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ABSTRACT

We study immersed tori in 3-space minimizing the Willmore
energy in their respective conformal class. Within the rectan-
gular conformal classes (0, b) with b ~ 1 the homogeneous tori
f% are known to be the unique constrained Willmore minimiz-
ers (up to invariance). In this paper we generalize this result
and show that the candidates constructed in [14] are indeed
constrained Willmore minimizers in certain non-rectangular
conformal classes (a,b). Difficulties arise from the fact that
these minimizers are non-degenerate for a # 0 but smoothly
converge to the degenerate homogeneous tori fb as a — 0.
As a byproduct of our arguments, we show that the mini-
mal Willmore energy w(a,b) is real analytic and concave in
a € (0,ab) for some a® > 0 and fixed b~ 1, b # 1.
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1. Introduction and statement of the results

In the 1960s Willmore [38] proposed to study the critical values and critical points of
the bending energy

W) = [ Hda

the average value of the squared mean curvature H of an immersion f: M — R3 of
a closed surface M. In this definition we denote by dA the induced volume form and
H = %t'r'(II) with II the second fundamental form of the immersion f. Willmore showed
that the absolute minimum of this functional is attained at round spheres with Willmore
energy VW = 4m. He also conjectured that the minimum over surfaces of genus 1 is
attained at (a suitable stereographic projection of) the Clifford torus in the 3-sphere
with W = 272, It soon was noticed that the bending energy W (by then also known as
the Willmore energy) is invariant under Mobius transformations of the target space — in
fact, it is invariant under conformal changes of the metric in the target space, see [3,8].
Thus, it makes no difference for the study of the Willmore functional which constant
curvature target space is chosen.

Bryant [7] characterized all Willmore spheres as Mébius transformations of genus 0
minimal surfaces in R3 with planar ends. The value of the bending energy on Willmore
spheres is thus quantized to be W = 4nk, with £ > 1 the number of ends. With the
exception of k = 2,3,5, 7 all values occur. For more general target spaces the variational
setup to study these surfaces can be found in [24]. The first examples of Willmore sur-
faces not Mobius equivalent to minimal surfaces were found by Pinkall [28]. They were
constructed via lifting elastic curves v with geodesic curvature x on the 2-sphere under
the Hopf fibration to Willmore tori in the 3-sphere, where elastic curves are the critical
points for the elastic energy

E(y) = [ (k4 1)ds

2
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and s is the arclength parameter of the curve. Later Ferus and Pedit [11] classified all
Willmore tori equivariant under a Mobius S!-action on the 3-sphere (for the definition
of S'-action see [12]).

The Euler-Lagrange equation for the Willmore functional

AH +2H(H? - K) =0,

where K denotes the Gaufiian curvature of the surface f: M — R3 and A its Laplace-
Beltrami operator, is a 4th order elliptic PDE for f since the mean curvature vector His
the normal part of Af. Its analytic properties are prototypical for non-linear bi-Laplace
equations. Existence of a minimizer for the Willmore functional W on the space of smooth
immersions from 2-tori was shown by Simon [36]. Bauer and Kuwert [2] generalized this
result to higher genus surfaces. After a number of partial results, e.g. [22], [25], [33], [37],
[10], Marques and Neves [23], using Almgren-Pitts min-max theory, gave a proof of the
Willmore conjecture in 3-space in 2012. An alternate strategy was proposed in [35].

A more refined, and also richer, picture emerges when restricting the Willmore func-
tional to the subspace of smooth immersions f: M — R? inducing a given conformal
structure on M. Thus, M now is a Riemann surface and we study the Willmore energy
W on the space of smooth conformal immersions f: M — R3 whose critical points
are called (conformally) constrained Willmore surfaces. The conformal constraint aug-
ments the Euler-Lagrange equation by w € HY(K?%,) paired with the trace-free second
fundamental form IT of the immersion

AH+2H(H? - K) =< w,11 > (1.1)

with HY(K?%,) denoting the space of holomorphic quadratic differentials. In the Geomet-
ric Analytic literature, the space H(K3%,) is also referred to as SI 7 (geuc) the space of
symmetric, covariant, transverse and traceless 2-tensors with respect to the euclidean
metric geye. Since there are no holomorphic (quadratic) differentials on a genus zero
Riemann surface, constrained Willmore spheres are the same as Willmore spheres. For
higher genus surfaces this is no longer the case: constant mean curvature surfaces (and
their Mobius transforms) are constrained Willmore, as one can see by choosing w := I1
as the holomorphic Hopf differential in the Euler Lagrange equation (1.1), but not Will-
more unless they are minimal in a space form. Bohle [5], using techniques developed in
[6] and [4], showed that all constrained Willmore tori have finite genus spectral curves
and are described by linear flows on the Jacobians of those spectral curves.! Thus the
complexity of the map f heavily depends on the genus its spectral curve 3 — the spectral
genus — giving the dimension of the Jacobian of ¥ and thus codimension of the linear
flow. The simplest examples of constrained Willmore tori, which have spectral genus
zero, are the tori of revolution in R? with circular profiles — the homogeneous tori. Those

! For the notion of spectral curves and the induced linear flows on the Jacobians see [6].



4 L. Heller, C.B. Ndiaye / Advances in Mathematics 386 (2021) 107804

o|le ¢ &
N R

ot & &
,_I‘,_||_|l—/|T
&

Fig. 1. The vertical stalk represents the family of homogeneous tori, starting with the Clifford torus at the
bottom. Along this stalk are bifurcation points from which embedded Delaunay tori continue the homoge-
neous family. The rectangles indicate the conformal types. The family of surfaces starting at the Clifford
torus, bifurcating at the first branch point has Willmore energy below 87 and is conjectured to be the
minimizer in their respective conformal class. Image by Nicholas Schmitt.

are stereographic images of products of circles of varying radii ratios in the 3-sphere and
thus have constant mean curvature as surfaces in the 3-sphere. Starting at the Clifford
torus, which has mean curvature H = 0 and a square conformal structure, these homo-
geneous tori in the 3-sphere parametrized by their mean curvature H “converge” to a
circle as H — oo and thereby sweeping out all rectangular conformal structures. Less
trivial examples of constrained Willmore tori come from the Delaunay tori of various lobe
counts (the n-lobed Delaunay tori) in the 3-sphere whose spectral curves have genus 1,
see Fig. 1 and [16] for their definition.

Existence and regularity of a W22 N W1 minimizer f: M — R3 for a prescribed
Riemann surface structure (constrained Willmore minimizer) was shown by [21], [18],
[30], [31] and [34] under the assumption that the infimum Willmore energy in the confor-
mal class is below 87. The latter assumption ensures that minimizers are embedded by
the Li and Yau inequality [22]. A broader review of analytic results for Willmore surfaces
can be found in the lecture notes [21] and [32], see also the references therein.

Ndiaye and Schétzle [26,27] identified the first explicit constrained Willmore minimiz-
ers (in every codimension) for rectangular conformal classes in a neighborhood (with size
depending on the codimension) of the square class to be the homogeneous tori. These

2 For the notion of W22 N W° immersions see [21], [29] or [18].



L. Heller, C.B. Ndiaye / Advances in Mathematics 386 (2021) 107804 5

tori of revolution with circular profiles, whose spectral curves have genus 0, eventually
have to fail to be minimizing in their conformal class for H >> 1, since their Willmore
energy can be made arbitrarily large and any rectangular torus can be conformally em-
bedded into R? (or S?) with Willmore energy below 87, see [16,27]. Calculating the 2nd
variation of the Willmore energy W along homogeneous tori Kuwert and Lorenz [19]
showed that zero eigenvalues only appear at those conformal classes whose rectangles
have side length ratio vk2 — 1 for an integer k > 2, at which the index of the surface
increase. These are exactly the rectangular conformal classes from which the k-lobed De-
launay tori (of spectral genus 1) bifurcate. Any of the families starting from the Clifford
torus, following homogeneous tori to the k-th bifurcation point, and continuing with the
k-lobed Delaunay tori sweeping out all rectangular classes (see Fig. 1) “converge” to a
neckless of spheres as conformal structure degenerates. The Willmore energy W of the
resulting family® is strictly monotone and satisfies 272 < W < 4k, see [16,17]. Thus
for £ = 2 the existence of 2-lobed Delaunay tori implies that the infimum Willmore
energy in every rectangular conformal class is always below 87 and hence there exist
embedded constrained Willmore minimizers for these conformal types by [21] and [31].
It is conjectured that the minimizers for ¥V in rectangular conformal classes are given
by the 2-lobed Delaunay tori. For a more detailed discussion of the 2-lobe-conjecture see
[15]. Surfaces of revolution with prescribed boundary values was studied in [9].

In this paper we turn our attention to finding explicit constrained Willmore minimizer
in non-rectangular conformal classes. Putative minimizers were constructed in [14]. Our
main theorem is the following;:

Theorem 1.1 (Main Theorem). For every b ~ 1 and b # 1 there exists a® > 0 such that
for every a € [0,a’) the (1,2)-equivariant tori of intrinsic period 1 (see [1/], Fig. 2 and
Fig. 3) with conformal class (a,b) are constrained Willmore minimizers. Moreover, for
b~ 1 andb# 1 fixed, the minimal Willmore energy map

w(-,b): [O,ab) — Ry,

a— w(a,b)
is concave and for a # 0 it is real analytic.

Definition 1.1. Let II = (Hl, H2) denote the projection map from the space of immersions
to the Teichmiiller space. For «, 5 € R we use the abbreviations

Wa,s(f) = W(f) — oII'(f) — BII*(f)

) (1.2)
Waf) == W(f) = o1l (f).

A crucial quantity to be investigated is the following

3 For simplicity we call this family in the following the k-lobed Delaunay tori.
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Definition 1.2. Let 5° be the IT?-Lagrange multiplier of the homogeneous torus f°. Then
we define

o’ == max {a | &*W, g > 0}.

With these notations the following Corollary is obtained as a further byproduct of
the arguments proving the Theorem.

Corollary 1.1. For every b ~ 1 fized there exists a® > 0 small such that for all o < o
the minimization problem

Miny, := inf{ Wy (f)| f:T? := C/(2nZ + 2rbiZ) — S* smooth immersion with

0<IT'(f) <ab and IT*(f) =b }
(1.3)

is attained at the homogeneous torus f°.

