

(4.15)

In the language of Bifurcation Theory the first equation is called the Auxiliary Equa-
tion and the second the Bifurcation Equation. We deal with the Auxiliary Equation 
first.

4.2. Step (2)

For

Ψ := ΠY ◦ Φ : U(0) × R2 × R × R −→ Y

we have that

∂V Ψ
(
0,αb,βb, 0, 0

)|X = ΠY ◦ ∂V Φ
(
0,αb,βb, 0, 0

)
|X .
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By (4.9) the map

∂V Ψ
(
0,αb,βb, 0, 0

)|X : X −→ Y

is an isomorphism and hence through the implicit function theorem there exist εi >

0, i = 1, 2, 3, an open neighborhood UMoeb(0) ⊂ MoebfbT 2
b and a smooth function

Ṽ : UMoeb(0)×] − ε1 + αb,αb + ε1[×] − ε2 + βb,βb + ε2[×] − ε3, ε3[×] − ε4, ε4[
−→ U(0) ∩ X ⊂ W 4,2,⊥(

T 2
b , S

3) (4.16)

such that V
(
m, α, β, t, s

)
= m + Ṽ

(
m, α, β, t, s

)
satisfies

Ψ
(
V

(
m,α,β, t, s

)
,α,β, t, s

)
= 0

for all
(
m,α,β, t, s

)
∈ UMoeb(0)×]− ε1+αb,αb+ ε1[×]− ε2+βb,βb+ ε2[×]− ε3, ε3[×]− ε4, ε4[.

Further, these are the only solutions to

Ψ
(
V,α,β, t, s

)
= 0 with V ∈ W 4,2,⊥(

T 2
b , S

3)

close to 0 in the W 4,2-topology and α ∼ αb, β ∼ βb and t, s ∼ 0. By the definition of Ψ
we have classified all solutions of

ΠY

(
δWα,β

(
expfb

(
V + tϕb + sϕ̃b

)))
= ΠY

(
Φ

(
V,α,β, t, s

))
= 0 (4.17)

with V ∈ W 4,2⊥(
T 2
b , S

3)
close to 0, α ∼ αb, β ∼ βb and t, s ∼ 0.

4.3. Step (3)

We now turn to the bifurcation equation

ΠMoebfbT
2
b ⊕<ϕb,ϕ̃b>Φ

(
V,α,β, t, s

)
= 0,

which we split into two equations
⎧
⎨

⎩
ΠMoebfbT

2
b
Φ

(
V,α,β, t, s

)
= 0

Π<ϕb,ϕ̃b>Φ
(
V,α,β, t, s

)
= 0.

(4.18)

The first equation has already been dealt with in [26, Proposition B.2 and Equation 
(B.7)] The Möbius invariance of W and Π implies that every solution of (4.17) already 
solves the equation
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ΠMoebfbT
2
b
Φ

(
V,α,β, t, s

)
= 0,

for V ∈ W 4,2,⊥(
T 2
b , S

3)
close to 0 and α ∼ αb, β ∼ βb, t, s ∼ 0. Let

f b
(t,s) = expfb

(
tϕb + sϕ̃b

)

the family of surfaces considered in Proposition 3.1 by which there exist families of 
Möbius transformations M(t, s) and σ(t, s) such that

M(t, s) ◦ f b
(t,s) ◦ σ(t, s) = expfb

(
c(t, s)ϕb

)
.

Because M(s, t) act on S3 as isometries, we obtain for any solution of the Auxiliary 
Equation in Step (1) that

f(V (m,α,β, t, s), t, s) = M(t, s) ◦
(
expfb

(
V (m,α,β, t, s) + tϕb + sϕ̃b

)
◦ σ(t, s)

is given by

f(V (m,α,β, t, s), t, s) = expfb

(
V̄ (m,α,β, t, s) + c(t, s)ϕb

)
,

with

V̄ (m,α,β, t, s) = M(t, s) ◦ V (m,α,β, t, s) ◦ σ(t, s) ⊥< ϕb, ϕ̃b > .

Therefore we can restrict ourselves without loss of generality to the equation

Π<ϕb>Φ
(
V,α,β, t, 0

)
= 0.

Note that this equation and the maps involved remain well-defined for b −→ 1. Now 
the situation is very similar to the situation of bifurcation from simple eigenvalues. To 
abbreviate the notations let

Φ
(
V,α,β, t

)
:= Φ

(
V,α,β, t, 0

)
and V

(
m,α,β, t

)
:= V

(
m,α,β, t, 0

)
.

