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OPTIMAL CONTROL FOR THE INFINITY OBSTACLE PROBLEM

HENOK MAWI AND CHEIKH BIRAHIM NDIAYE

ABSTRACT. In this note, we show that a natural optimal control problem for the oco-obstacle
problem admits an optimal control which is also an optimal state. Moreover, we show the
convergence of the minimal value of an optimal control problem for the p-obstacle problem
to the minimal value of our optimal control problem for the oo-obstacle problem, as p — oc.

1. INTRODUCTION

The obstacle problem corresponding to an obstacle f in
1,2 _ 1,2 Co
(1.1) W, (Q) ={ueW=(Q): u=g on 00}

consists of minimizing the Dirichlet energy

/ | Du(z)|* dx

Q

over the set

(1.2) K7, ={ueW,Q): u(x)> f(z) in Q}

where €2 C R" is a bounded and smooth domain, Du is the gradient of u, and g¢g €
tr(WH2(Q)) with tr the trace operator. In (1.1), the equality u = g on 9 is in the sense
of trace. This problem is used to model the equilibrium position of an elastic membrane
whose boundary is held fixed at ¢ and is forced to remain above a given obstacle f. It is

known that the obstacle problem admits a unique solution v € K%g. That is, there is a
unique v € K7 such that

/Q|Dv(x)|2d:£§/Q|Du(x)|2d:E, VUEK?Q.

In [3] Adams, Lenhart and Yong introduced an optimal control problem for the obstacle
problem by studying the minimizer of the functional

1

Bw) = 5 [ (Ta0) = + DU da

In the above variational problem, following the terminology in control theory [16], v is called
the control variable and T5(¢)) is the corresponding state. The control 1 lies in the space
VVO1 2(Q), the state Ty(1)) is the unique solution for the obstacle problem corresponding to
the obstacle ¢ and the profile z is in L?(Q2). The authors proved that there exists a unique
minimizer 1) € W,*(Q) of the functional .J,. Furthermore, they showed that Ty(1)) = ).
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Following suit, for 1 < p < oo, and z € LP(2), Lou in [17] considered the variational
problem of minimizing the functional

(P,) T,() = ; / ITy() — 2 + | DU de

for v € WyP(Q) := {u € W(Q) : w=0 on 092} and established that the problem
admits a minimizer 1. Here T),(¢)) is the unique solution for the p—obstacle problem with

obstacle 1 € WP (Q), see [6] and references therein for discussions about the p-obstacle
problem. We remind the reader that the p—obstacle problem with obstacle f &€ ng’p (Q)
refers to the problem of minimizing the p—Dirichlet energy

/ \Du(z)|? dz
Q
among all functions in the class
K, ={ueW(Q): u>f in Q and u=g on 09},
with g € tr(W'P(Q). Tt is further shown in [17] that, as in the case of p = 2, T,,(¢) = .

For the boundary data ¢ € Lip(0f2), letting p — oo, one obtains a limiting variational
problem of L*-type which is referred in the literature as the infinity obstacle problem or
co-obstacle problem (see [20]) . That is, given an obstacle f € W, >°(Q) one considers the
minimization problem:

(1.3) Finding e € K 1 [|Duge||oo = ué%%g || Dul|oos
where
K%, ={u e Whe@Q): v>f in Q u=g on 90}, and |||l :=esssup|-|.
It is established in [20] that the minimization problem (1.3) has a solution
(1.4) U = Uso(f) € KT,

which verififies
(1.5) — Ao > 0 in  in a weak sense .

More importantly, the authors in [20] characterize u., as the smallest infinity superharmonic
function on €) that is larger than the obstacle f and equals g on the boundary. Thus for a
fixed F' € Lip(0f2), this generates an obstacle to solution operator

T : WEZ(Q) — WE(Q)
defined by
(1.6) To(f) = us(f) € W5™(Q),  f € Wg™(Q),
where

W= Q) :={u e Wh(Q):u=F on 09}

In this note, we consider a natural optimal control problem for the infinity obstacle prob-
lem. More precisely, for F' € Lip(0f2) and for z € L*>(Q) fixed, we introduce the functional

Joo(¥) = max{[|Toc () — 2llc, ||D¥llsc}, ¥ € Wp™(9)
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and study the problem of existence of )4, € W}OO(Q) such that:

(Px) Joo(Ve) < Jus(¥), ¥V ¥ € WE™(Q).