The above Theorem and Corollary extend the results in [26] which states that the
homogeneous tori minimizes the Willmore energy in their respective rectangular confor-
mal class in a neighborhood of the square one. The main difference between [26] and our
case here is that homogeneous tori as isothermic surfaces are degenerate w.r.t. to the
projection to Teichmiiller space. Thus by relaxing the minimization problem, Ndiaye and
Schétzle were able to restrict to a space where isothermic surfaces solve the relaxed Euler-
Lagrange equation and become non-degenerate w.r.t. the associated constraint. Hence
they could use the existence and regularity result of [21] and the compactness result
of [26] to obtain a family of abstract minimizers of the constrained Willmore problem
smoothly close to the Clifford torus. Furthermore, they show that smoothly close to
the Clifford torus there exist only one unique 1-dimensional family of constrained Will-
more tori which are also critical with respect to the relaxed problem using the implicit
function theorem. Therefore the abstract minimizers must coincide with the family of
homogeneous tori.

This is in stark contrast to the case of non-rectangular conformal types. In fact,
while the unique family of constrained Willmore minimizers obtained in [26] consists of
isothermic surfaces, candidates surfaces with non-rectangular class are necessarily non-
isothermic, see [14]. Further, it is well known within the integrable systems community
that there exist various families of constrained Willmore tori deforming® the Clifford
torus covering the same conformal types, as also discussed in [14].

These known families consist of tori given by the preimage of (constrained) elastic
curves on S2 under the Hopf fibration, and are isothermic if and only if they are homo-
geneous [13]. Moreover, in contrast to tori of revolution, every conformal structure on

4 By deforming a surface f we mean a smooth family of surfaces containing f.
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Fig. 2. Two (1, 2)-equivariant constrained Willmore tori (with intrinsic period 1). The tori lie in a 2-parameter
family of surfaces deforming the Clifford torus. This family minimizes the Willmore functional in the re-
spective conformal classes for surfaces “close enough” to the Clifford torus. Images by Nick Schmitt.

Fig. 3. Equivariant Willmore tori constructed by Ferus and Pedit [11]. Each of these surfaces lie in a 1-
parameter family deforming a homogeneous torus. Images by Nick Schmitt.

a torus can be realized by a constrained Willmore Hopf torus [13]. It has been conjec-
tured by Franz Pedit, Ulrich Pinkall and Martin U. Schmidt that constrained Willmore
minimizers should be of Hopf type. Though we disprove this conjecture in this paper,
the actual minimizers we construct lie in the associated family of constrained Willmore
Hopf tori, where the Hopf differential of the minimizer is just the one of the associated
Hopf surface rotated by a phase. It turns out that the various families deforming the
Clifford torus mentioned before can be analytically distinguished by looking at their limit
Lagrange multiplier as they converge to the homogeneous tori at rectangular conformal
classes. This suggests that to determine the non-rectangular constrained Willmore mini-
mizers we need more control on the abstract minimizers than in the Ndiaye-Schétzle case
[26], namely the identification of the limit Lagrange multiplier to be exactly a® rather
than just bounded from above by a?.

The paper is organized as follows. In the second section we state the main observations
leading to a strategy to prove the Main Theorem. It turns out that the degeneracy of
an isothermic surface with respect to a penalized Willmore functional (i.e., the second
variation has non-trivial kernel) is crucial for the existence of families deforming it. We
also observe that the Lagrange multiplier is given by the derivative of Willmore energy
with respect to the conformal class. These two properties provide sufficient information
to characterize the possible limit Lagrange multipliers (a?, °) for a family of constrained
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Willmore minimizers converging to a homogeneous torus f°, which we compute in the
third section. In the fourth and fifth section we prove the Main Theorem 1.1. Candidate
surfaces f(,) parametrized by their conformal class (a,b), with b~ 1,b % 1 and a ~; 07
have been constructed in [14] satisfying

 fo.) = f? is homogeneous,

* f(a,p) is non degenerate for a # 0, and f(, ) — f? smoothly as a — 0,

o forevery b~ 1,0 # 1 fixed and a # 0, the corresponding Lagrange multipliers c(, ),
and B,,p) satisfy

Aap) o’ and Blap) — g%, asa—0.

This family is in fact real analytic for a > 0 and (43 is shown to be monotonically
decreasing in a.”
Thus the proof of Theorem 1.1 consists of two steps

(1) Classification:

We classify all solutions f of the constrained Euler-Lagrange equation satisfying
o fis close to a stable® homogeneous torus f° (b # 1) in W*?2

o its Lagrange multiplier (o, 3) is close to (a?, %) and a < o
via implicit function theorem and bifurcation theory. For b ~ 1, b # 1 fixed we obtain
a unique branch of such solutions f(a,b) parametrized by its conformal type which
therefore must coincide with the family of candidate surfaces f(,p)-

(2) Global to Local:
We show the existence of constrained Willmore minimizers f() with conformal
structure (a,b) with b ~ 1, b # 1 and a ~;, 07 such that their Lagrange multipliers
o) converge (up to a zero set) to a’ as a —> 0 (and as the surfaces “converge”
to f°). Thus for b ~ 1, b # 1 fixed these abstract minimizers can be identified for
almost every a ~; 07 to coincide with the family f(a,b) = f(,)- By continuity of
the minimal Willmore energy w(a,b) [21] (and by the regularity of the candidates)
we then obtain that the candidate surfaces f(, ) minimize for every a ~y 0t.

Acknowledgments
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attention to the topic of this paper and for helpful discussions. We would also like to thank
Dr. Nicholas Schmitt for supporting our theoretical work through computer experiments
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5 We can assume without loss of generality that a > 0. The choice of a sign corresponds to the choice of
an orientation on the surface and is equivalent to choosing §2II* (fo,5)) > 0.
6 By stability we mean that 521/\/517 > 0 up to invariance.
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2. Strategy and main observations

In this section we state key ideas and the strategy for the proof of the Main Theorem
(Theorem 1.1). We follow the notations used in [19].

The Teichmiiller space of tori can be identified with the upper half plane H?. Thus
let

1(f) = AIT(H,1T%(5)
be the projection map of an immersion f : 72 — S3 to H? such that the Clifford torus
1Tt =C/(V2rZ + V2miZ) — S ¢ C?

parametrized by

L iz iy
fl(xvy) = ﬁ <e\/§7 e\/ﬁ)
is mapped to II(f!) = (0,1). Then we can write the Euler-Lagrange equation for a
constrained Willmore torus as

W =< w, 1T >= adII' + BoIT2, (2.1)

with Lagrange multipliers o and (3. The surface is non-isothermic if and only if the
Lagrange multipliers are uniquely determined (after choosing a base in H?). At the
Clifford torus, and more generally, at homogeneous tori we have 6II' = 0 and thus the
a-Lagrange multiplier can be arbitrarily chosen. As already discussed before, it is well
known that there exist various families of (non-isothermic) constrained Willmore tori
deforming a homogeneous torus. These families can be distinguished by the limit of
their a-Lagrange multiplier as they converge smoothly to the homogeneous torus. The
obstructions for such families to exist and how these limit Lagrange multipliers relate to
their Willmore energy is summarized in the following Lemma. Though the proof of the
Lemma 2.1 is trivial, these observations give the main intuition for the dependence of
the minimum Willmore energy on the conformal classes.

Lemma 2.1 (Main observation). Let fla) be a family of smooth constrained Willmore
immersions with conformal type

(a,b) =: (@*,b) € [0,a3) x (1 — by, 1+ b)

for some positive numbers ag,bg € R such that the map
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(d,b) — f(a,b) S C2 ([0, ao) X (1 —bo, 1+ bg), W4’2) R

and OIT! (f(a’b)) =0, but oII° (f(a’b)) #+ 0 for a # 0. Further, let &(a,b) and B(a,b) be
the corresponding Lagrange multipliers satisfying

(@,b) — a(a,b), Ba,b) € C?([0,a9) x (1 —bg, 1+ by), W?),

and @(a,b) = W(f(“’b)). Then we obtain

(1)
awéi’ ) —a(ab) fora#0 and  lim &D(Z’ Doa0n =a w,
? 06(a,b) _ B(a,b) fora#0 and lim 9la,b) _ B(0,b) =: 5° Wb
ob - ) a—0 ob N 7 o 7

(3) ¢° =05 f(@1)|,—g satisfies
02 (Wan o) (FOD) (") =0 Wb,

Proof. The proof only uses the definition of the family, the constrained Euler-Lagrange
equation and its derivatives. By assumption we have that 9% 9} f(®*) exists and is con-
tinuous on

[0,&0)X(1—b0,1+b0) for 0<k+1<2.

Since 9; = 2v/ad, for a # 0 we have that 9, f(a’b) exist for a # 0 but lin% Oq f(a’b)
a—

cannot exist due to the degeneracy of f(0:9).

(1) Let ¢ := 8f8(:b) for a # 0. Then W = (WV(f(a’b))(go) for a # 0 and hence by the

constrained Euler-Lagrange equation we have:

0w(a,b)
da

= &(a, b)oIT" (f(a’b))(go) + B(a, b)sIT* (f(“’b))(go), for a # 0.

Since II(f(**) = (a, b), we obtain for a # 0 that

SITH(F) () =1 and ST (f@D)(p) =0 (2.2)
and therefore
ow(a,b) .
50 a(a,b), a#0.

Passing to the limit gives the first assertion.
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(2) This follows completely analogously to (1).
(3) In this case we test the Euler-Lagrange equation by ¢ and obtain for a # 0

SW(F D) () = ala, b)STL (F2) () + B(a, b)STI* (F2) ().
Now differentiating this equation with respect to a yields

W(F2) (i, 0) = @la,b)s? I (F) (0, ) + B(a, b)3*IT* (f1*)) (¢, ¢)
0da(a,b)
+ da

SIT! (f“b))(go)+aﬁé )5H2(f“b))() for a # 0.

In order to pass to the limit, it is necessary to replace ¢ by \/ag. This gives
W(F“?) (Vap,Vap) = a(a,b)5°TT (F) (Vap, Vayp)
+ B(a, )T (F1*0) (Vagp, Vayp)

. \/am(sﬂl (F@) (Vaw)

+ Va2V sz jem) (yag).

By assumption we have

da(a,b) ~ lim da(a,b) and h ( b) — lim d6(a,b)
Oa oa

a—0 a a—0  Oa

exist and moreover, limz_,q 6II' () (\/ap) = 0 and SII?(f(*))(\/ap) = 0 as in
(2.2). Therefore we obtain for a — 0

62 (War ) (FO) (6" 6 = 0. D

Remark 2.1. For any family f(*® the quantities used and computed in the above lemma
only depend the normal part of the variation ¢ and ¢’. We will denote these normal
variations again by ¢ and ¢’ in the following.