We have derived that there exists a smooth function V satisfying

ΠY ⊕ MoebfbT
2
b
Φ

(
V

(
m,α,β, t

)
,α,β, t

)
= 0

for all 
(
m, α, β, t

)
∈ UMoeb(0)×] − ε1 + αb, αb + ε1[×] − ε2 + βb, βb + ε2[×] − ε3, ε3[. It 

remains to solve

Π<ϕb>Φ
(
V

(
m,α,β, t

)
,α,β, t

)
= 0,

or equivalently
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Φ
(
V

(
m,α,β, t

)
,α,β, t

)
· ϕb = 0,

for 
(
m, α, β, t

)
∈ UMoeb(0)×] − ε1 + αb, αb + ε1[×] − ε2 + βb, βb + ε2[×] − ε3, ε3[.

For the smooth family of surfaces

f b
t = expfb

(
V (m,α,β, t) + tϕb

)

we observe

Φ
(
0,αb,βb, 0

)
· ϕb = δWαb,βb

(
f b

)(
ϕb

)
= 0

∂t |t=0Φ
(
0,αb,βb, 0

)
· ϕb = δ2Wαb,βb

(
f b

)(
ḟ b,ϕb

)
= 0

∂2
tt |t=0Φ

(
0,αb,βb, 0

)
· ϕb = δ3Wαb,βb

(
f b

)(
ḟ b, ḟ b,ϕb

)

∂3
ttt |t=0Φ

(
0,αb,βb, 0

)
· ϕb = δ4Wαb,βb

(
f b

)(
ḟ b, ḟ b, ḟ b,ϕb

)
+ δ3Wαb,βb

(
f b

)(
f̈ b, ḟ b,ϕb

)
,

where ḟ b := ∂ f
∂ t |t=0 and t at t = 0 and f̈ b := ∇ḟb ḟ b, where ∇ is the Levi-Civita 

connection of S3.

Lemma 4.2. With the notations above we have for b ∼ 1

∂2
tt |t=0Φ

(
0,αb,βb, 0

)
· ϕb = 0 and ∂3

ttt |t=0Φ
(
0,αb,βb, 0

)
· ϕb < 0.

Proof. The aim is to use Proposition 4.1 for the conclusion. For this it is necessary to 
identify ḟ with ϕb appropriately. For b ∼ 1 consider again

f b
t = expfb

(
V (m,α,β, t) + tϕb

)
.

Then we have ḟ b = ϕb + V̇ (m, αb, βb, 0). Since V ∈ X we have that also 
V̇ (m, αb, βb, 0) ∈ X. Further, fb(t) solves the constrained Willmore equation on X from 
which we obtain

δ2Wαb,βb

(
f b

)(
V̇ , V0

)
= 0 for all V0 ∈ X.

From this we have V̇ ∈ X⊥ and therefore V̇ ∈ X ∩ X⊥ and we obtain V̇ = 0 and 
ḟ b = ϕb showing the assertion.

For the second derivative f̈ b = V̈ (m, α, β, t) we consider the candidates constructed 
in [14]. They are W 4,2 close to the homogeneous torus and thus there exist maps t(a, b)
and V

(
m(a, b), α(a, b), β(a, b), t(a, b)

)
such that the candidate surfaces have the following 

representation:

f(a,b) = expfb

(
V

(
m(a, b),α(a, b),β(a, b), t(a, b)

)
+ t(a, b)ϕb

)

Since 
(

∂ã f(a,b)|ã=0
)⊥ = ϕb, we have that

∂ã t(a, b)|ã=0 = 1
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and

∂ã V |ã=0 =
(

∂ã α(a, b) ∂α V + ∂ã β(a, b) ∂β V + ∂ã t(a, b) ∂t V
)
|ã=0 = 0.

For b −→ 1 we obtain with similar arguments as for V̇ that

δ2Wα1,β1
(
f1)(

∂α |α=αbV (α1,β1, 0), ·
)
= δΠ1(

f1)(
·
)
= 0

from which we obtain that ∂α V |α=αb = 0. Further,

∂2
ãã β(a, b)|ã=0 = ∂a β(a, b)|a=0 = ∂b αb|b=1 = 0.

The last equality is due to the fact that αb = α
1
b . Moreover, we have already computed 

that ∂ã α(a, b) = ∂ã β(a, b) = 0. For the second derivative ∂2
ãã f(a,b) := ∇∂ã f(a,b) ∂ã f(a,b)

we thus obtain

lim
b→1

∂2
ãã f(a,b)|ã=0 = lim

b→1
∂ã ϕ(a)|a=0

= lim
b→1

∂2
ãã t(a, b)|ã=0ϕb + lim

b→1

(
∂ã t(a, b)

)2|ã=0V̈b

(
m,αb,βb, 0

)

= lim
b→1

∂2
ãã t(a, b)|ã=0ϕb + lim

b→1
V̈

(
m,αb,βb, 0

)

= ∂2
ãã t(a, 1)|ã=0ϕ1 + f̈1.