In deference to optimal control theory, a function 1., satisfying (P.,) is called an optimal
control and the state Ty (1) is called an optimal state.

Several variants of control problems where the control variable is the obstacle have been
studied by different authors since the first of such works appeared in [3]. The literature is
vast, but to mention a few, in [2] the authors studied a generalization of [3] by adding a
source term. In [1] a similar problem is studied when the state is a solution to a parabolic
variational inequality. In [18] the author studied regularity of the optimal state obtained in
[3]. When the state is governed by a bilateral variational inequality, results are obtained in
9], [10], [11] and [12]. Optimal control for higher order obstacle problems appears in [5] and
[14]. Related works where the control variable is the obstacle are also studied in [13,21] and
the references therein.

In this note, we prove that the optimal control problem (P,,) associated to J., is solvable.
Precisely we show the following result:

Theorem 1.1. Assuming that Q C R" is a bounded and smooth domain, F € Lip(0f2),
and z € L®(Q), Js admits an optimal control u., € Wp™(Q) which is also an optimal
state, i.e

Uso = Too(Uoo)-

Using also arguments similar to the ones used in the proof of Theorem 1.1, we show the
convergence of the minimal value of an optimal control problem associated to J, to the
minimal value of the optimal control problem corresponding to J,, as p tends to infinity.
Indeed we prove the following result:

Theorem 1.2. Let Q C R™ be a bounded and smooth domain, F € Lip(02), and z €
L>(Q). Then setting

Jp:(pjp)%, C,= min J,(¢) for 1<p<oo, and Cox= min J(?),
VEW " () VEWE™ ()

where J, is as in (P,), we have
lim C), = Cx

p—0o0

In the proofs of the above results, we use the p-approximation technique as in the study
of the oo-obstacle problem combined with the classical methods of weak convergence in
Calculus of Variations. As in the study of the oo-obstacle problem, here also the key
analytical ingredients are the L%-characterization of L* and Holder’s inequality. The
difficulty arises from the the fact that the unicity question for the oc-obstacle problem is
still an open problem to the best of our knowledge. To overcome the latter issue, we make use
of the characterization of the solution of the oc-obstacle problem by Rossi-Teixeira-Urbano
20].
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2. PRELIMINARIES

One of the most popular way of approaching problems related to minimizing a functional of
L>-type is to follow the idea first introduced by Aronsson in [7] and which involves interpret-
ing an L*>°-type minimization problem as a limit when p — oo of an LP-type minimization
problem. In this note, this p-approximation technique will be used to show existence of an
optimal control for J.. In order to prepare for our use of the p-approximation technique,
we are going to start this section by discussing some related LP-type variational problems.

Let © € R™ be a bounded and smooth domain and ¢ € Lip(0f2). Moreover let 1) €
ng’w(Q) be fixed and 1 < p < oo. Then as described earlier the p-obstacle problem with
obstacle 1 corresponds to finding a minimizer of the functional

(2.1) L) = /Q | Do()|Pdx

over the space K = {v € wWir(Q): v >4, and v =g on 09} The
energy integral (2.1) admits a unique minimizer u, € Kﬁ ;- The minimizer w, is not only
p-superharmonic, i.e Ayu, <0, but is also a weak solution to the following system

—Ayu >0 in
(2.2) —Ayu(u—1)=0 in Q
u > in €

where A, is the p-Laplace operator given by
Ayu = div(|DulP"2Du).

Moreover, it is known that the p-obstacle problem is equivalent to the system (2.2) (see [16]
or [19]) and hence we will refer to (2.2) as the p-obstacle problem as well. On the other
hand, by the equivalence of weak and viscosity solutions established in [19] (and [15] ) u, is
also a viscosity solution of (2.2) according to the following definition.

Definition 2.1. A function v € C(2) is said to be a viscosity subsolution (supersolution) to

F(z,u,Du,D*u) =0 in Q

(2:3) u=0 in 0N

if for every ¢ € C*(Q) and vy € Q whenever ¢ — u has a minimum (resp. maximum) in a
neighborhood of xo in € we have:

F(x,u,D$,D*) <0 (resp. > 0).