The first assertion of the lemma states that for a any family of constrained Willmore
tori f (a:0) " with the properties as in the Lemma, their Lagrange multipliers correspond
to the derivative of the Willmore energy @(a,b). At a = 0 and for b ~ 1 fixed we have by
[26] that the homogeneous torus f° is the unique constrained Willmore minimizer. This
suggests that the Lagrange multipliers é&(a,b) of a family fl@b) of putative constrained
Willmore minimizers with f(®?) = fb should have the smallest possible limit & as
a — 0. A necessary (and as we will later see a sufficient) condition for such a family to
exist is given by the third statement of Lemma 2.1, namely the degeneracy of the second
variation of the penalized Willmore functional Wsp gv.
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Remark 2.2. The limit Lagrange multiplier 3° is uniquely determined as the 3-Lagrange
multiplier of the homogeneous torus f* due to the non-degeneracy of the IT?-direction.
The discussion above suggests that the first step towards the proof of the main Theorem,
Theorem 1.1, is to determine

a’ = max {a | 52Wa”3b (fb) > 0}.

It is well known that the Clifford torus, and thus all homogeneous tori smoothly close to
the Clifford torus, are strictly stable (up to invariance). Therefore o’ is strictly positive
by fixing an orientation, i.e., II'(f) > 0. We will compute in the next section that it is
also finite. Further, since we show in Proposition 3.1 that the kernel of 52Wa57 b ( f b) is
1-dimensional for b ~ 1 and b # 1 (up to invariance), the third statement of Lemma 2.1
implies that this kernel determines the normal variation of the candidate family f, s
up to reparametrization. Moreover, the normal variation ¢” € 6*W,s go (f°) for b # 1 is
computed to have (intrinsic) period one and independent of the y-direction (see Section 3)
of a reparametrized homogeneous torus. More precisely, for

r2 4+ 2irs
T2 :=C/|(27Z & 2n————7
b /( ™ @ 7T7,,2+452 )

we consider the homogeneous torus f° parametrized as an (1,2)-equivariant surface’
for T — 53,

2.3
(z,y) — <rei(y+2%w> 23

7 Sei(2y—£x>) .

The independence of ¢® w.r.t. the y-direction means that the corresponding family
f(a,p) (with the properties of Lemma 2.1) are infinitesimally (1, 2)-equivariant. Further-
more, in our case knowing the limit Lagrange multiplier a® is tantamount to knowing
the normal variation ¢, since Wep go is linear in al.

For a € [0, a”) the second variation 6*W,, s (f?) is strictly positive (up to invariance),
thus 2-dimensional families deforming the homogeneous tori smoothly with

ilir(l) ala,b) =«

cannot exist. Indeed, the following Lemma shows that this is even true in W*2-topology.
It can be proven by using the same arguments as in the classification part of [26, Theorem
3.1, pp. 304-307].

Lemma 2.2. For b ~ 1 fized and o defined as in Definition 1.2 let o € R with o < a®.
Then the homogeneous tori f° is the unique solution (up to invariance) of the equation

7 Equivariant surfaces are those with a l-parameter family of isometric symmetries, we discuss these
surfaces in [12,14]. The T2 used in the definition is biholomorphic to T7 = C/ (271 Z @ 27siZ). We state
the immersion here with this lattice to emphasize that it is (1, 2)-parametrized.
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OW(f) = agdIL (f) + B°311°(f)
with ap ~a and f ~ f* in W42 TI'(f) > 0 and II*(f) = b.

At a = a’ (and b ~ 1, b # 1) the situation is very different. Using Integrable Systems
Theory we can construct a family of (1,2)-equivariant constrained Willmore tori f(, p
parametrized by their conformal type (a,b) ~ (0,b) deforming smoothly the homoge-
neous torus f° = f(0,p) such that the corresponding Lagrange multipliers a(q ) ab
converge from below as a — 0. In fact, we prove even more in [14].

Theorem 2.1 ([1/]). For b = £ ~ 1, with r?> + s> = 1 and b # 1 fized there exists for

'
a ~p 0 a family of (1,2)-equivariant constrained Willmore immersions

f(a,b) : T(Qa’b) = C/QWT’(Z P (a, + 'Lb)Z) 5 §3
such that

<\/aa b) — f(a,b) eC” <(07 aO) X [17 1+ b0>7 C?ﬁzm) n 02 ([07 aO] X [17 1+ bO)? Cfo'r?wn)a

where C$2, is the space of smooth immersions from a torus into S® and C* denote the
space of real analytic maps. Moreover,

(a,:0) — W(fian) € C2([0,a0] x [1,1+ b))
satisfy the following

(1) For allb ~ 1,b # 1 fized, fi,p) converge smoothly to the homogeneous torus 1P as
a — 0 given by

fb : Tb2 = T(Z(),b) — 537 (m,y) — (r@i(2y+%m)

Y

(2) The immersions f(,p) are non-degenerate for a # 0 and satisfy
W (fiap) = apyOlL' + Blapdll®  fora #0

with Lagrange multipliers (a(a,b),ﬁ(a,b)) such that o,y a® monotonically and
Bap) — B as a — 0.

Remark 2.3. The candidates are constructed as conformal immersions from T(2a7b) to S3.
Since T(2a7b) is C>°-diffeomorphic to T2, the space C¢°, (Tfa’b)) is canonically isomorphic
to C5%,, (T2), ie., it does not depend on the conformal type of the domain. By the
convergence of f(, ) to f? we mean the convergence of the maps under this identification

(I);Dnm (T(Qa,b)) = ?ﬁzm (sz) :
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Remark 2.4. By Lemma 2.1 we obtain that

(Q/Ef(a,b)’a:o)L =: SOb € Ker (521/\/04117511) (fb)~

Moreover Lemma 2.1 also implies that for b ~ 1, b # 1 fixed, the map a — W( f(a7b))
is monotonically increasing and concave in a ~ 0. Hence there exist a® > 0 and small
such that for all a € [0, a®)

Wb (f(a,b)) < Wb (fb) (2.4)

This means that the homogeneous tori f° cannot be the minimizer of W,» among
immersions f with 0 < II'(f) < a® and TI?(f) = b.

At f° the second variation of Wep o is degenerate. Thus a simple application of the
implicit function theorem as in [26,27] to classify all solutions close to f? in W42 is not
possible. Instead, we use bifurcation theory from simple eigenvalues for the classification.
For this we first show in Proposition 3.1 that the kernel of 6°W,» o (f?), for b # 1,
is only 1-dimensional up to invariance. Then together with Lemma 4.1 the following
classification result is proven:

Theorem 2.2. For b ~ 1, b # 1 fizred and up to taking a® of Remark 2./ smaller, there
exists (up to invariance) a unique family of non-degenerate solutions f(a,b) for a # 0
to the constrained Euler-Lagrange equation (2.1) parametrized by their conformal type
(a,b) with a € [0,a%), f(a,b) ~ f° in W2 as a ~ 0% and f(0,b) = f°

with its Lagrange multipliers a(a,b) and B(a,b) satisfying

ala,b) fab and B(a,b) — B as a — 0.

In particular, the only solution f of the constrained Willmore equation with conformal
type TI(f) = (0,b), o = a® and = B° is the homogeneous torus f°.

Since our candidate surfaces from Theorem 2.1 have Lagrange multiplier a4 ) ab
and smoothly converge to f® as a — 0 we can conclude that fap) = fla,b) for all
ac0,a®)and b~ 1,b# 1.

To prove the main Theorem (Theorem 1.1) it remains to show that there are abstract
minimizers f(**) of the constrained Willmore problem for the conformal class (a, b) with
b~ 1and a € [0,a’), which clearly exist by [21] and [31], satisfying the additional
property that their Lagrange multipliers a(®?) — o (@b — gb and f(@b) ~ P in
W42 as a — 0. Then these abstract minimizers would be covered by the classification
result given by Theorem 2.2, and must therefore coincide with f(a,b) and the candidate
surfaces f(q,p)-

Remark 2.5. Due to technicalities we actually only show the convergence of the Lagrange
multipliers a(*?) —s ab for ¢ — 0 almost everywhere (and b ~ 1 fixed). More precisely,
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we show that a(a,b) — a® for a — 0 and a € [0,a®) \ A for a suitable zero set A of
measure zero. From this we can conclude that the abstract minimizers f(%? coincide for
almost every a € [0,a’) with the candidates surfaces f(a,p)- Then by the continuity of
the minimal energy w(a, b) as shown in [21] (and real analyticity of f, ) for a # 0) we
obtain that f(, 4 are constrained Willmore minimizers for every a € [0, a®).

The properties of the abstract minimizers are shown by considering a relaxed mini-
mization problem for a penalized Willmore functional as in the following theorem.

Theorem 2.3. For b ~ 1 fized and up to taking a® smaller we have that for all a € [0, a’)
the minimization problem

Min, p) := inf {Ws (f)| f: Tj — S* smooth immersion with

. ) (2.5)
0<II'(f) <a and II°(f) = b}

is attained by a smooth and non-degenerate (for a # 0) constrained Willmore immersion
flab .2 63

of conformal type (a,b) with Lagrange multipliers al@b) A qb glad) b for almost
every a — 0 and (@0 — fb in W42 for almost every a € [0,a’).

The minimizers with respect to the penalized functional W,» automatically minimize
the plain constrained Willmore problem. We briefly discuss the main ingredients for the
proof of Theorem 2.3: By the work of Kuwert-Schétzle [20] and Ndiaye-Schétzle [26]
we obtain the existence of the minimizers f(*). Because of Equation (2.4) and the
classification (Theorem 2.2), these minimizers are always attained at the boundary, i.e.,
! ( f (“’b)) = a. This together with the relaxation of our constraint imply that Min, ;)
is monotonic. Due to this monotonicity of Min(, ;) we obtain that the minimal Willmore
energy w(a,b) is almost everywhere differentiable with respect to a. In a second step
we show that 0, w(a,b), where it exists, corresponds to a!*?) by constructing a smooth
family of surfaces f(**) whose Willmore energy approximates w(a,b) at ag up to second
order. By the monotonicity of Min(, ;) and Lemma 2.2 we show

Qlgyp = limsup al®@b) = qb,

a—0,a.€.

For

Qg = liminf al®b)
a—0,a.e.

we use again the family f(%? to show that



16 L. Heller, C.B. Ndiaye / Advances in Mathematics 386 (2021) 107804

Then by Lemma 2.2 we show
Qinf = ab.

The remaining convergence of 3(*?) — g% and f(®%) — £ in W*?2 for almost every
a — 0 follows from the Ndiaye-Schétzle compactness theorem ([26, Theorem 2.1]) and
the same arguments as in the convergence part of [26, Proposition 3.3].

3. Stability properties of a penalized Willmore energy

In the computations below we mostly follow [19] and thus we refer to that paper for
details. To fix the notations, we consider immersions

f:T?=CJT — (5% gss),

where I is a lattice and ggs is the round metric on S3. Let Imm(C /I") denote the space
of all such immersions and Met(C /T") the space of all metrics on the torus T2. Moreover,
let

G : Imm (T?) — Met (T?)
fr—f"gss

be the map which assigns to every immersion its induced metric. We denote by 7 the
projection from the space of metrics to the Teichmiilller space, which we model by the
upper half plane H? and with the notations above we can define II to be:

Il=70G:Imm (T?%) — HZ.