By the first assertion of Proposition 4.1 we thus obtain

δ3Wα1,β1
(

∂ã ϕ(a)|a=0,b=1,ϕ
1,ϕ1)

= δ3Wα1,β1
(
f̈1,ϕ1,ϕ1)

and therefore

lim
b→1

∂3
tttΦ

(
0,αb,βb, t

)
· ϕb < 0.

By continuity we get that this remains true for b ∼ 1 close enough. !

Now we can use classical arguments in bifurcation theory (bifurcation from simple 
eigenvalues) to obtain a unique function t(m, α, β) ∼ 0 satisfying

Φ
(
V

(
m,α,β, t(m,α,β)

)
,α,β, t(m,α,β)

)
· ϕb = 0.

Moreover, all solutions to

Φ
(
V (m,α,β, t),α,β, t

)
· ϕb = 0

for (m, α, β, t) ∈ UMoeb(0)×] − ε1 + αb, αb + ε1[×] − ε2 + βb, βb + ε2[×] − ε3, ε3[ are of 
this form for sufficiently small εi and UMoeb(0). In other words,
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fm
α,β := expfb

(
V

(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

)

are the only solutions to

δWα,β

(
f

)
= 0 with

f ∈ expfb

(
W 4,2⊥(

T 2
b , S

3)
∩ < ϕ̃b >⊥

) (4.19)

which are W 4,2-close to f b α ∼ αb, and β ∼ βb. For fixed (α, β) ∼ (αb, βb) we thus 
obtain a manifold worth of solutions of dimension dim

(
MoebfbT 2

b

)
+ 1.

Since W and Π is Möbius and parametrization invariant, we get for any Möbius 
transformation M with

M ◦ expfb

(
V

(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

)
⊂ S3

and every

σ ∈ Diff = DiffT 2
b
:=

{
ψ : T 2

b −→ T 2
b |ψ is a smooth diffeomorphism

}

that the following equation holds

δWα,β

(
M ◦ expfb

(
V

(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

)
◦ σ

)
= 0.

The Möbius group Moeb(3) of S3 is a finite dimensional Lie group and for an appro-
priate neighborhood U(Id) ⊂ Moeb(3) and (α, β) ∈] −ε1+αb, αb+ε1[×] −ε2+βb, βb+ε2[
we have

M ◦ expfb

(
V

(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

)

is C1-close to f b and hence we can write

M ◦ expfb

(
V

(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

)
◦ σ = expfb(W )

for an appropriate W ∈ W 4,2,⊥(T 2
b , S

3) and σ ∈ Diff. More precisely, for the nearest 
point projection

Πfb : Uδ :=
{
x ∈ S3 | dist

(
x, f b(T 2

b )
)
< δ

}
−→ f b

(
T 2
b

)

for an appropriate small positive δ, we have

σ := σ(M,α,β) =
(
f b

)−1 ◦ Πfb ◦ M ◦ f b

and
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W = W (M,α,β) = M ◦
(
V

(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

)
◦ σ.

Now since fm
α,β are the only solutions to (4.19) in expfb

(
W 4,2,⊥(T 2

b , S
3)∩ < ϕ̃ >⊥ )

which are W 4,2-close to f b we get

W (M,α,β) = V
(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

= m+ Ṽ
(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

for some m ∈ UMoeb(0) ⊂ Moebfb(T 2
b ). More precisely we have

m := m(M,α,β) = ΠMoebfbT
2
b
W

(
M,α,β

)
.

Since Ṽ is a smooth map into W 4,2(
T 2
b , S

3)
⊂ C2(

T 2
b , S

3)
we obtain that the maps

(
M,α,β

)
+−→ σ,W,m

are continuously differentiable into C1(
T 2
b , S

3)
. Hence we obtain for χ ∈ TId Moeb(3)

∂M W
(
M,αb,βb

)
· χ|M=Id =

(
χ ◦ f b

)
+ df b

(
∂M σ(M,αb,βb)|M=Id · χ

)

= Pχ◦fb

(
χ ◦ f b

)
∈ MoebfbT 2

b

and thus

∂M m
(
Id,αb,βb

)
· χ = ΠMoebfbT

2
b

(
Pχ◦fb

(
χ ◦ f b

))
= Pχ◦fb

(
χ ◦ f b

)
.