The function u is called a viscosity solution of (2.3) in 0 if u is both viscosity subsolution
and viscosity supersolution of (2.3) in Q.

The asymptotic behavior of the sequence of minimizers (u,),~; as p tends to infinity has
been investigated in [20]. In fact, in [20], it is established that for a fixed ¢ € W, *°(€), there
exists U = Uso (1) € KiY) = {v € W(Q) : v > 4} such that u, — us locally uniformly
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in Q, and that for every ¢ > 1, wu, converges to u., weakly in W14(Q). Furthermore,
is a solution to the oo-obstacle problem

(2.4) min ||Dvl]w

oo
”eKw,g

For Q convex (see [8]), the variational problem (2.4) is equivalent to the minimization
problem

A
where
Lv)= inf [v(@) —vly)|

(@y)e? ey |T — Y|
Moreover, in [20], it is show that w. is a viscosity solution to the following system.

—Agu >0 in Q
—Agu(u—1)=0 in
u > in €

where A, is the oo-Laplacian and is defined by

n n

Asou = (D*uDu, Du) = Z Z U Uy Uy -

i=1 j=1

Recalling that « issaid to be infinity superharmonic or oo- superharmonic, if —Au >0
in the viscosity sense, we have the following characterization of wu., in terms of infinity
superharmonic functions and it is proven in [20]. We would like to emphasize that this will
play an important role in our arguments.

Lemma 2.2. Setting
Fr={vel), —A,v>0 in Q in the viscosity sense}

and
Fr={veF", v>¢ in Q and v=1 on 00},
we have
(2.5) Too(®)) = us = inf v,

ve]:;r

with Ty as defined earlier in (1.6).

Lemma 2.2 implies the following characterization of infinity superharmonic functions as
fixed points of T,,. This charactreization plays a key role in our p-approximation scheme
for existence.

Lemma 2.3. Assuming that u € W, >°(Q), u being infinity superharmonic is equivalent
to u being a fized point of Ty, i.e
Too(u) = u.
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Proof. Let u € ng’oo(Q) be an infinity superharmonic function and v be defined by
v = Too(u). Then clearly the definition of v and lemma 2.2 imply v > w. On the other
hand, since u € W;"’O(Q) and is an infinity superharmonic function, we deduce from lemma
2.2 that u > To(u) = v. Thus, we get Too(u) = u. Now if u = T (u), then using again
lemma 2.2 or (1.4)-(1.6), we obtain u is an infinity superharmonic function. Hence the

proof of the lemma is complete.
O

To run our p-approximation scheme for existence, another crucial ingredient that we will
need is an appropriate characterization of the limit of sequence of solution w, of the p-
obstacle problem (2.2) with obstacle 1/, under uniform convergence of both w, and ,.
Precisely, we will need the following lemma.

Lemma 2.4. If w, is a solution to the p-obstacle problem (2.2) with obstacle 1, that is,
w, satisfies

—Ayw, >0 in
(2.6) —Ayw, (w, —1,) =0 in Q
wy > Y, in )

in the viscosity sense and if also that w, — us and v, — s locally uniformly in <,
then uo 1s a solution in the viscosity sense of the following system

—AgoWs > 0 m
(2.7) —AoWoo (Woo — Vo) =0 in
Weo = Voo m Q.

Proof. First of all, note that since w, > v¥,, —Apw, > 0 in the viscosity sense in  for
every p, w, — Us, and 1, — s, both locally uniformly in €, and € is compact, we
have ws > Yo and —A ws > 0 in the viscosity sense in 2. It thus remains to prove
that —AsUee (Weo — Vo) =0 in  Q which (because of w,, > 15 in ) is equivalent to
Ao =0 In {we >V} :i={2 € Q: wo(x) > Yso(x)}. Thus to conclude the proof,
we are going to show —A ws, =0 in {ws > Yoo} To that end, fix y € {we > Yoo}
Then, by continuity there exists an open neighborhood V of y in Q such that V is a
compact subset of 2, and a small real number § > 0 such that we > 6 > ¢ in V. Thus,
from w, — Weo, ¥, — Yo locally uniformly in 2, and V' compact subset of Q, we infer
that for sufficiently large p