As in [19] we parametrize the homogeneous torus with conformal class b = 2, and

r?+s?2=1as
fb T2 — 53,
sy (3.1)
(z,y) — (relr, se's > -
We want to compute the value of a® which we recall to be

a’ = max {a | (SQWa#gb (fb) > O}.

From [19] we can derive that a” is characterized by the fact that 6*W,s go|p» > 0 and
there exists a non-trivial normal variation ¢® of f° such that

(52Wab”3b (fb) (gob, gob) =0, and 62Wa75b (fb) (gob, cpb) <0, for a > ab.
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We will show that for b # 1 the variation ¢° is unique up to scaling, isometry of
the ambient space and reparametrization of the surface f°. We will also choose the
orientation of f® and the variation ® such that 611! (fb) > 0.

While for b = 1 the exact value of o' and the associated normal variations can be
computed, a® for b # 1 does not have a nice explicit form. Nevertheless, we will show
that the unique normal variation ¢ characterizing o’ remains the same (in a appropriate
sense) for all b ~ 1. In fact, the normal variation ili% ( N f(a’b))L is the information we

use to show that the Lagrange multipliers of the candidates f, ;) converge to the ab as
a — 0, see Theorem 2.1.

We first restrict to the case b = 1 — the Clifford torus. Since ' = 0 we investigate
for which « the Clifford torus f! is stable for the penalized Willmore functional W, =
W — oIl

The second variation of the Willmore functional is well known. Thus we first con-

centrate on the computation of the second variation of II'. Another well known fact is
ST (f') = 0. Moreover, we have

DI (') (e.¢) =D (G(1")) (PG ()9, DG (S "))
+ 07t (G(11) (D*6(F) (9.9) )
The first term is computed in Lemma 4 of [19] to be
D (G(1)) (D*C(1) (0:9) = = | < Voo > duge..
T}
for normal variations ¢. It remains to compute the second term
Dt (G(1)) (DG, DG(fY)9).
By a straightforward computation (or by Lemma 2 of [19]) we have
DG(f")e = —2/ <IL ¢ > dpu,,,.,
T?

where II is the second fundamental form of the Clifford torus, which is trace free.
Let u and v € S3(T?) be symmetric 2-forms satisfying

treue U = trepev =0 and v Leye SgT(geuc),

where ST7T(geye) is the space of symmetric, covariant, transverse traceless 2-tensors with
standard basis ¢ and ¢2. Let g(t) = geue + tu and ¢'(t) := ¢ (g(t)) the corresponding
basis with respect to ¢g(t) be as in [19, Lemma 6] (see p. 10, 1. 1). Then by [19, Lemma 6]
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(p. 10, 1. 2), we have that (¢'(t) —¢*) Leuc 59 7 (geuc). On the other hand we can expand
v by

v =;(t)q"(t) + v (t), where v(t) Ly 537 (9(t)).

By assumption we have v;(0) = 0 and thus

d
D27T1(geuc)(uav) = %Dﬂ-l (g(t)) 'U|t:0 = 'Ui (O)Dﬂ-l(geuc) 'qlv

where
v1(0) = = < 0,(¢")(0) >r2(g.,0):
as computed in [19].
Let n := (ql)/(O) and 1n° = n1q* + n2q¢? be its traceless part, then by the consequence

of Lemma 6 of [19] given by the formula in page 11, line -12 in [19] (applied with @ = 1),
and the formula in page 5, line 8 still in [19], we have

(diveucno)l = <diVeucU)2

(3.2)
(diveyen®)2 = (diveyett)-
For u = u1q' + uaq? we obtain,
(diveyet)1 = O2up — Ohug,  (diveyet)2 = O1uy + dausa,
and therefore the Equations (3.2) become
Oam — O1m2 = Or1ux + Dauz (3:3)

Oy + O2mz = dauy — Orus.
If we specialize to the relevant case u = us¢?® and v = v¢? this yields

(D27T(g€u6)(u7v))1 = ﬁ < U2q27770 >L2(geuc)’

and we only need to concentrate on 7s. Differentiating the Equations (3.3) and subtract-
ing these from each other gives (with u; = 0)

AT]Q = —281821@. (34)

In order to compute 72 we restrict to normal variations ¢ = ®n for doubly periodic
functions ® in a Fourier space, i.e., ® is a doubly periodic function on C with respect
to the lattice v27Z + /2miZ. The Fourier space F (Tf) of doubly periodic functions
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is the disjoint union of the constant functions and the 4-dimensional spaces Ay; (Tf),

(k,1) € N\ {(0,0)} with basis

sin (\/ﬁkx) cos (\/ily), cos (\/ikx) sin (\/ily),
cos (\/ﬁkx) cos (\/5[3/), sin (\/ﬁkx) sin (\/§ly).

We restrict to the case where ® = &5 € Ay, (k,1) € N2\ (0,0) in the following. Then
for u = v = ®,;77 we obtain that

(3.5)

2 = ﬁalafbkl

solves equation (3.4). The integration constant is hereby chosen such that < 7Y

q1 >L2(geuc): 0.
Thus

D*r! (G(fl))W:U) = m / (8%2(13kl>q)kl.

T?
Put all calculations together we obtain
DL () (o) == [ (GFur)
T?

—i—W/(ﬁfgq’kz)@m-
T}

Remark 3.1. The second variation for general normal variation ¢ = (Z k.lEN2 akJ@k,l) 7
is obtained by linearity. Terms obtain by pairing ®; and ®,, ,,, where (k,1) # (m,n)
vanishes. To determine stability of W, we can thus restrict ourselves without loss of
generality to the case ¢ = @y, 7.

Clearly, if for a normal variation ¢ we have
DI (') (¢, ) <0,
then by the stability of the Clifford torus

D*Wao (f')(¢.0) 20

for all > 0. Moreover, for

®r; = asin (\/5/%) cos (\/ﬁly) + bcos (\/5/455) sin (\/§ly)
+ ccos (\/ﬁkx) cos (\/ﬁly) + dsin (\/ikx) sin (\/ily)
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with k,0 € N\ {0} and a,b,c,d € R we have:

DT (1) (g, ) = & (2kl — 72y ) S 2ab=2ed o < o 0 >0

S #(2]{:[ - k24_17_ll2) < @, >r2,

with equality if and only if
a=b and c¢=—d. (3.7)

The second variation of the Willmore functional at the Clifford torus (Lemma 3 [19]) is
given by:
D*W(f') (g, 0) =< (347 +3A +4)p, 0 >

(3.8)
= 2>+ 1P —6(k* + 1) +4) < @, >p2 .

Therefore we have

D*W(f1) (g, ) =0,

ifand onlyif k=41l andl=+1,ork=0and [l = +1,0or k=41 and [ = 0.
Let c:= % and we assume without loss of generality that ¢ > 1, then the second variation
formulas (3.6) and (3.8) simplifies to:

D*W(f") (g, ) = (2(® + 1)%1* = 6(c? + 1)I> +4) < ¢, 0 >

D2H1(f1)(<,0, ) < W—12(2cl2 —462i1) <P, >r2 .

Hence we obtain for & = 47%204
D2W,(fY) (0, ¢) > (2(c2 12— (6(c2+1) +8ac) 2 + 4+ 16&ﬁ) <00 >pe,

with equality if and only if ® satisfies (3.7). We still want to determine the range of «
for which W, is stable. At @ = a® the second variation of W, has zero directions in the
normal part which are not Mobius variations. Thus we need to determine the roots of
the polynomial

Jae(l) = (2(02 +1)218 — (6(c? +1) +8ac)l® + 4+ 16@—62i1)
The polynomial g4 . is even, its leading coefficient is positive and its roots satisfy:

? =

= 22, or P =S +daate (3.9)

P @2

The values of [ € N for which g4 . is negative lie exactly between the positive roots
of ga,c. So we want to determine & such that this region of negativity for gs., i.e.,
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the interval between the two positive solutions l;(&,c) and la(&,c) of (3.9) contains
k (other than those combinations leading to a Mabius

no positive integer for all ¢ = J
variation). We consider two different cases:

c=1andc>1.

For ¢ =1 the four roots of g5, are determined by:

12

?=1, =14a.

N[

Since the case of [? = 1, i.e., | = k = £1 corresponds to Mébius variations, we can

rule out the existence of negative values of g4 1 if and only if the second root satisfies

I| <2, orequivalently, [°=1+a<4.

From which we obtain & < %
For ¢ > 1, the first equation 12 = 622“ < 1 is never satisfied for an integer [. Thus we

only need to consider the equation

2 _ 1 ~ c
I"=o5 +4a(02+1)2.

To rule out negative directions for D?W,24 it is necessary and sufficient to have

2 1 ~
F=antiaee =

for appropriate ¢ = % For [2 = 1 we obtain that ¢ = % € N5 and & satisfies:

a=1ic+o).
The right hand side is monotonic in ¢ and therefore the minimum for ¢ € Ny is

attained at ¢ = 2 which is equivalent to & = g Since % < % which was the maximum
& in the ¢ = 1 case, we get that 62Wig.2(f') > 0. Further, at & = 2 the (non-Mébius)

normal variations in the kernel of §2Wig.2(f') are given by
®1 = sin(2v/2y) cos(V2x) 4 cos(2v/2y) sin(v/2z) = sin (\/5(27 + 2y)) (3.10)
®; = sin(2v/2y) sin(vV2x) — cos(2v/2y) cos(v/2z) = cos (\/_(x + 2y) .

[\

and by symmetry of k and [ (we have assumed ¢ > 1):

@, = sin(2v/2z) cos(v2y) + cos(2v/2x) sin(v2y) = sin (V2(2z + y)) (3.11)

®, = sin(2v/2z) sin(v/2y) — cos(2v/2x) cos(v2y) = cos (V2(2z + y)),

where ®;(z,y) = ®;(z,y+ %), i.e., ®; and ; differ only by a translation. We have shown

the following Lemma.
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Lemma 3.1. At b =1 we have that

ol = max {a >0 | 52Wa(f1) > 0}
is computed to be 1072,

The problem at b = 1 is that the kernel dimension of §>W,1 ( f 1) is too high. Even using
the invariance of the equation it is not possible to reduce it to 1, which is needed for the
bifurcation theory from simple eigenvalues. The main reason is that linear combinations
of the two ®; cannot be reduced to a translation and scaling of ®; only. This situation is
different for b # 1, see Proposition 3.1, because for homogeneous tori (3.1) the immersion
is not symmetric w.r.t. parameter directions x and y. For b # 1 we have that 8 # 0 and
thus the second variation of II? enters the calculation of

o’ = max {a > 0|0°W, g > 0}.