By definition of MoebfbT 2
b we thus obtain that

∂M m
(
Id,αb,βb

)
: TIdMoeb(3) −→ MoebfbT 2

b

is surjective and hence by implicit function theorem and m
(
Id, αb, βb

)
= 0 we have

ŨMoeb(0) ⊂ m
(
U(0) ×

{
(α,β)

})

for some open neighborhood ŨMoeb(0) of 0 in MoebfbT 2
b independent of (α, β). Therefore 

we have that

M ◦ expfb

(
V

(
m,α,β, t(m,α,β)

)
+ t(m,α,β)ϕb

)
◦ σ (4.20)

are the only solutions to (4.19) which are W 4,2-close to f b.
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4.4. Step (4)

The aim is to identify the Teichmüller class of the solutions of (4.19) given by (4.20)
for fixed b ∼ 1 and b ̸= 1. In particular, we show that the solutions of (4.19) induce a
local diffeomorphism between the space of Lagrange multipliers (around (αb, βb)) to the 
Teichmüller space of tori around the class of the Clifford torus (0, 1) ∈ H2. Clearly, by 
setting

Vb = V
(
α,β, t(0,α,β)

)
+ t(0,α,β)ϕb (4.21)

we have

Π (
M ◦ expfb

(
V (α,β)

)
◦ σ

)∗
gS3 = Π (

expfb (V (α,β))
)∗

gS3 .

Thus for all solutions of (4.19) we have that

(
c(α,β)
d(α,β)

)
=

(
Π1 expfb (V (α,β))∗ gS3

Π2 expfb (V (α,β))∗ gS3

)

=
(

Π1 expfb (V (α,β))∗ gS3

Π2 expfb (V (α,β))∗ gS3

)

independently of m ∈ ŨMoeb(0). We first solve for Π2, i.e., want to solve the equation

d(α,β) = b̃ for b̃ ∼ b.

By definition we have

d(αb,βb) = b

and further

∂β |β=βbd(αb,βb) = δΠ2(
f b

)(
∂β |β=βbVb(αb,β)

)
.

Then from

Φ
(
V (α,β),α,β, t(0,α,β)

)
= 0

with V (α, β) := Ṽ
(
0, α, β, t(0, α, β)

)
and

∂V Φ
(
0,αb,βb, 0

)
· Z = δ2Wαb,βb

(
f b

)(
Z, .

)

we derive that
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∂V Φ
(
0,αb,βb, 0

)
· ∂β |β=βbV

(
αb,βb

)
+ ∂β |β=βbΦ

(
0,αb,βb, 0

)

+ ∂t Φ
(
0,αb,βb, 0

)
∂β |β=βbt

(
0,αb,βb

)
= 0.

Thus we get

δ2Wαb,βb

(
f b

)(
∂β |β=βbV (αb,βb), .

)
− δΠ2(

f b
)

+ δ2Wαb,βb

(
f b

)(
∂β |β=βbt(0,αb,βb)ϕb, .

)
= 0

⇔ δ2Wαb,βb

(
f b

)(
∂β |β=βbV (αb,βb), .

)
= δΠ2(

f b
)
.

(4.22)

On the other hand, there exists a V 0
b ∈ C∞(

T 2
b , S

3)
such that δΠ2

fb

(
V 0
b

)
̸= 0 by of 

[26, Proposition 3.2]. This implies

δ2Wαb,βb

(
f b

)(
∂β |β=βbV (αb,βb), V 0

b

)
̸= 0

therefore ∂β |β=βbV (αb, βb) /∈ MoebfbT 2
b ⊕ < ϕb, ϕ̃b > and

δ2Wαb,βb

(
f b

)(
∂β |β=βbV (αb,βb), ∂β |β=βbV (αb,βb)

)
> 0

by (4.9) or the computations in Section 3. Hence using the implicit function theorem we 
have for α ∼ αb and b̃ ∼ b a unique β(α, d) ∼ βb such that

d
(
α,β(α, b̃)

)
= b̃ and β(αb, b) = βb

and the map (α, ̃b) −→ β(α, ̃b) is smooth. In particular, if Π2(f) = b and α(f) = αb we 
obtain β(f) = βb. It remains to determine Π1 of the solutions of (4.19) given in (4.20). 
The equation we aim to solve is

c
(
α(b̃,β),β

)
= a with a ∼ 0.