(2.8) w, >8>, in V.
On the other hand, since w, is a solution to the p obstacle problem (2.2) with obstacle

¥, then clearly —Ayw, =0 in {w, > ¢¥,} == {x € Q: wy(x) > Y,(x)}. Thus, (2.8)
imply —A,w, = 0 in the sense of viscosity in V. Hence, recalling that w, — ws locally

uniformly in ) and letting p — 0o, we obtain
—AsWs = 0 in the sense of viscosity in V.
Thus, since y € V' is arbitrary in {ws > ¥}, then we arrive to

—AsWs = 0 in the sense of viscosity in  {ws > s},
6



thereby ending the proof of the lemma.

O

On the other hand, to show the convergence of the minimal values of J, to that of J.,

we will make use of the following elementary results.

Lemma 2.5. Suppose {a,} and {b,} are nonnegative sequences with

liminfa, =a and liminfb, = 0.
p—00 pP—00

Then
lim inf max{a,, b,} = max{a, b}.
pP—00
Proof. Let {b,,} be a subsequence converging to b = liminf,,,, b,. Then
klim max{a,,, by, } = max{a,b}.
—00

Since the liminf is the smallest limit point we have

(2.9) lim inf max{a,, b,} < max{a,b}.
pP—00
On the other hand
ap, b, < max{a,,b,}, forall p.
Thus

b = liminf b, < liminf max{a,,b,},
P—00 P—00

and likewise

a < liminf max{a,, b, }.
p—0o0

Consequently
(2.10) lim inf max{a,, b,} > max{a, b}.

p—0o0

Finally (2.9) and (2.10) conclude the proof of the lemma .

Lemma 2.6. Suppose {a,} and {b,} are nonnegative sequences with

liminfa, =a and liminfb, = 0.
p—00 p—00

Then
lim inf(a? + b2)"/? = max{a, b}.

p—0o0

Proof. Tt follows directly from the trivial inequality

25 max{a,, by} > (a& + )7 > max{a,, b}, Vp>1,

lemma 2.5 and the fact that liminf,(a,b,) = (lim, a,)(liminf, b,) if lim,a, > 0.

3. EXISTENCE OF OPTIMAL CONTROL FOR J,, AND LIMIT OF C|,

In this section, we show the existence of an optimal control for J,, and show that C,
converges to C,, as p — oo. We divide it in two subsections. In the first one we show
existence of an optimal control for .J,, viathe p-approximation technique, and in the second

one we show that C), converges to Cs as p tends to infinity.
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3.1. Existence of optimal control. In this subsection, we show the existence of a min-
imizer of J, via the p-approximation technique using solutions of the optimal control
for J,. For this end, we start by recalling some optimality facts about J, inherited from

Jp (see (P,) for its definition) and mentioned in the introduction. For € C R" a bounded
and smooth domain, z € L>(Q), F' € Lip(02), and 1 < p < oo, we recall that the functional
Jp is defined by the formula

1/p

(3.1) J) = [ [ 100 =2+ Dupras| v e W)

and that the optimal control problem for J, is the variational problem of minimizing .J,,
namely

(3.2) inf  J,(¢)
YEWLP(Q)

over WyP(Q), where
WP Q) ={p e W(Q): v =F on 09},

and T,(¢) is the solution to the p-obstacle problem with obstacle . Moreover, as for the
functional J,, J, also admits a minimizer v, € W;’p (Q) verifying

(3-3) Tp(¢p) = Yy
As mentioned in the introduction, for more details about the latter results, see [3] for p =2
and see [17] for p > 2.

To continue, let us pick n € W}OO(Q) Since 7 competes in the minimization problem
(3.2), we have

/Q Dy P < J,(n) /Q T,(n) — = + | Dnlda.