Moreover, Ay (T12) is canonically isomorphic to Ay ; (T bz) via

(1v2y) (%)
sin (k\/ia:) sin (l\/§y) — sin (’%”) sin (3.12)
cos (kv2z) sin (1v/2y) — cos (£2) sin (&),
cos (k\/ia: cos (l\/§y) —> COS (’%m) cos (%’)

To emphasis this isomorphism, we denote in the following normal variations at the
Clifford torus by ¢! = ®17il, with ®! a well defined function on T7, and the corresponding
normal variations at homogeneous tori f° under the above isomorphism by ¢® = ®*#?.
Since 62W > 0 and 62I1' > 0 we obtain the following Lemma using Lemma 4 and 7 of
[19].

Lemma 3.2. With the notations as above let ag € Ry be fived and ®' € Ay (T?) such
that

*Wao (f1) (¢',9") > 0.

Then for b ~ 1 close enough we also have

52Wa,ﬁb (fb) ((pb7 @b) >0,

for all a < ay.
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Kuwert and Lorenz [19] computed the second derivative of TI? for ¢” = (Pz’lﬁb to be

DA (1) (¢.6") = ke / <O B - 3t > d

47r r4sz/‘gob|2dA (313)

- Ao / R

2.2 2 —
where ¢, (k,1) := 7,2238271522 and " € Ay (T;)7".

Forb~1,ie.,r~ ﬁ this yields

DI (%) (¢4, ¢%) > DI %) (05, ).

for ¢! are the images of ¢} € Ker 6*W,1(f') under the canonical isomorphism and since
for b > 1, i.e., r < s and B > 0 we obtain

War gv () (05, 03) < 8*War g (f°) (5, 05) < 0.

Thus o’ < a' and we obtain that for b ~ 1 and b # 1 the kernel of §*W,s g (f?) is
2-dimensional and consists of either ¢4 and @4 for b > 1 or ¢4 and ¢4 for b < 1. Both
choices of b lead to M6bius invariant surfaces. We summarize the results in the following
Lemma:

Lemma 3.3. For b ~ 1, b > 1 we have that o’ is uniquely determined by the kernel
of (SQWO(E;’BE; (fb) which is 2 dimensional and spanned (up to invariance) by the normal
variations

@) = sin (\/5(% + Z?y))ﬁb and @8 = cos (\/5(% + 2—y))ﬁb.

Now, for b ~ 1 consider the reparametrization of the homogeneous torus as a (2, —1)-
equivariant surface

fooC/(2nZ + 2n i 7) — §° C C?,
(@,9) — (remﬂ% seﬂl?ﬂ%) :

Using these new coordinates the kernel of (52)/\/051,7 b ( fb ) for b= 2 > 11is given by

P =sin ((£ +45)%), D" =cos((£+45)7).
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Thus infinitesimally the g-direction of the surface is not affected by a deformation with
normal variation ®°7i°, i.e., the (2, —1)-equivariance is infinitesimally preserved. Since
the space of (2,—1)-equivariant surfaces and (1,2)-equivariant surfaces is isomorphic
and differs only by the orientation of the surface and an isometry of S3, we will consider
(1,2)-equivariant surfaces for convenience. Moreover, it is important to note that for all
real numbers cq, ¢o there exist di,ds € R such that

1P + @8 = ¢ sin ((£+4L)Z) + cacos ((2 +4L)%)

) (3.14)
:dlsin(( +4 ):B—l—dg) —dl(I) (( +4£)i’+d2)

Since homogeneous tori f satisfy f?(Z+da,3) = M f°(Z,), where M is a isometry of
S3, we obtain the following proposition reducing the kernel dimension of 52Wab7 b ( fb)
to 1 (up to invariance).

Proposition 3.1. For a family of f(bs 4 = €XDye (tgol{ + s@l{) be a family of immersions

from Tb2 — S3. Then there exist Mobius transformations M(s,t), reparametrizations
o(s,t), and a function c(s,t) such that

M(s,t) o f(b&t) oo(s,t) =expym (dl(s,t)apb)

Proof. Let ¢ = (s®} +t®})ii(#, §). Then by Equation (3.14) we obtain real functions
dy(s,t) and dy(s,t) satisfying

@ = (di(s, )@} (Z + da(s, 1)) )i’ (%, ).
By definition of the homogeneous tori there exists a isometry M(s,t) of S such that

M(s,t)o fo = fo(z + dz(s t),7). Thus M induces a map, which we again denote by M,
on the normal vector 7? given by

Mo (i(z,y)) = #(F + da(s, 1), 7)-
Therefore, M o ¢* = (d1®}(Z + d2))ii*(Z + d2,§) and with
o(s,t): Ty — TZ, (2,9) — (& — da, )
we hence obtain the desired property. O
4. A classification of constrained Willmore tori
Before classifying all solutions to the Euler-Lagrange equation (2.1) with control on

the Lagrange multiplier, we first show a technical lemma that allow us to use Bifurcation
Theory.
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Lemma 4.1. For b ~ 1 we obtain with the notations introduced in Section 2 and 3
53Wab,5b (fb) (SDba o, SOb) -0
Moreover, the fourth variation of the Willmore functional satisfies®
S Wap g (F2) (0, s 0°) 4+ 8*Wan o (£°) (0a (@) a=o, ¢", ") # 0.

Proof. For fixed b ~ 1 and candidate surfaces f(,) in Theorem 2.1 and let ¢(a) :=
1 o
(8\5 f(a,b)) . This implies

O (frap)p(a) =0 and I (f(a) (0(a)) = 2Va. (4.1)

Further, recall that ¢® = lin’(l) ¢(a) and a(qp) and B, are the Lagrange multipliers
a—r

of the candidate surfaces with
b . b .
o’ = CILIE)I(I) Qap and B0 = clzli% Bla,p)- (4.2)

The surfaces f(,) all satisfy the Euler Lagrange equation (2.1). Therefore, testing
(2.1) with p(a) gives

W (fran) (©(a) = )OI (Fap) (9(@) + Bian 011 (fran ) (¢(a))- (4.3)

Differentiate the above equation with respect to y/a together with the Euler-Lagrange
equation yields

W (faw) (0, 0) = a(a,b)52H1 (fap)) (0, 0) + 5(a,b)521—[2 (fap)) (0, )

(4.4)
+ 0z a)ST (fan) () + 0 ya Blawy 1T (fiam) ()

Differentiating once again and evaluating at @ = 0 combined with (4.1) and (4.2)
results in the following equation for the third derivative:

FW(F°) (%, ¢%, ") = a8 TI (£°) (%, 9%, %) + B2 8T (£°) (%, %, ")
+21im 8,z agan 01 (1) (€%, ") (4.5)
+2lim 9./ Ban) 0”11 (f°) (", ¢").
By (4.1) we have 611" (fb) (gob, ¢%) = 2 and by [14, Lemma 2.2] the candidates satisfy

lim 8\/5 Qqp) =0 and Clllg(l) 3\/5 B(ap) = 0.

a—0

8 Recall that ¢(a) = (8& f(“‘b))L for a family £(*®) deforming f°.
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Therefore, we obtain

63Wab,6b (fb) (Soba Sobv (Pb) =0.

Differentiating the equation (4.3) three times and taking the limit for a := /a — 0
gives the following formula:

54Wab”8b (fb) (g@b, e ,(pb) + 53Wab’ﬁb (fb) (8;1 go\dzo,gob, ') =

’)
4.6
lim 92, (621 () (¢, ¢) + lim 02, BanPIR(1) (). (0

We have computed for the candidates that
lim 6§a ﬂ(a b) — 8b ab < 0 and l}m azé ‘azoa(a b) — 28a ’azooé(a b) < 0.
a—0 ’ a— ’ ’
Together with
521! () (" ¢") >0 and dyally=1 =0
we conclude that the second formula of the Proposition holds for b ~ 1. O
Now we can turn to the main theorem of the section.

Theorem 4.1. For b ~ 1 and b # 1 fized there exists a a® > 0 such that there exists a
unique branch of solution (up to invariance) to the Euler-Lagrange equation

Was(f) =0, with a~a’,a<a’ B~p" f~ f° smoothly

. ) (4.7)

and IT'(f) = a,II°(f) = b with b ~ 1 fized and a € [0, a®).

In particular, for o« = a® and TI?(f) = b the only solution of (4.7) is the homogeneous
torus.

Proof. We prove the above theorem using Bifurcation Theory from Non Linear Analysis,
more precisely bifurcation from simple eigenvalues, see [1].
We subdivide the proof into the following four steps:

(1) the splitting of the Euler-Lagrange equation (4.7) into an auxiliary and a bifurcation
part,

(2) classification of all solutions to the auxiliary equation,

(3) classification of all solutions to the bifurcation equation,

(4) identification of the Teichmiiller class of the previously obtained solutions.

We first fix some further notations: we will work on the following Sobolev space given
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W2(T3,8%) == {V : T} — S° C R*| each V' € W**(T},R) },
where W*2 (T2, R) is the usual Sobolev space, namely
w2 (TE,]R) = {V LT — ]R|V and its derivatives up to order 4 are all
L? integrable with respect to g, = (f°)* (9s2) }-

Since tangential variations only lead to a reparametrization of the surface preserving
W and II we can restrict ourselves to the space

WhSH(TZ,8%) = {V e W*(T},5%)|V L df® on T} }.
Further, for an appropriate neighborhood U(0) of

4,2, 1
b LW

0e< b, @ ::{ orthogonal complement of < ¢ @* > in W42+

with W*2-topology }
we consider the map
®:U(0) x R* xR xR — L>*H(T%,8%) = {V € L*(T},5%)|V L df* on T}, }
given by

O(V,a, B,t,5) = Wap(expp (V + e’ + 53°))
= 5W(expfb (V + tpb + sgbb))
— adIT? ( exp fb (V + tpb + saﬁb))
— /36H2(expfb (V + te? + scﬁb)),
where L?(T2,5%) .= {f : T} — S®|f* € L*(T2,R)} and L?(T?,R) is the usual L?-

Lebesgue space. By the same reasons as in [26, p 305, 1. 6-10], the map & is smooth in
W42_topology and the solutions of (4.7) are exactly the zero locus of ®.