We have

c
(
αb,β(αb, b)

)
= 0

∂α |α=αb

[
c
(
α,β(α, b)

)]
= δΠ1(

f b
)
·
(

∂α |α=αb

[
Vb

(
α,β(α, b)

)])
= 0

∂2
α|α=αb

[
c
(
α,β(α, b)

)]
= δ2Π1(

f b
)(

∂α|α=αb

[
Vb

(
α,β(α, b)

)]
, ∂α|α=αb

[
Vb

(
α,β(α, b)

)])
.

(4.23)

Now, using the fact that

Φ
(
V

(
α,β(α, b)

)
,α,β(α, b), t

(
0,α,β(α, b)

))
= 0

we get



38 L. Heller, C.B. Ndiaye / Advances in Mathematics 386 (2021) 107804

∂α |α=αbΦ
(
0,αb,βb, 0

)
+ ∂V Φ

(
0,αb,βb, 0

)
·
(

∂α |α=αb

[
Vb

(
α,β(α, b)

)])

+ ∂t Φ
(
0,αb,βb, 0

)
·
(

∂α |α=αb

[
t
(
0,α,β(α, b)

)]
ϕb

)
= 0.

(4.24)

Thus we obtain 
(
using Vb

(
α, β(α, b)

)
= V

(
α, β(α, b)

)
+ t

(
0, α, β(α, b)

)
ϕb, see (4.21), 

and the fact that V
(
α, β(α, b)

)
⊥< ϕb, ϕ̃b > by definition (4.16)

)

−2 ∂α |α=αbδΠ1(
f b

)
+ δ2Wαb,βb

(
f b

)(
∂α |α=αb

[
Vb

(
α,β(α, b)

)]
, .

)
= 0

and therefore we have

δ2Wαb,βb

(
f b

)(
∂α |α=αb

[
Vb

(
α,β(α, b)

)]
, .

)
= 0, (4.25)

which means that

∂α |α=αb

[
Vb

(
α,β(α, b)

)]
∈ MoebfbT 2⊕ < ϕb, ϕ̃b >,

i.e., by (4.21) and (4.16)

∂α |α=αb

[
V

(
α,β(α, b)

)]
∈ MoebfbT 2.

Therefore, we get by (4.25)

αbδ2Π1(
f b

)(
∂α |α=αb

[
Vb

(
α,β(α, b)

)]
, ∂α |α=αb

[
Vb

(
α,β(α, b)

)])

= δ2Wβb

(
f b

)(
ϕb,ϕb

)(
∂α |α=αb

[
t
(
0,α,β(α, b)

)])2
.

(4.26)

Using ∂α |α=αb

[
t
(
0, α, β(α, b)

)]
̸= 0 this implies that

∂2
α |α=αb

[
c
(
α,β(α, b)

)]
> 0.

Hence as above, using classical arguments in bifurcation theory via monotonicity we 
have that there exist a unique branch of solutions α(a, ̃b) such that

c
(

α(a, b̃),β
(
α(a, b̃), b̃

))
= a

for a ∼ 0+ and b̃ ∼ b with α(0, b) = αb, and α(a, b) ≤ αb. Altogether we obtain for b ∼ 1
but b ̸= 1 fixed, a family of smooth solutions to (up to invariance)

δWα,β

(
f

)
= 0, α ∼ αb, α ≤ αb and β ∼ βb

parametrized by their conformal type a ∼ 0+, such that the only solution with α = αb

and Π2(f) = b is the homogeneous torus of conformal class (0, b). !
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5. Reduction of the global problem to a local one

We use penalization and relaxation techniques of Calculus of Variations to estab-
lish Theorem 5.1 providing the existence of appropriate global minimizers in an open 
neighborhood of each rectangular class close to the square class. By appropriate global 
minimizer we mean those reducing our clearly global problem to a local problem, i.e., 
which are close to the Clifford torus in W 4,2 with prescribed behavior of its Lagrange 
multipliers. Then Theorem 4.1 shows that these abstract minimizers coincide with the 
candidate surfaces.

Theorem 5.1. For every b ∼ 1 there exists an ab small with the property that for all 
a ∈ [0, ab] the infimum of Willmore energy

Min(a,b) = inf
{
Wαb

(
f

)| f : T 2
b −→ S3 smooth immersion

| 0 ≤ Π1(
f

)
≤ a and Π2(

f
)
= b

}

is attained by a smooth immersion f (a,b) : T 2
b −→ S3 of conformal type (a, b) and veri-

fying

δWα(a,b),β(a,b)
(
f (a,b)) = 0

with α(a,b) ≤ αb and α(a,b) −→ αb almost everywhere as a −→ 0 and β(a,b) −→ βb, as 
a −→ 0 where (αb, βb) ∈ R2 as defined in Theorem 4.1.