Since Q is compact and T,(n) — Two(n) as p — oo locally uniformly on Q (which follows
from the definition of T, (7)), we deduce that for p very large

(3.4) [ pupas < arigy
Q

for some M which depends only on |||, [|[Too(n)||co and ||z||s. Furthermore, let us
fix 1 < q < p. Then by using Holder’s inequality, we can write

35) 1wtz <{ [apupina)” o5
and we obtain by using (3.4) that for p very large
[ IDu s < aigfFiol
and raising both sides to 1/¢, Weﬂderive that for p very large, there holds

1Dyl 2a < MIQIYS,
with || - ||z« denoting the classical L9(€2)-norm. This shows, that the sequence {1} is

bounded in W}’q(Q) in the gradient norm for every ¢ with a bound independent of g,
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and by Poincare’s inequality, that for every 1 < ¢ < oo, the sequence {v¢,} is bounded
in Wy%Q) in the standard W1(Q)-norm. Therefore , by classical weak compactness
arguments, we have that, up to a subsequence,

(3.6)
Yy — Voo, as p— oo locally uniformly in Q and weakly in W(Q) V 1< ¢ < oco.

Notice that consequently ||Diso||re < M|Q|Y? for all 1 < ¢ < oco. Thus, we deduce once
again by Poincare’s inequality that

(3.7) Voo € WEZ(Q).

We want now to show that ., is a minimizer of J.. To that end, we make the following
observation which is a consequence of lemma 2.4.

Lemma 3.1. The function s is a fized point of T, namely
Too(woo) = ¢oov
and the solutions T,(v,) of the p-obstacle problem with obstacle 1, wverify: as p — oo,
T,(1y) — Too(theo) locally uniformly in Q and weakly in W™(Q) V 1< ¢ < .

Proof. We know that T,(1¢,) = 1, (see (3.3)) Thus using (3.6) and Lemma 2.4 with ¢, = 1,
and w, = T,(¥,) = 1, we have T,(1,) — s locally uniformly in Q, weakly in Wh4(Q)
for every 1 < g < 0o, and 1., is a infinity superharmonic. Thus, recalling (3.7), we have
lemma 2.3 implies Ty (o) = 1oo. Hence the proof of the lemma is complete. O

Now, with all the ingredients at hand, we are ready to show that . is a minimizer of
J. Indeed, we are going to show the following proposition:

Proposition 3.2. Let Q@ C R"™ be a bounded and smooth domain, F € Lip(0Q2) and
z € L™(Q). Then the is a minimizer of Jo on Wyp™(Q) That is:

Joo (Vo) = H}in Joo(n)
neEW % (Q

)
F
Proof. We first introduce for n < p < oo and ¥ € WI}J‘” (Q)

Hy(¢) = max{|[T,(v) = zlloc, [[DY]]sc},
which is well defined by Sobolev Embedding Theorem. Then for any 7 € W™ ()

[ 1pwlrde < g3 = [ (1T00) = 2l + D) o
Q Q

Therefore, using the trivial identity (|al? + |b|p)% < 25 max{|a|, |[b|}, we get

1/p
([1Dorac) ™ < 2mapem, o).
Q
If we now set
(3.8) I,= inf H,(n),

nEW > (Q)
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we deduce that
1/p
< /Q |pr|pdx) < 2'riQ|Vrp,.

Let us fix ¢ such that n < ¢ < oo. Then for ¢ < p < oo, by proceeding as in (3.5), we
obtain

1D%p]|20 < 27T |,

Similarly,
1T (4p) — 2l|za < 271, |0201/1.
Thus
(3.9) max{||T,(¢p) = 2|z, [ Dyl |2a} < 2YPL,[QY.

For any n € Wy>(Q) we also have I, < Hy(n) and liminf, .. I, < liminf, .., H,(n).
Thus, since ), converges weakly in W14(Q) to 1, as p— oo and (3.9) holds, then by
weak lower semicontinuity, we conclude that

1D el < lim i || D |zx < €2/ imminf H, ().

Moreover, since T,(n) converges locally uniformly on Q to T, (n) as p — co and Q is
compact, then clearly

lim H,(n) = Joo(n),

pP—00

and hence

| Dtos [0 < o ()€ 1.