4.1. Step (1)
We first observe that

®(0,a”,8°,0,0) = EW,s 50 (f?) = 0.

b

Moreover, o’ is chosen such that the homogeneous tori are stable with respect to the

functional W,p gv, see Section 3, and we have

O @(0,a’,8°,0,0) - Z = W g0 (f°)(Z,.). (4.8)



28 L. Heller, C.B. Ndiaye / Advances in Mathematics 386 (2021) 107804

Moreover, the same argument as in [26, p. 305, 1. 14-16] gives that 8V<I>(0, ab, b0, 0)
is a Fredholm operator of index 0. The stability computations in Section 3, in particular
Lemma 3.3, further show

S Weap 50 (f°)(2,2) > 0,
and moreover W o (£2)(2,2) =0 (4.9)
& Ze<¢’ @ > @ MoebpTP & Ty Ty

Thus we obtain with the same arguments as in [26, Equation (3.20), p 305, 1. 16-20]
that

Ker (0y®(0,a”,8°,0,0)) =< ¢°,@" > @& Moeb o Ty & Ty Ty (4.10)

On the other hand, using the symmetry of 52Wab”3b (fb) and similarly to [26, p. 305,
1. 21-24] we get

< ¢’ 3" > @ Moebpn Ty L Im(0y®(0,a”, 8°,0)) in L>+ (17, S%). (4.11)

However, since (9‘/61)(07 ab, B0, 0) is Fredholm with index 0 we obtain by (4.10)

dim (LQ’L(TEaS?’) / Im(avq)(O,ozb,ﬁb,0,0))) = dim ( Moebpn Tj® < ¢”,¢" > )

. 2,1 2 3 2,1 (2 o3
= dim (L (T2, 5%) /( MoebpTe < o, b > )22 0557 ).
(4.12)

Together with Property (4.11) this yields

Let
Y = (MoebbebQ@ < @b > )L’LZL(TE’Q’SS).
Since Moeb T, 2® < ¢, @ > is finite dimensional we obtain
LA(T2,5%) " =Y @& MoebpTPe < ¢, @ >,
and thus
L*(T2,8%) =Y ® MoebpTE® < ¢°, ¢" > @THTE.

Thus as in [26], the above splitting still holds (though not as orthogonal decomposi-
tion) for
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V eU(0) c WHaH(12,8%) c ¢ (12, S?)
and t, s small (see of [26, Proposition B.3]).

2(2 o3 2 b b 2
L (Tb ) S ) =Y® Moebexpfb (V+tapb+s¢b)Tb < N @Texpfb (V+tnpb+s¢>b)Tb .
(4.13)
On the other hand, since Moebexpfb (V+wb+s¢b)Tb2@ < %, @® > is finite dimensional
we obtain for

1LwH2+H(12,5%)

X = ( MoebpT2e < ¢*, ¢ > ) c W1, 5%)

an analogous splitting for W42, i.e.,
X & MoebpTP® < ¢, @" >= Wh2H(T7, $%).
To continue we define the following projection maps:

Iy : L*(T2,8%)" — Y,
Mytoen s 12e<it 0> WHHH(TF, 8°) — Moebp T < ¢”,¢" >, (4.14)

and Iy : WH>H(T7,5%) — X.

This splitting (4.13) ensures that we can decompose the equation ® = 0 close to
(0, ab, b0, 0) into two equations which we solve successively in the following:

My® =0

o (4.15)

MoebbebzéB<Lpb,g5b>(I) =0.

In the language of Bifurcation Theory the first equation is called the Auxiliary Equa-

tion and the second the Bifurcation Equation. We deal with the Auxiliary Equation
first.

4.2. Step (2)
For
U:=Ily 0o®:U0)xR*xR xR —Y
we have that

8V \Ij(oaab7ﬁb7070)|X = HY © avq)<07ab7ﬁb7070)‘X-
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By (4.9) the map
v U (0,a%,8°,0,0)|x : X — Y

is an isomorphism and hence through the implicit function theorem there exist ¢; >
0,i=1,2,3, an open neighborhood Unieen(0) € Moeb s+ T2 and a smooth function

vV Uboeb (0)X] — &1 + al, ab +e1[x] —ea + B8P, B° + e9[X] — €3,e3][X] — €4, 4]

(4.16)
— U0)NX c W (17, 5%)
such that V(m, a, B, t, s) =m+ V(m, a, B3, t, s) satisfies
\I/(V(m,oz,ﬁ,t,s),a,ﬁ,t, 8) =0
for all
(m, @, B,t,8) € Unmoen(0)x] —e1 4+, ab +e1[x] —ea+ 7, B +ea[x] —e3,e3[x] —e4, €4].
Further, these are the only solutions to

U(V,a,B,t,s) =0 with Ve WHs+(T7,5%)

close to 0 in the W*2-topology and a ~ o, B ~ % and t, s ~ 0. By the definition of ¥
we have classified all solutions of

[y (Was(exppo (V + 16"+ 53")) ) = Tly (@(V, 0, 8,1,5) ) = 0 (4.17)
with V € W42+ (sz, 53) close to 0, a ~ a?, B ~ % and t,s ~ 0.
4.3. Step (3)
We now turn to the bifurcation equation

HMoebbebQGB<g0b,¢b>(I)(V7 a, B, t, 8) =0,

which we split into two equations

HMoebbebzq>(V, o, B,t,5) =0

(4.18)
H<@b’¢b>¢)(v, a, B, t, 8) =0.
The first equation has already been dealt with in [26, Proposition B.2 and Equation
(B.7)] The Mobius invariance of W and II implies that every solution of (4.17) already
solves the equation
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HMoebbebQ(I)(‘/a a, B, t, 8) =0,
for V.e W42+(T2,5%) close to 0 and a ~ a’, 8 ~ 3°,t, s ~ 0. Let

the family of surfaces considered in Proposition 3.1 by which there exist families of
Mobius transformations M (¢, s) and o(t, s) such that

M(t,s) o f(bt,s) oo(t,s) =expp (c(t, s)¢").

Because M (s,t) act on S as isometries, we obtain for any solution of the Auxiliary
Equation in Step (1) that

F(V(m,a,B,t,s),t,5) = M(t,s) o (expp (V(m, a,B,t,s) + to” + s@%) o a(t, s)
is given by
f(V(m,a,B,t,s),t,5) = exp (V(m, a, B,t,s) + c(t, s)apb),
with
V(m,a, B,t,s) = M(t,s)oV(m,a,B,t,s)oo(t,s) L< o’ @ >.
Therefore we can restrict ourselves without loss of generality to the equation
H<¢b><I>(V, a,ﬁ,t,()) =0.

Note that this equation and the maps involved remain well-defined for b — 1. Now
the situation is very similar to the situation of bifurcation from simple eigenvalues. To
abbreviate the notations let

@(V,a,ﬁ,t) = @(V,a,ﬁ,t,O) and V(m,a,ﬁ,t) = V(m,a,ﬂ,t,()).
We have derived that there exists a smooth function V satisfying
HYGB Moebbebz(I)(V(maa7ﬁ7t)705757t) =0

for all (m,a,ﬁ,t) € Unoeb(0)X] — &1 + a®,al +e1[x] — e + BY, B + eao[x] — e3,e3[. It
remains to solve

H<<pb>®(v(m7aa67t)aaa/67t) = 07

or equivalently
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@(V(m,a,ﬁ,t),a,ﬂ,t) 'Qob = 07

for (m,a,ﬁ,t) S UMoeb(O)X] — &1+ O[b,Oéb + 81[><] — &9 + Bb,ﬁb + 82[><] — 63,63[.
For the smooth family of surfaces

ff = exp (V(m,a,ﬁ,t) + tgob)

we observe
B(0,0%,57,0) - ¢ = W (1) () = 0
815 |t 0@(0 (0% ,Bb ) gOb = 52Wab’ﬁb (fb) (fb,gob) =0
tt |t Oq)(o « aﬁb ) @b = 53Wab,ﬁb (fb)( 'baf'bagob)
Ot [1=0® (0,0, 8°,0) - " = 6" Wi gv (F*) (2, F2, F2,0%) + 6 Woan go () (. 17, 7).

where f0 = 2L w0 and t at ¢ = 0 and f® := V 'b, where V is the Levi-Civita
ot f
connection of S3.

Lemma 4.2. With the notations above we have for b ~ 1
07 li=0®(0,a”, 8°,0) - " =0 and 9, [1=0®(0,a’, 5°,0) - ¢® < 0.

Proof. The aim is to use Proposition 4.1 for the conclusion. For this it is necessary to
identify f with ¢ appropriately. For b ~ 1 consider again

f,f’ = exp o (V(m, a, B,t) + tgob).

Then we have fb = ¢® 4+ V(m,a’ (%0). Since V € X we have that also
V(m,ab, 3°,0) € X. Further, f,(t) solves the constrained Willmore equation on X from
which we obtain

Wap g (£2) (V, Vo) = 0 for all V, € X.

From this we have V € X+ and therefore V € X N X+ and we obtain V = 0 and
f b = b showing the assertion.

For the second derivative f® = V(m,a, 3,t) we consider the candidates constructed
in [14]. They are W2 close to the homogeneous torus and thus there exist maps t(a, b)
and V (m(a,b), a(a,b), B(a,b),t(a, b)) such that the candidate surfaces have the following
representation:

flap) = exp o (V(m(a,b),a(a,b),ﬁ(a,b),t(a,b)) +t(a,b)<pb>
Since (g f(a,b)]&:o)L = ¢’ we have that

8;1 t(a, b)’@:() =1
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and
9a V]aeo = (aa a(a,b) 9o V + 05 B(a,b) D V + 04 t(a, b) dy v) lao = 0.
For b — 1 we obtain with similar arguments as for V that
8 War g1 (1) (0a lazas V(at, 81,0), ) = SII' (1) (- ) =0
from which we obtain that 0y V|4—q» = 0. Further,

82 B(a,b)|a=0 = 84 B(a,b)|amo = Iy a"|p—1 = 0.

1
The last equality is due to the fact that a® = a'b. Moreover, we have already computed
that 0z a(a,b) = 95 B(a,b) = 0. For the second derivative 925 fiap) := Va, Fawy 9a f(ab)
we thus obtain

. 2 . % } 3
%L}Hi 0za f(a,b) |a:0 %1_{% 0z (,O(CL) |a—0
T 2 B b : B 2 b b
= %1_)]{11 sz t(a,b)|a=oyp +%1—>Hi (0at(a,b)) Ja=oVs(m,a’, B°,0)
— Tim 92 S lm U b b
= %l—% Ozat(a,b)|a=op” + %l_)H% V(m,a®, g% 0)
= 032 t(a, Dla=op" + [

By the first assertion of Proposition 4.1 we thus obtain

53Wa1,ﬁl (a& QO(CL)|a:07b:1, (Pl: (Pl) = 53Wa1,ﬁ1 (f17 9017 801)
and therefore
lim 9;,®(0,a”, 8°,t) - " < 0.
I Ot (704757) P <
By continuity we get that this remains true for b ~ 1 close enough. O

Now we can use classical arguments in bifurcation theory (bifurcation from simple
eigenvalues) to obtain a unique function ¢(m, a, 8) ~ 0 satisfying

o(V (m,a, 8,t(m, a, 8)), 0, B t(m, @, B)) - ¢ = 0.
Moreover, all solutions to
@(V(m7a767t)7a767t) : Sob =0

for (m,a, B,t) € Unoeb(0)X] — &1 + ab,ab + &1[x] — g9 + B°, B° + &3[x]| — €3, 3] are of
this form for sufficiently small €; and Upioen(0). In other words,
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fatg = expge (V(m, . B,t(m, 0, 8)) + tm, o, )"

are the only solutions to

IWa.p (f) =0 with

4.19
fE€expp (W‘*’“(Tf,S?’)m <@t >t ) (4.19)

which are W#2-close to f® a ~ a®, and 8 ~ °. For fixed (a, ) ~ (a’, 8%) we thus
obtain a manifold worth of solutions of dimension dim (Moeb T72) + 1.