Proof. By taking b ∼ 1 close enough, the same arguments as in [21, Theorem 7.2] and in 
[26, Proposition 3.3] using [21, Proposition 2.2, Theorem 7.1, and Proposition 5.3] and 
[26, Theorem 3.1] yields the existence of an ab > 0 small with the property that for all 
a ∈ [0, ab] the minimization problem

Min(a,b) = inf
{
Wαb

(
f

)| f : T 2
b −→ S3 smooth immersion

| 0 ≤ Π1(
f

)
≤ a and Π2(

f
)
= b

}

is attained by a smooth immersion f (ã,b)
a with conformal type (ã, b) and ã ∈ [0, a] solving 

the Euler-Lagrange equation for (conformally) constrained Willmore tori

δW
α(ã,b)

a ,β(ã,b)
a

(
f (ã,b)
a

)
= 0

for some α(ã,b)
a , β(ã,b)

a ∈ R.
To give more details, consider for b ∼ 1 and a ∼ 0+ a minimizing sequence (

f (a,b)
m

)

m∈N
of the variational problem Min(a,b), i.e., there exists ϵm = ϵm(a, b) > 0

with
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Wαb(f (a,b)
m ) ≤ Min(a,b) + ϵm, (5.1)

such that ϵm → 0 as m → ∞. Since the homogeneous torus f b is an admissible competitor 
for the variational problem Min(a,b), Equation (5.1) implies

Wαb(f (a,b)
m ) ≤ Wαb(f b) + ϵm. (5.2)

By [26, Theorem 3.1] the homogeneous tori minimizer the Willmore energy in its 
conformal class (0, b), for b ∼ 1. Therefore,

Wαb(f (a,b)
m ) ≤ ω(0, b) + ϵm, (5.3)

where ω(a, b) is the minimal energy map.
On the other hand, for b ∼ 1 we have ω(0, b) < 8π. Therefore, for every b ∼ 1 there 

exists ab ∼ 0+ such that

ω(0, b) + αba ≤ ω(0, b) + αbab < 8π ∀a ∈ [0, ab] (5.4)

and (5.3) yields

W(f (a,b)
m ) ≤ ω(0, b) + αbãm + ϵm ≤ ω(0, b) + αba+ ϵm (5.5)

with ãm = Π1(f (a,b)
m ). Hence

W(f (a,b)
m ) ≤ ω(0, b) + αbab + ϵm ∀a ∈ [0, ab] (5.6)

Combining this equation with Equation (5.3) we obtain that there exists a m0 =
m0(a, b) ∈ N such that for all m > m0

W(f (a,b)
m ) ≤ 8π − ϵ̄b for some ϵ̄b > 0 depending only on b. (5.7)

This gives by [21, Theorem 7.2] the existence of f̄ (a,b)
m such that

Π(f̄ (a,b)
m ) = Π(f (a,b)

m ) = (ãm, b)

and

W(f̄ (a,b)
m ) = ω(ãm, b).

Thus we have

W(f (a,b)
m ) ≤ ω(ãm, b) + ϵm. (5.8)
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Moreover, since 0 ≤ ãm ≤ a, we can assume (up to taking a subsequence) that

ãm −→ ã with 0 ≤ ã ≤ a. (5.9)

Due to the energy bound (5.7) and the conformal type convergence (5.9) we can apply 
[21, Proposition 2.2] to obtain

f (a,b)
m ⇀ f (ã,b)

a weakly in W 2,2

up invariance. Combining this with the equations (5.8) and (5.9) we obtain by [21, 
Theorem 7.1] that f (ã,b)

a is a smooth minimizer of W under fixed Teichmüller class and 
satisfies the constrained Willmore equation with

Π(f (ã,b)
a ) = (ã, b).

The strong convergence of f (a,b)
m −→ f ã,b

a in W 2,2 for m → ∞ is then obtained by [21, 
Proposition 5.3]. Hence by equation (5.1) and the convergence of Π1(f (a,b)

m ) we get that 
f (ã,b)
a solves the variational problem Min(a,b).

Step (1): ã = a

For a = 0 the homogeneous tori f b are the unique minimizer and ã = a = 0. Thus let 
a > 0 in the following. The candidate surfaces f(a,b) with f(0,b) = f b constructed in [14]
satisfy that

Wαb

(
f(a,b)

)
= ωαb(a, b)

is strictly decreasing for a ∼ 0, since

∂ ωαb(a, b)
∂ a

= α(a,b) − αb < 0.