Since this holds for any element 7 of WI}JOO(Q), we conclude that by taking the infimum
over Wy(Q) and letting ¢ — oo

(3.10) IDVslle < il () < (i)

neW 2> (Q)

Using lemma 3.1 and equation (3.9) combined with Rellich compactness Theorem or the
continuous embedding of L*° into L9, we conclude that

1 Toc(¥o0) = 2ll20 = lim [|T(¢p) — 2|20 < Q]9 lim inf H,(n).
pP—00 p—0o0

Thus, as above letting ¢ goes to infinity and taking infimum in 7 over W}’OO(Q), we also
have

(3.11) [T (oo) = 2llec < Inf  Joo(n) < Joo(te0)-

neW > (Q)
Finally, from (3.7), (3.10) and (3.11) we deduce
Joo(oo) = min  Jo(n),

neEW > ()

as desired. m
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3.2. Convergence of Minimum Values. In this subsection, we show the convergence of
the minimal value of the optimal control problem of .J, to the one of J, as p — oo,
namely Theorem 1.2 via the following proposition:

Proposition 3.3. Let Q C R™ be a bounded and smooth domain, F' € Lip(02) and 1 <
p < oo. Then recalling that

C,= min Jy(¢) and Cyx= min J(¢),
VEWE(Q) YEWR™(9)

we have

lim C) = Cx.

p—0o0

Proof. Let 1, € WiP(Q) and 1y € W5(Q) be as in subsection 3.1. Then they satisfy
Jp(¥,) = Cp and J(¢s) = Cs. Moreover, up to a subsequence, we have 1, and
verify (3.6) and the conclusions of lemma 3.1. On the other hand, by minimality and Holder’s
inequality, we have

Tp(tp) < Jp(tee) < 2210 max{||T, (1) — 2lloo; [ Dtoc|loc }-
Thus

(3.12) lim sup J,,(¢)) < Joo(Uso)-

pP—00

Now we are going to show the following
(3.13) Joo(Voo) < liminf Jp(1),).
p—00

To that end observe that by definition of J,, we have

(3.14) Joo (theo) = max{][|Too(V0) — 2lloo; [[Dtoc]loc}-
Thus, using the L9-characterization of L, we have that (3.14) imply

(3.15) Joo (o) = max{ lim [T (o) — 2|[La, lim || Dbes||La},
q—00 q—00
and by using lemma 2.5, we get

(3.16) Joo(Yoo) = lim max{|Too(¥oo) — 2|29, || Do |14}

On the other hand, by weak lower semicontinuity, and corollary 3.1, we have
(3.17) [1D¥oo|zs < Hininf [| D[z

Now, combining (3.16) and (3.17), we obtain

(318) Too(te) < T infmae{][Toc (oc) — 21z, Tinn nf |12}
Next, using lemma 2.6, corollary 3.1, and (3.18), we get

(3.19) Joo(Yoo) < lim inf lim inf {(||T, () — 2[|0)" + (11D [10)P}
11



To continue, we are going to estimate the right hand side of (3.19). Indeed, using Holder’s
inequality, we have

P/q
(T (45p) — 2o = { [ 30 - z|qu}
T — 2lPdr \ 1Q|(A—a/PIp/a
s{/9| (W) — 2 x}| |
= {/ T, () — Z‘pdx} ‘Q‘(l—q/p)p/q'
Q

Similarly, we obtain

(D] La)? < {/ | D[P dx} Q|-a/mr/a,
Q

By using the latter two estimates in (3.19), we get

1/p
Joo (Vo) < lim inf lim inf { / (I T, (1) — 2[P + | Db, |P) d:c} \Q\ﬂ—q/mp/qﬂ/@]
q—0o0 p—00 Q

q—0o0 p—0o0

1/p 1_1
= lim inf lim inf {/(\Tp(wp) — 2P + | Dy |?) d:c} \Q\q‘p]
Q

(3.20) = lim inf {|Q|q lig(i;lf Jp(@bp)] = h;ﬁi?f Jp(¢y)

q—0o0

proving claim (3.13). Combining (3.12) with (3.20) we obtain
lim J, () = Joo(uco),
p—r00

and recalling that we were working with a possible subsequence, then we have that up to a
subsequence

lim C), = Cy.
pP—00
Hence, since the limit is independent of the subsequence, we have
lim C), = Cx
p—00
as required. O
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