Since W and II is Mobius and parametrization invariant, we get for any Mobius
transformation M with

M oexp (V(m,a,ﬁ,t(m,a,ﬁ)) + t(m,a,ﬁ)gpb> c s
and every
o € Diff = Diffy := {¢ : T} — T} [¢ is a smooth diffeomorphism }
that the following equation holds
Wa,p (M o exp fo (V(m, o, B,t(m, o, B)) + t(m,a,ﬁ)gpb) oo) =0.
The Mobius group Moeb(3) of S3 is a finite dimensional Lie group and for an appro-

priate neighborhood U(Id) C Moeb(3) and («, 8) €] —e1+ab,ab+e1[x] —ea+ 8%, B0 +e3]
we have

Mo eprb (V(m7 «, Ba t(m7 «, B)) + t(ma «, ﬂ)@b)
is C'-close to f? and hence we can write
M oexps (V(m, a, B,t(m, a, ﬁ)) + t(m, a, B)gpb) oc = exp (W)

for an appropriate W € W#42+(T2 83) and o € Diff. More precisely, for the nearest
point projection

e : Us = {z e S? | dist(m,fb(Tf)) <6} — fb(TI?)
for an appropriate small positive d, we have
o:=0(M,a,p) = (fb)f1 ollpmoMofo

and
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W=W(M,a,p) =M o <V(m,a,ﬁ,t(m,a,/8)) + t(m,a,ﬁ)gpb> oo.

Now since fi's are the only solutions to (4.19) in exp (WH2H(T2, 83N < ¢ >1)
which are W%2-close to f* we get

W(M,Oé,ﬁ) = V(m,a,ﬁ,t(m,a,ﬁ)) +t<m7a76>¢b
=m+ V(m,a,ﬁ,t(m,a,ﬁ)) +t(m7a7/8)90b

for some m € Untoeb(0) € Moeb s (T}). More precisely we have
m:=m(M,a, ) = HMoebbe5W(M, a,ﬂ).
Since V' is a smooth map into W*42(T;2, $%) C C2(T?, S%) we obtain that the maps
(M,oz,ﬁ) — o, W,m
are continuously differentiable into C* (TbZ, 53). Hence we obtain for x € T74 Moeb(3)

O W (M, a", 8% x|mzra = (x o f°) + df* (O o(M, 0’ B°) | p=1a - X)
= Xofb (Xofb) - Moebbeb2

and thus
8]\/[ m(Id7 abaﬁb) "X = IIMoebbeb2 (Pxofb (X © fb)) = Pxofb (X © fb)
By definition of MoebT? we thus obtain that
O m(Id,a’, B%) : TrgMoeb(3) —s Moeb (T}

is surjective and hence by implicit function theorem and m([ d,ab, ﬁb) = 0 we have

Untoen(0) C m(U(O) x {(a,ﬂ)})

for some open neighborhood Upeen(0) of 0 in Moeb T independent of (cv, 8). Therefore
we have that

Mo eprb (V(m7 a7ﬁat<m7a76)) + t(m7aﬂﬁ)(10b> 00 (420)

are the only solutions to (4.19) which are W*2-close to f°.
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4.4. Step (4)

The aim is to identify the Teichmiiller class of the solutions of (4.19) given by (4.20)
for fixed b ~ 1 and b # 1. In particular, we show that the solutions of (4.19) induce a
local diffeomorphism between the space of Lagrange multipliers (around (a?, %)) to the
Teichmiiller space of tori around the class of the Clifford torus (0,1) € HZ. Clearly, by
setting

Vo =V (0, 8,10, a, B)) + (0, v, )" (4.21)
we have
II (M © exp o (V(Oz, ﬁ)) o U)* gss =11 (eprb (V(e, 5)))* gss.
Thus for all solutions of (4.19) we have that
(c(a, B)) _ (Hl exp s (V(a, B))° gss)
d(a, B) I expys (V(, £))" gss
(V(a, B
V(e 8

i

Hl eprb
o H2 eprb

Y

independently of m € 0Moeb(0). We first solve for II2, i.e., want to solve the equation
dla,)=b for b~b.
By definition we have
d(a®, ) =b
and further
05 | gprd(a®, B°) = 6TI* (f*) (95 | s_p Vi (®, B)).
Then from
o (V(a,8), e, B,40,a,8)) =0
with V(«, ) := V(O,a,ﬁ,t((),a,ﬁ)) and
v @(0,a%,8°,0) - Z = W 5o (£°)(2Z,.)

we derive that



L. Heller, C.B. Ndiaye / Advances in Mathematics 386 (2021) 107804 37
8\/ (D(O; ab, 51’, O) . 8,8 |ﬁ:5bV(ab, ﬁb) + ag |5:Bb(1)(07 ab’ /Bb, 0)
+ at @(O’ Oéb,/Bb,O) 8/3 |18:5bt(07 O{b,ﬂb) _ 0
Thus we get

3 War g0 () (05 [p=pV (a”, 8°),.) — 5H2(fb)
+ 52Wab Bb (f )(85 |5 Bbt (0, cv ,ﬁ ) (4.22)
& W p () (95 p=p V(a®, 8),.) = 611 (f )

On the other hand, there exists a V0 € C*° (T2, 5?) such that 611%, (V;?) # 0 by of
[26, Proposition 3.2]. This implies

52Wab,,8b (fb) (65 ’B:Bbv(aba ﬂb>7 V;)O) 7é 0

therefore 93 |5V (a’, B°) ¢ Moeb n T2® < ¢°, ¢* > and

W o (£°) (05 |g=pV (@®, 8°), 85 | g=prV (0", 8°)) > O

by (4.9) or the computations in Section 3. Hence using the implicit function theorem we
have for o ~ a® and b ~ b a unique B(«,d) ~ B° such that

d(a,ﬁ(a,f))) =b and fB(a’b) =p

and the map (a, b)) — B(a, b) is smooth. In particular, if II*(f) = b and a(f) = o’ we

obtain 3(f) = (°. It remains to determine IT" of the solutions of (4.19) given in (4.20).
The equation we aim to solve is

c(a(b,B),8) =a with a~0.
We have
c(a’, B(a®, b)) =0
Oa ot (0, B(0,8)) | = ST () - (D lacar [Vi (e Bler )] ) = 0

02|t [c(a, Bla, b))} = 62IT* (#7) (%Ia:ab [Vi (0, B0t )], O et [V (0, B, b))}).
(4.23)

Now, using the fact that

@(V(a,ﬁ(a,b)),a,ﬁ(a,b),t(O,a,B(a,b))) =

we get
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O aar® (0,0, 5,0) + Dy (0, 0", 8°,0) - (D [aar [Vi (e Bl 1))] )

(4.24)
+ 0y (1)(0, ab’ Bbv 0) . <8a |a:ab [t(O’ a, 5(a7 b))}gob) 0.

Thus we obtain (using V})(a,ﬁ(a,b)) = V(a,ﬁ(a,b)) + t(O,a,ﬁ(a,b))cpb, see (4.21),
and the fact that V (o, 8(a,b)) L< ¢°, 3" > by definition (4.16)>

<200 |acar ST (1) + 8 Weo 5 (1) ( 9 |aat Vo (e B(,1))],.) =0
and therefore we have
62 Weo (1) ( 9 | amat [Vi (@ Ba, )], ) = 0, (4.25)
which means that
D |acas [Vb(a,ﬁ(a,b))] € MoebpnT2® < ¢*, 3" >,
i.e., by (4.21) and (4.16)
Do [amat |V (0, Bla,0)) | € Mocb T2,
Therefore, we get by (4.25)

o6 (f) ((Oa | amat [Va (e B )], D |amat [V, Bla,1))])

, (4.26)

= Wi (1) (#":¢") (0o | azat [1(0. 0 5(. 1)) ] )

Using 9g | oo [t((), a, B(a, b))] # 0 this implies that

82 ‘a:ab [c(a,ﬂ(a, b))} > 0.

Hence as above, using classical arguments in bifurcation theory via monotonicity we
have that there exist a unique branch of solutions a(a,b) such that

c(a(a, b), B(a(a, b), 5)) =a

for a ~ 0% and b ~ b with a(0,b) = o, and a(a,b) < a’. Altogether we obtain for b ~ 1
but b # 1 fixed, a family of smooth solutions to (up to invariance)

6Wa,g(f)20, a~a’, a<a® and B~p°

parametrized by their conformal type a ~ 0%, such that the only solution with a = o

and IT1?(f) = b is the homogeneous torus of conformal class (0,b). O
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5. Reduction of the global problem to a local one

We use penalization and relaxation techniques of Calculus of Variations to estab-
lish Theorem 5.1 providing the existence of appropriate global minimizers in an open
neighborhood of each rectangular class close to the square class. By appropriate global
minimizer we mean those reducing our clearly global problem to a local problem, i.e.,
which are close to the Clifford torus in W#? with prescribed behavior of its Lagrange
multipliers. Then Theorem 4.1 shows that these abstract minimizers coincide with the
candidate surfaces.

Theorem 5.1. For every b ~ 1 there exists an a® small with the property that for all
a € [0,a’] the infimum of Willmore energy

Min(q 4y = inf {Wab (f)| f:T? — S smooth immersion
[0<IT'(f) < a and I°(f) = b}
is attained by a smooth immersion f(®b) T2 — S3 of conformal type (a,b) and veri-
fying
Waan gt (F4) =0

with o(*?) < ab and oY) — ab almost everywhere as a — 0 and (@Y — b as
a — 0 where (a’, B%) € R? as defined in Theorem /.1.