This yields ã > 0.
Now, we claim that up to take ab smaller ã = a holds for all a ∈]0, ab]. Assume this 

is not true. Then since ã > 0 there would exist a sequence an −→ 0 with corresponding 
ãn −→ 0 such that

αb
n := αãn,b

an
= αb ∀n.

Then arguing as in the convergence part of [26, Proposition 3.3] using [21, Proposition 
2.2, Proposition 5.3, and Theorem 7.1], and [26, Proposition 2.4 and Theorem 3.1] we 
obtain9

9 The uniqueness part is not stated [26, Theorem 3.1] but is a consequence of the implicit function theorem 
arguments, see formula (3.31) and the paragraph thereafter until the end of the proof.
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f b
n := f ãn,b

an
−→ f b smoothly (5.10)

up to invariance. Indeed, passing to the limit as m → ∞ in (5.8) we get

W(f (ã,b)
a ) ≤ ω(0, b) + αbab ∀0 ≤ a ≤ ab. (5.11)

Thus using the definition of f b
n we get

W(f b
n) ≤ ω(0, b) + αbab ∀n ≥ 1, (5.12)

and equation (5.4) gives

W(f b
n) ≤ ω(0, b) + αbab < 8π ∀n ≥ 1. (5.13)

Recall that as n → ∞ the conformal type Π(f b
n) = (ãn, b) converges to (0, b). There-

fore, using the energy bound and the convergence of the conformal type as before we 
can apply [21, Proposition 2.2] to obtain up to invariance

f b
n ⇀ f̃ b weakly in W 2,2.

Since we have by construction W(f b
n) = ω(ãn, b), [21, Theorem 7.1] gives (as before) 

that f̃ b is a smooth minimizer of W with fixed conformal class (0, b). Therefore, [21, 
Proposition 5.3] gives the strong convergence of f b

n → f̃ b in W 2,2 as n → ∞.
On the other hand, the uniqueness part of [26, Theorem 3.1] implies that f̃ b = f b is 

the homogeneous torus for b ∼ 1. Finally, since αn = αb for all n and δΠ2(f b) ̸= 0 the 
compactness result in [26, Proposition 2.4] implies

f b
n −→ f b smoothly.

Our classification of solutions around f b therefore gives f b
n = f b in contradiction to 

Π1(f b
n) = ãn > 0.

Remark 5.1. Because the minimum Min(a,b) for a ∈ (0, ab) is always attained at the 
boundary, the function

ϕ(a, b) := Min(a,b) = ω(a, b) − αba,

where ω(a, b) is the minimal Willmore energy in the class (a, b), is monotonically non-
increasing. Therefore ϕ(a, b) (and thus also ω(a, b)) is differentiable almost everywhere 
in a and

∂a ϕ(a, b) ≤ 0,

almost everywhere.
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Step (2): ∂
∂ aω(a) = α(a,b) ≤ αb almost everywhere

The aim in this step is to show the first statement (1) of Lemma 2.1 with weaker 
regularity assumptions on the dependence of f (a,b) on its conformal class, i.e., to relate 
∂ ω(a)

∂ a with α(a,b) for almost every a ∈]0, ab[. Then by Remark 5.1 we obtain the claimed 
upper bound on the Lagrange multipliers α(a,b).

For b ∼ 1 fixed we can assume up to taking ab smaller and by the same arguments 
in step 1 that the minimizers f (a,b) are non-degenerate for all a ∈ (0, ab). For a0 ∈
(0, ab) such that ω(a, b) is differentiable choose variational vector fields V (a0,b)

i satisfying 
δΠi

(
V (a0,b)
j

)
= δi,j and consider the smooth family of immersions

f̄(s, t) := expf(a0,b)

(
tV (a0,b)

1 + sV (a0,b)
2

)
.

Then solving the equation

Π(
f̄(s, t)

)
= (a, b)

defines unique maps t(a) and s(a) (with t(a0) = 0 and s(a0) = 0) by the implicit function 
theorem, since

det
(

δΠi(V (a0,b)
j

))

i,j=1,2
= 1.

Further, consider the Willmore energy of this family f̄
(
s(a), t(a)

)

ω̄(a, b) := W
(
f̄

(
s(a), t(a)

))
.

Then we can compute

∂a ω̄(a, b)|a=a0 = α(a0,b) ∂a |a=a0t(a)

Observe that t(a) and s(a) are smooth in a and the Taylor expansion for a and b gives

a = a0 + t(a) + o
(|t(a)|).

Therefore ∂a |a=a0t(a) = 1 and thus

∂a ω̄(a, b)|a=a0 = α(a0,b).