Proof. By taking b ~ 1 close enough, the same arguments as in [21, Theorem 7.2] and in
[26, Proposition 3.3] using [21, Proposition 2.2, Theorem 7.1, and Proposition 5.3] and
[26, Theorem 3.1] yields the existence of an a® > 0 small with the property that for all
a € [0, a’] the minimization problem

Min(q 4y = inf {Wab (f)| f:T? — 8% smooth immersion

[0<IT'(f) < aand IT*(f) = b}

is attained by a smooth immersion £{*" with conformal type (@,b) and a € [0, a] solving
the Euler-Lagrange equation for (conformally) constrained Willmore tori

5Wa((1a,b),5((la,b) (fC(L&,b)> =0
for some aﬁf”b), C(L&’b) € R.
To give more details, consider for b ~ 1 and a ~ 0% a minimizing sequence

()

with

N of the variational problem Min(, ), i.e., there exists €, = en(a,b) > 0
me
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Wab(.ﬁgg’b)) < Min(a,b) + €m, (51)

such that €, — 0 as m — 0o. Since the homogeneous torus f° is an admissible competitor
for the variational problem Min, 3y, Equation (5.1) implies

Wan (£L9) < W (£°) + €m. (5.2)

By [26, Theorem 3.1] the homogeneous tori minimizer the Willmore energy in its
conformal class (0,b), for b ~ 1. Therefore,

W (£L8)) < w(0,D) + €m, (5.3)

where w(a, b) is the minimal energy map.
On the other hand, for b ~ 1 we have w(0,b) < 87. Therefore, for every b ~ 1 there
exists ap ~ 0T such that

w(0,b) + ala < w(0,b) + alay < 87 Va € [0, ay)] (5.4)
and (5.3) yields
W) < w(0,b) + P + em < w(0,b) + ala + e, (5.5)

with a,, = It (fﬁ?’b)). Hence
W) <w(0,b) + alay + € Va € [0,a] (5.6)

Combining this equation with Equation (5.3) we obtain that there exists a my =
mo(a,b) € N such that for all m > my

W(fe?)) < 87 — & for some & > 0 depending only on b. (5.7)
This gives by [21, Theorem 7.2] the existence of f,(ff ) such that
I(f5) = T(f557) = (@m, b)
and
W) = w(im, b).
Thus we have

W(f5D) < w(@m, b) + em- (5.8)
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Moreover, since 0 < a,, < a, we can assume (up to taking a subsequence) that
am — a with 0<a<a. (5.9)

Due to the energy bound (5.7) and the conformal type convergence (5.9) we can apply
[21, Proposition 2.2] to obtain

flad) s @b eakly in W22

up invariance. Combining this with the equations (5.8) and (5.9) we obtain by [21,
Theorem 7.1] that fé‘“b) is a smooth minimizer of W under fixed Teichmiiller class and
satisfies the constrained Willmore equation with

H(fzga’b)) = (d7b>'

The strong convergence of £ —s f& in W22 for m — oo is then obtained by [21,

)

Proposition 5.3]. Hence by equation (5.1) and the convergence of IT}( we get that

fc(f”b) solves the variational problem Min g, ;).

Step (1):a=a

For a = 0 the homogeneous tori f* are the unique minimizer and @ = a = 0. Thus let
a > 0 in the following. The candidate surfaces f, ) with fop) = f constructed in [14]
satisfy that

Wab (f(a,b)) = Wyp ((I, b)
is strictly decreasing for a ~ 0, since

0 b
7('0&5 ELO” ) = Q(qb) — al < 0.

This yields a > 0.

Now, we claim that up to take a® smaller @ = a holds for all a €]0, a’]. Assume this
is not true. Then since @ > 0 there would exist a sequence a,, — 0 with corresponding
a, — 0 such that

ab = ozZ:’b =ab vn.
Then arguing as in the convergence part of [26, Proposition 3.3] using [21, Proposition

2.2, Proposition 5.3, and Theorem 7.1], and [26, Proposition 2.4 and Theorem 3.1] we
obtain”

9 The uniqueness part is not stated [26, Theorem 3.1] but is a consequence of the implicit function theorem
arguments, see formula (3.31) and the paragraph thereafter until the end of the proof.
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fo= fanb b smoothly (5.10)

up to invariance. Indeed, passing to the limit as m — oo in (5.8) we get
WD) < w(0,b) + abay, Y0 < a < ay. (5.11)
Thus using the definition of f° we get
W(f2) < w(0,b) + ala, Vn > 1, (5.12)
and equation (5.4) gives
W(f) <w(0,b) + alay < 87 Vn > 1. (5.13)

Recall that as n — oo the conformal type II(f%) = (@, b) converges to (0,b). There-
fore, using the energy bound and the convergence of the conformal type as before we
can apply [21, Proposition 2.2] to obtain up to invariance

fo— f* weakly in W22,

Since we have by construction W(f°) = w(ay,b), [21, Theorem 7.1] gives (as before)
that f° is a smooth minimizer of W with fixed conformal class (0,b). Therefore, [21,
Proposition 5.3] gives the strong convergence of f° — fbin W22 as n — .

On the other hand, the uniqueness part of [26, Theorem 3.1] implies that fb = fis
the homogeneous torus for b ~ 1. Finally, since a,, = a® for all n and §TI2(f°) # 0 the
compactness result in [26, Proposition 2.4] implies

o — f° smoothly.

Our classification of solutions around f° therefore gives f® = f° in contradiction to
(%) = a, > 0.

Remark 5.1. Because the minimum Min, ) for a € (0,a’) is always attained at the
boundary, the function

¢(a,b) := Minqp) = w(a,b) — ala,

where w(a,b) is the minimal Willmore energy in the class (a,b), is monotonically non-
increasing. Therefore ¢(a,b) (and thus also w(a,b)) is differentiable almost everywhere
in @ and

Ja 90(@7 b) <0,

almost everywhere.
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Step (2): %w(a) = a(@P) < aP almost everywhere

The aim in this step is to show the first statement (1) of Lemma 2.1 with weaker

regularity assumptions on the dependence of f(**) on its conformal class, i.e., to relate

8‘5—5:1) with a(®?) for almost every a €]0, ab[. Then by Remark 5.1 we obtain the claimed

upper bound on the Lagrange multipliers a/(%?).
For b ~ 1 fixed we can assume up to taking a® smaller and by the same arguments

in step 1 that the minimizers f(*® are non-degenerate for all a € (0,a’). For ay €

(a‘07b)

(0, a®) such that w(a, b) is differentiable choose variational vector fields V; satisfying

STI° (Vj(ao’b)) = ¢, ; and consider the smooth family of immersions

f(S,t) 1= €XD f(ag.b) (tVl(ao’b) + 8‘/2(a0’b)) _
Then solving the equation
H(f(sat)) = ((l, b)

defines unique maps t(a) and s(a) (with ¢(ap) = 0 and s(ag) = 0) by the implicit function
theorem, since

det (OTT' (V™)) =1,

i,j=1,2
Further, consider the Willmore energy of this family f (s(a), t(a))
@mwy:m(ﬂq@JWD)
Then we can compute
0, w(a, b)‘a:ao = a0t g, ‘a:aot(a)
Observe that t(a) and s(a) are smooth in a and the Taylor expansion for a and b gives
a = ag +t(a) + o([t(a)]).
Therefore 0, |q=q,t(a) = 1 and thus
04 w(a, b)|a:aO = (@0,

Now, comparing w(a,b) to w(a,b) — the minimal Willmore energy in the conformal
class (a,b) we obtain that the function

Aa) = w(a,b) —w(a,b) >0
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with equality at a = ag. In other words A has a local minimum at a = ag. Because w(a, b)
is differentiable at a = ap by assumption and w(a, b) is smooth, we have 9, A|,—q, = 0.
This gives

00 w(a,0)]azay = 00 @(a,b)|qma, = ™).

Step (8): lim o(®? =qab

a—0,a.e.
Since 0112 (fb) # 0, we obtain
lim f3(a,b) — f°,
a—0
by standard weak compactness argument. Thus it is only necessary to show the conver-

gence of al®b) We will show its convergence for a — 0 almost everywhere, by which
we mean the convergence up to a zero set A C [0,a’), i.e.,

lim  a(®b) = lim al®b)
a—0, a.e. a—0,a€[0,a)\ A
We first show that
Qugyp = limsup alab) = b
a—0, a.e.

Clearly, asyp > 0. Otherwise, 0, w(a,b) < 0 almost everywhere. Because of the mono-
tonicity of w(a,b) — aa® and the continuity of w(a, b), we would thus obtain that w(a, b)
is decreasing in a contradicting the fact that w(0,b) is the minimum of w(a, b) for b ~ 1.

Assume now that gy, < a’. Then there exists a zero sequence (ag)ken with ap > 0
such that the Lagrange multipliers o(***) converge to Qgyp < a®. Thus the corresponding
immersions f (ar:b) f? smoothly up to invariance using same arguments as in step
(1) to prove (5.10). But by Lemma 2.2 we then obtain f(@*? = f(Ob) for k >> 1 in
contradiction to ag > 0.

Now we want to show that also

e T3 s a,b) __ _ b
Gins 1= Jimginf o =y =

For this we first show that «;,s is bounded from below, more precisely, o, s > 0.

Up to choosing a’ smaller we have by the same arguments as above that a(®?) =£ 0 for
all a € [0, a). Assume that o, ¢ < 0. Then, since o,y = ab, there exist zero sequences
(ar)reN, (@x)ken C (0,a®) such that w(a,b) is differentiable at aj, and a;, and aj < ay
with

alewb) v b and @b Qinyp < 0.
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Because w is continuous, it attains its minimum on [ag, a]. Since the minimal Will-
more energy w(a,b) is strictly decreasing (with the same arguments as in the proof of
Qsyp > 0) around aj and strictly increasing around ay this minimum is always attained
at ax € (ag,ar). For k € N and a ~ aj consider the smooth family of immersions

fk (S(G), t(a)) = expf(dk’b) <S(a)vfl(&k,b) + t(a)%(&k,b)>
with
5Hi(Vi(ak,b)) =0d;; and H(f(S(@),t(a))) = (a,b)

as in Step (2). Let

or(a,b) = W(ﬁ(s(a%t(a)))

be again the Willmore energy of the family f. Then 9, wi(a,b) = al@®) = 0. Thus
wi(a,b) is either strictly increasing or strictly decreasing around aj and there exist an
a ~ ap and a € [ag, ax| with

W (CL, b) < (Dk<&k7 b) (5.14)

Equation (5.14) together with the definition of w and @y, gives a contradiction to the
fact that w(ag,b) is the minimum of w on [ag, ax], since

w(a, b) < G)k(a, b) < @k(flk, b) = w(&k, b)

It remains to show that a;,; = aP. For this take again a zero sequence (ap)geny C
(0,a®) with w(a,b) is differentiable at all a; and such that corresponding sequence of

b)

Lagrange multipliers satisfies a(®?) — o, ¢. Thus, as before, we have that up to take

a sub sequence and up to invariance f(@:0) — £(08) gmoothly. If vy, ;< a®, we obtain
by Lemma 2.2 that

flawd) — 2 for  k>>1
contradicting the fact that ay > 0. Thus we can conclude that
Qinf = ab. O
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