Now, comparing ω̄(a, b) to ω(a, b) – the minimal Willmore energy in the conformal 
class (a, b) we obtain that the function

∆(a) = ω̄(a, b) − ω(a, b) ≥ 0
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with equality at a = a0. In other words ∆ has a local minimum at a = a0. Because ω(a, b)
is differentiable at a = a0 by assumption and ω̄(a, b) is smooth, we have ∂a ∆|a=a0 = 0. 
This gives

∂a ω(a, b)|a=a0 = ∂a ω̄(a, b)|a=a0 = α(a0,b).

Step (3): lim
a→0,a.e.

α(a,b) = αb

Since δΠ2(
f b

)
̸= 0, we obtain

lim
a→0

β(a, b) −→ βb,

by standard weak compactness argument. Thus it is only necessary to show the conver-
gence of α(a,b). We will show its convergence for a −→ 0 almost everywhere, by which 
we mean the convergence up to a zero set A ⊂ [0, ab), i.e.,

lim
a→0, a.e.

α(a,b) := lim
a→0,a∈[0,ab)\A

α(a,b).

We first show that

αsup := lim sup
a→0, a.e.

α(a,b) = αb.

Clearly, αsup ≥ 0. Otherwise, ∂a ω(a, b) < 0 almost everywhere. Because of the mono-
tonicity of ω(a, b) − aαb and the continuity of ω(a, b), we would thus obtain that ω(a, b)
is decreasing in a contradicting the fact that ω(0, b) is the minimum of ω(a, b) for b ∼ 1.

Assume now that αsup < αb. Then there exists a zero sequence (ak)k∈N with ak > 0
such that the Lagrange multipliers α(ak,b) converge to αsup < αb. Thus the corresponding 
immersions f (ak,b) −→ f b smoothly up to invariance using same arguments as in step 
(1) to prove (5.10). But by Lemma 2.2 we then obtain f (ak,b) = f (0,b) for k >> 1 in 
contradiction to ak > 0.

Now we want to show that also

αinf := lim inf
a→0, a.e.

α(a,b) = αsup = αb.

For this we first show that αinf is bounded from below, more precisely, αinf ≥ 0.
Up to choosing ab smaller we have by the same arguments as above that α(a,b) ̸= 0 for 

all a ∈ [0, ab). Assume that αinf < 0. Then, since αsup = αb, there exist zero sequences 
(ak)k∈N , (ãk)k∈N ⊂ (0, ab) such that ω(a, b) is differentiable at ak and ãk and ãk < ak
with

α(ak,b) −→ αb and α(ãk,b) −→ αinf < 0.
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Because ω is continuous, it attains its minimum on [ãk, ak]. Since the minimal Will-
more energy ω(a, b) is strictly decreasing (with the same arguments as in the proof of 
αsup ≥ 0) around ãk and strictly increasing around ak this minimum is always attained 
at âk ∈ (ãk, ak). For k ∈ N and a ∼ âk consider the smooth family of immersions

f̄k(s(a), t(a)) = expf(âk,b)

(
s(a)V (âk,b)

1 + t(a)V (âk,b)
2

)

with

δΠi(V (âk,b)
i

)
= δi,j and Π

(
f̄

(
s(a), t(a)

))
= (a, b)

as in Step (2). Let

ω̄k(a, b) = W
(
f̄k

(
s(a), t(a)

))

be again the Willmore energy of the family f̄ . Then ∂a ω̄k(a, b) = α(âk,b) ̸= 0. Thus 
ω̄k(a, b) is either strictly increasing or strictly decreasing around âk and there exist an 
a ∼ ak and a ∈ [ãk, ak] with

ω̄k(a, b) < ω̄k(âk, b). (5.14)

Equation (5.14) together with the definition of ω and ω̄k gives a contradiction to the 
fact that ω(âk, b) is the minimum of ω on [ãk, ak], since

ω(a, b) ≤ ω̄k(a, b) < ω̄k(âk, b) = ω(âk, b).

It remains to show that αinf = αb. For this take again a zero sequence (ak)k∈N ⊂
(0, ab) with ω(a, b) is differentiable at all ak and such that corresponding sequence of 
Lagrange multipliers satisfies α(ak,b) −→ αinf . Thus, as before, we have that up to take 
a sub sequence and up to invariance f (ak,b) −→ f (0,b) smoothly. If αinf < αb, we obtain 
by Lemma 2.2 that

f (ak,b) = f b for k >> 1

contradicting the fact that ak > 0. Thus we can conclude that

αinf = αb. !
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